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Background: Early-life exposure to famine is associated with an increased 
risk of various metabolic disorders. Nevertheless, evidence regarding its long-
term effects on thyroid function and disease risk in older adulthood remains 
scarce. This study investigates the impact of fetal and childhood exposure to the 
Chinese Great Famine (1959–1961) on thyroid function and disorders in late life.
Methods: This cross-sectional study enrolled 1,956 participants who completed 
health examinations at a public hospital-based Physical Examination Center in 
Chongqing between 2022 and 2023. Based on birth cohorts, participants were 
stratified into three groups: the unexposed group (individuals born in 1963.1.1–
1967.12.31), the fetal-exposed group (individuals born in 1959.1.1–1962.12.31), 
and the childhood-exposed group (individuals born in 1949.1.1–1958.12.31). 
Binary logistic regression models were used to evaluate the association between 
famine exposure and thyroid disease risk in later life. Multiple linear regression 
analyses compared thyroid function biomarkers between famine-exposed and 
non-exposed groups, adjusting for potential confounders.
Results: In this study, 373 participants (19.1%) were exposed to the Chinese 
Great Famine during the fetal period, with 597 individuals (30.5%) experiencing 
childhood exposure. After adjusting for gender, smoking history, drinking history, 
dietary salt preference, current exercise status, educational level, body mass 
index (BMI), the fetal-exposed group demonstrated significantly elevated risks 
of both overt hyperthyroidism [OR = 4.36, 95% CI (1.02–18.71)] and subclinical 
hyperthyroidism [OR = 3.13, 95% CI (1.03–9.51)] compared to the non-exposed 
group. After adjusting for multiple comparisons using the Benjamini-Hochberg 
FDR method, fetal famine exposure maintained a statistically significant inverse 
association with thyroid nodule risk relative to childhood exposure [OR = 0.69, 
95% CI (0.51–0.93)]. No significant associations were observed between famine 
exposure and hypothyroidism, thyroid autoantibody positivity, or autoimmune 
thyroid disorders. Notably, childhood-exposed participants exhibited higher 
thyroglobulin antibody (TgAb) levels versus non-exposed individuals [β = 40.30, 
95% CI (2.21–78.40)].
Conclusion: Fetal exposure to the Chinese Great Famine reduced thyroid 
nodule risk whereas childhood exposure increased TgAb levels, revealing distinct 
developmental windows for nutritional programming of thyroid health. These 
findings underscore the importance of timing in malnutrition-related thyroid 
dysfunction.
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Background

Thyroid disorders, ranking among the most prevalent endocrine 
disorders worldwide, affect over 200 million individuals globally (1). 
Thyroid dysfunction disrupts physiological metabolic processes and 
demonstrates significant associations with adverse health outcomes 
including cardiovascular morbidity, cerebrovascular events, and 
psychological disturbances (2–4). These conditions have emerged as 
a critical global health priority. Consequently, identifying modifiable 
risk factors for thyroid dysfunction is essential for advancing global 
health outcomes.

Early-life environmental exposures, particularly nutritional status, 
exert profound and enduring impacts on subsequent health 
trajectories (5–7). For instance, infants born to mothers with anemia 
and malnutrition exhibit reduced triiodothyronine (T3) levels (8), 
while women with lower birth weight and smaller body size at birth 
demonstrate elevated risks of hypothyroidism in adulthood (9). As an 
extreme environmental stressor, famine may induce developmental 
programming of physiological and metabolic systems during critical 
early-life windows, with lifelong health consequences. Existing studies 
reveal that early-life famine exposure significantly increases risks of 
aging-related outcomes (10, 11), fractures (12, 13), obesity (14, 15), 
diabetes mellitus (16, 17), and chronic kidney disease (18, 19) in later 
life. However, evidence regarding the impact of early famine exposure 
on adult thyroid regulation remains limited.

