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The integration of large language models (LLMs) into clinical nutrition marks a 
transformative advancement, offering promising solutions for enhancing patient 
care, personalizing dietary recommendations, and supporting evidence-based 
clinical decision-making. Trained on extensive text corpora and powered by 
transformer-based architectures, LLMs demonstrate remarkable capabilities in 
natural language understanding and generation. This review provides an overview 
of their current and potential applications in clinical nutrition, focusing on key 
technologies including prompt engineering, fine-tuning, retrieval-augmented 
generation, and multimodal integration. These enhancements increase domain 
relevance, factual accuracy, and contextual responsiveness, enabling LLMs to 
deliver more reliable outputs in nutrition-related tasks. Recent studies have shown 
LLMs’ utility in dietary planning, nutritional education, obesity management, 
and malnutrition risk assessment. Despite these advances, challenges remain. 
Limitations in reasoning, factual accuracy, and domain specificity, along with 
risks of bias and hallucination, underscore the need for rigorous validation and 
human oversight. Furthermore, ethical considerations, environmental costs, and 
infrastructural integration must be addressed before widespread adoption. Future 
directions include combining LLMs with predictive analytics, integrating them 
with electronic health records and wearables, and adapting them for multilingual, 
culturally sensitive dietary guidance. LLMs also hold potential as research and 
educational tools, assisting in literature synthesis and patient engagement. Their 
transformative promise depends on cross-disciplinary collaboration, responsible 
deployment, and clinician training. Ultimately, while LLMs are not a replacement 
for healthcare professionals, they offer powerful augmentation tools for delivering 
scalable, personalized, and data-driven nutritional care in an increasingly complex 
healthcare environment.
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1 Introduction

The field of clinical nutrition is facing a transformative change 
with the advent of large language models (LLMs), a domain within 
artificial intelligence (AI). These advanced systems are trained on vast 
datasets and exhibit remarkable generative capabilities (1–8). LLMs 
can produce diverse content autonomously, including interpreting 
complex queries, synthesizing information, and providing human-like 
responses (9–11). In clinical nutrition, where decision-making often 
involves integrating patient-specific data, scientific evidence, and 
evolving guidelines, the potential of LLMs is profound (1, 12). They 
promise to streamline workflows, enhance personalized care, and 
support clinicians in making data-driven decisions. However, while 
their capabilities are impressive, understanding their role, limitations, 
and ethical considerations is essential for responsible integration into 
clinical practice (2, 13–15).

Clinical nutrition involves screening, diagnosing, treating, and 
monitoring patients with specific nutritional issues or diseases that 
require dietary adjustments. To support this process, nutrition 
specialists rely on medical records, anthropometric measurements, 
laboratory results, and dietary information to develop personalized 
nutritional plans that align with current scientific guidelines. LLMs 
can significantly enhance and streamline this workflow by analyzing 
patient data, incorporating evidence-based guidelines, and assisting 
physicians or dietitians in the diagnosis and management of 
nutritional problems.

Although LLMs and LLM-based tools such as ChatGPT 
(Generative Pretrained Transformer) are widely adopted across 
various industries, their potential and application within clinical 
nutrition remain largely unexplored. Before these technologies can 
be  integrated into routine practice, it is essential that nutrition 
specialists gain a thorough understanding of their underlying 
mechanisms, capabilities, and limitations. Furthermore, LLMs must 
operate transparently and provide users with the ability to verify the 
sources upon which their recommendations are based.

This article explores how LLMs are shaping the future of clinical 
nutrition, offering insights into their applications, benefits, challenges, 
and the potential to revolutionize patient care.

2 Natural language processing

Natural Language Processing (NLP) is a multidisciplinary field at 
the intersection of linguistics, computer science, and artificial 
intelligence, aiming to enable machines to understand, process, and 
generate human language in a meaningful way. NLP applications rely 
on diverse methodologies, ranging from traditional rule-based 
systems to cutting-edge machine learning techniques (16). Within the 
broader field of NLP, LLMs have emerged as a transformative 
technology. They represent a specialized class of machine learning 
models designed to handle complex language tasks by leveraging vast 
amounts of pretraining data (17–19).

Building on their general capabilities, LLMs enhance the 
functionality of NLP systems by allowing more accurate interpretation 
of complex language, including specialized terminology and context-
dependent meaning. When applied to clinical domains, these models 
can be adapted to handle discipline-specific content with a high degree 
of relevance. In clinical nutrition, this opens the possibility to 

efficiently process and interpret diverse sources of textual information, 
such as dietary records, medical notes, and scientific publications, 
supporting clinicians in translating data into meaningful, 
individualized nutritional advice.

3 LLM types and architecture

Understanding the types and underlying architectures of LLMs is 
crucial to appreciating how they process and generate language in 
clinical nutrition applications. LLMs are built on a type of deep 
learning architecture known as the transformer, which has become 
foundational in NLP (20). Transformers process language by dividing 
text into units called tokens. Tokens may represent words, parts of 
words, or characters. Tokens are then converted into numerical 
representations, allowing the model to analyze relationships and 
contextual meaning (21–23). A key feature of Transformer-based 
models is their attention mechanism, which enables them to weigh the 
relevance of different words in a sentence or paragraph, even if they 
are far apart. This mechanism is what allows LLMs to interpret 
nuanced queries and maintain contextual coherence over long 
passages of text (24–26). Transformer models generally fall into three 
categories based on how they process information: encoder-only, 
decoder-only, and encoder-decoder models (27, 28).

Encoder-only models are designed to understand and analyze 
input text (29). They process text bidirectionally, considering both 
what comes before and after a given token, which makes them 
particularly effective for tasks like information extraction, 
classification, or identifying relevant clinical features in 
unstructured data.

Decoder-only models, such as GPT (Generative Pre-trained 
Transformer), are optimized for generating text (30). They process text 
in a unidirectional manner, predicting the next token based on the 
previous ones. These models excel at generating coherent, human-like 
responses and are well suited for use cases like clinical documentation 
support, patient education, or answering open-ended questions.

Encoder-decoder models are designed to take in an input via the 
encoder, transform it into an internal representation, and then 
generate a corresponding output via the decoder. This structure is 
particularly useful for tasks like summarization, translation, or 
structured question-answering, where the model must fully 
understand the input and produce a targeted response (31).

