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Accurate assessment of dietary adherence and metabolic outcomes remains a
critical challenge in most nutrition studies. Ketogenic metabolic therapies (KMTs)
provide a unique advantage by inducing nutritional ketosis and enabling the use of
ketone bodies as biomarkers of metabolic state. This narrative review investigates
the role of ketone testing as an integral component of KMTs. We introduce the key
biomarkers and testing modalities currently used and present a comprehensive
overview of the use of capillary blood p-hydroxybutyrate (BHB) testing across diverse
therapeutic areas. Capillary blood BHB testing plays a multifaceted role in KMTs:
it enables objective monitoring of dietary adherence, supports the interpretation
of clinical outcomes, and informs personalized treatment adjustments based on
individual metabolic responses. Additionally, it may facilitate behavior change
through real-time feedback. Broader implementation of ketone testing in both
clinical and research settings will require thoughtful protocol design that accounts
for individual preferences and tolerability, continued technological innovation
to enhance user experience, and further research into the relationship between
ketone levels and therapeutic outcomes.
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1 Introduction

A major challenge in most nutrition intervention studies is the lack of objective biomarkers
to accurately monitor dietary adherence and metabolic responses (1-3). Metabolomic profiling
is emerging as an advanced method to detect the intake of specific foods, but its use is limited
by inter-individual variability, the need for extensive validation, and poor translatability from
research settings to routine clinical practice (2-4). Recovery biomarkers, such as doubly
labeled water for energy intake and 24 h urinary nitrogen for protein intake, have been used
as estimates of dietary intake, but their implementation is limited due to narrow applicability
and logistical challenges (5, 6).

In the absence of reliable biomarkers, most studies of dietary patterns continue to rely on
self-reported dietary intake data, which are inherently prone to recall bias, misreporting, and
inter-individual variability (7-9). In intervention studies where outcomes depend on precise
nutritional adherence, these limitations are particularly problematic.

Ketogenic metabolic therapies (KMTs) provide a unique advantage in this regard. KMTs
are dietary and lifestyle interventions designed to increase fat metabolism and ketone
production, inducing the metabolic state of nutritional ketosis (10). The hallmark of nutritional
ketosis is the elevation of the ketone bodies p-hydroxybutyrate (BHB), acetoacetate, and
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acetone, which can be objectively measured in blood, urine, and
breath, respectively (Figure 1) (11). In particular, nutritional ketosis is
defined by a precise BHB concentration range of 0.5-5.0 mmol/L in
blood (12), thereby making BHB testing integral to the definition
of KMTs.

Nutritional ketosis can be achieved with ketogenic diets that
provide high fat, very low carbohydrate, and moderate to adequate
protein intake. Therapeutic versions (such as the classic ketogenic diet,
modified ketogenic diet, and modified Atkins diet) are used to manage
epilepsy and other neurological conditions (13), each with distinct
macronutrient ratios or carbohydrate restrictions (typically less than
30 grams of total carbohydrates daily). Ketogenic approaches are also
applied to metabolic disorders like type 2 diabetes and obesity,
typically delivering <10% of total energy from carbohydrates, which
corresponds to approximately 30 to 50 grams of total carbohydrates
daily (14). Variations include very low-calorie ketogenic diets
(VLCKD) that are intended for short-term use (15), calorie-sufficient
very low-carbohydrate diets that are suitable for long-term use (16),
and intermittent fasting or time-restricted feeding protocols (17).
Importantly, while extended fasting reliably induces ketosis, it may not
be sustainable long term due to risks of lean mass loss and reduced
resting metabolic rate (18). Even with their therapeutic potential,
KMTs may lead to side effects such as gastrointestinal disturbances
and electrolyte imbalances, and should therefore be implemented with
appropriate clinical oversight.

In this narrative review we investigate the role of capillary blood
BHB testing as an integral component of KMTs. First, we provide an
overview of the key biomarkers relevant to KMTs, discussing their
advantages, limitations and contexts of application (Section 2).
Second, since monitoring of capillary blood BHB levels represents the
current gold standard for assessing nutritional ketosis (1 1), we present
a comprehensive review of its applications across different therapeutic
areas, emphasizing testing modalities and impact on data
interpretation (Section 3). Last, we discuss the role of capillary blood
BHB testing in research and clinical practice in light of the reviewed
literature, highlighting its potential to: (1) enable objective monitoring
of dietary adherence; (2) support precise interpretation of clinical
outcomes; (3) facilitate behavior change and empower patients; and
(4) personalize treatment (Section 4).

2 Biomarkers and testing methods
used in KMTs

Several biomarkers and testing methods are relevant to KMTs
(Figure 1), each with specific advantages and limitations (Table 1).

Acetoacetate is a primary ketone body produced in the liver from
fatty acid metabolism. It can be utilized directly for energy,
enzymatically converted into BHB, or spontaneously decarboxylated
into acetone. Acetoacetate is excreted in the urine. Urine dipsticks

Abbreviations: ADPKD, autosomal dominant polycystic kidney disease; BHB,
beta-hydroxybutyrate; CGM, continuous glucose monitor; CKM, continuous
ketone monitor; DRE, drug-resistant epilepsy; GKI, glucose ketone index; KMT,
ketogenic metabolic therapy; MAD, modified Atkins diet; MASLD, metabolic
dysfunction-associated steatotic liver disease; PCOS, polycystic ovary syndrome;

PTSD, post-traumatic stress disorder; VLCKD, very low-calorie ketogenic diet.
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have been widely used for decades to detect elevated acetoacetate
levels in diabetic ketoacidosis (DKA), largely due to their affordability
and non-invasive nature. However, as individuals adapt to sustained
ketosis, renal reabsorption of acetoacetate increases (19), reducing its
urinary excretion and limiting the reliability of urine dipsticks for
assessing ketosis (20). While capillary blood BHB testing and urine
dipsticks have exhibited equal sensitivity for detecting DKA, BHB has
been shown to have higher specificity (21). In the context of nutritional
ketosis, the reliability of urine acetone measurements is further
limited, as hydration status significantly affects accuracy (22).

Acetone is a volatile ketone body derived from the spontaneous
breakdown of acetoacetate and is exhaled through breath, making it a
non-invasive biomarker of ketosis (23). Studies have demonstrated
that breath acetone is moderately correlated with plasma acetoacetate
and plasma BHB, supporting its use as a reliable biomarker of ketosis
(24). However, the accuracy of breath acetone measurements depends
on multiple factors, including the performance of the breath analyzer
[e.g., cross-sensitivities and poor stability of current metal oxide
sensors (25)], the breathing maneuver used, and human variables such
as breath volume, pattern, and temperature (26). Therefore, the
clinical and research applications of acetone as a biomarker of ketosis
remain limited by current technological constraints (27).

BHB is the most abundant ketone body in circulation, synthesized
in the liver from acetoacetate through an enzymatic reduction (28,
29). BHB serves as a primary metabolic fuel during ketosis, supplying
energy to the brain, heart, and muscles. Beyond its role as an energy
substrate, BHB also functions as a signaling molecule, modulating
inflammation, gene expression, and mitochondrial function (28, 29).
BHB is measured in the blood and is considered the current gold
standard for assessing ketosis (11). Historically, quantification relied
on gas chromatography, mass spectrometry, and enzymatic assays,
which provided high precision in clinical and research settings.
Advances in technology have led to the development of modern
capillary blood BHB meters, offering a convenient, rapid, and accurate
alternative for home monitoring (30-32). As reviewed in the following
section, capillary blood BHB testing is widely used in KMTs in both
clinical and research settings.

Emerging technologies aim to expand BHB monitoring
capabilities beyond point-in-time measurements. Continuous ketone
monitors (CKMs) are wearable devices that measure BHB
concentrations in interstitial fluid in real time. They operate via a
subcutaneous sensor, which continuously samples interstitial fluid to
assess BHB levels. CKMs offer continuous ketone data that may
improve the detection and management of DKA, particularly in high-
risk populations (33, 34). In people following KMTs, continuous
ketone monitoring could provide feedback that may reveal circadian
and behavioral patterns in ketone production not captured by
conventional testing methods. However, challenges remain regarding
sensor accuracy, calibration requirements, and the need for clinical
validation before widespread adoption in both clinical and lifestyle
contexts (33, 35). Currently, CKMs are available for consumer use only
in selected markets.

