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Accurate assessment of dietary adherence and metabolic outcomes remains a 
critical challenge in most nutrition studies. Ketogenic metabolic therapies (KMTs) 
provide a unique advantage by inducing nutritional ketosis and enabling the use of 
ketone bodies as biomarkers of metabolic state. This narrative review investigates 
the role of ketone testing as an integral component of KMTs. We introduce the key 
biomarkers and testing modalities currently used and present a comprehensive 
overview of the use of capillary blood β-hydroxybutyrate (BHB) testing across diverse 
therapeutic areas. Capillary blood BHB testing plays a multifaceted role in KMTs: 
it enables objective monitoring of dietary adherence, supports the interpretation 
of clinical outcomes, and informs personalized treatment adjustments based on 
individual metabolic responses. Additionally, it may facilitate behavior change 
through real-time feedback. Broader implementation of ketone testing in both 
clinical and research settings will require thoughtful protocol design that accounts 
for individual preferences and tolerability, continued technological innovation 
to enhance user experience, and further research into the relationship between 
ketone levels and therapeutic outcomes.
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1 Introduction

A major challenge in most nutrition intervention studies is the lack of objective biomarkers 
to accurately monitor dietary adherence and metabolic responses (1–3). Metabolomic profiling 
is emerging as an advanced method to detect the intake of specific foods, but its use is limited 
by inter-individual variability, the need for extensive validation, and poor translatability from 
research settings to routine clinical practice (2–4). Recovery biomarkers, such as doubly 
labeled water for energy intake and 24 h urinary nitrogen for protein intake, have been used 
as estimates of dietary intake, but their implementation is limited due to narrow applicability 
and logistical challenges (5, 6).

In the absence of reliable biomarkers, most studies of dietary patterns continue to rely on 
self-reported dietary intake data, which are inherently prone to recall bias, misreporting, and 
inter-individual variability (7–9). In intervention studies where outcomes depend on precise 
nutritional adherence, these limitations are particularly problematic.

Ketogenic metabolic therapies (KMTs) provide a unique advantage in this regard. KMTs 
are dietary and lifestyle interventions designed to increase fat metabolism and ketone 
production, inducing the metabolic state of nutritional ketosis (10). The hallmark of nutritional 
ketosis is the elevation of the ketone bodies β-hydroxybutyrate (BHB), acetoacetate, and 
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acetone, which can be  objectively measured in blood, urine, and 
breath, respectively (Figure 1) (11). In particular, nutritional ketosis is 
defined by a precise BHB concentration range of 0.5–5.0 mmol/L in 
blood (12), thereby making BHB testing integral to the definition 
of KMTs.

Nutritional ketosis can be  achieved with ketogenic diets that 
provide high fat, very low carbohydrate, and moderate to adequate 
protein intake. Therapeutic versions (such as the classic ketogenic diet, 
modified ketogenic diet, and modified Atkins diet) are used to manage 
epilepsy and other neurological conditions (13), each with distinct 
macronutrient ratios or carbohydrate restrictions (typically less than 
30 grams of total carbohydrates daily). Ketogenic approaches are also 
applied to metabolic disorders like type 2 diabetes and obesity, 
typically delivering <10% of total energy from carbohydrates, which 
corresponds to approximately 30 to 50 grams of total carbohydrates 
daily (14). Variations include very low-calorie ketogenic diets 
(VLCKD) that are intended for short-term use (15), calorie-sufficient 
very low-carbohydrate diets that are suitable for long-term use (16), 
and intermittent fasting or time-restricted feeding protocols (17). 
Importantly, while extended fasting reliably induces ketosis, it may not 
be sustainable long term due to risks of lean mass loss and reduced 
resting metabolic rate (18). Even with their therapeutic potential, 
KMTs may lead to side effects such as gastrointestinal disturbances 
and electrolyte imbalances, and should therefore be implemented with 
appropriate clinical oversight.

In this narrative review we investigate the role of capillary blood 
BHB testing as an integral component of KMTs. First, we provide an 
overview of the key biomarkers relevant to KMTs, discussing their 
advantages, limitations and contexts of application (Section 2). 
Second, since monitoring of capillary blood BHB levels represents the 
current gold standard for assessing nutritional ketosis (11), we present 
a comprehensive review of its applications across different therapeutic 
areas, emphasizing testing modalities and impact on data 
interpretation (Section 3). Last, we discuss the role of capillary blood 
BHB testing in research and clinical practice in light of the reviewed 
literature, highlighting its potential to: (1) enable objective monitoring 
of dietary adherence; (2) support precise interpretation of clinical 
outcomes; (3) facilitate behavior change and empower patients; and 
(4) personalize treatment (Section 4).

2 Biomarkers and testing methods 
used in KMTs

Several biomarkers and testing methods are relevant to KMTs 
(Figure 1), each with specific advantages and limitations (Table 1).

Acetoacetate is a primary ketone body produced in the liver from 
fatty acid metabolism. It can be  utilized directly for energy, 
enzymatically converted into BHB, or spontaneously decarboxylated 
into acetone. Acetoacetate is excreted in the urine. Urine dipsticks 

have been widely used for decades to detect elevated acetoacetate 
levels in diabetic ketoacidosis (DKA), largely due to their affordability 
and non-invasive nature. However, as individuals adapt to sustained 
ketosis, renal reabsorption of acetoacetate increases (19), reducing its 
urinary excretion and limiting the reliability of urine dipsticks for 
assessing ketosis (20). While capillary blood BHB testing and urine 
dipsticks have exhibited equal sensitivity for detecting DKA, BHB has 
been shown to have higher specificity (21). In the context of nutritional 
ketosis, the reliability of urine acetone measurements is further 
limited, as hydration status significantly affects accuracy (22).

Acetone is a volatile ketone body derived from the spontaneous 
breakdown of acetoacetate and is exhaled through breath, making it a 
non-invasive biomarker of ketosis (23). Studies have demonstrated 
that breath acetone is moderately correlated with plasma acetoacetate 
and plasma BHB, supporting its use as a reliable biomarker of ketosis 
(24). However, the accuracy of breath acetone measurements depends 
on multiple factors, including the performance of the breath analyzer 
[e.g., cross-sensitivities and poor stability of current metal oxide 
sensors (25)], the breathing maneuver used, and human variables such 
as breath volume, pattern, and temperature (26). Therefore, the 
clinical and research applications of acetone as a biomarker of ketosis 
remain limited by current technological constraints (27).

BHB is the most abundant ketone body in circulation, synthesized 
in the liver from acetoacetate through an enzymatic reduction (28, 
29). BHB serves as a primary metabolic fuel during ketosis, supplying 
energy to the brain, heart, and muscles. Beyond its role as an energy 
substrate, BHB also functions as a signaling molecule, modulating 
inflammation, gene expression, and mitochondrial function (28, 29). 
BHB is measured in the blood and is considered the current gold 
standard for assessing ketosis (11). Historically, quantification relied 
on gas chromatography, mass spectrometry, and enzymatic assays, 
which provided high precision in clinical and research settings. 
Advances in technology have led to the development of modern 
capillary blood BHB meters, offering a convenient, rapid, and accurate 
alternative for home monitoring (30–32). As reviewed in the following 
section, capillary blood BHB testing is widely used in KMTs in both 
clinical and research settings.

Emerging technologies aim to expand BHB monitoring 
capabilities beyond point-in-time measurements. Continuous ketone 
monitors (CKMs) are wearable devices that measure BHB 
concentrations in interstitial fluid in real time. They operate via a 
subcutaneous sensor, which continuously samples interstitial fluid to 
assess BHB levels. CKMs offer continuous ketone data that may 
improve the detection and management of DKA, particularly in high-
risk populations (33, 34). In people following KMTs, continuous 
ketone monitoring could provide feedback that may reveal circadian 
and behavioral patterns in ketone production not captured by 
conventional testing methods. However, challenges remain regarding 
sensor accuracy, calibration requirements, and the need for clinical 
validation before widespread adoption in both clinical and lifestyle 
contexts (33, 35). Currently, CKMs are available for consumer use only 
in selected markets.

In addition to ketone levels, glucose monitoring is frequently 
integrated into KMTs to evaluate glycemic regulation and metabolic 
adaptation. Beyond laboratory measurements, glucose can be self-
monitored using capillary blood glucose meters or continuous 
glucose monitors (CGM), each with distinct implications 
and considerations.