Each architecture has strengths depending on the intended use 
(32). In clinical contexts such as nutrition, selecting the appropriate 
type of large language model is essential for optimizing outcomes. 
Whether the task involves analysis, content generation, or structured 
interaction, matching the model to the use case is critical.

A clear understanding of LLMs’ architectural distinctions is 
critical to aligning model capabilities with specific clinical tasks and 
ensuring meaningful, reliable outcomes in nutritional practice.

4 Techniques to enhance LLMs

Although LLMs are typically pre-trained on broad, general-
purpose data, several methods can improve their performance, 
accuracy, and domain relevance, particularly for specialized 
applications in fields like clinical nutrition. Key enhancement 
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techniques include prompt engineering, fine-tuning, retrieval-
augmented generation (RAG), and multimodal integration (33–36).

4.1 Prompt engineering

Prompt engineering is the practice of structuring user inputs in a 
way that elicits more precise, relevant, or task-specific outputs from 
the model (37, 38). Because LLMs are highly sensitive to the phrasing 
and context of a prompt, small adjustments can significantly influence 
the quality of the response (39). For instance, a general query like 
“What is the dietary treatment for diabetes?” may yield vague or 
generic output. Rephrasing it as “Provide nutritional treatment for 
type 2 diabetes in adults, based on current clinical guidelines, and 
include references” tends to produce more structured and clinically 
relevant results. Several strategies exist. Zero-shot prompting asks the 
model to perform a task without prior examples, relying on its general 
training. Few-shot prompting provides illustrative examples within 
the prompt to guide the model’s behavior (40). Chain-of-thought 
prompting instructs the model to reason step-by-step, thereby 
improving its performance on complex or multi-step queries (41). 
Prompt engineering is particularly valuable when model retraining is 
not feasible. It allows clinicians to adapt general-purpose models for 
specific tasks using careful phrasing, without altering the model itself.

4.2 Fine-tuning

Fine-tuning involves updating a pre-trained model using 
additional data specific to a task, institution, or clinical domain (42). 
This process refines the model’s internal representations, improving 
performance on highly specialized queries. Full fine-tuning adjusts all 
model parameters and is effective but computationally intensive. It 
also carries a risk of overfitting when the dataset is small. Parameter-
efficient methods, such as Low-Rank Adaptation (LoRA), modify only 
a subset of parameters, reducing resource requirements while 
preserving general capabilities (43). Domain adaptation, a subset of 
fine-tuning, uses field-specific datasets (e.g., clinical nutrition 
guidelines) to align the model with professional language, knowledge, 
and priorities in that domain. In practice, fine-tuned models can more 
reliably answer domain-specific questions, generate summaries from 
patient records, or support documentation using accurate terminology.

4.3 Retrieval-augmented generation large 
language models

Retrieval-augmented generation large language models (RAG-
LLMs) combine a language model with an external retrieval 
mechanism that supplies relevant documents or facts in real time, 
thereby increasing factual accuracy and contextual relevance (44, 45). 
This approach addresses a key limitation of LLMs: their reliance on 
static training data, which can become outdated or incomplete. In a 
RAG-LLM setup, when a user submits a query, the system first 
retrieves up-to-date or domain-specific documents, such as recent 
guidelines or clinical studies, and then provides this context to the 
LLM. The model uses this information to generate an informed, 
citation-backed response. RAG-LLMs are especially valuable in 

clinical domains like nutrition, where evidence changes regularly and 
accuracy is essential. RAG-LLMs enable dynamic access to trusted 
knowledge sources, improving factual consistency and 
clinical relevance.

4.4 Multimodal integration

Multimodal LLMs extend traditional text-based models by 
incorporating other forms of input, such as images or audio (46–48). 
This opens the door to richer, context-aware outputs across more 
complex workflows. In clinical nutrition, potential use cases include: 
interpreting food photos to assess dietary intake; combining blood test 
results and anthropometric data with textual dietary advice; 
supporting visually enhanced patient education materials. Although 
still emerging, multimodal models represent the next stage in LLM 
development, especially in domains where information comes in 
diverse formats. The use of multimodel LLMs in clinical nutrition has 
yet to commence, there are, however, examples in other fields of 
medicine (49).

In summary, enhancement techniques such as prompt 
engineering, fine-tuning, RAG, and multimodal integration 
significantly improve the practical utility of LLMs in clinical 
nutritional. By making models more responsive, accurate, and 
context-aware, these methods allow LLMs to meet the demands of 
specialized domains like clinical nutrition while maintaining 
clinical reliability.

5 LLM applications in clinical nutrition

The application of LLMs in clinical nutrition is expanding rapidly, 
with increasing adoption and diverse use cases, see Figure 1. This 
section highlights several key examples to illustrate their potential 
impact and also their shortcomings. A summary is given in Table 1.

This review does not aim for an exhaustive coverage but instead 
provides a curated overview of illustrative examples to highlight the 
range of current and emerging applications of LLMs in clinical 
nutrition. Articles were selected based on their relevance, recency 
(2023–2025), and ability to demonstrate specific clinical or 
technological use cases. Selection was guided by the authors’ expertise, 
supplemented by targeted searches in PubMed and Google Scholar 
using keywords such as “ChatGPT,” “large language models,” “clinical 
nutrition,” and “personalized nutrition.” Studies were grouped 
thematically into five domains  – dietary recommendations, 
information and education, ingredient analysis, data extraction, and 
cross-disciplinary innovations – to reflect common patterns and areas 
of interest. This approach prioritizes breadth and relevance over 
completeness, aiming to inform and to inspire future research 
and implementation.

5.1 LLMs for dietary recommendations

Singh and colleagues performed a meta-analysis looking at 
chatbot interventions designed to improve physical activity, diet and 
sleep (50). Analyzing 19 trials with sample sizes ranging from 25 to 
958 and participant ages between 9 and 71, the study found significant 
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improvements in physical activity, daily steps, moderate-to-vigorous 
physical activity, fruit and vegetable consumption, sleep duration, and 
sleep quality. Text-based and AI-driven chatbots outperformed voice 
chatbots in dietary improvements, and multicomponent interventions 
were more effective than chatbot-only approaches for enhancing sleep 
outcomes. Despite a predominance of low-quality studies, findings 
demonstrate that chatbot interventions are effective across diverse 
populations and settings (Table 2).

