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Introduction: Unhealthy diet and dyslipidemia are major risk factors for 
cardiovascular disease (CVD). Studies have shown an inverse association 
between greater n-3 fatty acid (FA) intake and reduced dyslipidemia and CVD 
risk. We aimed to assess the association of the healthy eating index (HEI) score 
and n-3 FA intake with CVD incidence and non-fasting RC in the Alberta’s 
Tomorrow Project (ATP) cohort.
Methods: This is a prospective study on a subset of ATP study participants 
(n = 23,248), with the mean age of 50.2 (35-69) years, 36% male and 64% 
female, and no history of cancer or CVD in Alberta, Canada. Dietary intake was 
assessed using the Canadian Diet History Questionnaire (CDHQ), from which 
the Canadian HEI-2005 score and total n-3 FA intake were calculated. Lipid 
panel markers were measured from non-fasting blood samples, and CVD was 
defined using the International Statistical Classification of Diseases and Related 
Health Problems from linked administrative health records. The Cox proportional 
hazard model, linear regression, and logistic regression were used to assess the 
association of dietary intakes with CVD incidence, and lipid biomarkers.
Results: The mean follow-up was 13.9 years. For every 1 unit increase in the HEI 
score, the adjusted Hazard Ratio (HR) of developing CVD decreased [HR: 0.98 
(95% confidence interval (CI) 0.97–0.98), 0.99 (95%CI 0.98–0.99), and 0.97 (95%CI 
0.97–0.98) in females, males, and total cohort, respectively (p < 0.05)]. No significant 
association was found between absolute n-3 FA intake (g/d) with CVD incidence. 
However, higher relative intake (i.e., n-3 FA as proportion of energy) increased the 
risk of developing CVD [HR = 1.42 (95%CI 1.1–1.84), p = 0.006] in males. Adjusted 
multivariate regression in a subset (n = 8,458) showed no association between n-3 
FA (g/d) intake and lipid biomarkers but a significant inverse association between HEI 
score and non-fasting RC [coefficient: −0.006 (95%CI −0.009–−0.003) for females 
and −0.01 (95%CI −0.018–−0.005) for males], and TG levels [−0.01 (95%CI −0.015–
−0.006) for females and −0.01 (95%CI −0.02–−0.006) for males].
Discussion: Higher overall diet quality but not n-3 FA intake was associated with 
a lower risk of CVD incidence and non-fasting RC.
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1 Introduction

Cardiovascular diseases (CVD) remain the leading cause of death 
globally, accounting for approximately 30% of all deaths (1). CVD are 
a group of heart and vessel disorders that present as chronic 
conditions, including hypertension or heart failure, as well as 
conditions such as stroke and heart attack (1). Risk factors for CVD 
are multifactorial but can include age, sex, high low-density 
lipoprotein cholesterol (LDL-C) and triglycerides (TG) concentration, 
low high-density lipoprotein cholesterol (HDL-C) concentration, 
dietary intake, and a high body mass index (BMI) (2–4). 
Atherosclerosis is the underlying etiology of most 
CVD. Atherosclerosis is an immuno-inflammatory process that 
involves the deposition of cholesterol in arteries and aggregation of 
immune cells and smooth muscle cells, resulting in the formation of 
plaque, stenosis, and reduced blood flow to organs (5–9). 
Dyslipidemia, defined as high LDL-C, TG, or low HDL-C, is 
associated with higher cholesterol deposition in arteries and is a 
major risk factor for atherosclerosis (10). However, other classes of 
lipoproteins in the non-fasting state, including chylomicron remnants, 
very low-density lipoproteins (VLDL), and intermediate-density 
lipoproteins (IDL), have also been shown to contribute to the 
cholesterol deposition in arteries and progression of atherosclerosis 
(8). In order to consider the cholesterol content of these particles, 
remnant cholesterol (RC) has been introduced, which estimates the 
cholesterol content of chylomicron remnants, VLDL, and IDL in 
either the fasting or the non-fasting state (11). Importantly, recent 
studies have shown that non-fasting remnant cholesterol (RC) is an 

independent causal risk factor for CVD (12–14). Previous results 
from the Alberta’s Tomorrow Project (ATP) cohort (n = 13,988) 
showed that with each 1 mmol/L increase in non-fasting RC level, the 
likelihood of CVD incidence increased by 48%. Further, results in the 
ATP cohort showed that those with CVD incidence (vs. without) had 
a significantly higher mean RC (but not LDL-C) (15).

An unhealthy diet remains a significant modifiable risk factor 
for CVD incidence. A healthy diet is recommended for both the 
prevention and management of CVD by Canadian and American 
guidelines (16–18). The American Heart Association guideline to 
improve cardiovascular health states that fatty acids (FA) from diet 
can affect lipoprotein levels and recommends substituting saturated 
FA with n-3 and n-6 poly-unsaturated FA (PUFA) wherever 
possible (19). Most epidemiological and clinical trial studies 
indicate that higher n-3 PUFA intake is associated with lower risk 
of CVD especially in those with existing coronary heart disease (20, 
21). N-3 PUFA exert their protective effect through reduction of 
inflammation and TG levels (22). Some smaller randomized 
controlled trials (RCTs) have demonstrated that n-3 PUFAs can 
reduce levels of both TG and RC, but not necessarily LDL-C (23–
25). Other larger RCTs show that n-3 PUFAs [specifically 
eicosapentaenoic acid (EPA)] can improve CVD outcomes and 
lower TG but have no consistent effect on other lipoproteins (26, 
27). Some review studies suggest that because n-6 and n-3 PUFAs 
are precursors of pro-inflammatory and anti-inflammatory 
cytokines, respectively, and they compete for the same enzyme, 
higher intake of n-6 PUFA may increase low-grade inflammation, 
oxidative stress, oxidized LDL-C, and ultimately the risk of CVD 
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(19, 28). Evidence from human studies does not align with this 
theory and most cohort studies showed that in fact there is an 
inverse association between n-6 PUFA intake and CVD, especially 
when the n-6 PUFA is substituting saturated fatty acids (28–30).

In the current study, we aimed to assess the association of a diet 
quality [using healthy eating index (HEI) score] and n-3 FA intake 
with risk of future CVD incidence and non-fasting RC, TG, LDL-C, 
and HDL-C levels in Albertans from the ATP cohort in Canada.

2 Methods and materials

2.1 Participants

This study was approved by the University of Alberta Human 
Research Ethics Committee (Pro00073641) to obtain corresponding 
health data from Alberta Health administrative health record 
registries. Additional details of the methodology have been described 
elsewhere (31). Briefly, from 2000–2015, ATP recruited almost 55,000 
adults aged 35–69 years who had no history of cancer other than 
non-melanoma skin cancer, could complete questionnaires in English, 
and planned to reside in Alberta, Canada, for at least 1 year. This study 
includes participants who were recruited from 2000–2008 and 
completed Health and Lifestyle Questionnaires (HLQ) as well as diet 
and physical activity questionnaires (described below) in that same 

time period, who also consented to linkage to administrative health 
records, and subsequently provided a blood sample in 2009–2015. The 
demographic characteristics of participants have been described 
previously (15, 31).