The Dutch Hunger Winter cohort study (20) found no statistically 
significant association between fetal famine exposure and thyroid 
disease incidence at age 50, though exposed individuals exhibited 
significantly lower thyroid stimulating hormone (TSH) levels 
compared to non-exposed counterparts. Conversely, research on 
Chinese famine survivors (21) revealed that fetal-exposed individuals 
had significantly higher adult TSH levels than non-exposed controls. 
Given these conflicting findings, this study systematically evaluates 
the long-term consequences of prenatal and childhood famine 
exposure on thyroid homeostasis and disorder susceptibility in 
late adulthood.

Methods

Study population

This cross-sectional study utilized data from the Physical 
Examination Center of a public hospital in Chongqing, China, 
enrolling singleton live births delivered at full term (gestational age 
≥37 weeks) between January 1, 1949, and December 31, 1967. 
Participants with incomplete thyroid function tests, thyroid 
ultrasonography records, or anthropometric data were excluded, 
resulting in a final analytical cohort of 1,956 individuals. The core 
period of the Chinese Great Famine was 1959–1961, but the exact end 
time of famine conditions varied across regions. With reference to 
previous studies on the Chinese famine (22), participants were 
stratified into three groups based on birth dates and famine exposure 
periods: (1) the non-exposed group (born January 1, 1963–December 

31, 1967), (2) the fetal-exposed group (born January 1, 1959–
December 31, 1962, in utero during the famine peak), and (3) the 
childhood-exposed group (born January 1, 1949–December 31, 1958, 
aged 1–10 years during the famine). To minimize age-related 
confounding effects, an age-balanced comparison group was 
constructed by merging the non-exposed and childhood-exposed 
groups. This study was approved by the human research ethics 
committee of the Second Affiliated Hospital of Chongqing 
Medical University.

Definition of thyroid disorders

Fasting blood samples were collected from all participants in the 
morning following a standardized 10-h overnight fast. Thyroid 
function tests included assessment of TSH, free triiodothyronine 
(FT3), free thyroxine (FT4), and antibodies against thyroid peroxidase 
(TPO) and thyroglobulin (TG). The serum levels of FT3, FT4, TSH, 
thyroid peroxidase antibodies (TPOAb), and thyroglobulin antibodies 
(TgAb) were detected by the Cobas 601 analyzer (Roche Diagnostic, 
Switzerland). Thyroid nodules were defined as one or more nodules 
(>5 mm) without goiter on B-mode ultrasonography.

The diagnostic criteria for thyroid dysfunction were provided by 
the detection kit manufacturer. Overt hyperthyroidism is defined as 
TSH < 0.27 mIU/L and FT4 > 22.0 pmol/L or 
FT3 > 6.8 pmol/L. Subclinical hyperthyroidism is defined as 
TSH < 0.27 mIU/L with FT4 and FT3 within the normal range (FT4 
between 12.0 and 22.0 pmol/L; FT3 between 3.1 and 6.8 pmol/L). 
Overt hypothyroidism is defined as TSH > 4.2 mIU/L and 
FT4 < 12.0 pmol/L. Subclinical hypothyroidism is defined as 
TSH > 4.2 mIU/L, FT4 between 12.0 and 22.0 pmol/L, positive 
TPOAb as TPOAb > 34 IU/mL, and positive TgAb as TgAb > 115 IU/
mL. Autoimmune thyroiditis (AIT) is defined as TPOAb > 34 IU/mL 
or TgAb > 115 IU/mL.