In addition to ketone levels, glucose monitoring is frequently
integrated into KMTs to evaluate glycemic regulation and metabolic
adaptation. Beyond laboratory measurements, glucose can be self-
monitored using capillary blood glucose meters or continuous
glucose monitors (CGM), each with distinct implications
and considerations.
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FIGURE 1
Overview of biomarkers and testing modalities relevant to ketogenic metabolic therapies (KMTs). BHB, B-hydroxybutyrate.

TABLE 1 Comparison of currently available biomarker testing methods used in KMTs.

Biomarker Biological = Advantages Limitations
sample
Acetoacetate Urine Non-invasive, inexpensive, widely available, Affected by hydration status. Become less reliable as ketosis (19-22)
useful for initial adaptation phase. continues.
Acetone Breath Non-invasive, portable, suitable for frequent Current metal oxide-based technology shows sensor (23-27)
monitoring. stability and cross sensitivities with risk of false positives.
BHB (fingerstick) Capillary blood Accurate, reliable, reflects real-time metabolic | Invasive. Relatively costly (depending on testing frequency). (28-32)
state. Gold standard for monitoring of ketosis.
BHB (continuous) Interstitial fluid Indication of BHB trends and fluctuations. Invasive. Relatively costly. Less accurate and less reliable (33-35)
than capillary ketone testing.
Glucose (fingerstick) | Capillary blood Direct measure of glucose response to dietary | Invasive. Does not fully capture metabolic adaptation to (36)
and lifestyle interventions, relative low cost. ketosis.
Glucose (continuous) | Interstitial fluid Indication of glucose trends and fluctuations. | Invasive. Less accurate and less reliable than blood glucose. 37-39)
Does not fully capture metabolic adaptation to ketosis.

Capillary blood glucose testing with a home glucose meter
provides a practical and cost-effective approach for assessing
glycemic responses to dietary and lifestyle modifications. This
fingerstick-based method provides a single-point measurement of
blood glucose levels. Traditionally, it has been extensively used in
type 2 diabetes management and has been shown to improve clinical
outcomes, particularly when combined with telehealth-based remote
monitoring (36). However, similar to BHB testing, the perceived
invasiveness of fingerstick measurements may reduce adherence to
regular monitoring.

Frontiers in Nutrition

CGMs offer an alternative approach, measuring interstitial
glucose levels in real time via a subcutaneous sensor, typically on the
upper arm. These devices track glucose fluctuations and patterns
continuously throughout the day and night, detecting episodes of
hyperglycemia and hypoglycemia, and providing insights on
individual responses to food intake, physical activity, and other
lifestyle factors (37). Initially developed for diabetes management,
CGMs are now increasingly popular among individuals without
diabetes who wish to improve metabolic health and performance (38).
However, CGM accuracy remains a concern, as studies indicate that
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CGMs may overestimate fasting and postprandial glucose levels
compared to capillary blood glucose, with variability influenced by
individual factors and the foods consumed (39).

While glucose monitoring alone (via fingerstick or CGM) may
offer valuable metabolic insights, it does not capture the metabolic
shift induced by KMTs or directly measure ketosis. The glucose ketone
index (GKI) addresses this limitation by integrating both blood
glucose and BHB levels into a comprehensive metabolic biomarker
that reflects the balance between glycolytic and ketogenic metabolism.
The GKI is calculated as the ratio of blood glucose level to BHB level
(both in mmol/L) measured at the same time, with lower values
indicating a greater metabolic shift toward fat oxidation and ketone
utilization. Originally developed to monitor therapeutic ketosis in
patients with glioblastoma (40, 41), the GKI has more recently been
investigated as a tool for monitoring KMTs in mental health conditions
such as depression and bipolar disorder (42, 43).

3 BHB testing in KMTs

Since monitoring of capillary blood BHB levels represents the
current gold standard for assessing nutritional ketosis (1 1), we present
a comprehensive review of its application in clinical research across a
range of therapeutic areas, including diabetes, obesity, metabolic
dysfunction-associated steatotic liver disease (MASLD), psychiatric
conditions, neurological disorders, cancer, polycystic ovary syndrome
(PCOS) and kidney disease. For each study, we highlight the testing
protocol and, where available, report the original authors’
interpretation of the role of BHB data in informing adherence
assessment, outcome interpretation, and therapeutic decision-making.
An overview of the reviewed studies by therapeutic area is given in
Table 2. While the increasingly compelling clinical outcomes
associated with KMTs in these therapeutic areas are highly relevant,
they have been reviewed extensively elsewhere (14, 44-47) and fall
outside the scope of this review.

3.1 BHB testing in KMTs for type 2 diabetes,
obesity, and MASLD

KMTs directly target the core pathophysiology of insulin-
resistant conditions, including type 2 diabetes, by shifting
metabolism toward fat oxidation and ketone production (48, 49).
Clinical studies have shown that KMTs can improve key metabolic
markers such as glycated hemoglobin (HbAlc), fasting glucose,
fasting insulin, and body weight, all of which contribute to enhanced
insulin sensitivity (50). Additionally, ketone bodies, particularly
BHB, exert anti-inflammatory effects offering further benefits in
chronic metabolic diseases such as type 2 diabetes and obesity (51,
52). While the incidence of DKA in people with type 2 diabetes on
KMTs is very low, at-home monitoring can help track BHB trends,
especially in those who are at higher risk [e.g., individuals taking
SGLT?2 inhibitors (32)].

This section reviews the role of ketone monitoring in KMTs for
type 2 diabetes, prediabetes, obesity, and MASLD, focusing on testing
methodologies and their clinical and research implications. Studies
have employed diverse testing protocols, including daily, multiple
times per week, weekly, or periodic measurements.
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3.1.1 Frequent ketone monitoring (daily)

In a non-randomized study comparing a continuous remote care
intervention for nutritional ketosis to standard diabetes care,
individuals with type 2 diabetes who chose the ketogenic intervention
were instructed to measure capillary blood BHB at home each day (53).
A mobile app enabled real-time data transmission to the care team,
with biomarker testing frequency adjusted over time based on
individual needs. Mean lab-measured BHB at 70 days was
0.54 mmol/L. Within one year 96% of participants (N = 262) reported
at least one home BHB reading >0.5 mmol/L (53). Within two years
61.5% of participants (n = 194) reported at least one BHB measurement
>0.5 mmol/L (16). On average, BHB was >0.5 mmol/L for 32.8% of
measurements over the two years. In sub-analyses of the two-year data,
higher frequency of BHB > 0.5 mmol/L was associated with larger
increases in HDL-C, IDL I, and LDL ], and greater decreases in TG
and mid-zone LDL particles (54). The authors stated that long-term
tracking of BHB allowed them to investigate the relationship between
the frequency of reported nutritional ketosis and the shift from LDL
subclass phenotype B to phenotype A. In an extension study at five
years, participants who maintained diabetes remission at year two
tended to have higher mean BHB levels throughout the study compared
to those who did not sustain remission (55).

3.1.2 Mid-frequency ketone monitoring (weekly
or multiple times per week)

In a three-month randomized controlled trial comparing a
ketogenic diet to a moderate carbohydrate diet, participants in the
ketogenic diet arm tested BHB at home twice a week with the goal of
achieving detectable capillary blood ketones (56). By week 6, 75% of
participants in the ketogenic diet group achieved a BHB level
>0.5 mmol/L.