Participants (n = 29,878) were originally recruited using random 
digit dialing sample selection and were mostly female (64%), 
Caucasian (91%), living in urban areas (77%), and had an average age 
of 50 ± 9 years (31). For this study, we further selected participants 
who did not have prevalent CVD at the time of enrollment. The main 
exclusion criteria included leaving Alberta, because the incidence of 
CVD was ascertained using linked provincial administrative health 
records (described below). Our final sample size was n = 23,248 
participants; Figure 1 shows the flowchart of sample selection.

2.2 Dietary intake and physical activity

At the time of recruitment to ATP study (during 2000–2008), 
following self-administered ATP questionnaires were mailed to 
participants who consented to participate in ATP study: HLQ, for 
obtaining personal and family health history, reproductive health, and 
demographic characteristics, Canadian Diet History Questionnaire 
I (CDHQ-I) to obtain past 12 months dietary intake, and Past-Year 
Total Physical Activity Questionnaire (PYTPAQ) to obtain past 
12 months physical activity. The PYTPAQ assesses the type, duration, 

FIGURE 1

Flowchart of sample selection.
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frequency, and intensity of activities during the past year (31). The 
reliability and validity of PYTPAQ in the Canadian population have 
been assessed previously (32). CDHQ-I is a 124-item food frequency 
questionnaire modified from the DHQ from the U. S. National Cancer 
Institute, with 145 questions about food items, beverages, and dietary 
supplements intake. Details of the CDHQ and the validity of the 
questionnaire for use in Canadian population have been previously 
published (33).

CDHQ-I data was analyzed using Diet*Calc (version 1.4.2, 
National Cancer Institute, Bethesda, MD, USA) to assess the mean 
daily intake of energy, macronutrients, and micronutrients. To assess 
the n-3 FA intake, we summated the value of alpha linolenic acid 
[ALA (C18:3n3)], EPA (C20:5n3), docosahexaenoic acid 
[DHA(C22:6n3)], and docosapentaenoic acid [DPA(C22:5n3)]. For 
assessing diet quality, the American 2005 HEI adapted for Canada was 
used (34). The details of HEI score and the validity to use in Canadian 
population have been previously published (34). The HEI score ranges 
between 0–100, with higher scores indicating higher diet quality via 
adherence to dietary recommendations. It accounts for two primary 
aspects of diet quality, which are adequacy (adequate intake of healthy 
foods and nutrients) and moderation (moderate intake of unhealthy 
foods and nutrients). HEI scores <50 represent poor diet quality, 
50–80 represent moderate diet quality that needs improvement, and 
higher than 80 represent high diet quality (34).

2.3 Health information, comorbidities and 
cardiovascular diseases

The information for CVD and comorbidity prevalence and/or 
incidence were obtained via data linkage to Alberta Health registry 
databases (including emergency department, physician claims, and 
Discharge Abstract Database) using the personal health numbers 
provided by participants (31).

Cases of CVD were identified using codes from the International 
Statistical Classification of Diseases and Related Health Problems 
(ICD) (31). Specifically, in physician claim data, ICD-9 is used all the 
time, whereas in inpatient (hospitalization) data, ICD-9 was used 
before 2003, and after 2003, ICD-10 was implemented. Therefore, in 
ATP cohort both ICD-9 and 10 have been used. Procedures were 
identified with the Canadian Classification of Diagnostic, Therapeutic, 
and Surgical Procedures codes, following the definitions provided by 
the Alberta Diabetes Surveillance System (15). The primary outcome 
of this study was the CVD composite incidence, which is a cluster of 
CVD or procedures including ischemic heart disease (IHD), 
myocardial infarction (MI), angina, heart failure (HF), transient 
ischemic attack (TIA), acute ischemic stroke (AIS), percutaneous 
coronary intervention (PCI) and coronary artery bypass graft (CABG) 
defined by Clair et al. (35) in those without previous CVD, before or 
within 6 months of enrolment to ATP or within 1 year of data linkage 
to the Alberta Health databases. The Elixhauser index score (score 
ranges 0–30) was generated previously as a continuous variable (with 
Quan coding algorithm) (36) to indicate the presence of 30 different 
comorbidities that do not overlap with CVD (15, 37).

The menopause status for females was obtained via self-reported 
HLQ and clinical outcomes in routine evaluation (CORE) 
questionnaires.

2.4 Lipid biomarkers

In 2008, ATP joined the Canadian Partnership for Tomorrow’s 
Health (CanPath). As part of joining CanPath, ATP invited 
existing participants to complete further questionnaires and 
attend a study center to provide blood and urine samples. 
Non-fasting blood (~50 mL) sample was drawn at one time point, 
aliquoted to serum and plasma, and stored at −80°C for further 
analysis, with the majority of samples frozen within 2 h of blood 
draw (31). In 2017–2020 participants’ serum (0.5 mL) was used 
for assessing lipid biomarkers. HDL-C, TG, and total cholesterol 
(TC) were measured directly by Calgary Laboratory Services, an 
authorized clinical laboratory in Alberta (31). Non-HDL-C, RC, 
and LDL-C (by Friedewald formula) were calculated by the 
following equations:

	 − − = − −Non HDL C TC HDL C

	 ( )= − − + −RC TC LDL C HDL C

	 − = − − −LDL C TC HDL C TG/5

Of the participants included in this study, a subset (n = 8,747) had 
lipid biomarkers data available.

2.5 Statistical analysis

Data was analyzed using STATA SE version 16.1. Descriptive 
statistics are shown as mean±standard deviation (SD) for 
continuous variables and percentage (number) for categorical 
variables. To compare the means at baseline, an independent t-test 
was used. Logistic regression was used for assessing the odds of 
occurring binomial outcome variable (CVD incidence), Cox 
proportional hazard model was used for assessing the relative risk 
of binomial outcome variable (CVD incidence), linear regression 
was used for assessing the linear relationship between exposure 
variables and continuous outcome variables (lipid biomarkers). 
Unadjusted and adjusted logistic regression [odds ratio (OR) and 
95% confidence interval (95%CI)] was used for assessing the 
association of n-3 FA intake and HEI score with CVD incidence. 
The adjusted Cox proportional hazard model was used to calculate 
the hazard ratio (HR) and 95% CI. The adjusted linear regression 
[Coefficient (coef) and 95%CI] was used for the association of HEI 
score and n-3 FA intake with lipid biomarkers. The models were 
stratified by sex. For adjusting the confounders, we  used two 
models; Model a: age, BMI (kg/m2), total energy(kcal), carbohydrate 
(%), protein (%), and fat (%) intake, Elixhauser index, as well as 
HEI score were adjusted to assess the association of n-3 FA intake 
(g/d), energy from n-3 FA (%), EPA intake (g/d), and energy from 
EPA (%) with CVD incidence and lipid biomarkers. Model b: age, 
BMI (kg/m2), total energy(kcal), carbohydrate (%), protein (%), and 
fat (%) intake, and Elixhauser index and were adjusted to assess the 
association of HEI score with CVD incidence and lipid biomarkers. 
p-value<0.05 (alpha error 5%) was considered as 
significant difference.
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3 Results

The proportion of CVD incidence in our ATP cohort sample 
(n = 23,248) with a mean follow-up of 13.91 ± 4.70 years was 24.2%. 
Out of 23,248 participants, 4 participants had good diet quality (HEI 
score>80); 65.9% had moderate diet quality (HEI score of 51–80), 
and 34.1% had poor diet quality (HEI score of ≤50). The mean of 
HEI score in good, moderate, and poor diet quality groups were 
81.15 ± 1.26, 59.00 ± 5.94, and 43.08 ± 5.40, respectively. Those in 
the moderate HEI score category had significantly lower CVD 
incidence compared to low HEI scores (22% vs. 26%, Chi square 
p-value<0.001).