Arslan explored the potential of ChatGPT, an AI-driven language 
model, in the treatment of obesity, a growing global health concern 
(51). ChatGPT’s capabilities include providing personalized 
recommendations for nutrition plans, exercise programs, and 
psychological support, as well as developing predictive models for 
obesity-related diseases like diabetes and cardiovascular conditions. 
These features could enhance weight management and reduce 
associated health risks through tailored and adaptive treatment 
strategies. However, the study highlights challenges such as the 
model’s limited contextual understanding, lack of emotional 
intelligence, privacy and security concerns, and ethical considerations 
regarding accountability for AI-generated advice. Despite these 
limitations, ChatGPT presents promising opportunities in obesity 
management, though its application in healthcare requires cautious 
implementation and further research.

Haman et  al. evaluated the accuracy and reliability of 
ChatGPT in generating nutritional information for dietary 

planning and weight management (52). Utilizing the United States 
Department of Agriculture (USDA) Food Data Central as a 
reference, ChatGPT demonstrated high accuracy in estimating 
energy values, with 97% of its predictions falling within a 40% 
margin of USDA data. The model exhibited consistency across 
nutrient estimates, as indicated by low coefficients of variation, 
and effectively generated daily meal plans, with all meals adhering 
to a 30% margin of USDA caloric values. However, limitations 
were observed, including variable accuracy for specific nutrients, 
the inability to account for chronic health conditions, and the 
potential for generating plausible yet inaccurate information. 
While ChatGPT showed promise as a supplementary tool, the 
study emphasized ChatGPT should not replace professional 
medical or dietary guidance.

Khan looked at the potential of ChatGPT in addressing protein-
energy malnutrition (PEM), a critical global health issue (53). 
ChatGPT demonstrates the ability to provide personalized dietary 
recommendations, guidance on protein-rich food choices, 
psychological support, and real-time monitoring to improve PEM 
interventions. It can also analyze PEM-related data to inform research 
and policymaking. However, limitations such as the inability to 
perform physical assessments, reliance on user inputs, susceptibility 
to bias, and inadequate handling of complex cases highlight the 
importance of integrating AI tools with healthcare professionals. 
Collaborative efforts combining AI capabilities and human expertise 

FIGURE 1

Overview of the possibilities of large language models in clinical nutrition.
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are essential for achieving accurate diagnoses, individualized 
treatment plans, and comprehensive care in PEM management.

Wang and co-workers explored ChatGPT-4’s ability to support 
personalized nutritional advice for dialysis patients by generating meal 
plans based on virtual patient profiles created via Monte Carlo 
simulation (54). A renal dietitian evaluated the generated recipes, 
cooking instructions, and nutritional analyses, rating the instructions 
highly (5/5) but the recipes and nutritional analysis lower (3/5 and 2/5, 

respectively). ChatGPT’s nutritional analysis underestimated key 
nutrients, including calories (36%), protein (28%), and potassium 
(49%), among others. Recipe translations into multiple languages were 
rated as reliable (4/5). While ChatGPT-4 demonstrates potential for 
personalized guidance, significant improvements are needed for 
accurate nutritional analysis and medical applicability. Although this 
study states that translations in different languages were reliable, this 
is not always the case when using LLMs in clinical nutrition. 

TABLE 1 Overview of some LLM application examples that are used in clinical nutrition.

Application type Author and year Objectives Findings Limitations

Dietary 

recommendations

Singh B et al. 2023 (50) Meta-analysis: Chatbot to improve 

physical activity, diet end sleep

Improved physical activity, diet, 

and sleep; AI-driven chatbots are 

more effective than voice-based

Low study quality studies and 

heterogeneity among interventions

Arslan S. 2023 (51) ChatGPT for personalized diet in 

obesity and prediction of obesity 

related diseases

ChatGPT offers personalized 

support in obesity management

Contextual limitations, lack of 

emotional intelligence, privacy and 

ethical concerns

Haman M et al. 2024 (52) ChatGPT for dietary planning and 

weight management

High accuracy in energy 

estimates; consistent nutrient 

predictions

Inaccuracy for specific nutrients; 

inability to account for chronic 

health conditions; generation of 

plausible yet inaccurate information

Khan U. 2024 (53) ChatGPT for personalized diet in 

protein-energy malnutrition

Provides personalized advice and 

monitoring for protein-energy 

malnutrition

Lacks ability of physical assessment; 

relies on input quality; not suited for 

complex cases

Wang LC et al. 2024 (54) ChatGPT for personalized nutrition 

in dialysis patients

Good recipe generation; poor 

nutrient analysis

Underestimated key nutrients, 

medical applicability was limited

Adilmetova G et al. 2024 

(55)

ChatGPT for personalized diet in 

English, Kazakh, and Russian

Effective in English/Russian, 

ineffective in Kazakh

Poor performance in 

underrepresented languages

Hieronimus B et al. 2024 

(56)

ChatGPT and Bard for dietary 

recommendations in omnivorous 

and restricted diets

Plans often nutritionally 

inadequate, B12 often lacking

Not suitable for restrictive diets

Niszczota P et al. 2023 

(57)

ChatGPT for dietary 

recommendations for patients with 

food allergies

Correctly excluded allergens in 

most cases

Critical errors, monotonous menus

Papastratis I et al. 2024 

(58)

ChatGPT + deep generative 

networks for personalized meal 

plans

More accurate and explainable 

than ChatGPT

Still needs more dietary diversity and 

user feedback

Information and 

education

Barlas T et al. 2024 (59) ChatGPT for assessment and 

management of obesity in type 2 

diabetes

Good assessment accuracy; 

weaker in therapy

Outdated info, lack of guideline 

citations

Kirk D et al. 2023 (61) ChatGPT for answering common 

nutrition questions

ChatGPT outperformed dietitians 

on 5 of 8 questions

Potential overconfidence in AI 

answers

Liao LL et al. 2024 (62) ChatGPT for educational purposes High nutrition literacy, poor 

completeness and depth

Impractical advice, lacks rigor

Meal analysis Hoang YN et al. 2023 (63) ChatGPT for estimating the energy 

and macronutrient content of food 

items

Energy and macronutrients fairly 

accurate; protein overestimated

Lacks personalization, poor portion 

size handling

Sun et al. 2023 (64) ChatGPT + Dino V2 for diet 

recommendation and ingredient 

analysis in type 2 diabetes

Passed dietitian exam; high image 

recognition accuracy

variability in responses and 

inconsistencies in local food 

responses

Data extraction Alkhalaf M et al. 2024 

(65)