Abbreviations: ADPKD, autosomal dominant polycystic kidney disease; BHB, 

beta-hydroxybutyrate; CGM, continuous glucose monitor; CKM, continuous 

ketone monitor; DRE, drug-resistant epilepsy; GKI, glucose ketone index; KMT, 

ketogenic metabolic therapy; MAD, modified Atkins diet; MASLD, metabolic 

dysfunction-associated steatotic liver disease; PCOS, polycystic ovary syndrome; 

PTSD, post-traumatic stress disorder; VLCKD, very low-calorie ketogenic diet.
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Capillary blood glucose testing with a home glucose meter 
provides a practical and cost-effective approach for assessing 
glycemic responses to dietary and lifestyle modifications. This 
fingerstick-based method provides a single-point measurement of 
blood glucose levels. Traditionally, it has been extensively used in 
type 2 diabetes management and has been shown to improve clinical 
outcomes, particularly when combined with telehealth-based remote 
monitoring (36). However, similar to BHB testing, the perceived 
invasiveness of fingerstick measurements may reduce adherence to 
regular monitoring.

CGMs offer an alternative approach, measuring interstitial 
glucose levels in real time via a subcutaneous sensor, typically on the 
upper arm. These devices track glucose fluctuations and patterns 
continuously throughout the day and night, detecting episodes of 
hyperglycemia and hypoglycemia, and providing insights on 
individual responses to food intake, physical activity, and other 
lifestyle factors (37). Initially developed for diabetes management, 
CGMs are now increasingly popular among individuals without 
diabetes who wish to improve metabolic health and performance (38). 
However, CGM accuracy remains a concern, as studies indicate that 

TABLE 1  Comparison of currently available biomarker testing methods used in KMTs.

Biomarker Biological 
sample

Advantages Limitations Ref.

Acetoacetate Urine Non-invasive, inexpensive, widely available, 

useful for initial adaptation phase.

Affected by hydration status. Become less reliable as ketosis 

continues.

(19–22)

Acetone Breath Non-invasive, portable, suitable for frequent 

monitoring.

Current metal oxide-based technology shows sensor 

stability and cross sensitivities with risk of false positives.

(23–27)

BHB (fingerstick) Capillary blood Accurate, reliable, reflects real-time metabolic 

state. Gold standard for monitoring of ketosis.

Invasive. Relatively costly (depending on testing frequency). (28–32)

BHB (continuous) Interstitial fluid Indication of BHB trends and fluctuations. Invasive. Relatively costly. Less accurate and less reliable 

than capillary ketone testing.

(33–35)

Glucose (fingerstick) Capillary blood Direct measure of glucose response to dietary 

and lifestyle interventions, relative low cost.

Invasive. Does not fully capture metabolic adaptation to 

ketosis.

(36)

Glucose (continuous) Interstitial fluid Indication of glucose trends and fluctuations. Invasive. Less accurate and less reliable than blood glucose. 

Does not fully capture metabolic adaptation to ketosis.

(37–39)

FIGURE 1

Overview of biomarkers and testing modalities relevant to ketogenic metabolic therapies (KMTs). BHB, β-hydroxybutyrate.
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CGMs may overestimate fasting and postprandial glucose levels 
compared to capillary blood glucose, with variability influenced by 
individual factors and the foods consumed (39).

While glucose monitoring alone (via fingerstick or CGM) may 
offer valuable metabolic insights, it does not capture the metabolic 
shift induced by KMTs or directly measure ketosis. The glucose ketone 
index (GKI) addresses this limitation by integrating both blood 
glucose and BHB levels into a comprehensive metabolic biomarker 
that reflects the balance between glycolytic and ketogenic metabolism. 
The GKI is calculated as the ratio of blood glucose level to BHB level 
(both in mmol/L) measured at the same time, with lower values 
indicating a greater metabolic shift toward fat oxidation and ketone 
utilization. Originally developed to monitor therapeutic ketosis in 
patients with glioblastoma (40, 41), the GKI has more recently been 
investigated as a tool for monitoring KMTs in mental health conditions 
such as depression and bipolar disorder (42, 43).

3 BHB testing in KMTs

Since monitoring of capillary blood BHB levels represents the 
current gold standard for assessing nutritional ketosis (11), we present 
a comprehensive review of its application in clinical research across a 
range of therapeutic areas, including diabetes, obesity, metabolic 
dysfunction-associated steatotic liver disease (MASLD), psychiatric 
conditions, neurological disorders, cancer, polycystic ovary syndrome 
(PCOS) and kidney disease. For each study, we highlight the testing 
protocol and, where available, report the original authors’ 
interpretation of the role of BHB data in informing adherence 
assessment, outcome interpretation, and therapeutic decision-making. 
An overview of the reviewed studies by therapeutic area is given in 
Table  2. While the increasingly compelling clinical outcomes 
associated with KMTs in these therapeutic areas are highly relevant, 
they have been reviewed extensively elsewhere (14, 44–47) and fall 
outside the scope of this review.

3.1 BHB testing in KMTs for type 2 diabetes, 
obesity, and MASLD

KMTs directly target the core pathophysiology of insulin-
resistant conditions, including type 2 diabetes, by shifting 
metabolism toward fat oxidation and ketone production (48, 49). 
Clinical studies have shown that KMTs can improve key metabolic 
markers such as glycated hemoglobin (HbA1c), fasting glucose, 
fasting insulin, and body weight, all of which contribute to enhanced 
insulin sensitivity (50). Additionally, ketone bodies, particularly 
BHB, exert anti-inflammatory effects offering further benefits in 
chronic metabolic diseases such as type 2 diabetes and obesity (51, 
52). While the incidence of DKA in people with type 2 diabetes on 
KMTs is very low, at-home monitoring can help track BHB trends, 
especially in those who are at higher risk [e.g., individuals taking 
SGLT2 inhibitors (32)].

This section reviews the role of ketone monitoring in KMTs for 
type 2 diabetes, prediabetes, obesity, and MASLD, focusing on testing 
methodologies and their clinical and research implications. Studies 
have employed diverse testing protocols, including daily, multiple 
times per week, weekly, or periodic measurements.

3.1.1 Frequent ketone monitoring (daily)
In a non-randomized study comparing a continuous remote care 

intervention for nutritional ketosis to standard diabetes care, 
individuals with type 2 diabetes who chose the ketogenic intervention 
were instructed to measure capillary blood BHB at home each day (53). 
A mobile app enabled real-time data transmission to the care team, 
with biomarker testing frequency adjusted over time based on 
individual needs. Mean lab-measured BHB at 70 days was 
0.54 mmol/L. Within one year 96% of participants (N = 262) reported 
at least one home BHB reading ≥0.5 mmol/L (53). Within two years 
61.5% of participants (n = 194) reported at least one BHB measurement 
≥0.5 mmol/L (16). On average, BHB was ≥0.5 mmol/L for 32.8% of 
measurements over the two years. In sub-analyses of the two-year data, 
higher frequency of BHB ≥ 0.5 mmol/L was associated with larger 
increases in HDL-C, IDL II, and LDL I, and greater decreases in TG 
and mid-zone LDL particles (54). The authors stated that long-term 
tracking of BHB allowed them to investigate the relationship between 
the frequency of reported nutritional ketosis and the shift from LDL 
subclass phenotype B to phenotype A. In an extension study at five 
years, participants who maintained diabetes remission at year two 
tended to have higher mean BHB levels throughout the study compared 
to those who did not sustain remission (55).

3.1.2 Mid-frequency ketone monitoring (weekly 
or multiple times per week)

In a three-month randomized controlled trial comparing a 
ketogenic diet to a moderate carbohydrate diet, participants in the 
ketogenic diet arm tested BHB at home twice a week with the goal of 
achieving detectable capillary blood ketones (56). By week 6, 75% of 
participants in the ketogenic diet group achieved a BHB level 
≥0.5 mmol/L.

The Keto-Med crossover trial enrolled 40 participants with 
prediabetes or type 2 diabetes and assigned them to follow a ketogenic 
diet and a reduced carbohydrate Mediterranean diet for 12 weeks 
each in random order (57). During the ketogenic diet phase, 
participants used home capillary blood meters to measure fasting 
BHB three times per week and underwent fasting venous blood 
draws at seven time points for plasma BHB analysis. These two 
measures indicated whether participants restricted carbohydrate 
intake sufficiently to achieve ketosis and provided an objective 
marker of adherence to the diet. In a secondary analysis of the 
Keto-Med trial, researchers observed that during 85% of the study 
weeks, participants’ average BHB levels remained within the light 
nutritional ketosis range of 0.5–1.5 mmol/L (58).