3.1 Characteristics of the participants 
stratified by CVD incidence

Table 1 shows the characteristics of participants with and without 
incident CVD. Those with CVD incidence (compared to those 
without) were significantly older (54 ± 9 vs. 49 ± 8.7 years, 
p-v < 0.001), had higher BMI (29.8 ± 6 vs. 28.2 ± 5.6 kg/m2, 
p-v < 0.001), slightly lower HEI score (52.6 ± 9.6 vs. 53.8 ± 9.4, 
p-v < 0.001), and higher Elixhauser score means (2.1 ± 1.9 vs. 
1.6 ± 1.6, p-v < 0.001). Comparing the baseline characteristics in 
participants with vs. without CVD incidence, no significant difference 
was seen in the means of total n-3 FA intake (g/d) (1.43 ± 0.75 vs. 
1.43 ± 0.73), n-3 FA as proportion of total energy (%) (0.70 ± 0.21 for 
both), EPA intake (g/d) (0.02 ± 0.03 for both), EPA as proportion of 

total energy (%) (0.01 ± 0.01 for both), n-3 to n-6 PUFA ratio 
(0.11 ± 0.02 for both), and physical activity level (1.91 ± 0.42 vs. 
1.98 ± 7.54).

3.2 Characteristics of the participants 
stratified by sex

Table 2 shows the characteristics of male and female participants. 
The incidence of CVD in females (n = 14,729) in comparison to males 
(n = 8,519) was significantly lower (21.93 vs. 28.24%, p-v < 0.001). The 
mean intake of n-3 FA (g/d) and EPA (g/d) in females compared to 
males were also significantly lower (1.3 ± 0.6 vs. 1.6 ± 0.8, and 
0.024 ± 0.029 vs. 0.029 ± 0.034 p = v < 0.001). The ratio of n-3 FA to 
total energy and EPA to total energy (%) was slightly higher in females 
vs. males (0.7 ± 0.2 vs. 0.6 ± 0.2, and 0.013 ± 0.015 vs. 0.012 ± 0.013, 
p-v < 0.001). The mean HEI and Elixhauser scores were significantly 
higher in females (55.2 ± 9.4 vs. 50.7 ± 8.8, and 1.9 ± 1.8 vs. 1.4 ± 1.5, 
p-v < 0.001).

Table 3 shows the characteristics of participants with and without 
CVD stratified by sex. In both sexes, those with CVD incidence were 
older and had higher BMI, lower HEI score, and higher Elixhauser 
score (p-v < 0.001). In females (with vs. without CVD), there was no 
significant difference in either n-3 FA intake (g/d) or n-3 FA as 
proportion of total energy (%). In males with CVD (versus without 
CVD), the mean of n-3 FA intake (g/d) was slightly lower (1.6 ± 0.8 
vs. 1.64 ± 0.8, p-v = 0.03) but, the n-3 FA as proportion of total energy 
(%) was slightly higher (0.66 ± 0.2 vs. 0.65 ± 0.2, p-v = 0.006).

TABLE 1  The characteristics of participants with and without CVD.

Variables Total participants 
(N = 23,248)

without CVD 
(N = 17,612)

With CVD (N = 5,636) p-v (with vs. without 
CVD)

Age at baseline (years) 50.27 ± 9.06 49.07 ± 8.73 54.04 ± 9.04 <0.001*

BMI (kg/m2) 28.60 ± 5.74 28.20 ± 5.60 29.85 ± 5.98 <0.001*

Total energy intake (kcal) 1867.43 ± 865.95 1867.32 ± 858.63 1867.79 ± 888.51 0.9

Energy from carbohydrates (%) 50.36 ± 8.52 50.28 ± 8.39 50.58 ± 8.91 0.02*

Energy from fat (%) 32.75 ± 6.86 32.79 ± 6.81 32.64 ± 7.04 0.1

Energy from protein (%) 15.97 ± 2.95 16.02 ± 2.92 15.82 ± 3.02 <0.001*

Energy from PUFA (%) 7.05 ± 2.02 7.05 ± 2.02 7.04 ± 2.04 0.7

Energy from SFA (%) 10.75 ± 2.79 10.77 ± 2.77 10.67 ± 2.87 0.02*

Energy from MUFA (%) 12.37 ± 2.94 12.38 ± 2.92 12.33 ± 2.98 0.3

Energy from N-3 FA (%) 0.70 ± 0.21 0.70 ± 0.21 0.70 ± 0.21 0.9

N-3 FA intake (g/d) 1.43 ± 0.0.73 1.43 ± 0.73 1.43 ± 0.75 0.9

N-3/N-6 PUFA ratio 0.11 ± 0.02 0.11 ± 0.02 0.11 ± 0.02 0.6

N-3/total fat ratio 0.02 ± 0.00 0.02 ± 0.00 0.02 ± 0.00 0.08

EPA intake (g/d) 0.02 ± 0.03 0.02 ± 0.03 0.02 ± 0.03 0.6

Energy from EPA (%) 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.7

HEI score 53.58 ± 9.50 53.87 ± 9.42 52.67 ± 9.67 <0.001*

Physical activity level 1.96 ± 6.56 1.98 ± 7.54 1.91 ± 0.42 0.23

Elixhauser score 1.76 ± 1.72 1.64 ± 1.64 2.14 ± 1.88 <0.001*

SFA, saturated fatty acid; MUFA, mono-unsaturated fatty acid. Continuous variables are reported as mean ± SD, and categorical variables are reported as proportion (percentage). An 
independent two sample t-test was used to compare the means between groups. *Significant p-values (<0.05) are indicated with asterisk. The energy of macro/micronutrients (%) is calculated 
as the mean energy of the specific macro/micronutrient (kcal) divided by the mean total energy intake multiplied by 100.
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3.3 Association of n-3 FA intake and HEI 
score with CVD incidence