Llama2 with and without RAG for 

extracting malnutrition related data 

from electronic health records

RAG improved summarization 

and risk factor extraction

Hallucinations when information is 

missing or implicit

AI, Artificial Intelligence; DINO, self-DIstillation with NO labels; GPT, Generative Pretrained Transformer; RAG, Retrieval Augmented Generation.
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Adilmetova et  al. evaluated ChatGPT-4’s ability to provide 
personalized, evidence-based dietary recommendations in English, 
Kazakh, and Russian in Central Asia using 50 mock patient profiles 
(55). Performance was assessed for personalization, consistency, and 
practicality, revealing moderate effectiveness in English and Russian 
but unsuitability for Kazakh due to insufficient outputs. Statistically 
significant differences (p < 0.001) were observed across the three 
languages, with English and Russian outperforming Kazakh. The 

findings highlight ChatGPT-4’s limitations in underrepresented 
languages, emphasizing the need for customized models tailored to 
local diets and sociocultural contexts.

Using popular LLMs like ChatGPT in clinical practice may seem 
appealing. However, despite their potential utility, they carry the risk 
of generating inaccurate or misleading information. Hieronimus and 
colleagues assessed the ability of AI chatbots ChatGPT and Bard (now 
Gemini) to generate meal plans meeting dietary reference intakes 

TABLE 2 Glossary of technical terminology.

Terminology Explanation

Attention mechanism The attention mechanism is a feature in language models that helps them determine which words in a sentence are most important when 

interpreting meaning. For example, in the phrase “she gave him water because he was thirsty,” attention helps the model understand that 

“he” refers to the one who is thirsty. This allows more accurate and context-aware responses.

Embedding Embedding refers to converting words or phrases into numerical codes (vectors) that a computer can process. These codes preserve the 

meaning and relationships between words (e.g., “apple” and “fruit” are close together), helping the model understand context and 

semantics.

Encoder-only / Decoder-only / 

Encoder-decoder models

These are types of language models. Encoder-only models analyze and understand text (useful for identifying medical terms in a record), 

decoder-only models generate new text (e.g., writing summaries), and encoder-decoder models do both (e.g., translating a diet note into 

lay language). The model type is chosen based on the task’s needs.

Fine-tuning Fine-tuning means adjusting a pre-trained language model using a smaller set of specialized data, such as clinical nutrition guidelines. 

This improves the model’s accuracy for specific tasks or domains by aligning it with expert language and knowledge in that field.

Generative Pretrained 

Transformer (GPT)

GPT is a specific type of large language model designed to generate human-like text. It can answer questions, write explanations, or 

summarize content based on prior training on a vast range of internet and literature sources.

Hallucinations Hallucinations occur when an AI model produces convincing but incorrect or fabricated information. For example, it may invent a study 

or cite a nonexistent guideline. This is a known risk when using language models in clinical settings.

Large Language Models (LLMs) LLMs are advanced AI tools trained on vast amounts of text data to understand and generate human-like language. They can assist in 

clinical tasks such as summarizing patient notes, answering nutrition questions, or drafting educational materials.

Loss function The loss function measures how far off the model’s predictions are from the correct answers during training. It helps guide improvements 

in the model’s performance by minimizing errors over time.

Low-Rank Adaptation (LoRA) LoRA is a resource-efficient method of fine-tuning that updates only part of a model instead of all its components. This allows 

customization of models for specific tasks without the need of powerful hardware or massive datasets.

Natural Language Processing 

(NLP)

NLP is the field of artificial intelligence that enables machines to understand and use human language. LLMs are a specific type of 

machine learning within the broader field of NLP.

Opaque / Black-box models These refer to artificial intelligence systems where the reasoning behind an output is unclear or difficult to trace. In clinical practice, this 

might raise concerns about trust, transparency, and accountability when using such tools for patient care.

Prompt engineering Prompt engineering involves carefully wording a question or instruction to get the best possible response from a language model. For 

example, asking “List dietary recommendations for type 2 diabetes in adults” will yield more useful results than simply typing “diabetes 

diet.”

Recurrent Neural Networks 

(RNNs)

RNNs are an older type of AI model designed to process sequences of data, like sentences or time-series information. They have mostly 

been replaced by transformer-based models due to limitations in handling long or complex text.

Retrieval-Augmented 

Generation (RAG)

RAG is a method that improves accuracy of LLMs by providing a knowledge base to the LLM in which answers for queries can 

be retrieved, rather than relying only on what the model was originally trained on. This allows for flexibility and the possibility to update 

the knowledge base.

Tokens and tokenization Tokenization is the process of breaking down text into smaller units (tokens), such as words or subwords, so the model can analyze them. 

For example, “high-protein diet” might be split into “high,” “-protein,” and “diet” for the model to process accurately.

Transformer-based architectures Transformers are the foundation of most modern language models. They allow the model to understand the meaning of words based on 

their context in a sentence, enabling more accurate interpretation and generation of complex medical or dietary language.

Variational Autoencoders 

(VAEs)

VAEs are AI models that can learn patterns from data and generate new, similar data—such as customized meal plans. They are often used 

for tasks like modeling patient profiles or generating personalized health content.

Zero-shot prompting / Few-shot 

prompting / Chain-of-thought 

prompting

These are techniques for guiding model responses. Zero-shot prompting gives no examples, few-shot gives a few examples, and chain-of-

thought encourages step-by-step reasoning. These strategies help improve accuracy when using general-purpose language models in 

clinical tasks.
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(DRIs) for omnivorous, vegetarian, and vegan diets (56). Across 108 
meal plans, nutrient analysis showed lower energy and carbohydrate 
content but excess protein relative to DRIs. Common deficiencies 
included vitamin D and fluoride, with vegan plans also lacking 
vitamin B12. ChatGPT suggested B12 supplementation in some cases, 
while Bard did not. No significant differences were observed between 
the chatbots or prompts. While these tools provide general dietary 
inspiration, they are unsuitable for creating nutritionally adequate 
plans, particularly for restrictive diets.