Less frequent BHB monitoring has been used in smaller studies. 
In a pilot trial, 11 women recently diagnosed with type 2 diabetes 
followed a ketogenic diet for 90 days (59). Plasma BHB levels were 
measured weekly, with 10 out of 11 participants consistently meeting 
their weekly BHB targets and one participant meeting all targets by 
the second week. By week 12, the average BHB level was 1.3 mmol/L, 
reflecting sustained adherence to the diet.

In a six-month randomized controlled trial 58 individuals with 
type 2 diabetes followed a diet with less than 50 grams of non-fiber 
carbohydrates per day and measured capillary blood BHB at home 
two to three times per week to assess the effects of carbohydrate 
restriction on cardiovascular risk factors (60). At the end of the trial, 
no correlation was found between levels of ketosis and ≥5% increase 
in small, dense LDL particles.
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TABLE 2  Overview of reviewed studies using BHB testing in KMTs, by therapeutic area.

Therapeutic area Study design (n)* Frequency of BHB 
testing

Reported BHB 
range (mmol/L)

Adherence to 
BHB testing

Ref.

Type 2 diabetes (incl. prediabetes) RCTs (2)

Non-RCTs (1)

Crossover (1)

Pilot (1)

From daily to weekly ≥0.5 nr (16, 53, 55–60)

Obesity RCT (1)

Pilot (1)

Occasional ≥0.3 nr (62, 63)

Metabolic dysfunction-associated 

steatotic liver disease (MASLD)

Prospective (1) Occasional ≥0.5 nr (61)

Bipolar disorder Pilot (2)

Case report (1)

From daily to weekly 0.5–1.0 From <50 to 95% (43, 66, 67, 72)

Depression Case series (1)

Case report (1)

Daily 1.1–3.2 79% (68)

Schizophrenia Pilot (1)

Case report (1)

From daily to weekly 0.8–3.5 From <50% to ≥80% (69, 72)

Obsessive compulsive disorder Case report (1) Daily 0.8 nr (70)

Post-traumatic stress disorder Pilot (1) Daily (3 times) ≥0.5 98% (71)

Autism spectrum disorder Pilot (1)

Prospective (1)

Occasional 0.8–2.2 nr (73, 74)

Alzheimer’s disease RCT (1)

Crossover (1)

Case report (1)

From daily to weekly 0.8–3.0 nr (77, 80, 85)

Huntington’s disease Case report (1) Daily 0.9 nr (78)

Amyotrophic lateral sclerosis Case report (1) Daily 0.77 nr (79)

Parkinson’s disease RCT (1)

Pilot (1)

Longitudinal (1)

Feasibility (1)

From twice daily to weekly 0.5–2.0 nr (81–84)

Epilepsy RCTs (2)

Prospective (2)

Retrospective (3)

Occasional 2.0–6.0 nr (90–96)

Cancer RCT (1)

Non-RCT (1)

Prospective (1)

Feasibility (2)

Case series (1)

Case reports (3)

From daily to occasional 0.3–6.3 nr (40, 99–106)

Type 1 diabetes Observational (1)

Case Reports (2)

Case Series (1)

From daily to multiple 

times a day

0.3–1.2 nr (109–112)

Kidney disease Pilot (1)

Feasibility (1)

From daily to occasional 0.5–1.3 nr (116, 117)

Polycystic ovary syndrome Prospective (3)

Retrospective (1)

From daily to weekly 0.5–1.7 nr (119–122)

Ageing Crossover (1) Daily (3 times) 0.1–1.9 99% (124)

Sports performance Comparative (1)

Crossover (1)

From daily to weekly 0.5–3.7 nr (131, 132)

*(n) indicates the number of studies reviewed for each design type. RCT, randomized controlled trial; non-RCT, non-randomized controlled trial; nr, not reported.
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3.1.3 Occasional ketone monitoring (baseline and 
at study visits)

To investigate the effects of a ketogenic diet on hepatic steatosis, a 
6-day trial was conducted in ten individuals with overweight or 
obesity (61). BHB levels were measured at baseline and on day 6, 
showing a tenfold increase from 0.1 mmol/L to 1.0 mmol/L. Increased 
fatty acid partitioning toward ketogenesis was linked to a higher 
hepatic mitochondrial redox state and reduced citrate synthase flux, 
indicating metabolic adaptations that may contribute to the reversal 
of MASLD through a ketogenic intervention.

Periodic BHB testing has also been used in the context of 
VLCKDs. In a pilot study involving 95 adults with obesity, the 
potential influence of sex on appetite responses to weight loss and 
ketosis was examined over an eight-week VLCKD intervention (62). 
BHB was measured at baseline, week 9, and week 13. Participants with 
undetectable BHB received targeted dietary counseling to improve 
adherence. By the end of the study, women had significantly higher 
BHB levels than men (1.174 vs. 0.783 mmol/L, p = 0.029), although 
no sex-based differences were observed in appetite-related hormone 
responses or subjective appetite ratings.

In another trial 45 individuals with obesity were randomized to a 
VLCKD and 44 to a standard low-calorie diet for four months (63). 
Capillary blood BHB was measured at baseline and at eight scheduled 
follow-up visits. BHB levels of at least 0.3 mmol/L were observed in 
91.1% of participants in the VLCKD group, with peak levels reaching 
1.15 ± 0.96 mmol/L at two weeks.

3.2 BHB testing in KMTs for psychiatric and 
neurodevelopmental disorders

The use of KMTs has been increasingly explored in the context of 
psychiatric disorders [i.e., bipolar disorder, schizophrenia, depression, 
and post-traumatic stress disorder (PTSD)] and neurodevelopmental 
disorders (i.e., autism spectrum disorder). Emerging research suggests 
that metabolic dysfunction, including glucose hypometabolism, 
mitochondrial impairments, and neuroinflammation, may contribute 
to the pathophysiology of these conditions (44, 64). Since ketone 
bodies serve as an alternative energy source for the brain, influence 
neurotransmitter balance, and modulate inflammatory pathways, 
KMTs have been hypothesized to provide therapeutic effects in these 
conditions (44, 64, 65).

This section reviews the role of ketone monitoring in KMTs for 
psychiatric and neurodevelopmental disorders, focusing on testing 
methodologies and their clinical and research implications. Studies 
have employed diverse testing protocols, including daily, multiple 
times per week, weekly, or periodic measurements.

3.2.1 Frequent ketone monitoring (daily or 
multiple times per day)

A 6–8-week pilot study in individuals with bipolar disorder 
utilized daily BHB monitoring to assess adherence to a KMT and 
its metabolic effects (66). Of the 27 recruited participants, 20 
completed the intervention. Ketone data collection during the 
intervention was 95% complete, demonstrating the feasibility of 
daily BHB testing in this population. These readings indicated that 
participants achieved light ketosis (0.5–1.0 mmol/L) within 
1–7 days of starting the KMT and optimal ketosis (1–3 mmol/L) 

within 3–13 days. Participants maintained strong adherence to the 
therapy, as confirmed by 91% of available readings indicating at 
least light ketosis (≥0.5 mmol/L) and overall mean daily ketone 
levels of 1.3 mmol/L (median = 1.1 mmol/L).

The high-resolution dataset of ketone levels in this study enabled 
researchers to correlate outcomes with ketosis levels in a subset of 14 
patients who provided reliable daily ecological momentary assessment 
data (43). Ketone levels were significantly (p < 0.001) positively 
correlated with mood (r = 0.21) and energy (r = 0.19) and inversely 
correlated with impulsivity (r = −0.30) and anxiety (r = −0.19), while 
no significant correlation was observed between ketone levels and 
speed of thought (r = −0.08).