The unadjusted and adjusted logistic regression model was used 
to assess the association of HEI score and n-3 FA intake with CVD 
incidence (Table 4). After adjusting for confounders (age, BMI, total 
energy, carbohydrate, fat, and protein intake (%), and Elixhauser 
score), in either women, men, or the combined total cohort, higher 
HEI score was associated with lower odds of developing CVD [OR: 
0.97 (95%CI 0.97–0.98), p-v < 0.001, OR: 0.98 (95%CI 0.98–0.99), 
p-v = 0.01, and OR: 0.97 (95%CI 0.97–0.97) p-v < 0.001 respectively]. 
After adjusting for the confounders (age, BMI, total energy, 
carbohydrate, fat, and protein intake (%), Elixhauser score, and HEI 
score) for assessing the association of n-3 FA intake (g/d) with CVD 
incidence, no association was found in women. However, for males 
and the total cohort, higher n-3 FA intake (g/d) was associated with 
higher odds of CVD incidence [OR: 1.13 (95%CI 1.01–1.27), 
p-v = 0.03, and OR: 1.09 (95%CI 1.00–1.18), p-v = 0.02, respectively]. 
Higher N-3 FA to total energy ratio (%) was associated with a higher 
odds of CVD incidence in males [OR: 1.62 (95%CI 1.19–2.21), 
p-v = 0.002], and no association was found in females and the 
total cohort.

Table 5 shows the adjusted and unadjusted HR for the association 
of HEI score, n-3 FA intake (g/d), and n-3 FA to total energy ratio (%) 
with CVD incidence. After adjusting for confounders (model a), no 
association was found between n-3 FA (g/d) and CVD incidence in 
women, men, and the total cohort. Higher n-3 FA as proportion of 
total energy (%) was associated with increased CVD risk in males 
(HR: 1.42, 95% CI 1.1–1.84, p-v = 0.006). After adjusting for 

confounders (model b) higher HEI score was associated with reduced 
risk of CVD incidence in women, men, and the total cohort (HR: 0.98, 
95%CI 0.97–0.98, p-v < 0.001, HR: 0.99, 95%CI 0.98–0.99, p-v = 0.004, 
HR: 0.97, 95%CI 0.97–0.98, p-v < 0.001, respectively). No significant 
association was found between EPA (g/d) and CVD incidence in 
all groups.

After adjusting the menopause status in models, a and b, no 
association was found between n-3 FA and EPA as proportion of total 
energy (%), and absolute n-3 FA and EPA intake (g/d) 
(Supplementary Table 5). Higher HEI score was associated with 
reduced CVD incidence [OR: 0.97 (95%CI 0.90–0.98), p-v < 0.001, 
and HR: 0.98 (95% CI 0.97–0.98), p-v < 0.00]. Supplementary Table 4 
shows the comparison of baseline characteristics between pre- and 
postmenopausal females.

3.4 The association of n-3 FA intake and 
HEI score with lipid biomarkers

Table 6 shows the adjusted linear regression model to assess the 
association of HEI score and n-3 FA intake with lipid biomarkers (RC, 
TG, LDL-C, non-HDL-C, and HDL-C). No association was found 
between n-3 FA intake (g/d) and lipid biomarkers except for HDL-C 
in the total cohort and females [coef: 0.033 (95%CI 0.009–0.057), 
p-v = 0.007 and coef: 0.038 (95%CI 0.006–0.071), p-v = 0.02, 
respectively]. N-3 FA as proportion of total energy (%) was associated 
with only HDL-C in the total cohort [coef: 0.08 (95%CI), p-v = 0.002]. 
In women, a higher HEI score was associated with lower RC, TG, 
non-HDL-C, and higher HDL-C [coef: −0.006 (95%CI), −0.01 

TABLE 2  The characteristics of participants in females and males.

Variables Males (N = 8,519) Females (N = 14,729) p-v

Age at baseline (years) 50.16 ± 8.98 50.34 ± 9.11 0.15

CVD incidence [number (%]) Yes 2,406 (28.24%) 3,230 (21.93%) <0.001*

No 6,113 (71.76%) 11,499 (78.07%)

BMI (kg/m2) 29.06 ± 4.60 28.33 ± 6.22 <0.001*

Total Energy intake (kcal) 2257.17 ± 1018.72 1642.01 ± 666.87 <0.001*

Energy from carbohydrates (%) 48.62 ± 8.37 51.36 ± 8.44 <0.001*

Energy from fat (%) 33.17 ± 6.77 32.51 ± 6.91 <0.001*

Energy from protein (%) 15.69 ± 2.95 16.13 ± 2.95 <0.001*

Energy from PUFA (%) 6.75 ± 1.85 7.23 ± 2.10 <0.001*

Energy from SFA (%) 11.03 ± 2.76 10.58 ± 2.80 <0.001*

Energy from MUFA (%) 12.76 ± 2.93 12.14 ± 2.91 <0.001*

Energy from n-3 FA (%) 0.65 ± 0.19 0.73 ± 0.022 <0.001*

N-3 FA intake (g/d) 1.62 ± 0.81 1.32 ± 0.66 <0.001*

EPA intake (g/d) 0.03 ± 0.03 0.02 ± 0.03 0 < 001*

Energy from EPA (%) 0.01 ± 0.01 0.01 ± 0.01 <0.001*

HEI score 50.78 ± 8.85 55.20 ± 9.49 <0.001*

Physical activity level 2.07 ± 10.84 1.90 ± 0.38 0.14

Elixhauser score 1.43 ± 1.52 1.95 ± 1.79 <0.001*

Continuous variables are reported as mean±SD, and categorical variables are reported as number (percentage). CVD incidence was compared between groups using the Fisher’s exact test. An 
independent sample t-test was used to compare the means between groups. *Significant p-values (<0.05) are indicated with asterisk. The energy of macro/micronutrients (%) is calculated as 
the mean energy of the specific macro/micronutrient (kcal) divided by mean total energy intake multiplied by 100.
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(95%CI), −0.008 (95%CI), +0.004 (95%CI), p-v < 0.001], but no 
association was found with LDL-C. The same trend was found in 
males between HEI score and RC, TG, non-HDL-C, and HDL-C 
[coef: −0.01 (95%CI −0.018–−0.005), p-v < 0.001, coef −0.01 (95%CI 
−0.02–−0.006), p-v < 0.001, coef −0.008 (95%CI −0.014–−0.001), 
p-v = 0.01, coef: +0.005 (95%CI 0.003–0.007), p-v < 0.001]. In the total 

cohort, higher HEI score was associated with lower RC, TG, 
non-HDL-C and higher LDL-C and HDL-C [coef: −0.01 (95%CI 
−0.016–−0.011), p-v < 0.001, coef −0.02 (95%CI −0.02–−0.01), 
p-v < 0.001, coef −0.009 (95%CI −0.012–−0.005), p-v < 0.001, coef: 
+0.004 (95%CI 0.001–0.008), p-v = 0.003, coef: +0.014 (95%CI 0.012–
0.015), p-v < 0.001 respectively].

TABLE 3  The characteristics of participants with and without CVD stratified by sex.