Definition of the covariates

Demographic characteristics, including birth date, sex, smoking 
history, drinking history, dietary salt preference, current exercise 
status, and education level, were measured by self-reports. Smoking 
history includes those who have smoked in the past or are currently 
smoking. Drinking history includes subjects who are drinking alcohol 
and those who have stopped drinking alcohol. Dietary salt preference 
was divided into three categories: salty taste, light taste and no 
preference. The current exercise status is defined as regular exercise, 
occasional exercise and no exercise. Education levels were categorized 
as junior school and below and high school or above. During the 
health examination, anthropometric indices, including height, weight, 
waist circumference (WC), and hip circumference (HC), were 
measured by trained health workers according to standard protocols. 
Body mass index (BMI) was calculated based on body weight (kg) and 
height (m). The waist-to-hip ratio (WHR) is calculated by dividing the 
WC (cm) by the HC (cm).
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Statistical analysis

All statistical analyses were performed using R version 4.4.1. A 
two-sided p < 0.05 was considered statistically significant. Continuous 
variables were represented as mean ± standard deviation or median 
(percentiles) based on whether they follow a normal distribution. 
Differences among groups were evaluated using one-way analysis of 
variance (ANOVA) or non-parametric tests, depending on the 
normality of the data distribution. Categorical variables were 
expressed as frequencies (percentages), and the chi-square test or 
Fisher’s exact test is utilized to compare the differences between 
groups. A binary logistic regression model was used to clarify the 
relationship between famine exposure and thyroid diseases. A 
multiple linear regression analysis was employed to estimate the levels 
of TSH, TgAb, and TPOAb between the exposed group and the 
non-exposed group.

Results

Table 1 presents the demographic and clinical characteristics of 
the study population, consisting of 1,008 women (52%) and 948 men 
(48%). Among participants, 373 (19%) experienced fetal exposure to 
the Chinese Great Famine, 597 (31%) had childhood exposure, and 
986 (50%) were unexposed. As shown in Table 1, compared with the 
unexposed group, those who were exposed to famine during 
childhood or the fetal stage had a higher proportion of females, less 
smoking history, and a lower educational level. However, there were 
no significant differences in other indicators such as drinking history, 
dietary salt preference, current exercise status, BMI, WHR (p > 0.05). 
The overall prevalence of thyroid diseases among the participants was 
as follows: overt hyperthyroidism 1% (14 cases), subclinical 
hyperthyroidism 1% (19 cases), overt hypothyroidism 1% (18 cases), 
subclinical hypothyroidism 18% (351 cases), positive TgAb 4% (75 
cases), positive TPOAb 10% (203 cases), AIT 14% (278 cases), and 
thyroid nodules 72% (1,402 cases). The levels of TSH, TgAb and 
TPOAb were higher in the fetal exposure group than in the 
non-exposure group, yet there was no statistical significance.

Table 2 shows the relationship between fetal famine exposure and 
the risk of thyroid diseases using different control groups. After 
adjusting for gender, smoking history, drinking history, dietary salt 
preference, current exercise status, education level, and BMI, fetal-
exposed individuals exhibited significantly elevated risks of overt 
hyperthyroidism [OR = 4.36, 95% CI (1.02–18.71)] and subclinical 
hyperthyroidism [OR = 3.13, 95% CI (1.03–9.51)] compared to the 
non-exposed group. No significant associations were observed for 
other thyroid outcomes, including overt hypothyroidism [OR = 0.51, 
95% CI (0.11–2.39)], subclinical hypothyroidism [OR = 1.09, 95% CI 
(0.79–1.49)], TgAb positivity [OR = 1.40, 95% CI (0.77–2.56)], 
TPOAb positivity [OR = 1.11, 95% CI (0.75–1.64)], AIT [OR = 1.21, 
95% CI (0.86–1.70)], or thyroid nodules [OR = 0.97, 95% CI (0.74–
1.26)] (p > 0.05 for all). Compared with the age-balanced group, the 
risk of subclinical hyperthyroidism in the fetal exposure group 
increased significantly [OR = 3.26, 95% CI (1.16–9.15)]. After 
adjusting for multiple comparisons using the Benjamini-Hochberg 
false discovery rate (FDR) method, fetal famine exposure maintained 
a statistically significant inverse association with thyroid nodule risk 
relative to childhood exposure [OR = 0.69, 95% CI (0.51–0.93)].