A similar approach was used in recent case reports. A patient with 
bipolar disorder with treatment-resistant depressive symptoms 
followed a KMT and tested ketones daily (67). Testing compliance was 
high (89%) for the 21-week period and confirmed that nutritional 
ketosis was maintained at BHB values of around 1.0 mmol/L. A 
patient with chronic major depressive disorder showed 79% BHB 
testing compliance over 14 weeks, with blood BHB levels established 
at 1.1 mmol/L with highest recorded BHB level of 3.2 mmol/L (68). 
Two patients with schizoaffective disorder followed a KMT and tested 
ketones daily (69). Testing adherence was high in the first five weeks 
but declined in later weeks, contributing to an overall 63% testing 
compliance rate over 10 weeks. Nutritional ketosis was confirmed at 
≥0.8 mmol/L with highest recorded BHB level of 3.5 mmol/L. Three 
patients with major depression and generalized anxiety disorder and 
complex comorbidities were treated with a personalized KMT and 
requested to monitor ketone levels and GKI daily (42). Ketosis was 
defined as BHB ≥ 0.8 mmol/L and GKI < 6. Biomarker testing 
demonstrated individual variability in metabolic adaptation, with 
some participants achieving stable ketosis rapidly, while others 
exhibited fluctuations before reaching consistent BHB levels. 
Interestingly, symptom improvements seemed to align with sustained 
ketosis, suggesting a potential relationship between metabolic state 
and clinical outcomes. Similarly, in a 12-week case study of KMT for 
obsessive-compulsive disorder and ulcerative colitis, daily testing 
confirmed sustained nutritional ketosis with average weekly BHB 
levels around 0.8 mmol/L and GKI values mostly ≤6 (70). Symptom 
improvements were associated with higher BHB levels, despite 
occasional dietary lapses and fluctuations in adherence.

A four-week study assessed the feasibility of a KMT in individuals 
with PTSD (N = 4), utilizing high-frequency capillary blood BHB 
monitoring to track adherence and individual metabolic response (71). 
Participants measured BHB three times daily. A day in ketosis was 
defined as mean daily BHB ≥ 0.5 mmol/L, and required adherence was 
defined as ≥75% of days in ketosis since ketosis was attained. Frequent 
biomarker testing verified dietary adherence, with 2% of measurements 
missing, and enabled personalized assessment of ketosis levels based 
on each patient’s metabolic response. Dietary composition impacted 
ketone levels, with one patient showing decreased BHB levels after low 
food intake or consumption of a commercial high-fiber bread.

3.2.2 Mid-frequency ketone monitoring (weekly 
or multiple times per week)

A four-month pilot study assessed a KMT in bipolar disorder and 
schizophrenia (72). Weekly BHB testing objectively confirmed 
adherence, and allowed researchers to stratify participants based on 
metabolic response rather than self-reported intake. Of 23 
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participants, 14 were classified as fully adherent (≥80% of BHB 
readings ≥0.5 mmol/L), six as semi-adherent (60–80%), and one as 
non-adherent (<50%), demonstrating varying engagement with the 
diet. Findings suggested a dose–response relationship, with higher 
ketone levels associated with greater psychiatric improvements, 
though further research is needed.

3.2.3 Occasional ketone monitoring (baseline and 
at study visits)

Occasional BHB testing was used in studies investigating the 
application of KMT in autism spectrum disorder. In a three-month 
open-label, observer-blinded clinical trial, blood BHB testing was 
performed at baseline and at 3 months (73). While all participants on 
KMT (n = 15) showed increased BHB levels, >50% demonstrated 
substantial to moderate improvement in behavior, and no correlation 
was observed between BHB levels and symptom changes. In a 
six-month pilot study of intermittent four-week KMT interrupted by 
two-week diet-free intervals, blood BHB testing was performed at the 
end of each KMT phase (74). During the ketogenic phases, BHB levels 
were maintained between 1.8 and 2.2 mmol/L, while in the diet-free 
phases, BHB declined to 0.8–1.5 mmol/L, demonstrating a metabolic 
change between dietary states.

3.3 BHB testing in KMTs for 
neurodegenerative disorders

Neurodegenerative conditions such as Parkinson’s disease, 
Alzheimer’s disease, mild cognitive impairment, Huntington’s disease, 
multiple sclerosis, and amyotrophic lateral sclerosis are characterized 
by progressive neuronal dysfunction, often linked to mitochondrial 
impairment, neuroinflammation, and metabolic dysregulation (75, 
76). Emerging evidence suggests that KMTs may offer neuroprotective 
benefits by enhancing mitochondrial function, reducing oxidative 
stress, modulating inflammation, and providing an alternative energy 
substrate to neurons affected by glucose hypometabolism (45, 75).

This section reviews the role of ketone monitoring in KMTs for 
neurodegenerative conditions, focusing on testing methodologies and 
their clinical and research implications. Studies have employed diverse 
testing protocols, including daily, multiple times per week, weekly, or 
periodic measurements.

3.3.1 Frequent ketone monitoring (daily)
Daily capillary blood BHB testing (consistently at bedtime) was 

used in a 12-week randomized crossover trial of a ketogenic diet in 
mild or early-stage Alzheimer’s disease (77). Of the 26 randomized 
patients, 21 (81%) completed the ketogenic intervention and 18 
achieved sustained ketosis, demonstrating high adherence. While on 
the diet, patients achieved a mean BHB of 0.95 ± 0.34 mmol/L. The 
authors attributed the positive adherence rate partly to the use of 
ketone monitoring, which was easy to perform and allowed prompt 
recognition and correction of difficulties.

A similar approach was employed in two case studies in 
Huntington’s disease and amyotrophic lateral sclerosis. In a 48-week 
case study of a time-restricted ketogenic diet in Huntington’s disease 
(78), daily bedtime testing confirmed sustained ketosis with a mean 
BHB of 0.90 ± 0.57 mmol/L. Despite consistent dietary adherence, this 
patient’s ketone levels remained at the lower end of the target range, 

likely due to the use of exogenous insulin for his type 1 diabetes, which 
may have suppressed ketogenesis. Similarly, a patient with 
amyotrophic lateral sclerosis monitored BHB daily (at bedtime) 
during an 18-month dietary intervention with a 45-month follow-up 
(79). While the patient maintained a mean BHB of 0.77 ± 0.43 mmol/L, 
consistent with physiological ketosis, levels were at the lower end of 
the therapeutic range, which the authors state could potentially be due 
to hypermetabolism typical of the condition (which may have resulted 
in increased ketone utilization) or to the lean body composition of the 
patient (which may have limited fat availability for ketogenesis).

A daily ketone measuring routine (every morning, in a fasted state) 
provided essential confirmation of ketosis and supported appropriate 
dietary changes in a six-month case study of a patient with Alzheimer’s 
disease and Down syndrome undergoing KMT (80). Initially, after limiting 
carbohydrate intake to 75 g per day, the patient’s capillary BHB remained 
≤0.2 mmol/L, indicating that nutritional ketosis was not achieved. In 
response, carbohydrate intake was further reduced to <20 g per day, 
leading to a consistent rise in serum ketones to 0.8–3.0 mmol/L. The 
caregiver noted that BHB testing was instrumental in confirming ketosis.

Daily BHB testing also proved feasible in studies of KMT in 
Parkinson’s disease. Metabolic assessment through bedtime BHB 
monitoring was implemented in an eight-week randomized controlled 
trial of a low-fat diet versus a ketogenic diet in Parkinson’s disease 
(81). The ketogenic diet group achieved a mean weekly BHB of 
1.15 ± 0.59 mM, confirming consistent physiological ketosis, while the 
low-fat diet group exhibited negligible ketone levels.

Twice-daily plasma BHB measurements (fasting and postprandial) 
were used to assess metabolic adaptation to a ketogenic diet in the first 
week of a three-week randomized feasibility trial in Parkinson’s 
disease (82). BHB levels exceeded 0.5 mmol/L by day four, confirming 
early ketosis induction. However, subjects with metabolic syndrome 
or insulin resistance exhibited lower BHB levels, suggesting differences 
in the response to the intervention.

3.3.2 Mid-frequency ketone monitoring (weekly 
or multiple times per week)

Weekly capillary blood BHB testing was implemented in a 12-week 
pilot study of a ketogenic diet in patients with Parkinson’s disease to 
monitor adherence (83). The mean BHB level over 12 weeks was 
0.64 mmol/L. Interestingly, participants who maintained nutritional 
ketosis (>0.5 mmol/L) demonstrated greater improvements in symptoms 
of depression and anxiety compared to those who did not. These findings 
show how consistent ketone monitoring may offer valuable insights into 
metabolic adaptation and its potential relationship with symptom 
improvements. The authors highlighted weekly ketone testing as a study 
strength. Building on these findings, the same group conducted a 
24-week longitudinal study in Parkinson’s disease (84), again performing 
weekly BHB testing to confirm dietary adherence. All participants 
submitted weekly ketone readings, indicating adherence and confirming 
acceptable levels of nutritional ketosis (BHB 0.5–2.0 mmol/L).