Niszczota and Rybicka evaluated ChatGPT’s ability to create 
elimination diets for individuals with food allergies (57). They focused 
on safety, accuracy, and variety. While ChatGPT correctly excluded 
allergens in most cases, critical errors were identified, such as 
including allergenic ingredients like almond milk in nut-free diets. 
The model also demonstrated inaccuracies in energy and portion 
calculations and generated monotonous menus with limited variety. 
Despite these shortcomings, ChatGPT adheres to some basic dietary 
guidelines and shows potential for improving accessibility to dietary 
advice. However, the study highlights the risks of using ChatGPT for 
critical health tasks, emphasizing the need for model fine-tuning and 
further research to enhance safety and reliability in 
nutritional recommendations.

In order to improve LLMs performance, more sophisticated 
technologies can be incorporated. Papastratis et al. introduce a novel 
AI-based diet recommendation system that combines deep generative 
networks, such as variational autoencoders and recurrent neural 
networks, with LLMs like ChatGPT to provide accurate, personalized 
weekly meal plans (58). By modeling user profiles (e.g., 
anthropometric measurements and medical conditions) and 
embedding predefined nutritional guidelines from EFSA (European 
Food Safety Authority) and the WHO (World Health Organization) 
as loss functions, the system ensures outputs that align with expert-
validated dietary standards while maintaining high accuracy and 
explainability. The integration of ChatGPT expands the meal database 
by generating additional meal options from diverse cuisines, 
enhancing variety and applicability across different populations 
without acting as a retrieval system. Evaluations on 3,000 virtual and 
1,000 real user profiles demonstrated superior performance in energy 
and macronutrient alignment compared to ChatGPT, showcasing its 
precision and potential for seamless integration into healthcare and 
fitness applications. Future work will focus on accommodating more 
dietary preferences, international cuisines, and real-world user 
feedback to further refine its effectiveness.

5.2 LLMs for information and education

Barlas and colleagues assessed the credibility of ChatGPT-3.5 in 
providing information on the assessment and management of obesity 
in type 2 diabetes (T2D) based on the latest American Diabetes 
Association (ADA) and American Association of Clinical 
Endocrinology (AACE) guidelines (59). In a cross-sectional design, 
20 patient-focused questions were posed by experienced 
endocrinologists, and responses were categorized as compatible, 
compatible but insufficient, partially incompatible, or incompatible 
with the guidelines. ChatGPT demonstrated 100% compatibility in 
the assessment of obesity but lower adherence in therapy-related 
sections, including nutrition, pharmacotherapy, and surgical 

interventions, often requiring additional prompts for completeness. 
While ChatGPT provided clear, systematic, and understandable 
answers, it lacked currency regarding recently updated information 
and specificity in sourcing guidelines. These findings emphasize that 
although ChatGPT holds potential as a supplementary tool for 
information retrieval, it should not replace healthcare professionals’ 
patient-centered approaches, as individualized care and human 
oversight remain critical for ensuring accuracy and reliability in 
medical guidance.

Although LLMs promise to greatly enhance the outcome of 
patients in clinical nutrition, adoption by patients could pose a 
challenge. Vandelanotte et  al. explored user perceptions and 
expectations of an artificially intelligent physical activity digital 
assistant through six focus groups that consisted of 45 participants 
(60). Participants expressed enthusiasm for such an assistant, 
emphasizing the importance of customizable features, including 
notifications, personality, and appearance. While participants were 
open to sharing information for personalization, their willingness 
varied significantly. Despite privacy concerns, they supported the use 
of AI and machine learning for enhanced functionality. However, the 
strong demand for personalization presents challenges in terms of 
development cost and complexity, highlighting the need for careful 
design to meet user expectations.

LLMs like ChatGPT can, however, provide useful answers to 
general nutrition-related questions. Kirk et al. evaluated ChatGPT’s 
competency in answering common nutrition questions compared to 
dieticians’ responses (61). Questions and answers were graded by 
experts on scientific correctness, actionability, and comprehensibility. 
ChatGPT outperformed dieticians in overall scores for five out of 
eight questions, excelling in scientific correctness, actionability, and 
comprehensibility in several instances. Dieticians’ answers did not 
surpass ChatGPT’s scores in any category. These findings suggest that 
ChatGPT can effectively address frequently asked nutrition questions, 
highlighting its potential as a supportive tool for providing 
nutrition information.

LLMs are increasingly used as a tool in clinical nutrition practice; 
they are also being employed as an educational tool. Liao and 
colleagues evaluated ChatGPT’s performance in providing dietary 
advice to college students, assessed by 30 dietitians and a nutrition 
literacy (NL) test (62). While ChatGPT demonstrated high accuracy 
in the NL test (84.38%), surpassing the NL level of Taiwanese 
students, its responses were often incomplete, impractical, and lacked 
thoroughness, raising concerns about potential misunderstandings. 
Dietitians frequently cited a lack of rigor in the information provided. 
Despite these gaps, ChatGPT’s readability and potential as a 
supplementary educational tool were recognized, emphasizing the 
need for improved AI guidelines and training materials to enhance 
its effectiveness in nutrition education.

5.3 LLMs for ingredient analysis

LLMs can also be used to estimate energy and macronutrient 
content of food. However, their performance is still suboptimal. 
Hoang and co-workers evaluated the reliability of ChatGPT-3.5 and 
ChatGPT-4 in estimating the energy and macronutrient content of 
222 food items across eight menus, comparing their results to 
nutritionists’ recommendations (63). While AI estimations for 
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energy, carbohydrates, and fats were consistent with nutritionists’ 
data, protein estimates showed significant discrepancies. ChatGPT-4 
outperformed ChatGPT-3.5 in accuracy but overestimated protein 
content. Both chatbots provided accurate energy estimates within 
±10% for 35–48% of food items. Despite these limitations, the study 
highlights AI chatbots as convenient tools for basic nutritional 
analysis but notes their inability to offer personalized dietary advice 
or account for household portion sizes. Enhancements in AI 
specialization for nutrition could significantly improve their utility 
in dietetics.