The Keto-Med crossover trial enrolled 40 participants with
prediabetes or type 2 diabetes and assigned them to follow a ketogenic
diet and a reduced carbohydrate Mediterranean diet for 12 weeks
each in random order (57). During the ketogenic diet phase,
participants used home capillary blood meters to measure fasting
BHB three times per week and underwent fasting venous blood
draws at seven time points for plasma BHB analysis. These two
measures indicated whether participants restricted carbohydrate
intake sufficiently to achieve ketosis and provided an objective
marker of adherence to the diet. In a secondary analysis of the
Keto-Med trial, researchers observed that during 85% of the study
weeks, participants’ average BHB levels remained within the light
nutritional ketosis range of 0.5-1.5 mmol/L (58).

Less frequent BHB monitoring has been used in smaller studies.
In a pilot trial, 11 women recently diagnosed with type 2 diabetes
followed a ketogenic diet for 90 days (59). Plasma BHB levels were
measured weekly, with 10 out of 11 participants consistently meeting
their weekly BHB targets and one participant meeting all targets by
the second week. By week 12, the average BHB level was 1.3 mmol/L,
reflecting sustained adherence to the diet.

In a six-month randomized controlled trial 58 individuals with
type 2 diabetes followed a diet with less than 50 grams of non-fiber
carbohydrates per day and measured capillary blood BHB at home
two to three times per week to assess the effects of carbohydrate
restriction on cardiovascular risk factors (60). At the end of the trial,
no correlation was found between levels of ketosis and >5% increase
in small, dense LDL particles.
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TABLE 2 Overview of reviewed studies using BHB testing in KMTs, by therapeutic area.

Therapeutic area Adherence to

Study design (n)*

Frequency of BHB Reported BHB

testing range (mmol/L) BHB testing
Type 2 diabetes (incl. prediabetes) RCTs (2) From daily to weekly >0.5 nr (16, 53, 55-60)
Non-RCTs (1)
Crossover (1)
Pilot (1)
Obesity RCT (1) Occasional >0.3 nr (62,63)
Pilot (1)
Metabolic dysfunction-associated Prospective (1) Occasional >0.5 nr (61)
steatotic liver disease (MASLD)
Bipolar disorder Pilot (2) From daily to weekly 0.5-1.0 From <50 to 95% (43, 66, 67, 72)
Case report (1)
Depression Case series (1) Daily 1.1-3.2 79% (68)
Case report (1)
Schizophrenia Pilot (1) From daily to weekly 0.8-3.5 From <50% to >80% (69,72)
Case report (1)
Obsessive compulsive disorder Case report (1) Daily 0.8 nr (70)
Post-traumatic stress disorder Pilot (1) Daily (3 times) >0.5 98% (71)
Autism spectrum disorder Pilot (1) Occasional 0.8-2.2 nr (73,74)
Prospective (1)
Alzheimer’s disease RCT (1) From daily to weekly 0.8-3.0 nr (77, 80, 85)
Crossover (1)
Case report (1)
Huntington’s disease Case report (1) Daily 0.9 nr (78)
Amyotrophic lateral sclerosis Case report (1) Daily 0.77 nr (79)
Parkinson’s disease RCT (1) From twice daily to weekly 0.5-2.0 nr (81-84)
Pilot (1)
Longitudinal (1)
Feasibility (1)
Epilepsy RCTs (2) Occasional 2.0-6.0 nr (90-96)
Prospective (2)
Retrospective (3)
Cancer RCT (1) From daily to occasional 0.3-6.3 nr (40, 99-106)
Non-RCT (1)
Prospective (1)
Feasibility (2)
Case series (1)
Case reports (3)
Type 1 diabetes Observational (1) From daily to multiple 0.3-1.2 nr (109-112)
Case Reports (2) times a day
Case Series (1)
Kidney disease Pilot (1) From daily to occasional 0.5-1.3 nr (116, 117)
Feasibility (1)
Polycystic ovary syndrome Prospective (3) From daily to weekly 0.5-1.7 nr (119-122)
Retrospective (1)
Ageing Crossover (1) Daily (3 times) 0.1-1.9 99% (124)
Sports performance Comparative (1) From daily to weekly 0.5-3.7 nr (131,132)
Crossover (1)

*#(n) indicates the number of studies reviewed for each design type. RCT, randomized controlled trial; non-RCT, non-randomized controlled trial; nr, not reported.
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3.1.3 Occasional ketone monitoring (baseline and
at study visits)

To investigate the effects of a ketogenic diet on hepatic steatosis, a
6-day trial was conducted in ten individuals with overweight or
obesity (61). BHB levels were measured at baseline and on day 6,
showing a tenfold increase from 0.1 mmol/L to 1.0 mmol/L. Increased
fatty acid partitioning toward ketogenesis was linked to a higher
hepatic mitochondrial redox state and reduced citrate synthase flux,
indicating metabolic adaptations that may contribute to the reversal
of MASLD through a ketogenic intervention.

Periodic BHB testing has also been used in the context of
VLCKDs. In a pilot study involving 95 adults with obesity, the
potential influence of sex on appetite responses to weight loss and
ketosis was examined over an eight-week VLCKD intervention (62).
BHB was measured at baseline, week 9, and week 13. Participants with
undetectable BHB received targeted dietary counseling to improve
adherence. By the end of the study, women had significantly higher
BHB levels than men (1.174 vs. 0.783 mmol/L, p = 0.029), although
no sex-based differences were observed in appetite-related hormone
responses or subjective appetite ratings.

In another trial 45 individuals with obesity were randomized to a
VLCKD and 44 to a standard low-calorie diet for four months (63).
Capillary blood BHB was measured at baseline and at eight scheduled
follow-up visits. BHB levels of at least 0.3 mmol/L were observed in
91.1% of participants in the VLCKD group, with peak levels reaching
1.15 £ 0.96 mmol/L at two weeks.

3.2 BHB testing in KMTs for psychiatric and
neurodevelopmental disorders

The use of KMTs has been increasingly explored in the context of
psychiatric disorders [i.e., bipolar disorder, schizophrenia, depression,
and post-traumatic stress disorder (PTSD)] and neurodevelopmental
disorders (i.e., autism spectrum disorder). Emerging research suggests
that metabolic dysfunction, including glucose hypometabolism,
mitochondrial impairments, and neuroinflammation, may contribute
to the pathophysiology of these conditions (44, 64). Since ketone
bodies serve as an alternative energy source for the brain, influence
neurotransmitter balance, and modulate inflammatory pathways,
KMTs have been hypothesized to provide therapeutic effects in these
conditions (44, 64, 65).

This section reviews the role of ketone monitoring in KMTs for
psychiatric and neurodevelopmental disorders, focusing on testing
methodologies and their clinical and research implications. Studies
have employed diverse testing protocols, including daily, multiple
times per week, weekly, or periodic measurements.

3.2.1 Frequent ketone monitoring (daily or
multiple times per day)

A 6-8-week pilot study in individuals with bipolar disorder
utilized daily BHB monitoring to assess adherence to a KMT and
its metabolic effects (66). Of the 27 recruited participants, 20
completed the intervention. Ketone data collection during the
intervention was 95% complete, demonstrating the feasibility of
daily BHB testing in this population. These readings indicated that
participants achieved light ketosis (0.5-1.0 mmol/L) within
1-7 days of starting the KMT and optimal ketosis (1-3 mmol/L)
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within 3-13 days. Participants maintained strong adherence to the
therapy, as confirmed by 91% of available readings indicating at
least light ketosis (>0.5 mmol/L) and overall mean daily ketone
levels of 1.3 mmol/L (median = 1.1 mmol/L).

The high-resolution dataset of ketone levels in this study enabled
researchers to correlate outcomes with ketosis levels in a subset of 14
patients who provided reliable daily ecological momentary assessment
data (43). Ketone levels were significantly (p < 0.001) positively
correlated with mood (r = 0.21) and energy (r = 0.19) and inversely
correlated with impulsivity (r = —0.30) and anxiety (r = —0.19), while
no significant correlation was observed between ketone levels and
speed of thought (r = —0.08).