3.3.3 Occasional ketone monitoring (baseline and 
at study visits)

In an 18-week pilot randomized crossover trial of a modified 
Mediterranean ketogenic diet versus an American Heart 
Association diet in Alzheimer’s disease (85), BHB was measured 
at key study time points and during diet education visits. At these 
time points, all participants on the ketogenic diet showed 
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increased BHB levels, demonstrating a level of adherence to the 
intervention. Interestingly, individuals with mild cognitive 
impairment exhibited lower BHB levels than those with subjective 
memory complaints, despite similar dietary adherence 
(determined with daily food records). The authors hypothesized 
that patients with mild cognitive impairment may have higher 
ketone uptake into target tissues or reduced ketone production or 
may necessitate longer dietary exposure to achieve comparable 
BHB levels due to higher insulin resistance. Despite the low 
frequency, biomarker testing offered valuable insights into 
characterizing metabolic responses across cognitive 
impairment spectrums.

3.4 BHB testing in KMTs for epilepsy

Epilepsy is a neurological disorder characterized by recurrent, 
unprovoked seizures caused by abnormal electrical activity in the 
brain. Approximately one-third of individuals with epilepsy are 
considered refractory or resistant to the effects of antiseizure 
medications (86). The ketogenic diet has been used as an alternative 
therapy for drug-resistant epilepsy (DRE) since the 1920s (87). Its 
anticonvulsant effects are thought to involve increased GABA 
synthesis, enhanced neuroprotective signaling, and modulation of 
potassium, sodium, and calcium channels—mechanisms that 
collectively reduce neuronal excitability and oxidative stress (88). An 
increase in NAD+ in response to KMTs may also contribute to seizure 
reduction (89).

This section reviews the role of ketone monitoring in KMTs 
for epilepsy, focusing on testing methodologies and their clinical 
and research implications. Studies mostly employed 
periodic measurements.

3.4.1 Occasional ketone monitoring (baseline and 
at study visits)

In a large retrospective study of 300 patients with drug-resistant 
epilepsy, BHB levels were assessed during fasting and throughout the 
first three months of a ketogenic diet (90). Patients underwent a 
fasting period of 12 to 48 h, with BHB monitored with high frequency 
(four times daily) during the first week, then at one and three months. 
BHB levels reached 2.0 mmol/L at 19 h, peaked at 4.2 mmol/L at 43 h, 
and stabilized by the three-month mark. Findings indicated that in 
cases where seizures persist, raising BHB to 4.0–6.0 mmol/L may 
be  beneficial, while higher initial BHB levels may help patients 
needing rapid seizure control.

A 12-month non-blinded prospective study evaluated 18 children 
with DRE on a ketogenic diet, with serum BHB levels measured at 3, 
6, and 12 months (91). A trend was observed between higher BHB 
levels and reduced seizure frequency, although statistical significance 
was not reached, likely due to the small sample size. However, the 
study concluded that BHB levels serve as a reliable indicator of 
dietary adherence.

In a prospective study, the serum metabolome of 14 children with 
DRE was analyzed before and after three months on a ketogenic diet 
(92). Serum BHB levels were measured at baseline and after three 
months, confirming a metabolic shift toward ketogenesis. After three 
months BHB levels reached 4.3 ± 1.9 mmol/L, consistent with 
sustained nutritional ketosis.

In a three-month retrospective study of 34 children with DRE on 
a ketogenic diet, serum BHB levels were measured at baseline and after 
3 months (93). Post-treatment BHB levels were significantly elevated 
in both responders (4.70 ± 1.41 mmol/L vs. 0.55 ± 0.35 mmol/L, 
p < 0.001) and non-responders (2.00 ± 0.75 mmol/L vs. 
0.58 ± 0.33 mmol/L, p < 0.001), with responders exhibiting significantly 
higher BHB levels than non-responders.

A two-month randomized controlled trial evaluated the effects of 
a modified Atkins diet (MAD) in 80 adults with DRE (94). Blood 
ketone levels were measured at one month and two months, with a 
BHB target of 2–4 mmol/L. By one month, 84% of patients achieved 
ketosis within a median of 4 to 4.5 days.

A randomized controlled trial enrolled 104 participants with 
refractory epilepsy and assigned them to one of two ketogenic diets: 
51 to the classic ketogenic diet and 53 to the MAD for six months (95). 
Serum BHB levels were measured at baseline and at one, three, and six 
months. At three and six months, mean BHB concentrations in the 
ketogenic diet group were 3.74 mmol/L and 4.00 mmol/L, respectively, 
compared to 3.40 mmol/L and 3.70 mmol/L in the MAD group. While 
blood ketone levels were higher in the classic ketogenic diet group, the 
difference was not statistically significant.

In a retrospective study of 33 patients with refractory epilepsy on 
a ketogenic diet (96) BHB levels were measured during follow-up 
visits and correlated with seizure reduction at three and six months 
(p = 0.037 and p = 0.019). In contrast, urinary ketones from both 
clinic visits and daily home measurements showed no correlation with 
seizure reduction. These findings, also confirmed by previous studies 
(97), support the use of blood BHB as a more reliable indicator of 
therapeutic response to the ketogenic diet, even when 
measured infrequently.

3.5 BHB testing in KMTs for cancer

Cancer cells rely heavily on glycolysis for energy, even in the 
presence of oxygen—a phenomenon known as the Warburg effect 
(98). The ketogenic diet may target cancer’s metabolic vulnerability, 
particularly in glioma and other metabolically dysregulated cancers, 
by lowering glucose and insulin, reducing inflammation and oxidative 
stress, and enhancing tumor response to standard therapies (46).

This section reviews the role of ketone monitoring in KMTs for 
cancer, focusing on testing methodologies and their clinical and 
research implications. Studies have employed diverse testing 
protocols, including daily, multiple times per week, weekly, or 
periodic measurements.

3.5.1 Frequent ketone monitoring (daily)
An 80-month case study documented a man with glioblastoma 

who followed a ketogenic diet (40). Written records of daily capillary 
blood ketone monitoring showed BHB levels typically between 1.0 
and 6.0 mmol/L. After maintaining a GKI near or below 2.0 for over 
two years on a strict ketogenic diet, his GKI increased to 5 to10 with 
relaxed dietary adherence, coinciding with tumor progression. 
Implementing time-restricted fasting and a strict KMT regimen 
restored his GKI to 2.0 or below.

A similar case report documented the experience of a woman 
with glioblastoma who followed an intensive KMT program alongside 
standard treatment (99). The KMT regimen included prolonged 
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fasting, time-restricted eating, and a modified ketogenic diet, with 
daily bedtime capillary blood ketone monitoring. In the first year, her 
average weekly BHB was 2.82 ± 1.43 mmol/L and average GKI was 
1.65 (range: 0.52–5.97). In the second year, her average weekly BHB 
was maintained at 2.32 ± 0.67 mmol/L with average GKI of 2.02 
(range: 1.16–5.38) and no disease progression noted on imaging. In 
the third year, average weekly BHB decreased to 1.64 ± 0.65 mmol/L 
and average GKI increased to 3.20 (range: 1.14–17.20) due to stress 
and reduced adherence to KMT, which coincided with 
tumor progression.

A case series reported the experience of 12 patients with cancers 
of the central nervous system who followed a ketogenic diet for 
120 days (100). Among the eight patients who monitored BHB levels 
at home twice daily, most maintained ketone levels above 0.5 mmol/L 
throughout the study. The 30-day GKI ranged from 0.95 to 2.9, while 
the end-of-study GKI ranged from 1.7 to 5.3. The authors commented 
that the use of home capillary blood ketone monitoring and online 
data management tools facilitated accurate tracking of dietary 
adherence, providing strong internal validation and reducing concerns 
about self-reporting reliability common in dietary studies.

In a feasibility study, 20 women with stage IV breast cancer 
followed a six-month ketogenic intervention that included prepared 
meals and nutrition coaching, with daily home monitoring of BHB 
levels (101). Mean BHB levels were 0.8 mmol/L during the first three 
months and 0.7 mmol/L during the second three months, consistently 
within the target range of 0.5–4.0 mmol/L. All participants who 
completed the first three months achieved nutritional ketosis 
(BHB ≥ 0.5 mmol/L) and maintained it 90% of the time, despite the 
anti-ketogenic effects of chemotherapy and steroids, demonstrating 
strong dietary adherence.