Sun et al. examined an AI-based nutritionist program designed 
to address the challenges of nutritional management in patients with 
type 2 diabetes mellitus in China (64). The program integrates 
advanced large language models (ChatGPT and GPT 4.0) and a deep 
learning-based image recognition model (Dino V2) to provide 
dietary recommendations and ingredient-level meal analysis. 
ChatGPT demonstrated proficiency by passing the Chinese 
Registered Dietitian Examination and generating responses that 
aligned well with expert recommendations, though inconsistencies 
were noted for certain Chinese-specific foods. The image recognition 
model achieved high accuracy in identifying ingredients, 
outperforming previous models. A user-friendly WeChat mini-
program was developed to enhance patient engagement by enabling 
automated meal logging and dietary feedback. Despite promising 
results, limitations include variability in AI responses and the need 
for a defined question scope. The findings support advancing this AI 
nutritionist program to a clinical pilot study to assess its real-world 
effectiveness in improving patient adherence to dietary 
recommendations and health outcomes.

5.4 LLMs for data extraction

RAG-LLMs are an exciting extension of regular LLMs that make 
use of an external knowledge base in order to enhance the LLM’s 
performance. Alkhalaf and co-workers evaluated the effectiveness of 
using the open-source Llama 2 LLM with zero-shot prompt 
engineering, both alone and combined with RAG, to summarize and 
extract malnutrition-related data from electronic health records 
(EHRs) in Australian aged care facilities (65). Results showed that the 
model achieved high accuracy in summarizing structured 
malnutrition notes (93.25%) and extracting risk factors (90%), with 
RAG integration further improving summarization accuracy to 
99.25%. While the model effectively processed explicit information, 
it encountered hallucination issues when details were implicit or 
missing. The RAG approach mitigated these limitations by providing 
relevant external data, enhancing the model’s ability to generate 
accurate, contextually relevant outputs. The findings underscore the 
potential of LLMs combined with RAG to streamline EHR data 
analysis, improve care quality, and support timely interventions for 
malnutrition and other healthcare challenges in aged care settings.

5.5 Cross-disciplinary innovations with 
potential for clinical nutrition

Although ChatGPT and similar LLMs can be  useful, 
hallucinations and incomplete information are still important 

drawbacks. Lee et al. developed and evaluated a dual retrieval-
augmented generation system to enhance the accuracy and 
reliability of LLMs in diabetes management across diverse 
languages and guidelines (66). By integrating dense and sparse 
retrieval methods, the system addressed limitations in semantic 
and keyword-based searches, utilizing dense retrievers like Solar 
Embedding-1-large and OpenAI’s text-embedding-3-large 
alongside the BM25 algorithm for sparse retrieval. Evaluation 
using the 2023 Korean and American diabetes guidelines 
demonstrated superior performance for ensemble retrievers, 
reducing hallucinations and maintaining high retrieval precision. 
The system highlights the potential for cross-regional applications, 
offering a scalable solution to provide accurate, current medical 
information in dynamic fields like diabetes management while 
minimizing the need for frequent LLM retraining. This strategy 
could be  adopted in clinical nutrition for LLMs with 
better performance.

LLMs hold substantial potential to enhance nutritional care by 
supporting dietary recommendations, information and education, 
ingredient analysis, and data extraction. However, challenges such as 
limited accuracy, incomplete outputs, and hallucinations remain 
significant barriers to their clinical adoption. Emerging strategies like 
retrieval-augmented generation and fine-tuning, already being 
applied in other medical domains such as diabetes care, offer 
promising pathways to overcome these limitations (67, 68). Adapting 
these solutions to the nutritional context will be crucial for developing 
safe, reliable, and context-aware LLMs that can meaningfully support 
clinicians and patients alike.

6 Limitations and challenges of LLMs

Although LLMs have impressive potential, their capabilities are 
accompanied by a range of limitations and challenges that constrain 
their effectiveness, reliability, and ethical deployment. These 
challenges span technical, practical, and societal domains.

6.1 Data quality

One fundamental limitation of LLMs lies in their reliance on 
training data. These models learn patterns and relationships from 
vast corpora of text, but their performance is inherently constrained 
by the quality, diversity, and representativeness of the data used for 
training. Biases present in the training data are often reflected in the 
outputs of LLMs, perpetuating stereotypes and inequities (69). Biased 
representations of gender, race, or cultural norms within datasets can 
lead to outputs that reinforce these biases, posing ethical challenges 
in applications where neutrality and fairness are paramount (70–72). 
For example, when using an LLM to generate dietary advice, the 
model should be able to take into account individual factors such 
as cultural background, religious dietary practices, and regional 
food availability. Achieving this requires training data that 
accurately reflects diverse populations and dietary contexts. If the 
underlying data lacks this diversity or contains cultural biases, the 
model may produce dietary recommendations that are unsuitable 
or insensitive, potentially undermining patient trust and limiting 
the clinical usefulness of the advice.
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6.2 Accuracy of LLMs

LLMs exhibit limitations in reasoning and factual accuracy (73–
76). Although they are capable of generating coherent and contextually 
appropriate responses, their knowledge is static and limited to the data 
they were trained on, which often has a cutoff date. This means they 
cannot access or incorporate new information that arises after their 
training. Furthermore, LLMs lack a true understanding of the 
concepts they process, relying instead on probabilistic patterns to 
predict outputs. This can lead to hallucinations, where the model 
generates plausible-sounding but incorrect or nonsensical 
information. Such inaccuracies pose risks in critical fields like clinical 
nutrition and healthcare in general, where errors can have significant 
consequences. For instance, an LLM might incorrectly recommend 
micronutrient dosages that exceed safe upper limits, fail to account for 
specific dietary restrictions in food allergy, or generate outdated 
guidance on nutritional care in gestational diabetes. Inaccurate 
interpretation of lab values or mismatched nutritional protocols for 
conditions like celiac disease or refeeding syndrome could further 
compromise patient safety. These examples highlight that LLMs have 
clear limitations that nutrition specialists must be  aware of and 
actively consider in clinical practice. They underscore the importance 
of rigorous human oversight, domain-specific fine-tuning, and real-
time validation when applying LLMs in clinical decision-making.