Table 3 shows the multiple linear regression relationships among 
famine exposure and the levels of FT3, FT4, TSH, TgAb and TPOAb. 
Serum FT3 levels exhibited an inverse association with childhood 
famine exposure [β = −0.09, 95% CI (−0.17  – −0.01)]. This 
association remained significant after adjusting for covariates 
[β = −0.09, 95% CI (−0.17 – −0.01)]. Serum TgAb levels showed a 
positive association with childhood famine exposure [β = 46.58, 
95% CI (8.84–84.33)]. This association was also significant after 
adjusting for covariates [β = 40.30, 95% CI (2.21–78.40)]. There 
were no significant differences in the levels of TSH [β = 0.49, 95% 
CI (−0.10–1.08)] or TPOAb [β = 7.58, 95% CI (−5.87–21.03)] 
between the childhood exposure group and the unexposed group. 
Similarly, fetal famine exposure showed no statistically significant 
effects on TSH [β = 0.21, 95% CI (−0.47–0.89)], TgAb [β = 30.83, 
95% CI (−13.08–74.75)], or TPOAb [β = 7.97, 95% CI (−7.53–
23.48)] levels compared to non-exposed individuals (p > 0.05 
for all).

Discussion

This study demonstrates that compared to childhood famine 
exposure, fetal famine exposure was significantly associated with 
reduced risk of thyroid nodules in later life. After FDR correction for 
multiple comparisons, fetal exposure showed a suggestive but 
non-significant association with hyperthyroidism. Furthermore, 
we  observed no significant association between early-life famine 
exposure and late-life TSH levels (p >  0.05). Notably, childhood 
famine exposure was inversely associated with FT3 levels and 
positively associated with elevated TgAb levels.

Previous studies suggest that the regulation of hypothalamic–
pituitary-thyroid (HPT) axis function has a critical developmental 
window, during which early-life malnutrition may influence thyroid 
function in adulthood (23, 24). The fetal period represents a key 
developmental stage for HPT axis maturation. An animal study from 
Mexico demonstrated that nutritional deprivation during this stage 
could permanently alter thyroid hormone metabolism through 
epigenetic modifications (e.g., changes in deiodinase activity), leading 
to low FT4 and elevated TSH levels in adult rats (25). However, 
another animal study from Denmark found that late-gestational 
undernutrition resulted in hyperthyroidism in adult sheep (26), 
consistent with our findings. Large-scale human studies, including the 
Dutch Hunger Winter cohort (20) and Chinese famine research (21), 
reported no significant association between fetal famine exposure and 
overall thyroid disease incidence. Nevertheless, the Dutch cohort 
observed that mid-gestational famine exposure in females was 
associated with slightly reduced adult TSH levels and an increased risk 
of hyperthyroidism, suggesting potential programming effects of fetal 
famine exposure on HPT axis regulation. Our findings differ from 
previous studies in two key aspects: (1) we identified a trend toward 
increased hyperthyroidism risk with fetal famine exposure (though 
not statistically significant after FDR correction), and (2) we uniquely 
observed reduced thyroid nodule risk in the fetal-exposed group 
compared to childhood exposure. These discrepancies may stem from 
differences in diagnostic criteria (e.g., modern biochemical assays vs. 
historical clinical records) and variations in famine exposure duration 
across cohorts. Nevertheless, all studies, including ours, converge on 
a critical consensus: early-life famine exposure exerts lasting impacts 
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on thyroid disease risk in later life, with specific manifestations shaped 
by developmental timing and post-famine environmental factors.