A prospective study followed 18 patients with glioblastoma on a 
ketogenic diet for at least six months (102). Patients monitored their 
BHB levels pre-prandially in the morning and afternoon (daily during 
the first month and twice weekly thereafter) targeting BHB levels 
>3.5 mmol/L. In six detailed cases, most patients achieved nutritional 
ketosis within the first week and maintained BHB levels consistently 
above 2.0 mmol/L throughout the study.

3.5.2 Mid-frequency ketone monitoring (weekly 
or multiple times per week)

Weekly BHB testing was explored in 10 patients who underwent 
KMT for advanced malignancies, including lung, breast, esophageal, 
colorectal, ovarian, and fallopian tube cancers (103). All patients 
achieved BHB levels >0.5 mmol/L, which was inversely correlated 
with insulin levels. The authors noted that the extent of ketosis, rather 
than calorie deficit or weight loss, was linked to stable disease or 
partial remission, while patients who achieved the lowest ketone levels 
experienced progressive disease.

A case study reported the experience of a woman with metastatic 
thymoma who followed a metabolic intervention consisting of 
periodic fasting combined with a modified ketogenic diet for two 
years (104). Capillary blood ketones were measured at home three 
times per week, with a mean two-year BHB level of 
3.50 ± 1.27 mmol/L. Mean BHB levels during fasting periods were 
higher, measuring 6.31 ± 1.55 mmol/L. The authors noted that 
periodic fasting (lasting ≥ two days) appears to have a distinct 
therapeutic advantage by inducing more pronounced changes in 
ketone levels compared to calorie restriction or a ketogenic diet alone.

In a controlled, non-randomized trial, 18 patients with rectal 
cancer followed a ketogenic diet during radiotherapy, with the 
intervention length based on their individual treatment schedules 
(105). Capillary blood ketones were measured at least once weekly 
during radiotherapy. Median BHB levels peaked at 0.8 mmol/L in the 
first and fourth weeks of radiotherapy but declined over the following 
2–3 weeks, with about half of the patients no longer reaching 
nutritional ketosis at the time of measurement.

3.5.3 Occasional ketone monitoring (baseline and 
at study visits)

A 12-week randomized controlled trial evaluated the effects of 
KMT in 80 women with breast cancer, with 40 assigned to the 
ketogenic diet group and 40 to the control group (106). Serum BHB 
was measured during the first, third, and fifth chemotherapy sessions. 
At six weeks, 70.4% of KD participants had BHB levels >0.5 mmol/L, 
and 89% had levels >0.3 mmol/L. By 12 weeks, 66.7% maintained 
BHB levels >0.5 mmol/L, with 89% sustaining levels >0.3 mmol/L.

3.6 BHB testing in type 1 diabetes

Ketogenic and very low-carbohydrate diets are gaining attention 
in type 1 diabetes, an autoimmune disorder that destroys the insulin-
producing beta cells, for their ability to improve glycemic control and 
reduce insulin requirements (107). However, careful ketone 
monitoring and clinical judgment are essential to distinguish 
nutritional ketosis from DKA, as the BHB ranges for these distinct 
metabolic states overlap. BHB values within the KMT target range 
(≥0.8 mM and ≥1.5 mM) have been associated with an increased risk 
of DKA in people not following KMT (108) or who are currently ill 
(33). With frequent testing and proper medical oversight, ketogenic 
and very low-carbohydrate diets may offer metabolic benefits in type 
1 diabetes, though long-term safety and efficacy need further study.

This section reviews the role of ketone monitoring in KMTs for 
type 1 diabetes, focusing on testing methodologies and their clinical 
and research implications. Currently, ketone testing in people with 
type 1 diabetes has been published in case reports and short-term 
observational studies in which ketones were measured daily or 
multiple times per day.

3.6.1 Frequent ketone testing (daily or multiple 
times a day)

A case study described a man with type 1 diabetes who maintained 
a ketogenic diet for 10 years (109). Over a 60-day monitoring period, 
his mean BHB level was 0.8 mmol/L (range: 0.3–1.5 mmol/L), 
remaining well below the diagnostic threshold for DKA, but within 
the range identified as associated with increased risk of DKA (108).

Another case study described a man newly diagnosed with type 1 
diabetes who adopted a ketogenic diet (110). Over a three-day 
monitoring period, he recorded 18 BHB measurements ranging from 
0.3 to 1.2 mmol/L. The authors noted that these ketone levels remained 
relatively stable throughout the day, with no concerning spikes 
indicative of metabolic maladaptation.

One case series examined the effects of combining fasting with 
exercise on ketone levels in eight adults, including two with type 1 
diabetes (111). Participants trained for and completed a five-day, zero-
calorie fast while walking or running for 100 miles. During the study, 
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BHB levels ranged from 0.3 to 7.5 mmol/L and were similar between 
individuals with and without type 1 diabetes.

An observational study compared ketone levels in 15 people with 
type 1 diabetes following different habitual carbohydrate intakes, 
including six on very low-carbohydrate diets (<50 g/day) (112). Mean 
BHB levels in the very low-carb group were 1.2 mmol/L, well below 
the threshold DKA. However, a discrepancy between the reported 
mean (1.2 mmol/L) and the range (0.6–1.15 mmol/L) in this group 
warrants clarification.

3.7 BHB testing in KMTs for kidney disease

KMTs have been proposed as a valuable option for patients with 
chronic kidney disease (113, 114), in particular for those with 
autosomal dominant polycystic kidney disease (ADPKD). ADPKD is 
a hereditary, progressive kidney disorder characterized by the 
development of numerous fluid-filled cysts, that lead to organ 
enlargement, fibrosis, and gradual loss of kidney function (115).

Emerging research suggests that metabolic dysfunction plays a 
key role in the progression of ADPKD, with cyst cells exhibiting 
defective mitochondrial function, impaired fatty acid oxidation, and 
increased reliance on glucose metabolism (115). Given these 
characteristics, nutritional strategies that induce ketosis may offer a 
novel therapeutic approach by shifting cellular energy metabolism 
away from glycolysis and towards ketone utilization.

This section reviews the role of ketone monitoring in KMTs for 
ADPKD, focusing on testing methodologies and their clinical and 
research implications. Studies have employed both frequent and 
occasional testing protocols.

3.7.1 Frequent ketone monitoring (daily)
A 16-week pilot study evaluated a KMT in 24 people with ADPKD 

using twice-daily capillary blood BHB testing to assess adherence and 
metabolic response (116). After an introduction phase, participants 
targeted therapeutic ketosis (BHB 1.5–3.0 mmol/L) in Phase 2 and 
low-level ketosis (BHB 0.5–1.0 mmol/L) in Phase 3 of the study. BHB 
testing confirmed that all participants reached ketosis 
(BHB ≥ 0.5 mmol/L) within days and maintained it throughout the 
study, with average BHB levels of 1.3 mmol/L in the first six weeks and 
1.1 mmol/L in the final six weeks. BHB levels varied throughout the 
day and across participants, highlighting the dynamic nature 
of ketosis.

3.7.2 Occasional ketone monitoring (baseline and 
at study visits)

In a three-month feasibility study (N = 66) of a KMT in ADPKD, 
23 participants were randomized to receive a ketogenic diet and 
underwent blood BHB testing at three study visits (117). The primary 
combined endpoint was defined as a combination of adherence 
assessed by metabolic parameters (BHB ≥ 0.8 mmol/L for ketosis) 
and patient-reported feasibility. In total, 43% of participants met the 
criteria for feasibility, largely due to not consistently reaching the 
predefined BHB threshold of 0.8 mmol/L at all study visits. To refine 
adherence assessment, an alternative BHB threshold of ≥0.6 mmol/L 
on at least two of three visits was explored, increasing adherence 
classification to 78% of participants, with none of the control group 
reaching this target. Additionally, 91% of ketogenic diet participants 

maintained higher BHB levels than baseline at least twice during 
the study.

3.8 BHB testing in KMTs for PCOS

PCOS is a common and heterogeneous disorder, typically marked 
by hyperandrogenism, oligo-anovulation, and metabolic dysfunction, 
with a multifactorial pathogenesis often linked to insulin resistance, 
which contributes to ovarian dysfunction, inflammation, and metabolic 
complications (118). Growing evidence suggests that ketogenic diets 
may benefit individuals with PCOS by improving insulin sensitivity, 
reducing androgen levels, promoting weight loss, and restoring 
menstrual regularity, primarily by reducing hyperinsulinemia (47).