6.3 Computational and energy costs

Another significant challenge is the computational intensity of 
LLMs. Training and deploying these models requires substantial 
computational resources, including high-performance hardware and 
significant energy consumption (77). This raises concerns about the 
environmental impact of large-scale LLMs, as well as their accessibility 
to smaller organizations or institutions with limited resources. The 
high cost associated with developing and maintaining these models 
exacerbates the divide between well-funded entities and smaller 
players, potentially centralizing control of this transformative 
technology. This economic barrier has direct implications for 
nutritional care in low-resource countries, where the burden of 
undernutrition is high, access to trained dietitians is limited, and 
current clinical guidelines are often unavailable. In these settings, the 
potential value of LLMs may be even greater. Yet the high cost of 
implementing such tools risks placing them out of reach precisely 
where they could make the most impact. Without targeted strategies 
to improve accessibility, the use of LLMs in clinical nutrition may 
inadvertently deepen global health disparities rather than help to 
close them.

6.4 Transparency

LLMs also face challenges in interpretability and explainability 
(78). Despite their remarkable capabilities, the decision-making 
processes of these models are often opaque, making it difficult to 
understand why a particular output was generated. This lack of 
transparency complicates their integration into domains requiring 
accountability, such as clinical nutrition. In these contexts, 
stakeholders need to trust the system’s outputs and have mechanisms 

to verify or challenge its conclusions, yet the black-box nature of LLMs 
undermines this trust. In clinical nutrition, transparency is especially 
important. Dietitians and nutrition physicians must be able to explain 
the rationale behind their recommendations, whether for an 
individualized dietary plan, a nutrient prescription, or a nutritional 
intervention for a complex patient. If an LLM suggests a course of 
action, clinicians must be able to assess where that advice came from 
and whether it aligns with current guidelines and the patient’s 
specific context.

Without a clear link between input, reasoning, and output, 
clinicians are left in a difficult position: either they accept the model’s 
advice without understanding its basis, or they disregard it altogether. 
Neither approach supports responsible, evidence-based care. For 
LLMs to be meaningfully integrated into clinical nutrition, they must 
offer more than just plausible suggestions; they must provide traceable 
reasoning, cite their sources where possible, and allow users to 
interrogate the path that led to a given recommendation. Transparency 
is not just a technical concern; it is central to clinical responsibility, 
professional credibility, and patient safety. Without it, the promise of 
LLMs in nutrition remains incomplete.

6.5 Contextual awareness

The models’ inability to handle contextual nuances and 
ambiguities effectively further limits their utility. While LLMs excel at 
generating text based on syntactic and semantic patterns, they may 
struggle to interpret subtle nuances, sarcasm, idiomatic expressions, 
or culturally specific references (79). This limitation becomes 
particularly problematic in multilingual or cross-cultural applications, 
where the model’s understanding of context may diverge significantly 
from human expectations. In clinical nutrition, where patient 
communication is central and often nuanced, this lack of contextual 
awareness can be a serious concern. For instance, a phrase like “I eat 
light” or “I do not eat much during the day” can carry very different 
meanings depending on the person’s background, culture, or even 
local habits. Without an understanding of that context, a model may 
misread the intent entirely. The same goes for dietary preferences or 
restrictions, which are sometimes expressed in everyday or 
non-standard language. This is particularly true in multilingual 
settings, where nuance is easily lost. Understanding what a patient 
really means often requires not just linguistic knowledge but also 
cultural sensitivity and clinical experience.

6.6 Expert knowledge

LLMs often lack domain-specific expertise, particularly when 
applied to specialized fields without additional fine-tuning or context 
augmentation (80). Their generalized training enables them to 
perform adequately across a broad range of tasks but often fails to 
meet the rigor and precision required in highly technical areas. 
Without domain adaptation, their outputs risk being overly generic, 
superficial, or inaccurate in professional settings. In clinical nutrition, 
recommendations must be  tailored not only to individual patient 
needs but also to complex physiological conditions, disease states, and 
evidence-based guidelines. In more challenging scenarios, such as 
managing refeeding syndrome or formulating parenteral nutrition 
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plans, superficial suggestions from a general-purpose LLM could 
mislead rather than support the clinician. To be truly useful in clinical 
nutrition, LLMs need more than fluent language; they require 
structured exposure to clinical nutrition guidelines from authoritative 
nutrition sources.

6.7 Human oversight

Finally, user interactions with LLMs present challenges related 
to over-reliance and the need for human oversight. Because LLMs 
generate text that appears authoritative and well-informed, users 
may overestimate their reliability, failing to scrutinize outputs 
critically (81). This can lead to erroneous decisions, particularly in 
high-stakes environments where unchecked reliance on model 
outputs can have severe repercussions. Therefore, human oversight 
remains imperative.

While LLMs represent a significant advancement in artificial 
intelligence, their limitations and challenges, as discussed in this 
section, underscore the need for continued research and thoughtful 
deployment. Addressing issues such as data bias, factual accuracy, 
computational demands, interpretability, and ethical safeguards is 
critical to ensure that these models are used responsibly and equitably. 
By acknowledging and addressing these challenges, the field can 
harness the transformative potential of LLMs while mitigating the 
risks they pose.

7 Future directions of LLMs in clinical 
nutrition

The future of LLMs in clinical nutrition holds immense potential 
to transform the field by enabling more personalized, evidence-based, 
and scalable approaches to patient care. As advancements in artificial 
intelligence continue to unfold, LLMs are poised to play a pivotal role 
in integrating complex nutritional data, facilitating decision-making, 
and empowering healthcare professionals to address the growing 
burden of nutrition-related diseases (82, 83).

One of the most promising applications of LLMs in clinical 
nutrition is their ability to synthesize vast amounts of nutritional and 
medical data to support personalized dietary recommendations (84–
86). Nutrition is highly individualized, influenced by factors such as 
age, sex, genetics, metabolic profile, lifestyle, and comorbidities. 
LLMs, when integrated with data from wearable devices, EHRs, and 
genetic testing, could analyze these diverse inputs to generate tailored 
dietary plans. For instance, an LLM could consider a patient’s 
metabolic panel, body composition analysis, and physical activity data 
to recommend precise macronutrient and micronutrient targets, 
addressing specific health goals such as weight management, glycemic 
control, or reducing cardiovascular risk.