The Chinese Great Famine (1959–1961) was characterized by 
severe nationwide food shortages, resulting in extensive and profound 
nutritional deprivation. During this period, iodine—a critical trace 
element for thyroid hormone synthesis—was notably deficient, with 
significant implications for fetal thyroid development. Research 
indicates that insufficient maternal iodine intake during pregnancy 
directly impairs fetal thyroid hormone production, triggering 
compensatory upregulation of TSH via the HPT axis to meet 
metabolic demands (27). This compensatory mechanism may induce 

thyroid follicular hyperplasia and goiter formation. Notably, the 
widespread iodine deficiency during the famine starkly contrasts with 
China’s 1996 universal salt iodization (USI) policy, which shifted 
iodine intake from severe deficiency to sufficiency or even excess. 
Studies suggest that fetal thyroid structural alterations caused by 
iodine deficiency may lead to functional dysregulation in later high-
iodine environments: hyperplastic thyroid tissues with enhanced 
iodine uptake capacity may overproduce thyroid hormones, increasing 
risks of subclinical or overt hyperthyroidism (28). Furthermore, the 
complexity of nutritional deprivation during the famine—including 
deficiencies in synergistic micronutrients such as selenium, zinc, and 

TABLE 1  Baseline characteristics.

Characteristics Non exposed Fetal-exposed Childhood-exposed p-value

Birth date 1963.1.1–1967.12.31 1959.1.1–1962.12.31 1949.1.1–1958.12.31

N 986 373 597

Age (median [IQR], years) 58.56 (57.71, 59.27) 61.14 (60.35, 62.33) 67.02 (65.37, 68.77) <0.001

Sex, n (%) 0.031

 � Women 481 (49) 210 (56) 317 (53)

 � Men 505 (51) 163 (44) 280 (47)

Education, n (%) <0.001

 � Junior school and below 340 (34) 149 (40) 312 (52)

 � High school and above 646 (66) 224 (60) 285 (48)

Dietary salt preference, n (%) 0.808

 � Salty taste 55 (6) 22 (6) 37 (6)

 � Light taste 86 (9) 26 (7) 45 (8)

 � No preference 845 (86) 325 (87) 515 (86)

Smoking history, n (%) 221 (22) 66 (18) 83 (14) <0.001

Drinking history, n (%) 58 (6) 20 (5) 28 (5) 0.596

Current exercise status, n (%) 0.072

 � No exercise 393 (40) 161 (43) 272 (46)

 � Exercise occasionally 295 (30) 110 (29) 144 (24)

 � Exercise regularly 298 (30) 102 (27) 181 (30)

BMI (median [IQR], kg/m2) 23.99 (22.15, 25.94) 23.95 (22.21, 25.81) 23.88 (22.08, 25.78) 0.821

WHR (median [IQR]) 0.88 (0.83, 0.93) 0.88 (0.82, 0.93) 0.88 (0.83, 0.92) 0.981

Overt hyperthyroidism, n (%) 3 (0) 5 (1) 6 (1) 0.050

Subclinical hyperthyroidism, n (%) 6 (1) 7 (2) 6 (1) 0.102

Overt hypothyroidism, n (%) 9 (1) 2 (1) 7 (1) 0.633

Subclinical hypothyroidism, n (%) 161 (16) 69 (18) 121 (20) 0.134

TgAb positive, n (%) 31 (3) 18 (5) 26 (4) 0.258

TPOAb positive, n (%) 96 (10) 43 (12) 64 (11) 0.594

AIT, n (%) 127 (13) 61 (16) 90 (15) 0.202

Thyroid nodules, n (%) 689 (70) 260 (70) 453 (76) 0.024

FT3 (median [IQR], pmol/L) 4.40 (4.10, 4.80) 4.40 (4.10, 4.70) 4.40 (4.10, 4.70) 0.130

FT4 (median [IQR], pmol/L) 16.10 (14.70, 17.30) 16.00 (14.90, 17.50) 16.00 (14.70, 17.30) 0.662

TSH (median [IQR], mIU/L) 2.54 (1.55, 3.62) 2.63 (1.48, 3.89) 2.63 (1.65, 3.90) 0.159

TgAb (median [IQR], IU/mL) 18.80 (10.00, 40.45) 20.70 (10.00, 73.90) 19.30 (10.00, 74.80) 0.239