This section reviews the role of ketone monitoring in KMTs for 
PCOS, focusing on testing methodologies and their clinical and research 
implications. Studies have employed diverse testing protocols, including 
daily, multiple times per week, weekly, or periodic measurements.

3.8.1 Frequent ketone monitoring (daily or 
multiple times per day)

In a pilot trial, 17 women with PCOS followed a VLCKD for 45 days 
and monitored daily capillary blood and urine ketones at home (119). 
Mean capillary blood ketone levels significantly increased from zero at 
baseline to 1.7 ± 0.58 mmol/L, showing adherence to the intervention.

In a double-blind prospective cohort study, 60 women followed 
ketogenic diet guidance for 12 weeks and monitored their BHB at 
home daily (120). Dietitians provided the participants with tailored 
advice based on serum ketone levels and changes in body weight.

3.8.2 Mid-frequency ketone monitoring (weekly 
or multiple times per week)

In a pilot trial, 14 women with PCOS consumed a ketogenic 
Mediterranean diet for 12 weeks (121). Capillary blood ketones were 
measured every other day for the first six days and once a week 
thereafter. The mean BHB value was 1.77 ± 0.55 mmol/L from day 7 
to day 84, showing adherence to the intervention.

In a retrospective study, 25 women with PCOS and obesity followed 
a very low-calorie ketogenic diet for 12 weeks (122). BHB levels were 
monitored weekly and maintained between 0.5 and 0.7 mmol/L.

3.9 BHB testing in ketogenic approaches 
for ageing and performance

Ketogenic approaches have gained interest for their potential to 
enhance longevity by promoting metabolic flexibility, mitochondrial 
efficiency, and reduced oxidative stress (123). As with the therapeutic 
application of KMTs, clinical studies on aging have used ketone 
monitoring to obtain objective verification of metabolic state.

For example, a non-randomized, open-label crossover trial 
(124) investigated the metabolic effects of nutritional ketosis in 10 
healthy women, using daily BHB testing to assess adherence and 
metabolic fluctuations across three 21-day study phases. 
Participants underwent a six-month lead-in period with once-daily 
ketone measurements, followed by four daily testing time points 
during the study phases to capture metabolic responses throughout 
the day. Testing confirmed clear metabolic shifts across phases, with 
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BHB levels significantly decreasing from 1.9 ± 0.7 mmol/L in the 
first ketosis phase to 0.1 ± 0.1 mmol/L in the ketosis suppression 
phase (p < 0.0001), then returning to baseline in the third study 
phase (1.9 ± 0.6 mmol/L). These results verified strict adherence to 
the dietary protocol. Despite variability in individual BHB 
responses, almost all readings during the first and third phases 
exceeded 0.5 mmol/L, the standard threshold for ketosis, while very 
few exceeded this range in the second phase. The study achieved 
99.37% adherence in capillary BHB testing, with four participants 
completing all 252 required tests, demonstrating high feasibility of 
frequent BHB tracking in this population.

Ketogenic diets have been proposed as a strategy to enhance 
athletic endurance performance by promoting metabolic flexibility, 
optimizing fat burning, and reducing reliance on glycogen (125). 
While fat oxidation rates are typically measured as changes in 
respiratory exchange ratio, BHB testing has been used to monitor 
adherence to ketogenic interventions in athletes (126–128) and to 
assess the level of ketogenesis compared to control groups (129, 
130). These measurements provided objective verification of 
metabolic state and ensured accurate evaluation of dietary effects 
on performance.

A recent crossover study (131) investigated the metabolic effects 
of a low-carbohydrate, high-fat diet on endurance performance in 10 
triathletes for six weeks, using BHB testing to track ketosis and guide 
dietary adjustments. Testing on days 1, 3, 7, 14, 21, 28, 35, and 42 
confirmed that all participants achieved nutritional ketosis 
(≥0.5 mmol/L) within one week, maintaining 0.6 ± 0.5 mmol/L by 
day 42. BHB levels were significantly higher in the low-carbohydrate, 
high-fat diet vs. high-carbohydrate diets (0.5 vs. 0.1 mmol/L; 
p < 0.001), remained elevated despite carbohydrate supplementation, 
and declined during exercise (−0.2 ± 0.1 mmol/L; p < 0.001), 
indicating ketone utilization. In this study, beyond monitoring 
adherence and guiding metabolic adjustments, BHB testing provided 
key insights into ketone availability, utilization, and contribution to 
energy metabolism during endurance exercise.

A six-day comparative study (132) investigated the metabolic 
effects of different ketogenic strategies on athletic performance 
(N = 25), using pre-breakfast BHB measurements to assess ketosis. 
Testing confirmed that BHB monoester supplementation elevated 
capillary blood BHB levels compared to carbohydrate intake at all post-
consumption time points, validating its efficacy in raising circulating 
ketones. In contrast, a ketogenic diet stimulated endogenous 
ketogenesis, with fasted BHB levels rising from day 3 and peaking at 
3.7 ± 0.8 mmol/L. These data show the utility of BHB testing in tracking 
metabolic adaptation and verifying ketosis in performance studies.

4 Discussion

Unlike most dietary interventions, which lack direct physiological 
biomarkers, KMTs induce a measurable metabolic state, nutritional 
ketosis, that is quantifiable through ketone body levels. Among these, 
BHB measured in blood (0.5–5.0 mmol/L) has emerged as the current 
gold standard biomarker (11, 12). Here, based on the literature 
reviewed above, we reflect on the role of BHB testing in both research 
and clinical practice. In particular, we  critically discuss how BHB 
monitoring enables objective tracking of dietary adherence, supports 
interpretation of clinical outcomes, facilitates behavior change and 

patient empowerment, and contributes to the personalization of 
KMTs. We also consider the potential challenges of implementing 
BHB monitoring and propose areas for refinement and 
future investigation.

4.1 BHB testing to monitor adherence to 
KMTs

Clinical trials across a range of conditions consistently confirm the 
utility of capillary blood BHB testing as a reliable and objective 
biomarker of adherence to KMTs by providing direct physiological 
evidence of ketosis. BHB monitoring enables differentiation of metabolic 
responses across dietary interventions (81) and improves confidence in 
adherence reporting compared to self-reported dietary intake (72, 100).

Studies in type 2 diabetes (53), neurodegenerative conditions (77), 
psychiatric disorders (66, 72) and oncology (40, 99, 101) have reported 
that both BHB testing and KMTs are feasible and acceptable in the 
target populations.

The frequency and consistency of testing are critical for accurate 
adherence assessment. High-frequency testing, ranging from daily 
(43, 49) to multiple times per day (71, 124), provides the most precise 
and actionable feedback, confirming whether nutritional ketosis is 
achieved and maintained, and enabling timely dietary and lifestyle 
adjustments (53, 71).

However, daily testing may not be acceptable in all settings. In a 
pilot study of bipolar disorder, daily BHB monitoring confirmed 
strong adherence (66), yet some participants reported the protocol as 
burdensome (133). These findings highlight the need to balance data 
granularity with participant acceptability. Mid-frequency testing (e.g., 
two to three times per week) has proven feasible and effective in 
studies on obesity and mental health (58, 72). Occasional testing, 
typically at baseline and at study visits, provides valuable information 
but lacks the resolution to guide timely intervention (62, 73).

Importantly, studies may implement adaptive protocols, with testing 
frequency evolving over time. Several studies have adopted frequent 
testing in the initial phase to establish adherence, followed by reduced 
frequency as individuals become metabolically adapted or more 
confident in managing their diet and lifestyle (16, 55, 82, 90). Careful 
consideration should be given to the choice of testing frequency, ensuring 
it aligns with therapeutic goals and individual preferences, to minimize 
patient burden and maximize the long-term sustainability of KMTs.

4.2 BHB testing for the interpretation of 
metabolic responses and outcomes in 
KMTs

Beyond adherence monitoring, BHB testing offers insights into 
individual metabolic responses to KMTs. Several case studies and 
small clinical series have described how BHB levels vary in response 
to factors such as dietary composition (71), pharmacological 
treatments (78), and underlying disease state or physiological 
characteristics (85, 99). These observations have proven valuable for 
interpreting unexpected fluctuations in ketosis and adjusting dietary 
strategies to match individual needs.