A similar approach was used in recent case reports. A patient with
bipolar disorder with treatment-resistant depressive symptoms
followed a KMT and tested ketones daily (67). Testing compliance was
high (89%) for the 21-week period and confirmed that nutritional
ketosis was maintained at BHB values of around 1.0 mmol/L. A
patient with chronic major depressive disorder showed 79% BHB
testing compliance over 14 weeks, with blood BHB levels established
at 1.1 mmol/L with highest recorded BHB level of 3.2 mmol/L (68).
Two patients with schizoaffective disorder followed a KMT and tested
ketones daily (69). Testing adherence was high in the first five weeks
but declined in later weeks, contributing to an overall 63% testing
compliance rate over 10 weeks. Nutritional ketosis was confirmed at
>0.8 mmol/L with highest recorded BHB level of 3.5 mmol/L. Three
patients with major depression and generalized anxiety disorder and
complex comorbidities were treated with a personalized KMT and
requested to monitor ketone levels and GKI daily (42). Ketosis was
defined as BHB > 0.8 mmol/L and GKI< 6. Biomarker testing
demonstrated individual variability in metabolic adaptation, with
some participants achieving stable ketosis rapidly, while others
exhibited fluctuations before reaching consistent BHB levels.
Interestingly, symptom improvements seemed to align with sustained
ketosis, suggesting a potential relationship between metabolic state
and clinical outcomes. Similarly, in a 12-week case study of KMT for
obsessive-compulsive disorder and ulcerative colitis, daily testing
confirmed sustained nutritional ketosis with average weekly BHB
levels around 0.8 mmol/L and GKI values mostly <6 (70). Symptom
improvements were associated with higher BHB levels, despite
occasional dietary lapses and fluctuations in adherence.

A four-week study assessed the feasibility of a KMT in individuals
with PTSD (N =4), utilizing high-frequency capillary blood BHB
monitoring to track adherence and individual metabolic response (71).
Participants measured BHB three times daily. A day in ketosis was
defined as mean daily BHB > 0.5 mmol/L, and required adherence was
defined as >75% of days in ketosis since ketosis was attained. Frequent
biomarker testing verified dietary adherence, with 2% of measurements
missing, and enabled personalized assessment of ketosis levels based
on each patient’s metabolic response. Dietary composition impacted
ketone levels, with one patient showing decreased BHB levels after low
food intake or consumption of a commercial high-fiber bread.

3.2.2 Mid-frequency ketone monitoring (weekly
or multiple times per week)

A four-month pilot study assessed a KMT in bipolar disorder and
schizophrenia (72). Weekly BHB testing objectively confirmed
adherence, and allowed researchers to stratify participants based on
metabolic response rather than self-reported intake. Of 23
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participants, 14 were classified as fully adherent (>80% of BHB
readings >0.5 mmol/L), six as semi-adherent (60-80%), and one as
non-adherent (<50%), demonstrating varying engagement with the
diet. Findings suggested a dose-response relationship, with higher
ketone levels associated with greater psychiatric improvements,
though further research is needed.

3.2.3 Occasional ketone monitoring (baseline and
at study visits)

Occasional BHB testing was used in studies investigating the
application of KMT in autism spectrum disorder. In a three-month
open-label, observer-blinded clinical trial, blood BHB testing was
performed at baseline and at 3 months (73). While all participants on
KMT (n =15) showed increased BHB levels, >50% demonstrated
substantial to moderate improvement in behavior, and no correlation
was observed between BHB levels and symptom changes. In a
six-month pilot study of intermittent four-week KMT interrupted by
two-week diet-free intervals, blood BHB testing was performed at the
end of each KMT phase (74). During the ketogenic phases, BHB levels
were maintained between 1.8 and 2.2 mmol/L, while in the diet-free
phases, BHB declined to 0.8-1.5 mmol/L, demonstrating a metabolic
change between dietary states.

3.3 BHB testing in KMTs for
neurodegenerative disorders

Neurodegenerative conditions such as Parkinsons disease,
Alzheimer’s disease, mild cognitive impairment, Huntington’s disease,
multiple sclerosis, and amyotrophic lateral sclerosis are characterized
by progressive neuronal dysfunction, often linked to mitochondrial
impairment, neuroinflammation, and metabolic dysregulation (75,
76). Emerging evidence suggests that KMTs may offer neuroprotective
benefits by enhancing mitochondrial function, reducing oxidative
stress, modulating inflammation, and providing an alternative energy
substrate to neurons affected by glucose hypometabolism (45, 75).

This section reviews the role of ketone monitoring in KMTs for
neurodegenerative conditions, focusing on testing methodologies and
their clinical and research implications. Studies have employed diverse
testing protocols, including daily, multiple times per week, weekly, or
periodic measurements.

3.3.1 Frequent ketone monitoring (daily)

Daily capillary blood BHB testing (consistently at bedtime) was
used in a 12-week randomized crossover trial of a ketogenic diet in
mild or early-stage Alzheimer’s disease (77). Of the 26 randomized
patients, 21 (81%) completed the ketogenic intervention and 18
achieved sustained ketosis, demonstrating high adherence. While on
the diet, patients achieved a mean BHB of 0.95 + 0.34 mmol/L. The
authors attributed the positive adherence rate partly to the use of
ketone monitoring, which was easy to perform and allowed prompt
recognition and correction of difficulties.

A similar approach was employed in two case studies in
Huntington’s disease and amyotrophic lateral sclerosis. In a 48-week
case study of a time-restricted ketogenic diet in Huntington’s disease
(78), daily bedtime testing confirmed sustained ketosis with a mean
BHB of 0.90 + 0.57 mmol/L. Despite consistent dietary adherence, this
patient’s ketone levels remained at the lower end of the target range,
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likely due to the use of exogenous insulin for his type 1 diabetes, which
may have suppressed ketogenesis. Similarly, a patient with
amyotrophic lateral sclerosis monitored BHB daily (at bedtime)
during an 18-month dietary intervention with a 45-month follow-up
(79). While the patient maintained a mean BHB 0f 0.77 + 0.43 mmol/L,
consistent with physiological ketosis, levels were at the lower end of
the therapeutic range, which the authors state could potentially be due
to hypermetabolism typical of the condition (which may have resulted
in increased ketone utilization) or to the lean body composition of the
patient (which may have limited fat availability for ketogenesis).

A daily ketone measuring routine (every morning, in a fasted state)
provided essential confirmation of ketosis and supported appropriate
dietary changes in a six-month case study of a patient with Alzheimer’s
disease and Down syndrome undergoing KMT (80). Initially, after limiting
carbohydrate intake to 75 g per day, the patient’s capillary BHB remained
<0.2 mmol/L, indicating that nutritional ketosis was not achieved. In
response, carbohydrate intake was further reduced to <20 g per day,
leading to a consistent rise in serum ketones to 0.8-3.0 mmol/L. The
caregiver noted that BHB testing was instrumental in confirming ketosis.

Daily BHB testing also proved feasible in studies of KMT in
Parkinson’s disease. Metabolic assessment through bedtime BHB
monitoring was implemented in an eight-week randomized controlled
trial of a low-fat diet versus a ketogenic diet in Parkinson’s disease
(81). The ketogenic diet group achieved a mean weekly BHB of
1.15 £ 0.59 mM, confirming consistent physiological ketosis, while the
low-fat diet group exhibited negligible ketone levels.

Twice-daily plasma BHB measurements (fasting and postprandial)
were used to assess metabolic adaptation to a ketogenic diet in the first
week of a three-week randomized feasibility trial in Parkinson’s
disease (82). BHB levels exceeded 0.5 mmol/L by day four, confirming
early ketosis induction. However, subjects with metabolic syndrome
or insulin resistance exhibited lower BHB levels, suggesting differences
in the response to the intervention.

3.3.2 Mid-frequency ketone monitoring (weekly
or multiple times per week)

Weekly capillary blood BHB testing was implemented in a 12-week
pilot study of a ketogenic diet in patients with Parkinson’s disease to
monitor adherence (83). The mean BHB level over 12 weeks was
0.64 mmol/L. Interestingly, participants who maintained nutritional
ketosis (>0.5 mmol/L) demonstrated greater improvements in symptoms
of depression and anxiety compared to those who did not. These findings
show how consistent ketone monitoring may offer valuable insights into
metabolic adaptation and its potential relationship with symptom
improvements. The authors highlighted weekly ketone testing as a study
strength. Building on these findings, the same group conducted a
24-week longitudinal study in Parkinson’s disease (84), again performing
weekly BHB testing to confirm dietary adherence. All participants
submitted weekly ketone readings, indicating adherence and confirming
acceptable levels of nutritional ketosis (BHB 0.5-2.0 mmol/L).