TPOAb (median [IQR], IU/mL) 5.00 (5.00, 16.17) 6.30 (5.00, 22.00) 6.10 (5.00, 20.40) 0.128

IQR, interquartile range; BMI, body mass index; WHR, waist-to-hip ratio; TgAb, thyroglobulin antibodies; TPOAb, thyroid peroxidase antibodies; AIT, autoimmune thyroiditis; FT3, free 
triiodothyronine; FT4, free thyroxine; TSH, thyroid stimulating hormone.
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vitamin D—likely amplified thyroid dysfunction risks. For instance, 
selenium deficiency reduces glutathione peroxidase activity, 
exacerbating oxidative damage to thyrocytes, while vitamin D 
insufficiency may heighten susceptibility to autoimmune thyroid 
diseases via immunomodulatory pathways (29). Our findings of 
elevated TgAb levels in childhood-exposed individuals further suggest 
that early-life malnutrition increases autoimmune thyroid disorder 
risks. Notably, FT3 levels demonstrated an inverse association with 
childhood famine exposure. However, deficient thyroid hormone 
secretion may promote thyroid cell hyperplasia, thereby increasing the 
risk of nodule formation (30).

These mechanisms collectively drive a dynamic interplay between 
compensatory adaptation and thyroid dysfunction in famine-exposed 
populations amid improved iodine nutrition. While the USI policy 
markedly reduced goiter prevalence, thyroid nodules and autoimmune 
thyroiditis incidence remain unchanged (31), potentially reflecting 
complex interactions between developmental programming and 
environmental interventions.

Our study is the first to reveal that famine exposure during 
different developmental stages differentially impacts thyroid disease 
risk in later life. However, several limitations should 

be acknowledged. First, as a cross-sectional study with potential 
exposure misclassification due to the lack of precise nationwide 
famine start/end dates, we cannot establish causality between early-
life famine exposure and adulthood thyroid disorders. Nevertheless, 
our findings demonstrate distinct effects of famine timing on thyroid 
function and disease risk, highlighting the necessity of stage-specific 
nutritional interventions for thyroid disease prevention and 
providing a foundation for future cohort studies. Second, 
participants were recruited from a hospital-based health 
examination center, a population that typically exhibits greater 
health awareness and healthier lifestyles than the general 
community. This may lead to an underestimation of the true effects 
of early-life famine exposure. To mitigate this potential selection 
bias, we adjusted for key confounders, including smoking history, 
alcohol consumption, dietary salt preference, physical activity, and 
education level. Third, while iodine intake significantly influences 
thyroid function, our retrospective analysis lacked direct 
measurements. However, since all participants were from the same 
region with presumably similar iodine intake, and dietary 
preferences were adjusted for in our models, the findings 
remain credible.

TABLE 2  The associations between fetal-exposed group and thyroid disorders with different control groups.

Fetal-exposed group
No. of cases/sample size (%)

Control groups OR [CI] P

Control groups No. of cases/sample size (%)

Overt hyperthyroidism

5/373(1.3)

Non-exposed 3/986(0.3) 4.36(1.02–18.71) 0.048

Childhood-exposed 6/597(1.0) 0.95(0.28–3.22) 0.931

Age-balanced 8/1344(0.6) 2.13(0.68–6.64) 0.195

Subclinical hyperthyroidism

7/373(1.9)

Non-exposed 6/986(0.6) 3.13(1.03–9.51) 0.044

Childhood-exposed 6/597(1.0) 1.77(0.58–5.43) 0.317

Age-balanced 8/1344(0.6) 3.26(1.16–9.15) 0.025

Overt hypothyroidism

2/373(0.5)

Non-exposed 9/986(0.9) 0.51(0.11–2.39) 0.392

Childhood-exposed 7/597(1.2) 0.44(0.09–2.24) 0.323

Age-balanced 12/1344(0.9) 0.53(0.12–2.42) 0.414

Subclinical hypothyroidism

69/373(18.5)