Variables Without CVD 
(N = 17,612)

With CVD 
(N = 5,636)

Difference p-v

Age at baseline (years) Female (64%) 49.20 ± 8.78 54.9 ± 9.09 5.2 <0.001*

Male (36%) 48.82 ± 8.63 53.57 ± 8.95 4.7 <0.001*

BMI (kg/m2) Female (64%) 27.93 ± 6.12 29.76 ± 6.68 1.8 <0.001*

Male (36%) 28.70 ± 4.42 29.97 ± 4.90 1.2 <0.001*

Total Energy intake (kcal) Female (64%) 1646.04 ± 657.21 1627.66 ± 700.10 −18.3 0.1

Male (36%) 2283.55 ± 1022.91 2190.16 ± 1005.10 −93.4 <0.001*

Energy from 

carbohydrates (%)

Female (64%) 51.14 ± 8.29 52.14 ± 8.92 1 <0.001*

Male (36%) 48.67 ± 8.34 48.49 ± 8.45 −0.2 0.3

Energy from fat (%) Female (64%) 32.58 ± 6.82 32.26 ± 7.19 −0.3 0.02*

Male (36%) 33.18 ± 6.76 33.14 ± 6.81 −0.04 0.8

Energy from protein (%) Female (64%) 16.20 ± 2.92 15.86 ± 3.04 −0.3 <0.001*

Male (36%) 15.66 ± 2.90 15.76 ± 3.00 0.1 0.1

Energy from PUFA (%) Female (64%) 7.22 ± 2.09 7.23 ± 2.12 0 0.8

Male (36%) 6.73 ± 1.84 6.79 ± 1.90 0.06 0.2

Energy from SFA (%) Female (64%) 10.61 ± 2.77 10.45 ± 2.91 −0.16 0.003*

Male (36%) 11.06 ± 2.76 10.97 ± 2.79 −0.09 0.2

Energy from MUFA (%) Female (64%) 12.17 ± 2.89 12.02 ± 3.01 −0.1 0.01*

Male (36%) 12.77 ± 2.95 12.75 ± 2.88 0 0.7

Energy from N-3 FA (%) Female (64%) 0.73 ± 0.22 0.73 ± 0.21 0 0.8

Male (36%) 0.65 ± 0.19 0.66 ± 0.20 0.01 0.006*

N-3 FA intake (g/d) Female (64%) 1.33 ± 0.66 1.32 ± 0.68 −0.01 0.3

Male (36%) 1.64 ± 0.81 1.59 ± 0.81 −0.04 0.03*

N-3/N-6 PUFA ratio Female (64%) 0.11 ± 0.02 0.11 ± 0.02 0 0.7

Male (36%) 0.11 ± 0.02 0.11 ± 0.02 0 0.06

N-3/total fat ratio Female (64%) 0.02 ± 0.00 0.02 ± 0.00 0.0003 0.002*

Male (36%) 0.02 ± 0.00 0.02 ± 0.00 0.0004 0.001*

EPA intake (g/d) Female (64%) 0.02 ± 0.03 0.02 ± 0.03 0 0.2

Male (36%) 0.03 ± 0.03 0.03 ± 0.03 0 0.5

Energy from EPA (%) Female (64%) 0.01 ± 0.01 0.01 ± 0.01 0 0.6

Male (36%) 0.01 ± 0.01 0.01 ± 0.01 0 0.4

HEI score Female (64%) 55.43 ± 9.35 54.39 ± 9.93 −1 <0.001*

Male (36%) 50.95 ± 8.86 50.36 ± 8.79 −0.6 0.005*

Physical activity level Female (64%) 1.90 ± 0.37 1.89 ± 0.41 0 0.5

Male (36%) 2.12 ± 12.79 1.93 ± 0.44 −0.2 0.2

Elixhauser score Female (64%) 1.83 ± 1.72 2.38 ± 1.96 0.5 <0.001*

Male (36%) 1.27 ± 1.41 1.82 ± 1.72 0.5 <0.001*

Total number of females = 14,729 (11,499 without CVD, 3,230 with CVD), Total number of males = 8,519 (6,113 without CVD, 2,406 with CVD). Continuous variables are reported as 
mean ± SD. An independent sample t-test was used to compare the means between groups.*Significant p-values (<0.05) are indicated with asterisk. The energy of macro/micronutrients (%) is 
calculated as the mean energy of the specific macro/micronutrient (kcal) divided by mean total energy intake multiplied by 100.
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TABLE 4  Logistic regression for assessing the relation of dietary variables with CVD incidence odds.

Variable OR (95%CI) p-v Sex Adjusted OR 
(95%CI)

p-v

Energy from N-3 FA 

(%)a

Female (14,729) 1.02 (0.87–1.21) 0.8 Female (14,690) 1.06 (0.84–1.34) 0.5

Male (8,519) 1.39 (1.1–1.76) 0.006a* Male (8,498) 1.62 (1.19–2.21) 0.002*

Total (23,248) 1.005 (0.87–1.15) 0.9 Total (23,188) 1.13 (0.94–1.37) 0.1

N-3 FA intake (g/d)a Female (14,729) 0.97 (0.91–1.03) 0.3a* Female (14,690) 1.04 (0.92–1.17) 0.4

Male (8,519) 0.93 (0.88–0.99) 0.03 Male (8,498) 1.13 (1.01–1.27) 0.03*

Total (23,428) 1.00 (0.96–1.04) 0.9 Total (23,188) 1.09 (1.0–1.18) 0.02*

N-3/N-6 PUFA ratioa Female (14,729) 1.27 (0.28–5.71) 0.7 Female (14,690) 0.44 (0.08–2.26) 0.3

Male (8,519) 5.87 (0.95–36.33) 0.57 Male (8,498) 4.3 (0.61–30.44) 0.1

Total (23,248) 1.35 (0.42–4.31) 0.6 Total (23,188) 0.76 (0.21–2.67) 0.6

HEI scoreb Female (14,729) 0.98 (0.98–0.99) <0.001a* Female (14,690) 0.97 (0.97–0.98) <0.001*

Male (8,519) 0.99 (0.98–0.99) 0.006a* Male (8,498) 0.98 (0.98–0.99) 0.01*

Total (23,248) 0.98 (0.98–0.98) <0.001a* Total (23,188) 0.97 (0.97–0.97) <0.001*

EPA intake (g/d)a Female (14,729) 0.46 (0.11–1.78) 0.26 Female (14,690) 1.1 (0.23–5.21) 0.9

Male (8,519) 0.61 (0.15–2.5) 0.49 Male (8,498) 0.65 (0.13–3.23) 0.6

Total (23,248) 0.81 (0.31–2.13) 0.67 Total (23,188) 1.1 (0.36–3.3) 0.8

Energy from EPA (%)a Female (14,729) 0.59 (0.04–7.25) 0.7 Female (14,690) 1.7 (0.1–27.93) 0.6

Male (8,519) 3.8 (0.12–115.97) 0.4 Male (8,498) 0.27 (0.006–11.7) 0.5

Total (23,248) 0.68 (0.09–5.13) 0.7 Total (23,188) 0.76 (0.08–7.04) 0.8

The crude and adjusted logistic regressions were used to calculate the odds ratio and 95% confidence intervals. *Significant p-values (<0.05) are indicated with asterisk. a: Adjusted model a. b: 
Adjusted model b.