Among larger studies, relatively few have directly investigated 
correlations between BHB levels and clinical outcomes. In type 2 
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diabetes, higher BHB levels have been associated with improved lipid 
profiles and a greater likelihood of sustained remission (16, 53, 55). In 
psychiatric conditions, preliminary evidence suggests a dose–response 
relationship, with higher BHB levels correlating with greater symptom 
improvement (42, 43, 72, 82). In oncology, case reports have observed 
that greater depth and consistency of ketosis were linked to disease 
stability or partial remission, whereas lower BHB levels were more 
often associated with continued disease progression (40, 99, 103).

An analysis of a continuous remote care program targeting 
nutritional ketosis identified a mean BHB level of approximately 
0.5 mmol/L during the first 90 days of carbohydrate-restricted 
nutrition therapy as the optimal threshold for achieving ≥10% weight 
loss at 1 year, with higher average ketone levels associated with greater 
weight loss (134).

Although promising, these correlations remain exploratory and 
are often limited by small sample sizes and observational, retrospective 
designs. More robust, controlled studies are needed to determine 
whether specific BHB thresholds are necessary for or predictive of 
therapeutic benefit, and to what extent such relationships 
are generalizable.

4.3 BHB testing as a driver of behavior 
change, empowerment, and 
personalization

The utility of BHB testing extends beyond adherence tracking and 
outcomes interpretation. As a real-time biomarker, BHB may also play 
an active role in shaping behavior. At the core of BHB testing lies a simple 
yet powerful “feedback loop” (Figure  2): individuals test, assess the 
response, adjust their dietary or lifestyle choices, and test again to observe 
the resulting metabolic response. We  speculate that this real-time 

feedback serves as a form of contingent reinforcement, where the 
measurable and immediate knowledge of BHB levels informs timely 
decisions, reinforces behaviors, and supports motivation and 
accountability, resulting in adherence to the KMT (135, 136). Over time, 
this develops into consistent reinforcement, fostering sustained 
behavioral change (137), enhancing engagement, and building a sense of 
empowerment through increased self-efficacy (138). This process drives 
an “upward spiral” (Figure 2) of positive behavioral and clinical change.

Research in behavioral science confirms that immediate biological 
feedback can strengthen motivation and facilitate sustained behavior 
change (135). Frequent and direct feedback has been associated with 
better outcomes in interventions targeting diet, exercise, and smoking 
cessation (139). Real-time feedback strategies, such as self-monitoring, 
have also been linked to greater engagement and adherence in digital 
health interventions (140). From a neuroscience perspective, biological 
feedback engages motivation and reward systems, particularly during 
the early phase of behavior change when motivation is high (136). 
Therefore, consistent BHB monitoring may serve as a neurobiologically 
aligned tool to support KMT adherence and long-term behavioral 
change through measurable reinforcement (135, 136, 140).

We also envision that, for healthcare professionals (HCPs), BHB 
monitoring enables a similar “upward spiral” (Figure  2) toward 
more precise and personalized care. Rather than relying on 
subjective reports, HCPs gain access to objective information that 
supports data-driven conversations, shared decision-making, and 
tailored interventions. When integrated with connected, cloud-
based health platforms, BHB testing enables real-time, remote 
metabolic monitoring that precisely guides dietary adjustments, 
tracks therapeutic response (16, 53, 55), and permits detection of 
concerning clinical situations in high-risk individuals (32).

In summary, in our view, expanding the consistent and structured 
use of BHB testing may further enhance the promising clinical 

FIGURE 2

The dynamic of ketone testing in ketogenic metabolic therapies (KMTs). (A) The feedback loop of ketone testing. Individuals test, receive biological 
feedback, evaluate it, and adjust their dietary or lifestyle choices. Then they assess the resulting metabolic response by performing further testing. This 
real-time feedback provides actionable information for achieving and maintaining nutritional ketosis. (B) The upward spiral effects of ketone testing. 
For patients, consistent testing leads to awareness of personal metabolic responses, reinforcement of behaviors, personal empowerment, and 
adherence to KMTs. For healthcare professionals, consistent testing enables real-time, remote monitoring, shared decision-making based on personal 
data, and tailored interventions.
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potential of KMTs by providing an objective assessment of adherence, 
improving the interpretability of outcomes, empowering individuals 
through actionable feedback, and enabling healthcare providers to 
deliver more personalized interventions.

4.4 Practical challenges and opportunities

While the reviewed evidence highlights the value of BHB testing 
in KMTs, its implementation in both research and real-world settings 
is not without challenges, warranting careful consideration, 
innovation, and ongoing refinement.

The invasive nature of capillary blood testing can act as a barrier, 
especially for those with needle phobia, fear of pain, or discomfort 
intolerance (141–143). Testing fatigue, particularly with daily 
monitoring, is well-documented in the diabetes literature (144), 
along with obsessive behaviors (145), and burdens associated with 
maintaining data integrity (133). Clinicians may address these 
psychological barriers using evidence-based strategies, such as 
cognitive behavioral therapy, gradual exposure methods, and distress 
tolerance interventions. Such approaches can effectively reduce 
anxiety, testing aversion, and obsessive behaviors associated with 
frequent biomarker monitoring (146–148). The use of CKMs may 
also offer relief from fingerstick testing burden while providing 
granular details about the metabolic milieu.

Although digital platforms and connected devices have improved 
data collection and sharing, technological limitations may still pose 
challenges, as some may find mobile apps and cloud-based monitoring 
tools cumbersome (116, 133), especially older adults or those with 
limited digital literacy.

Despite the increasing availability of capillary blood BHB meters 
and test strips, BHB testing remains relatively costly compared to 
other metabolic assessments such as blood glucose or urine ketone 
testing. This may limit accessibility, particularly in low-resource 
settings or for individuals requiring frequent testing.

As noted earlier, several important unknowns remain regarding 
BHB testing itself, including the optimal frequency of testing, the 
absence of standardized reference ranges across diverse populations, 
and the lack of defined targets for different therapeutic goals.

These challenges do not diminish the value of BHB monitoring 
but instead highlight the need for thoughtful design in both clinical 
protocols and real-world applications. Strategies such as reducing 
testing frequency after initial adaptation and providing structured 
onboarding, user training, and technical support can help mitigate 
these challenges and improve uptake, especially in underserved 
populations. Future technological improvements in non-invasive 
alternatives (e.g., breath acetone) may enhance accessibility and user 
comfort for those deterred by fingerstick testing. Research and 
innovation in both testing technologies and implementation 
strategies will be key to ensuring that BHB monitoring remains a 
feasible and empowering component of KMTs.

5 Methodological considerations and 
limitations of this work

This work presents a narrative review of the literature. 
We  conducted a literature search in PubMed to identify 

interventional studies investigating the use of KMTs across a range 
of clinical areas (type 2 diabetes, obesity, MASLD, neurodegenerative 
diseases, psychiatric and neurodevelopmental conditions, cancer, 
epilepsy, type 1 diabetes, PCOS, kidney disease, aging, and physical 
performance). Studies were included if they incorporated capillary 
blood BHB testing as part of the methodology, independently of 
clinical outcomes. Studies involving KMTs without BHB testing were 
excluded. As such, we acknowledge the potential for unintentional 
bias in study selection, which is an inherent limitation of 
narrative reviews.

Although many of the included studies are clinical trials 
(Table  2), this review also includes some case reports and 
retrospective analyses with relatively small sample sizes. These study 
designs carry inherent limitations, including increased risk of bias 
and reduced generalizability. Nonetheless, they represent the current 
state of clinical research in the emerging field of KMTs.

Despite their limitations, these studies, when considered 
collectively, provide meaningful and consistent evidence of the role of 
BHB testing in the context of KMTs. As research in KMTs continues 
to grow, larger and more rigorously designed studies will be critical to 
further define and validate the role of BHB testing in both clinical and 
research contexts.

6 Conclusion

Capillary blood BHB testing provides an objective, quantifiable, 
and actionable measure of ketosis in KMTs. It offers real-time 
physiological feedback that reflects both dietary adherence and 
metabolic response. It supports behavior change, enables 
personalized care, and adds rigor to clinical research protocols. 
Evidence across diverse conditions confirms its value in both clinical 
practice and research settings, but further research is needed to 
investigate how BHB levels correlate to clinical outcomes across 
therapeutic areas. Considerate protocol design and continued 
innovation will be  essential to integrate BHB monitoring more 
effectively into both clinical practice and research.
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