The integration of LLMs with predictive analytics and machine 
learning models could further enhance their utility in clinical 
nutrition (87). By analyzing longitudinal health data, LLMs could 
predict an individual’s risk of developing nutrition-related conditions, 
such as type 2 diabetes or cardiovascular disease, and recommend 
preemptive dietary interventions. This proactive approach aligns with 
the broader goals of preventive medicine, shifting the focus from 
treating disease to maintaining health and wellness.

LLMs could also address challenges related to cultural and 
linguistic diversity in clinical nutrition. Nutrition advice must often 
be adapted to cultural preferences, traditional cuisines, and local food 
availability. LLMs trained on multilingual and culturally diverse 
datasets could assist healthcare providers in delivering culturally 
sensitive dietary recommendations. For example, an LLM could help 
tailor meal plans for a patient while taking into consideration specific 
dietary restrictions due to religious practices or cultural norms, 
ensuring greater relevance and acceptability of the guidance provided.

Another key area for the future application of LLMs in clinical 
nutrition is patient education and engagement (88–90). LLMs excel at 
generating human-like text, making them ideal tools for creating 
patient-facing educational materials, answering frequently asked 
questions, and providing real-time support (91). For example, an 
LLM-powered chatbot could assist patients in understanding dietary 
restrictions, decoding food labels, or identifying suitable recipes that 
align with their medical conditions and personal preferences. By 
delivering accessible and contextually relevant information, these 
models can empower patients to make informed decisions about their 
nutrition, fostering adherence to prescribed dietary regimens.

In the realm of research, LLMs could serve as invaluable tools for 
evidence synthesis and knowledge translation in clinical nutrition (92, 
93). The volume of published nutritional science research grows 
rapidly, making it challenging for practitioners to stay current. LLMs 
can summarize recent studies, identify emerging trends, and highlight 
consensus or controversies within the field. Furthermore, these 
models could aid researchers in generating hypotheses by identifying 
gaps in the literature, fostering innovation in nutritional science.

Collaboration between healthcare providers, data scientists, and 
policymakers will be crucial in shaping the future of LLMs in clinical 
nutrition. Developing standardized protocols for integrating LLMs 
into clinical workflows and establishing guidelines for their ethical use 
will be  vital steps in realizing their potential. Moreover, ongoing 
education and training for clinicians on the capabilities and limitations 
of LLMs will empower them to harness these tools effectively while 
maintaining critical oversight (94, 95).

LLMs offer transformative possibilities for advancing 
personalized, preventive, and culturally sensitive approaches in 
clinical nutrition. Realizing this potential will depend on thoughtful 
integration into clinical practice, guided by interdisciplinary 
collaboration, ethical oversight, and clinician education.

8 Discussion

Large language models offer considerable promise for 
advancing clinical nutrition. Their ability to interpret complex data, 
generate tailored dietary recommendations, and assist both 
clinicians and patients in decision-making aligns with the 
increasing need for scalable, personalized, and evidence-based 
care. Yet, despite their potential, the practical and ethical 
integration of LLMs into clinical nutrition remains a 
complex undertaking.

One of the primary concerns is the reliability of LLM-generated 
outputs. Although these models often produce coherent and 
convincing responses, they remain vulnerable to factual inaccuracies 
and hallucinations. This is a pressing issue in clinical contexts where 
incorrect information can have significant consequences. Mistakes in 
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nutrient recommendations, dietary restrictions, or the management 
of nutrition-related conditions could compromise patient safety. As 
such, validation procedures, domain-specific fine-tuning, and routine 
human oversight are critical to ensure these tools support rather than 
undermine clinical judgment.

Ethical challenges further complicate implementation. LLMs are 
shaped by the data on which they are trained, and if that data lacks 
cultural, linguistic, or socioeconomic diversity, the outputs may 
inadvertently reinforce existing disparities. For example, a model 
might fail to account for local dietary practices or regional food 
availability, reducing the relevance and acceptability of its 
recommendations. Developing and training LLMs on more inclusive, 
representative datasets is essential to making their outputs both 
equitable and clinically useful.

Another key factor is the integration of LLMs into existing 
healthcare systems. To deliver real value, these tools must interact 
seamlessly with electronic health records, clinical decision support 
systems, and other digital health infrastructure. Achieving this 
requires not only technical interoperability but also regulatory 
alignment and user training. Without these elements in place, LLMs 
risk becoming isolated solutions that fail to improve efficiency or care 
quality in practice.

Equally important is the perception of both clinicians and 
patients. While many recognize the potential of AI tools in healthcare, 
concerns persist about the transparency, trustworthiness, and 
impersonal nature of automated advice. Designing user interfaces that 
are clear, interactive, and adaptable to individual preferences can help 
address these concerns. Importantly, LLMs should be positioned as 
support tools that enhance rather than replace human 
clinical expertise.

Scalability also remains a barrier to wide-scale adoption. The 
substantial computational and energy requirements of LLMs can 
make their deployment costly and technically demanding. This is 
particularly problematic in low income countries, where malnutrition 
is highly prevalent, but the infrastructure to support AI tools is 
limited. When developing LLM-based tools for clinical nutrition, 
these issues should be taken into consideration.

Despite these limitations, LLMs represent a powerful new tool for 
enhancing nutrition care. They can assist in automating routine tasks, 
lowering barriers to dietary counseling, and expanding the availability 
of up-to-date, evidence-based information. Their effectiveness, 
however, will depend on thoughtful implementation guided by clinical 
priorities, ethical standards, and interdisciplinary collaboration.

In conclusion, the integration of LLMs into clinical nutrition 
holds considerable potential, but this promise can only be realized 

through deliberate, responsible development. Advances in techniques 
such as fine-tuning, retrieval-augmented generation, and multimodal 
input are improving the relevance and safety of these models. Moving 
forward, success will require more than technical refinement; it will 
demand sustained efforts to ensure that LLMs are accurate, fair, 
transparent, and aligned with the realities of clinical care. With 
appropriate safeguards and collaboration across disciplines, LLMs 
may ultimately become valuable allies in delivering high-quality, 
personalized nutrition care.
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