TABLE 5  Hazard ratio for assessing the relation of dietary variables with CVD incidence risk.

Variable HR (95%CI) p-v Sex Adjusted HR 
(95%CI)

p-v

Energy from N-3 FA 

(%)a

Female (14,729) 1.03 (0.88–1.2) 0.69 Female (14,690) 1.00 (0.82–1.22) 0.96

Male (8,519) 1.32 (1.08–1.61) 0.005* Male (8,498) 1.42 (1.1–1.84) 0.006*

Total (23,248) 1.01 (0.89–1.14) 0.85 Total (23,188) 1.04 (0.89–1.22) 0.57

intake-3 FA intake 

(g/d)a

Female (14,729) 0.97 (0.92–1.02) 0.28 Female (14,690) 1.09 (0.91–1.11) 0.87

Male (8,519) 0.93 (0.89–0.97) 0.018* Male (8,498) 1.09 (0.99–1.2) 0.054

Total (23,428) 0.99 (0.96–1.03) 0.78 Total (23,188) 1.05 (098–1.12) 0.11

N-3/N-6 PUFA ratioa Female (14,729) 1.05 (0.27–3.9) 0.93 Female (14,690) 0.4 (0.1–1.6) 0.19

Male (8,519) 4.4 (0.93–20.68) 0.06 Male (8,498) 3.52 (0.69–17.8) 0.12

Total (23,248) 1.16 (0.42–3.21) 0.76 Total (23,188) 0.63 (0.22–1.81) 0.39

HEI scoreb Female (14,729) 0.98 (0.98–0.99) <0.001* Female (14,690) 0.98 (0.97–0.98) <0.001*

Male (8,519) 0.99 (0.98–0.99) 0.003* Male (8,498) 0.99 (0.98–0.99) 0.004*

Total (23,248) 0.98(0.98–0.99) <0.001* Total (23,188) 0.97 (0.97–0.98) <0.001*

EPA intake (g/d)a Female (14,729) 0.69 (0.2–2.2) 0.54 Female (14,690) 1.11 (0.3–4.15) 0.86

Male (8,519) 0.75 (0.22–2.46) 0.64 Male (8,498) 0.62 (0.17–2.29) 0.48

Total (23,248) 1.05 (0.45–2.4) 0.9 Total (23,188) 1.01 (0.41–2.52) 0.96

Energy from EPA (%) Female (14,729) 1.38 (0.15–12.3) 0.76 Female (14,690) 1.86 (0.17–19.53) 0.60

Male (8,519) 6.42 (0.36–111.48) 0.2 Male (8,498) 0.3 (0.01–6.52) 0.44

Total (23,248) 1.54 (0.27–8.7) 0.62 Total (23,188) 0.81 (0.12–5.25) 0.83

The crude and adjusted Cox proportional hazard model was used to calculate the hazard ratio and 95% confidence intervals. *Significant p-values (<0.05) are indicated with asterisk. a: 
Adjusted model a b: Adjusted model b.
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TABLE 6  Linear regression for assessing the relation of dietary intakes with blood lipid profile.

Variable RC (mmol/L) TG (mmol/L) LDL-C (mmol/L) Non-HDL-C (mmol/L) HDL-C (mmol/L)

Coefficient (95% 
CI)

p-v Coefficient 
(95% CI)

p-v Coefficient 
(95% CI)

p-v Coefficient (95% 
CI)

p-v Coefficient 
(95% CI)

p-v

N-3 FA 

intake(g/d)a

Female (5,709) −0.03 (−0.08–0.02) 0.3 −0.05 (−0.13–0.02) 0.1 −0.006 (−0.08–0.06) 0.8 −0.03 (−0.11–0.04) 0.3 0.038 (0.006–0.071) 0.02*

Male (3,038) 0.01

(−0.07–0.1)

0.7 0.007

(−0.11–0.13)

0.9 0.05

(−0.03–0.15)

0.2 0.07

(−0.01–0.16)

0.1 0.012

(−0.01–0.04)

0.4

Total (8,747) −0.01 (−0.06–0.03) 0.6 −0.02 (−0.09–0.04) 0.5 0.03 (−0.02–0.09) 0.2 0.02 (−0.03–0.07) 0.4 0.033 (0.009–0.057) 0.007*

Energy 

from N-3 

FA (%)a

Female (5,709) −0.06 (−0.16–0.31) 0.2 −0.09 (−0.24–0.06) 0.2 −0.004 (−0.14–0.14) 0.9 −0.07 (−0.21–0.07) 0.3 0.05 (−0.01–0.11) 0.1

Male (3,038) 0.07 (−0.16–0.31) 0.5 0.1 (−0.21–0.42) 0.5 0.12 (−0.12–0.36) 0.3 0.19 (−0.03–0.42) 0.09 −0.001 (−0.07–0.07) 0.9

Total (8,747) −0.03 (−0.14–0.06) 0.5 −0.05 (−0.2–0.09) 0.4 0.08 (−0.03–0.21) 0.1 0.05 (−0.07–0.17) 0.4 0.08 (0.03–0.13) 0.002*

HEI scoreb Female (5,709) −0.006 (−0.009–−0.003) <0.001* −0.01 (−0.015–−0.006) <0.001* −0.002 (−0.006-0.002) 0.3 −0.008 (−0.012–−0.004) <0.001* 0.004 (0.003–0.006) <0.001*

Male (3,038) −0.01 (−0.018–−0.005) <0.001* −0.01 (−0.02–−0.006) <0.001* 0.004 (−0.002-0.01) 0.2 −0.008 (−0.014–−0.001) 0.01* 0.005 (0.003–0.007) <0.001*

Total (8,747) −0.01 (−0.016–−0.011) <0.001* −0.02 (−0.02–−0.01) <0.001* 0.004 (0.001–0.008) 0.003* −0.009 (−0.012–−0.005) <0.00*1 0.014 (0.012–0.015) <0.001*

EPA intake 

(g/d)a

Female (5,709) −1.03 (−1.88–−0.26) 0.009* −1.13 (−2.2–−0.04) 0.04* 1.24 (0.21–2.27) 0.01* 0.21 (−0.83–1.27) 0.6 0.35 (−0.09–0.79) 0.1

Male (3,038) −0.2 (−1.36–0.96) 0.7 0.47 (−1.06–2) 0.5 1.97 (0.79–3.15) 0.01* 1.77 (0.65–2.89) 0.002* −0.03 (−0.41–0.33) 0.8

Total (8,747) −0.49 (−1.15–0.15) 0.1 −0.12 (−1.02–0.77) 0.7 1.4 (0.62–2.17) <0.001* 0.9 (0.13-1.67) 0.02* −0.09 (−0.41-0.22) 0.5

Energy 

from EPA 

(%)a

Female (5,709) −1.62 (−2.96–−0.28) 0.01* −1.85 (−3.74–0.03) 0.055 1.72 (−0.05–3.51) 0.058 0.11 (−1.7–1.9) 0.9 0.57 (−0.19–1.34) 0.1