Non-exposed 161/986(16.3) 1.09(0.79–1.49) 0.610

Childhood-exposed 121/597(20.3) 0.92(0.66–1.30) 0.648

Age-balanced 235/1344(17.5) 1.02(0.75–1.38) 0.905

TgAb positive

18/373(4.8)

Non-exposed 31/986(3.1) 1.40(0.77–2.56) 0.271

Childhood-exposed 26/597(4.4) 1.03(0.55–1.93) 0.937

Age-balanced 50/1344(3.7) 1.22(0.70–2.14) 0.483

TPOAb positive

43/373(11.5)

Non-exposed 96/986(9.7) 1.11(0.75–1.64) 0.597

Childhood-exposed 64/597(10.7) 1.10(0.72–1.67) 0.674

Age-balanced 135/1344(10.0) 1.10(0.76–1.59) 0.620

AIT

61/373(16.4)

Non-exposed 127/986(12.9) 1.21(0.86–1.70) 0.281

Childhood-exposed 90/597(15.1) 1.09(0.75–1.57) 0.660

Age-balanced 185/1344(13.8) 1.15(0.83–1.59) 0.403

Thyroid nodules

260/373(69.7)

Non-exposed 689/986(69.9) 0.97(0.74–1.26) 0.802

Childhood-exposed 453/597(75.9) 0.69(0.51–0.93) 0.016*

Age-balanced 959/1344(71.4) 0.89(0.69–1.15) 0.359

All the analysis adjusted for sex, smoking history, drinking history, dietary salt preference, current exercise status, education level, and BMI.
No., numbers; CI, confidence interval; OR, odds ratio.
*FDR-adjusted p < 0.05.
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Conclusion

In summary, this study demonstrates that compared to 
childhood famine exposure, fetal famine exposure was 
significantly associated with reduced risk of thyroid nodules in 
later life. After FDR correction for multiple comparisons, fetal 
exposure showed a suggestive but non-significant association with 
hyperthyroidism. Additionally, childhood famine exposure 
significantly increases adult TgAb levels. These findings highlight 
the critical role of developmental timing in the nutritional 
programming of thyroid health, suggesting that differences in the 
“critical window period” of nutritional interventions may 
influence the spectrum of adult thyroid diseases through distinct 
mechanisms. This provides important insights for understanding 
thyroid disease prevention and control during current 
nutritional transitions.
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TABLE 3  Effects of fetal and childhood famine exposure on FT3, FT4, TSH, TgAb and TPOAb levels relative to non-exposed group.

Groups Model Fetal-exposed Childhood-exposed

β [CI] p β [CI] p

FT3 (pmol/L)
Model 1 -0.01(−0.11–0.08) 0.763 −0.09(−0.17--0.01) 0.030

Model 2 −0.004(−0.10–0.09) 0.927 −0.09(−0.17--0.01) 0.021

FT4

(pmol/L)

Model 1 0.16(−0.11–0.44) 0.247 −0.02(−0.25–0.22) 0.891

Model 2 0.18(−0.09–0.46) 0.189 0.04(−0.20–0.28) 0.740

TSH (mIU/L) Model 1 0.31(−0.37–0.99) 0.375 0.56(−0.02–1.14) 0.060

Model 2 0.21(−0.47–0.89) 0.542 0.49(−0.10–1.08) 0.101

TgAb (IU/mL) Model 1 40.17(−4.08–84.42) 0.075 46.58(8.84–84.33) 0.016

Model 2 30.83(−13.08–74.75) 0.169 40.30(2.21–78.40) 0.038

TPOAb (IU/mL) Model 1 13.09(−2.76–28.94) 0.106 12.55(−0.97–26.08) 0.069

Model 2 7.97(−7.53–23.48) 0.313 7.58(−5.87–21.03) 0.269

Model 1 unadjusted for any covariate.
Model 2 adjusted for sex, smoking history, drinking history, dietary salt preference, current exercise status, education level, and BMI.
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