3.3.3 Occasional ketone monitoring (baseline and
at study visits)

In an 18-week pilot randomized crossover trial of a modified
Mediterranean ketogenic diet versus an American Heart
Association diet in Alzheimer’s disease (85), BHB was measured
at key study time points and during diet education visits. At these
time points, all participants on the ketogenic diet showed
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increased BHB levels, demonstrating a level of adherence to the
intervention. Interestingly, individuals with mild cognitive
impairment exhibited lower BHB levels than those with subjective
memory complaints, despite similar dietary adherence
(determined with daily food records). The authors hypothesized
that patients with mild cognitive impairment may have higher
ketone uptake into target tissues or reduced ketone production or
may necessitate longer dietary exposure to achieve comparable
BHB levels due to higher insulin resistance. Despite the low
frequency, biomarker testing offered valuable insights into
characterizing  metabolic across

responses cognitive

impairment spectrums.

3.4 BHB testing in KMTs for epilepsy

Epilepsy is a neurological disorder characterized by recurrent,
unprovoked seizures caused by abnormal electrical activity in the
brain. Approximately one-third of individuals with epilepsy are
considered refractory or resistant to the effects of antiseizure
medications (86). The ketogenic diet has been used as an alternative
therapy for drug-resistant epilepsy (DRE) since the 1920s (87). Its
anticonvulsant effects are thought to involve increased GABA
synthesis, enhanced neuroprotective signaling, and modulation of
potassium, sodium, and calcium channels—mechanisms that
collectively reduce neuronal excitability and oxidative stress (88). An
increase in NAD" in response to KMTs may also contribute to seizure
reduction (89).

This section reviews the role of ketone monitoring in KMTs
for epilepsy, focusing on testing methodologies and their clinical
and research implications. Studies

mostly employed

periodic measurements.

3.4.1 Occasional ketone monitoring (baseline and
at study visits)

In a large retrospective study of 300 patients with drug-resistant
epilepsy, BHB levels were assessed during fasting and throughout the
first three months of a ketogenic diet (90). Patients underwent a
fasting period of 12 to 48 h, with BHB monitored with high frequency
(four times daily) during the first week, then at one and three months.
BHB levels reached 2.0 mmol/L at 19 h, peaked at 4.2 mmol/L at 43 h,
and stabilized by the three-month mark. Findings indicated that in
cases where seizures persist, raising BHB to 4.0-6.0 mmol/L may
be beneficial, while higher initial BHB levels may help patients
needing rapid seizure control.

A 12-month non-blinded prospective study evaluated 18 children
with DRE on a ketogenic diet, with serum BHB levels measured at 3,
6, and 12 months (91). A trend was observed between higher BHB
levels and reduced seizure frequency, although statistical significance
was not reached, likely due to the small sample size. However, the
study concluded that BHB levels serve as a reliable indicator of
dietary adherence.

In a prospective study, the serum metabolome of 14 children with
DRE was analyzed before and after three months on a ketogenic diet
(92). Serum BHB levels were measured at baseline and after three
months, confirming a metabolic shift toward ketogenesis. After three
months BHB levels reached 4.3 +1.9 mmol/L, consistent with

sustained nutritional ketosis.
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In a three-month retrospective study of 34 children with DRE on
a ketogenic diet, serum BHB levels were measured at baseline and after
3 months (93). Post-treatment BHB levels were significantly elevated
in both responders (4.70 £ 1.41 mmol/L vs. 0.55 %+ 0.35 mmol/L,
p<0.001) non-responders  (2.00 £0.75 mmol/L  vs.
0.58 + 0.33 mmol/L, p < 0.001), with responders exhibiting significantly
higher BHB levels than non-responders.

and

A two-month randomized controlled trial evaluated the effects of
a modified Atkins diet (MAD) in 80 adults with DRE (94). Blood
ketone levels were measured at one month and two months, with a
BHB target of 2-4 mmol/L. By one month, 84% of patients achieved
ketosis within a median of 4 to 4.5 days.

A randomized controlled trial enrolled 104 participants with
refractory epilepsy and assigned them to one of two ketogenic diets:
51 to the classic ketogenic diet and 53 to the MAD for six months (95).
Serum BHB levels were measured at baseline and at one, three, and six
months. At three and six months, mean BHB concentrations in the
ketogenic diet group were 3.74 mmol/L and 4.00 mmol/L, respectively,
compared to 3.40 mmol/L and 3.70 mmol/L in the MAD group. While
blood ketone levels were higher in the classic ketogenic diet group, the
difference was not statistically significant.

In a retrospective study of 33 patients with refractory epilepsy on
a ketogenic diet (96) BHB levels were measured during follow-up
visits and correlated with seizure reduction at three and six months
(p=0.037 and p =0.019). In contrast, urinary ketones from both
clinic visits and daily home measurements showed no correlation with
seizure reduction. These findings, also confirmed by previous studies
(97), support the use of blood BHB as a more reliable indicator of
therapeutic diet, even when

response to the ketogenic

measured infrequently.

3.5 BHB testing in KMTs for cancer

Cancer cells rely heavily on glycolysis for energy, even in the
presence of oxygen—a phenomenon known as the Warburg effect
(98). The ketogenic diet may target cancer’s metabolic vulnerability,
particularly in glioma and other metabolically dysregulated cancers,
by lowering glucose and insulin, reducing inflammation and oxidative
stress, and enhancing tumor response to standard therapies (46).

This section reviews the role of ketone monitoring in KMTs for
cancer, focusing on testing methodologies and their clinical and
research implications. Studies have employed diverse testing
protocols, including daily, multiple times per week, weekly, or
periodic measurements.

3.5.1 Frequent ketone monitoring (daily)

An 80-month case study documented a man with glioblastoma
who followed a ketogenic diet (40). Written records of daily capillary
blood ketone monitoring showed BHB levels typically between 1.0
and 6.0 mmol/L. After maintaining a GKI near or below 2.0 for over
two years on a strict ketogenic diet, his GKI increased to 5 to10 with
relaxed dietary adherence, coinciding with tumor progression.
Implementing time-restricted fasting and a strict KMT regimen
restored his GKI to 2.0 or below.

A similar case report documented the experience of a woman
with glioblastoma who followed an intensive KMT program alongside
standard treatment (99). The KMT regimen included prolonged
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fasting, time-restricted eating, and a modified ketogenic diet, with
daily bedtime capillary blood ketone monitoring. In the first year, her
average weekly BHB was 2.82 + 1.43 mmol/L and average GKI was
1.65 (range: 0.52-5.97). In the second year, her average weekly BHB
was maintained at 2.32 £ 0.67 mmol/L with average GKI of 2.02
(range: 1.16-5.38) and no disease progression noted on imaging. In
the third year, average weekly BHB decreased to 1.64 + 0.65 mmol/L
and average GKI increased to 3.20 (range: 1.14-17.20) due to stress
and reduced adherence to KMT, which coincided with
tumor progression.

A case series reported the experience of 12 patients with cancers
of the central nervous system who followed a ketogenic diet for
120 days (100). Among the eight patients who monitored BHB levels
at home twice daily, most maintained ketone levels above 0.5 mmol/L
throughout the study. The 30-day GKI ranged from 0.95 to 2.9, while
the end-of-study GKI ranged from 1.7 to 5.3. The authors commented
that the use of home capillary blood ketone monitoring and online
data management tools facilitated accurate tracking of dietary
adherence, providing strong internal validation and reducing concerns
about self-reporting reliability common in dietary studies.