Male (3,038) −0.21 (−2.98–2.56) 0.9 1.56 (−2.08–5.22) 0.4 4.5 (1.72–7.33) 0.002* 4.29 (1.62–6.97) 0.002* −0.11 (−1.01-0.78) 0.8

Total (8,747) −1.01 (−2.31–0.28) 0.1 −0.47 (−2.25–1.29) 0.6 2.57 (1.04–4.09) 0.001* 1.55 (0.03-3.07) 0.04* 0.12 (−0.5-0.75) 0.7

The adjusted linear regression was used to calculate the coefficient (β) and 95% confidence intervals. *Significant p-values (<0.05) are indicated with asterisk. a: Adjusted model a. b: Adjusted model b.
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4 Discussion

In our ATP cohort, we  found that a higher HEI score was 
associated with lower risk and odds of CVD incidence. Also, a higher 
HEI score was associated with lower levels of RC, TG, non-HDL-C, 
and higher HDL-C in women, men, and the total cohort. Interestingly, 
no association was found between n-3 FA intake (g/d) and CVD 
incidence risk. However, higher energy from n-3 FA (%) increased 
the risk of CVD incidence in males but not in women. No association 
was found between n-3 FA intake (g/d) and energy from n-3 FA (%) 
with lipid biomarkers (TG, RC, LDL-C, and non-HDL-C). A higher 
intake of n-3 FA (g/d) was associated with higher HDL-C levels in 
females and the total cohort, but energy from n-3 FA (%) was 
associated with higher HDL-C only in the total cohort.

4.1 HEI score

Our results are generally consistent with previous observational 
studies that reported a higher HEI score is associated with lower 
CVD incidence (38–42). These studies mainly compared the highest 
vs. the lowest quartile of HEI score and found that higher quartiles 
have lower CVD incidence than the lowest quartile. In our study, 
we found that both females and males had lower CVD incidence in 
the moderate (scores 51–80) vs. low HEI (scores ≤50) category 
(24.5% vs. 21 and 29.5% vs. 27%, respectively). Also, we found that 
with every one unit HEI score increase, the odds and risk of having 
CVD in the future decreased by 3%.

Studies on HEI score and lipid biomarkers have mainly focused 
on the relation with TG, TC, LDL-C, and HDL-C. To the best of our 
knowledge, this is the first study assessing the association of HEI 
scores with non-fasting RC. The results of previous studies on lipid 
biomarkers are controversial. While some studies have reported a 
significant inverse association between HEI score and TG, LDL-C, 
and TC and a direct association with HDL-C (43–45), others have 
found no association between HEI score and lipid biomarkers (46–
48). In this study, one unit increase in HEI score was associated with 
reduced levels of non-fasting RC, TG, and non-HDL-C (−0.01, 
−0.02, and −0.0009 (mmol/L), respectively); as well as increased 
levels of HDL-C (+0.014 (mmol/L), respectively) in both females 
and males.

In this study, higher HEI scores were associated with lower CVD 
incidence risk and lipid biomarkers. Thus, for prevention of CVD, a 
dietary pattern with a higher intake of total fruits and vegetables, 
whole fruits, dark green and orange vegetables, legumes, total and 
whole grains, milk, meats, beans, and non-hydrogenated vegetable oil 
(or oil in fish, nuts, and seeds), and moderate intake of saturated fats, 
sodium, sugar, and alcohol (34), is recommended. The Canadian 
Cardiovascular Society, the American College of Cardiology/
American Heart Association, and the European Society of Cardiology 
guidelines recommend this dietary pattern for preventing and 
managing CVD (16, 17, 49). This dietary pattern is associated with 
higher plant-based foods, fiber, vitamins including vitamin C and 
niacin, minerals, beneficial unsaturated fats intake, and lower 
saturated and trans FA intake (49). From a mechanistic point of view, 
higher intake of fiber, vitamin C, and niacin, can reduce CVD 
incidence by lowering TC, LDL-C, and inflammatory markers 

(50–52). In the intestine, fiber binds to bile acids and reduces 
cholesterol absorption. This leads to a lower hepatic cholesterol pool. 
As a compensatory response, the liver upregulates LDL receptor 
expression to increase uptake of circulating LDL-C, resulting in 
reduced TC, LDL-C, and CVD risk (53). Vitamin C is also associated 
with reduced LDL-C by promoting the conversion of cholesterol to 
bile acids, thereby depleting the liver cholesterol pool. This initiates 
a similar compensatory mechanism, leading to reduced circulating 
TC and LDL-C. Additionally, vitamin C acts as an antioxidant that 
prevents atherosclerosis by inhibiting LDL oxidation (54, 55). Niacin 
reduces CVD risk by decreasing inflammation, TG, and LDL-C, 
while increasing HDL-C by inhibiting the catabolism of HDL 
apolipoprotein A-I (ApoA-I). Niacin also decreases fatty acid 
mobilization from adipose tissue and inhibits hepatocyte 
diacylglycerol acyltransferase-2, a key enzyme in triglyceride 
synthesis, thereby reducing the secretion of VLDL and LDL 
lipoproteins (56, 57). Saturated and trans FAs activate the sterol 
regulatory element binding protein (SREBP)-2 pathway which 
upregulates hepatic cholesterol synthesis and increases the LDL-C 
levels (58, 59). Therefore, lower intakes of saturated and trans FAs are 
associated with reduced risk of CVD (60). In this study, dietary intake 
of niacin and vitamin C increased progressively across low, moderate, 
and high HEI score categories (Supplementary Table 1).

4.2 N-3 fatty acid intake

The absolute intake of n-3 FA (g/d) for females was lower than 
males (1.3 vs. 1.6 g/d) but the n-3 FA as proportion of total energy 
(%) was marginally higher (0.7 vs. 0.6%) due to lower total energy 
intake in females. However, this difference in proportion of energy 
from n-3 FA for both females and males is minimal and not clinically 
significant. In our cohort, we observed a direct association between 
total n-3 FA intake and CVD incidence in males, but no association 
was found either in females or the total cohort.

4.2.1 The cardioprotective effect of n-3 FA
N-3 FA cardioprotective effects are related to their role in 

reducing inflammation, increasing anti-inflammatory markers, 
reducing the expression of adhesion molecules, and lowering the 
TG levels (61, 62). Marine n-3 FA, especially EPA, is involved in 
these cardioprotective mechanisms. EPA and DHA are 
precursors for producing anti-inflammatory resolvins (63). EPA 
and DHA intake is associated with lower inflammatory markers 
by reducing the production of inflammatory eicosanoids, and 
cytokines (64, 65). Nuclear factor-kappaB (NF-κB) is a 
transcription factor that increases the expression of 
pro-inflammatory genes, including Tumor necrosis factor alpha 
(TNF-alpha). EPA has been shown to inactivate NF-κB (66). EPA 
decreases TG levels by increasing fatty acid oxidation and 
downregulating SREBP, a transcriptional factor that regulates 
cholesterol, TG, and fatty acid synthesis (67, 68).