In a feasibility study, 20 women with stage IV breast cancer
followed a six-month ketogenic intervention that included prepared
meals and nutrition coaching, with daily home monitoring of BHB
levels (101). Mean BHB levels were 0.8 mmol/L during the first three
months and 0.7 mmol/L during the second three months, consistently
within the target range of 0.5-4.0 mmol/L. All participants who
completed the first three months achieved nutritional ketosis
(BHB > 0.5 mmol/L) and maintained it 90% of the time, despite the
anti-ketogenic effects of chemotherapy and steroids, demonstrating
strong dietary adherence.

A prospective study followed 18 patients with glioblastoma on a
ketogenic diet for at least six months (102). Patients monitored their
BHB levels pre-prandially in the morning and afternoon (daily during
the first month and twice weekly thereafter) targeting BHB levels
>3.5 mmol/L. In six detailed cases, most patients achieved nutritional
ketosis within the first week and maintained BHB levels consistently
above 2.0 mmol/L throughout the study.

3.5.2 Mid-frequency ketone monitoring (weekly
or multiple times per week)

Weekly BHB testing was explored in 10 patients who underwent
KMT for advanced malignancies, including lung, breast, esophageal,
colorectal, ovarian, and fallopian tube cancers (103). All patients
achieved BHB levels >0.5 mmol/L, which was inversely correlated
with insulin levels. The authors noted that the extent of ketosis, rather
than calorie deficit or weight loss, was linked to stable disease or
partial remission, while patients who achieved the lowest ketone levels
experienced progressive disease.

A case study reported the experience of a woman with metastatic
thymoma who followed a metabolic intervention consisting of
periodic fasting combined with a modified ketogenic diet for two
years (104). Capillary blood ketones were measured at home three
times per week, with a mean two-year BHB level of
3.50 + 1.27 mmol/L. Mean BHB levels during fasting periods were
higher, measuring 6.31 + 1.55 mmol/L. The authors noted that
periodic fasting (lasting > two days) appears to have a distinct
therapeutic advantage by inducing more pronounced changes in
ketone levels compared to calorie restriction or a ketogenic diet alone.
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In a controlled, non-randomized trial, 18 patients with rectal
cancer followed a ketogenic diet during radiotherapy, with the
intervention length based on their individual treatment schedules
(105). Capillary blood ketones were measured at least once weekly
during radiotherapy. Median BHB levels peaked at 0.8 mmol/L in the
first and fourth weeks of radiotherapy but declined over the following
2-3 weeks, with about half of the patients no longer reaching
nutritional ketosis at the time of measurement.

3.5.3 Occasional ketone monitoring (baseline and
at study visits)

A 12-week randomized controlled trial evaluated the effects of
KMT in 80 women with breast cancer, with 40 assigned to the
ketogenic diet group and 40 to the control group (106). Serum BHB
was measured during the first, third, and fifth chemotherapy sessions.
At six weeks, 70.4% of KD participants had BHB levels >0.5 mmol/L,
and 89% had levels >0.3 mmol/L. By 12 weeks, 66.7% maintained
BHB levels >0.5 mmol/L, with 89% sustaining levels >0.3 mmol/L.

3.6 BHB testing in type 1 diabetes

Ketogenic and very low-carbohydrate diets are gaining attention
in type 1 diabetes, an autoimmune disorder that destroys the insulin-
producing beta cells, for their ability to improve glycemic control and
reduce insulin requirements (107). However, careful ketone
monitoring and clinical judgment are essential to distinguish
nutritional ketosis from DKA, as the BHB ranges for these distinct
metabolic states overlap. BHB values within the KMT target range
(>0.8 mM and >1.5 mM) have been associated with an increased risk
of DKA in people not following KMT (108) or who are currently ill
(33). With frequent testing and proper medical oversight, ketogenic
and very low-carbohydrate diets may offer metabolic benefits in type
1 diabetes, though long-term safety and efficacy need further study.

This section reviews the role of ketone monitoring in KMTs for
type 1 diabetes, focusing on testing methodologies and their clinical
and research implications. Currently, ketone testing in people with
type 1 diabetes has been published in case reports and short-term
observational studies in which ketones were measured daily or
multiple times per day.

3.6.1 Frequent ketone testing (daily or multiple
times a day)

A case study described a man with type 1 diabetes who maintained
a ketogenic diet for 10 years (109). Over a 60-day monitoring period,
his mean BHB level was 0.8 mmol/L (range: 0.3-1.5 mmol/L),
remaining well below the diagnostic threshold for DKA, but within
the range identified as associated with increased risk of DKA (108).

Another case study described a man newly diagnosed with type 1
diabetes who adopted a ketogenic diet (110). Over a three-day
monitoring period, he recorded 18 BHB measurements ranging from
0.3 to 1.2 mmol/L. The authors noted that these ketone levels remained
relatively stable throughout the day, with no concerning spikes
indicative of metabolic maladaptation.

One case series examined the effects of combining fasting with
exercise on ketone levels in eight adults, including two with type 1
diabetes (111). Participants trained for and completed a five-day, zero-
calorie fast while walking or running for 100 miles. During the study,
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BHB levels ranged from 0.3 to 7.5 mmol/L and were similar between
individuals with and without type 1 diabetes.

An observational study compared ketone levels in 15 people with
type 1 diabetes following different habitual carbohydrate intakes,
including six on very low-carbohydrate diets (<50 g/day) (112). Mean
BHB levels in the very low-carb group were 1.2 mmol/L, well below
the threshold DKA. However, a discrepancy between the reported
mean (1.2 mmol/L) and the range (0.6-1.15 mmol/L) in this group
warrants clarification.

3.7 BHB testing in KMTs for kidney disease

KMTs have been proposed as a valuable option for patients with
chronic kidney disease (113, 114), in particular for those with
autosomal dominant polycystic kidney disease (ADPKD). ADPKD is
a hereditary, progressive kidney disorder characterized by the
development of numerous fluid-filled cysts, that lead to organ
enlargement, fibrosis, and gradual loss of kidney function (115).

Emerging research suggests that metabolic dysfunction plays a
key role in the progression of ADPKD, with cyst cells exhibiting
defective mitochondrial function, impaired fatty acid oxidation, and
increased reliance on glucose metabolism (115). Given these
characteristics, nutritional strategies that induce ketosis may offer a
novel therapeutic approach by shifting cellular energy metabolism
away from glycolysis and towards ketone utilization.

This section reviews the role of ketone monitoring in KMTs for
ADPKD, focusing on testing methodologies and their clinical and
research implications. Studies have employed both frequent and
occasional testing protocols.

3.7.1 Frequent ketone monitoring (daily)

A 16-week pilot study evaluated a KMT in 24 people with ADPKD
using twice-daily capillary blood BHB testing to assess adherence and
metabolic response (116). After an introduction phase, participants
targeted therapeutic ketosis (BHB 1.5-3.0 mmol/L) in Phase 2 and
low-level ketosis (BHB 0.5-1.0 mmol/L) in Phase 3 of the study. BHB
testing confirmed that all participants reached ketosis
(BHB > 0.5 mmol/L) within days and maintained it throughout the
study, with average BHB levels of 1.3 mmol/L in the first six weeks and
1.1 mmol/L in the final six weeks. BHB levels varied throughout the
day and across participants, highlighting the dynamic nature
of ketosis.

3.7.2 Occasional ketone monitoring (baseline and
at study visits)

In a three-month feasibility study (N = 66) of a KMT in ADPKD,
23 participants were randomized to receive a ketogenic diet and
underwent blood BHB testing at three study visits (117). The primary
combined endpoint was defined as a combination of adherence
assessed by metabolic parameters (BHB > 0.8 mmol/L for ketosis)
and patient-reported feasibility. In total, 43% of participants met the
criteria for feasibility, largely due to not consistently reaching the
predefined BHB threshold of 0.8 mmol/L at all study visits. To refine
adherence assessment, an alternative BHB threshold of >0.6 mmol/L
on at least two of three visits was explored, increasing adherence
classification to 78% of participants, with none of the control group
reaching this target. Additionally, 91% of ketogenic diet participants
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maintained higher BHB levels than baseline at least twice during
the study.

3.8 BHB testing in KMTs for PCOS

PCOS is a common and heterogeneous disorder, typically marked
by hyperandrogenism, oligo-anovulation, and metabolic dysfunction,
with a multifactorial pathogenesis often linked to insulin resistance,
which contributes to ovarian dysfunction, inflammation, and metabolic
complications (118). Growing evidence suggests that ketogenic diets
may benefit individuals with PCOS by improving insulin sensitivity,
reducing androgen levels, promoting weight loss, and restoring
menstrual regularity, primarily by reducing hyperinsulinemia (47).

This section reviews the role of ketone monitoring in KMTs for
PCOS, focusing on testing methodologies and their clinical and research
implications. Studies have employed diverse testing protocols, including
daily, multiple times per week, weekly, or periodic measurements.

3.8.1 Frequent ketone monitoring (daily or
multiple times per day)

In a pilot trial, 17 women with PCOS followed a VLCKD for 45 days
and monitored daily capillary blood and urine ketones at home (119).
Mean capillary blood ketone levels significantly increased from zero at
baseline to 1.7 + 0.58 mmol/L, showing adherence to the intervention.

In a double-blind prospective cohort study, 60 women followed
ketogenic diet guidance for 12 weeks and monitored their BHB at
home daily (120). Dietitians provided the participants with tailored
advice based on serum ketone levels and changes in body weight.

3.8.2 Mid-frequency ketone monitoring (weekly
or multiple times per week)

In a pilot trial, 14 women with PCOS consumed a ketogenic
Mediterranean diet for 12 weeks (121). Capillary blood ketones were
measured every other day for the first six days and once a week
thereafter. The mean BHB value was 1.77 + 0.55 mmol/L from day 7
to day 84, showing adherence to the intervention.

In a retrospective study, 25 women with PCOS and obesity followed
a very low-calorie ketogenic diet for 12 weeks (122). BHB levels were
monitored weekly and maintained between 0.5 and 0.7 mmol/L.

3.9 BHB testing in ketogenic approaches
for ageing and performance

Ketogenic approaches have gained interest for their potential to
enhance longevity by promoting metabolic flexibility, mitochondrial
efficiency, and reduced oxidative stress (123). As with the therapeutic
application of KMTs, clinical studies on aging have used ketone
monitoring to obtain objective verification of metabolic state.

For example, a non-randomized, open-label crossover trial
(124) investigated the metabolic effects of nutritional ketosis in 10
healthy women, using daily BHB testing to assess adherence and
metabolic fluctuations across three 21-day study phases.
Participants underwent a six-month lead-in period with once-daily
ketone measurements, followed by four daily testing time points
during the study phases to capture metabolic responses throughout
the day. Testing confirmed clear metabolic shifts across phases, with
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BHB levels significantly decreasing from 1.9 + 0.7 mmol/L in the
first ketosis phase to 0.1 = 0.1 mmol/L in the ketosis suppression
phase (p < 0.0001), then returning to baseline in the third study
phase (1.9 + 0.6 mmol/L). These results verified strict adherence to
the dietary protocol. Despite variability in individual BHB
responses, almost all readings during the first and third phases
exceeded 0.5 mmol/L, the standard threshold for ketosis, while very
few exceeded this range in the second phase. The study achieved
99.37% adherence in capillary BHB testing, with four participants
completing all 252 required tests, demonstrating high feasibility of
frequent BHB tracking in this population.

Ketogenic diets have been proposed as a strategy to enhance
athletic endurance performance by promoting metabolic flexibility,
optimizing fat burning, and reducing reliance on glycogen (125).
While fat oxidation rates are typically measured as changes in
respiratory exchange ratio, BHB testing has been used to monitor
adherence to ketogenic interventions in athletes (126-128) and to
assess the level of ketogenesis compared to control groups (129,
130). These measurements provided objective verification of
metabolic state and ensured accurate evaluation of dietary effects
on performance.

A recent crossover study (131) investigated the metabolic effects
of alow-carbohydrate, high-fat diet on endurance performance in 10
triathletes for six weeks, using BHB testing to track ketosis and guide
dietary adjustments. Testing on days 1, 3, 7, 14, 21, 28, 35, and 42
confirmed that all participants achieved nutritional ketosis
(>0.5 mmol/L) within one week, maintaining 0.6 + 0.5 mmol/L by
day 42. BHB levels were significantly higher in the low-carbohydrate,
high-fat diet vs. high-carbohydrate diets (0.5 vs. 0.1 mmol/L;
P <0.001), remained elevated despite carbohydrate supplementation,
and declined during exercise (—0.2+ 0.1 mmol/L; p < 0.001),
indicating ketone utilization. In this study, beyond monitoring
adherence and guiding metabolic adjustments, BHB testing provided
key insights into ketone availability, utilization, and contribution to
energy metabolism during endurance exercise.

A six-day comparative study (132) investigated the metabolic
effects of different ketogenic strategies on athletic performance
(N =25), using pre-breakfast BHB measurements to assess ketosis.
Testing confirmed that BHB monoester supplementation elevated
capillary blood BHB levels compared to carbohydrate intake at all post-
consumption time points, validating its efficacy in raising circulating
ketones. In contrast, a ketogenic diet stimulated endogenous
ketogenesis, with fasted BHB levels rising from day 3 and peaking at
3.7 + 0.8 mmol/L. These data show the utility of BHB testing in tracking
metabolic adaptation and verifying ketosis in performance studies.

4 Discussion

Unlike most dietary interventions, which lack direct physiological
biomarkers, KMTs induce a measurable metabolic state, nutritional
ketosis, that is quantifiable through ketone body levels. Among these,
BHB measured in blood (0.5-5.0 mmol/L) has emerged as the current
gold standard biomarker (11, 12). Here, based on the literature
reviewed above, we reflect on the role of BHB testing in both research
and clinical practice. In particular, we critically discuss how BHB
monitoring enables objective tracking of dietary adherence, supports
interpretation of clinical outcomes, facilitates behavior change and
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patient empowerment, and contributes to the personalization of
KMTs. We also consider the potential challenges of implementing
refinement and

BHB monitoring and propose areas for

future investigation.

4.1 BHB testing to monitor adherence to
KMTs

Clinical trials across a range of conditions consistently confirm the
utility of capillary blood BHB testing as a reliable and objective
biomarker of adherence to KMTs by providing direct physiological
evidence of ketosis. BHB monitoring enables differentiation of metabolic
responses across dietary interventions (81) and improves confidence in
adherence reporting compared to self-reported dietary intake (72, 100).

Studies in type 2 diabetes (53), neurodegenerative conditions (77),
psychiatric disorders (66, 72) and oncology (40, 99, 101) have reported
that both BHB testing and KMTs are feasible and acceptable in the
target populations.

The frequency and consistency of testing are critical for accurate
adherence assessment. High-frequency testing, ranging from daily
(43, 49) to multiple times per day (71, 124), provides the most precise
and actionable feedback, confirming whether nutritional ketosis is
achieved and maintained, and enabling timely dietary and lifestyle
adjustments (53, 71).

However, daily testing may not be acceptable in all settings. In a
pilot study of bipolar disorder, daily BHB monitoring confirmed
strong adherence (66), yet some participants reported the protocol as
burdensome (133). These findings highlight the need to balance data
granularity with participant acceptability. Mid-frequency testing (e.g.,
two to three times per week) has proven feasible and effective in
studies on obesity and mental health (58, 72). Occasional testing,
typically at baseline and at study visits, provides valuable information
but lacks the resolution to guide timely intervention (62, 73).

Importantly, studies may implement adaptive protocols, with testing
frequency evolving over time. Several studies have adopted frequent
testing in the initial phase to establish adherence, followed by reduced
frequency as individuals become metabolically adapted or more
confident in managing their diet and lifestyle (16, 55, 82, 90). Careful
consideration should be given to the choice of testing frequency, ensuring
it aligns with therapeutic goals and individual preferences, to minimize
patient burden and maximize the long-term sustainability of KMTs.