Some observational studies reported an inverse association 
between n-3 FA intake (or fish) and CVD incidence or mortality 
(69–71), but some studies reported no association (72–74). The 
results of RCT studies are also controversial. REDUCE-IT trial study 
showed that 4 g/d Icosapent Ethyl (a purified n-3 EPA) resulted in a 
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25% decrease in CVD incidence, 18.3% decrease in TG, and 3.1% 
increase in LDL-C (27). However, the STRENGTH study (using 4 g/d 
carboxylic acid formulation of EPA and DHA) failed to improve CVD 
incidence but reduced TG (−19%) while increasing LDL-C (1.2%) 
(75). The controversy may be related to the health background of 
participants, choice of placebo, dosage, bioavailability, and source of 
the n-3 FA (76). Most of the studies that showed beneficial effect of 
n-3 FA on lipid biomarkers and CVD, used high dosage (>1 g/d) of 
marine n-3 FA (especially EPA) (76–78). For example, REDUCE-IT 
trial used purified EPA while STRENGTH trial used a combination 
of EPA and DHA. The level of EPA in participants’ serum in the 
REDUCE-IT trial was higher than STRENGTH, indicating the 
importance of bioavailability and EPA serum levels for beneficial 
effects (79).

4.2.2 The clinical implications
Our results indicate a sex-specific effect of n-3 FA, which has 

been seen previously in other studies (79, 80). For example, Allaire J 
et al. observed that both EPA and DHA supplementation increase 
LDL-C in males more than females (79). Our results on lipid 
biomarkers are in line with previous studies that showed higher EPA 
and DHA intake are associated with reduced TG and RC while 
increasing LDL-C (27, 79, 80). However, the direct association of n-3 
FA with CVD incidence in males was unexpected. This observation 
may be attributed to a number of factors. For example, the dosage and 
source of n-3 FA intake; studies have shown a dose-dependent 
association between marine n-3 FA intake (EPA and DHA) and 
decreased CVD incidence, TG, LDL-C, and increased HDL-C (77, 
78). Most studies have shown that the minimum dosage for the 
cardioprotective effect of n-3 FA is 1 g/d of marine EPA and DHA, 
and the optimal is 3–4 g/d (77, 78). However, in our study, the mean 
intake of n-3 FA, EPA, and EPA + DHA was 1.4 g/d, 26 mg/d, and 
80 mg/d, which are lower than the minimum dosage indicated in 
previous studies for cardioprotective effects. Mechanistic studies 
indicated that EPA, and not ALA, lowers inflammation and CVD risk 
by inactivating NF-κB expression. In our study, the n-3 FA intake 
source was mostly from ALA which may explain our 
observations (81).

The difference in physiology of CVD in males vs. females; males 
have a higher CVD risk than females (82), and n-3 FA has a 
sex-specific difference in effect (79).

The background diet of participants; out of 23,248 participants, 
4 (0.02%) had a high HEI score (81–100). Previous studies in Canada 
showed that the prevalent dietary pattern in Canadians is a western 
diet with high intake of ultra-processed foods, sugar, and low intake 
of fruits, and vegetables, and this dietary pattern is associated with 
lower HEI score (34, 83, 84). Less than 1% of Canadian population 
older than 2 years had HEI score>80  in previous studies (34). 
Therefore, from a mechanistic standpoint, the intake of 1.6 g/d total 
n-3 FA in males may not be enough to modify the CVD risk while 
having a low-medium quality diet.

The association of n-3 FA with lipid biomarkers; in this study 
higher n-3 FA (g/d) intake was not associated with levels of LDL-C 
in males and females, but higher n-3 FA as proportion of energy (%) 
was associated with higher HDL-C in females. This suggests that n-3 
FA might affect lipid biomarkers in females and males differently. 
However, more studies in future are needed to validate the 
sex-difference for the effect of n-3 FA on lipid biomarkers and CVD 

incidence and propose mechanisms for how n-3 FA is differently 
associated with CVD risk and lipid biomarkers in males vs. females.

4.3 Strengths and limitations

The dietary intake was measured only once at the beginning of the 
study and was not repeated during the study. Since individuals may alter 
their diet in the long term, we could not assess more recent dietary intake. 
Although dietary intake was assessed using a 12-month food frequency 
questionnaire, which may be subject to recall bias, the data were collected 
prospectively and not specifically focused on n-3 fatty acid intake. This 
prospective design, combined with subsequent ascertainment of CVD 
outcomes, strengthens the validity of the observed associations. Another 
key strength of this study is assessment of n-3 fatty acid intake in the 
context of overall diet quality, allowing for a more comprehensive 
evaluation of their combined impact on lipid biomarkers and CVD risk. 
This study provides understanding of how dietary patterns as a whole—
rather than a single nutrient—may influence CVD risk. Also, this study 
is the first study that assessed the relation of diet quality and n-3 FA intake 
with non-fasting RC level. We  recommend future studies assess the 
association of HEI scores using the newer version of the HEI score 
(2019). Also, we recommend RCT studies to assess the association of n-3 
FA with CVD risk using a higher dosage (> 1 g/d of EPA + DHA).

5 Conclusion

Higher diet quality (as assessed using the HEI score) was 
associated with lower non-fasting TG and RC, and CVD incidence. 
Total N-3 FA intake (comprised largely of ALA) was not associated 
with CVD risk and lipid biomarkers, but higher EPA intake was 
associated with lower non-fasting RC and TG. The findings of this 
study reinforce the importance of maintaining a high-quality diet 
with a higher intake of plant-based foods, whole grains, and proteins 
for optimal health, including CVD risk.
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Glossary

AH - Alberta health

ALA - Alpha linolenic acid

ATP - Alberta’s Tomorrow Project

BMI - Body mass index

CanPath - Canadian Partnership for Tomorrow’s Health

CDHQ - Canadian Diet History Questionnaire

CI - Confidence interval

Coef - Coefficient

CORE - Clinical outcomes in routine evaluation

CVD - Cardiovascular disease

DHA - Docosahexaenoic acid

DPA - Docosapentaenoic acid

EPA - Eicosapentaenoic acid

FA - Fatty acid

HDL-C - High-density lipoprotein cholesterol

HEI - Healthy Eating Index

HLQ - Health and Lifestyle Questionnaire

HR - Hazard ratio

IDL - Intermediate-density lipoproteins

LDL-C - Low-density lipoprotein cholesterol

MUFA - Mono-unsaturated fatty acid

NF-κB - Nuclear factor-kappaB

OR - Odds ratio

PUFA - Poly-unsaturated fatty acid

p-v - p-value

PYTPAQ - Past Year Total Physical Activity Questionnaire

RC - Remnant cholesterol

RCT - Randomized controlled trials

SD - Standard deviation

SFA - Saturated fatty acid

SREBP - Sterol regulatory element-binding proteins

TNF-alpha - Tumor necrosis factor alpha

VLDL - Very low-density lipoproteins
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