4.2 BHB testing for the interpretation of
metabolic responses and outcomes in
KMTs

Beyond adherence monitoring, BHB testing offers insights into
individual metabolic responses to KMTs. Several case studies and
small clinical series have described how BHB levels vary in response
to factors such as dietary composition (71), pharmacological
treatments (78), and underlying disease state or physiological
characteristics (85, 99). These observations have proven valuable for
interpreting unexpected fluctuations in ketosis and adjusting dietary
strategies to match individual needs.

Among larger studies, relatively few have directly investigated
correlations between BHB levels and clinical outcomes. In type 2
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diabetes, higher BHB levels have been associated with improved lipid
).In
psychiatric conditions, preliminary evidence suggests a dose-response

profiles and a greater likelihood of sustained remission (16, 53,

relationship, with higher BHB levels correlating with greater symptom
improvement (42, 43, 72, 82). In oncology, case reports have observed
that greater depth and consistency of ketosis were linked to disease
stability or partial remission, whereas lower BHB levels were more
often associated with continued disease progression (40, 99, ).

An analysis of a continuous remote care program targeting
nutritional ketosis identified a mean BHB level of approximately
0.5 mmol/L during the first 90 days of carbohydrate-restricted
nutrition therapy as the optimal threshold for achieving >10% weight
loss at 1 year, with higher average ketone levels associated with greater
weight loss (134).

Although promising, these correlations remain exploratory and
are often limited by small sample sizes and observational, retrospective
designs. More robust, controlled studies are needed to determine
whether specific BHB thresholds are necessary for or predictive of
therapeutic benefit, and to what extent such relationships
are generalizable.

4.3 BHB testing as a driver of behavior
change, empowerment, and
personalization

The utility of BHB testing extends beyond adherence tracking and
outcomes interpretation. As a real-time biomarker, BHB may also play
an active role in shaping behavior. At the core of BHB testing lies a simple
yet powerful “feedback loop” ( ): individuals test, assess the
response, adjust their dietary or lifestyle choices, and test again to observe

the resulting metabolic response. We speculate that this real-time

10.3389/fnut.2025.1629921

feedback serves as a form of contingent reinforcement, where the
measurable and immediate knowledge of BHB levels informs timely
decisions, reinforces behaviors, and supports motivation and
accountability, resulting in adherence to the KMT (135, 136). Over time,
this develops into consistent reinforcement, fostering sustained
behavioral change (137), enhancing engagement, and building a sense of
empowerment through increased self-efficacy (138). This process drives
an “upward spiral” ( ) of positive behavioral and clinical change.

Research in behavioral science confirms that immediate biological
feedback can strengthen motivation and facilitate sustained behavior
change (135). Frequent and direct feedback has been associated with
better outcomes in interventions targeting diet, exercise, and smoking
cessation (139). Real-time feedback strategies, such as self-monitoring,
have also been linked to greater engagement and adherence in digital
health interventions (140). From a neuroscience perspective, biological
feedback engages motivation and reward systems, particularly during
the early phase of behavior change when motivation is high (136).
Therefore, consistent BHB monitoring may serve as a neurobiologically
aligned tool to support KMT adherence and long-term behavioral
change through measurable reinforcement (135, R ).

We also envision that, for healthcare professionals (HCPs), BHB
monitoring enables a similar “upward spiral” ( ) toward
more precise and personalized care. Rather than relying on
subjective reports, HCPs gain access to objective information that
supports data-driven conversations, shared decision-making, and
tailored interventions. When integrated with connected, cloud-
based health platforms, BHB testing enables real-time, remote
metabolic monitoring that precisely guides dietary adjustments,
tracks therapeutic response (16, 53, 55), and permits detection of
concerning clinical situations in high-risk individuals (32).

In summary, in our view, expanding the consistent and structured

use of BHB testing may further enhance the promising clinical
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potential of KMTs by providing an objective assessment of adherence,
improving the interpretability of outcomes, empowering individuals
through actionable feedback, and enabling healthcare providers to
deliver more personalized interventions.

4.4 Practical challenges and opportunities

While the reviewed evidence highlights the value of BHB testing
in KMTs, its implementation in both research and real-world settings
is not without challenges, warranting careful consideration,
innovation, and ongoing refinement.

The invasive nature of capillary blood testing can act as a barrier,
especially for those with needle phobia, fear of pain, or discomfort
intolerance (141-143). Testing fatigue, particularly with daily
monitoring, is well-documented in the diabetes literature (144),
along with obsessive behaviors (145), and burdens associated with
maintaining data integrity (133). Clinicians may address these
psychological barriers using evidence-based strategies, such as
cognitive behavioral therapy, gradual exposure methods, and distress
tolerance interventions. Such approaches can effectively reduce
anxiety, testing aversion, and obsessive behaviors associated with
frequent biomarker monitoring (146-148). The use of CKMs may
also offer relief from fingerstick testing burden while providing
granular details about the metabolic milieu.

Although digital platforms and connected devices have improved
data collection and sharing, technological limitations may still pose
challenges, as some may find mobile apps and cloud-based monitoring
tools cumbersome (116, 133), especially older adults or those with
limited digital literacy.

Despite the increasing availability of capillary blood BHB meters
and test strips, BHB testing remains relatively costly compared to
other metabolic assessments such as blood glucose or urine ketone
testing. This may limit accessibility, particularly in low-resource
settings or for individuals requiring frequent testing.

As noted earlier, several important unknowns remain regarding
BHB testing itself, including the optimal frequency of testing, the
absence of standardized reference ranges across diverse populations,
and the lack of defined targets for different therapeutic goals.

These challenges do not diminish the value of BHB monitoring
but instead highlight the need for thoughtful design in both clinical
protocols and real-world applications. Strategies such as reducing
testing frequency after initial adaptation and providing structured
onboarding, user training, and technical support can help mitigate
these challenges and improve uptake, especially in underserved
populations. Future technological improvements in non-invasive
alternatives (e.g., breath acetone) may enhance accessibility and user
comfort for those deterred by fingerstick testing. Research and
innovation in both testing technologies and implementation
strategies will be key to ensuring that BHB monitoring remains a
feasible and empowering component of KMTs.

5 Methodological considerations and
limitations of this work

This work presents a narrative review of the literature.
We conducted a literature search in PubMed to identify
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interventional studies investigating the use of KMTs across a range
of clinical areas (type 2 diabetes, obesity, MASLD, neurodegenerative
diseases, psychiatric and neurodevelopmental conditions, cancer,
epilepsy, type 1 diabetes, PCOS, kidney disease, aging, and physical
performance). Studies were included if they incorporated capillary
blood BHB testing as part of the methodology, independently of
clinical outcomes. Studies involving KMTs without BHB testing were
excluded. As such, we acknowledge the potential for unintentional
bias in study selection, which is an inherent limitation of
narrative reviews.

Although many of the included studies are clinical trials
(Table 2), this review also includes some case reports and
retrospective analyses with relatively small sample sizes. These study
designs carry inherent limitations, including increased risk of bias
and reduced generalizability. Nonetheless, they represent the current
state of clinical research in the emerging field of KMTs.

Despite their limitations, these studies, when considered
collectively, provide meaningful and consistent evidence of the role of
BHB testing in the context of KMTs. As research in KMTs continues
to grow, larger and more rigorously designed studies will be critical to
further define and validate the role of BHB testing in both clinical and
research contexts.

6 Conclusion

Capillary blood BHB testing provides an objective, quantifiable,
and actionable measure of ketosis in KMTs. It offers real-time
physiological feedback that reflects both dietary adherence and
metabolic response. It supports behavior change, enables
personalized care, and adds rigor to clinical research protocols.
Evidence across diverse conditions confirms its value in both clinical
practice and research settings, but further research is needed to
investigate how BHB levels correlate to clinical outcomes across
therapeutic areas. Considerate protocol design and continued
innovation will be essential to integrate BHB monitoring more
effectively into both clinical practice and research.
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