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chia oil attenuates hepatic
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subjected to postnatal
undernutrition
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Background: Early postnatal undernutrition, leading to impaired growth and
low body weight, has been associated with enduring metabolic alterations that
may persist into adulthood. We proposed that plant-based w-3 fatty acids, as in
maternal supplementation, attenuate metabolic alterations induced by postnatal
dietary restriction, such as glucose disturbances and oxidative stress.

Methods: To test this, we investigated the effects of maternal supplementation
with two distinct doses of Chia Oil (ChO) (2.5 or 5 g/kg body mass) on
metabolic parameters in BALB/c mice subjected to postnatal undernutrition. The
undernutrition model was created by increasing the litter size to 15-16 pups,
forming the undernutrition (UN) group. These UN groups received maternal
ChO supplementation at 2.5 g/kg or 5 g/kg b.m., labeled as UN2.5 and UN5,
respectively.

Results: By day 21, the UN5 group showed less weight gain compared to
the UN2.5 group. At 120 days, glucose tolerance tests revealed a lower area
under the curve in both supplemented groups compared to the UN animals. A
maternal dose of 5 g/kg b.m. of ChO was linked to more favorable oxidative
stress markers, suggesting this effect is not due to changes in antioxidant
enzymes like superoxide dismutase and catalase, which remained stable in
the liver tissue in this model. This dose provided a slight benefit in reducing
metabolic changes, with the UN5 group showing lower total hepatic lipid levels.
Additionally, histopathological analysis of the tissue revealed no alterations in the
experimental groups.

Conclusion: These observations suggest a protective role of maternal ChO
supplementation at a dose of 5 g/kg b.w. against metabolic impairments induced
by postnatal undernutrition.

KEYWORDS
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1 Introduction

Barker (1), in his epidemiological study, was the pioneer in suggesting that occurrences
during early human development might significantly influence the onset and advancement
of long-term illnesses later in life. He demonstrated that infants with low birth weight,
resulting from maternal undernutrition during pregnancy, are more likely to develop
obesity and cardiometabolic disorders as adults (1).

01 frontiersin.org


https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2025.1636396
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2025.1636396&domain=pdf&date_stamp=2025-08-20
mailto:isabela.castro@ufla.br
https://doi.org/10.3389/fnut.2025.1636396
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnut.2025.1636396/full
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Ledo et al.

Therefore, changes in nutrition and growth during the early
postnatal period can have a lasting impact on metabolism in later
years (2, 3). The composition and amount of milk consumed
during suckling, which varies according to the maternal diet,
can cause long-lasting metabolic alterations that lead to the
development of obesity (4, 5). Consequently, imbalances in nutrient
supply, whether insufficient or excessive, during the prenatal and
perinatal stages can predispose individuals to obesity and metabolic
disorders in adulthood. Manipulating litter size has been used to
simulate experimental under- or overnutrition in rodents (5-8).

Animals raised in large litters experience alterations in leptin
and ghrelin secretion and changes in energetic metabolism,
including reduced expression of glucose transporters in cardiac
and skeletal muscles and increased insulin resistance in key organs
controlling glucose homeostasis, such as the liver, muscle, and
adipose tissue (9-12). Undernutrition during the nursing phase
can disrupt the oxidative balance in offspring, leading to elevated
lipid peroxidation and reduced activities of superoxide dismutase
(SOD), glutathione peroxidase, and catalase (CAT). This indicates
that these enzymes are particularly susceptible to oxidative stress
due to larger litter size. Nonetheless, the specific mechanisms
driving these changes are still unclear (13, 14).

Maternal nutrition during gestation and lactation plays a key
role in the metabolic programming of offspring. Moreover, the
quantity and quality of maternal dietary fat intake have profound
health implications during and after pregnancy. Polyunsaturated
fatty acids (PUFA) are essential for fetal growth and development;
however, high consumption of Omega-6 (PUFA w-6) is associated
with an increased incidence of complications at birth and in
adulthood (11, 14).

During pregnancy, the only source of PUFAs for the developing
fetus is the mother, through placental transfer. Maternal intake of
fatty acids during gestation and their subsequent transfer to the
fetus are essential for fetal growth and development (15-17).

Maternal consumption of omega-3 polyunsaturated fatty
acids (PUFA ®-3) has demonstrated beneficial effects on the
development of the fetal neurological and immune systems.
Such intake may help prevent obesity, insulin resistance, and
cardiovascular disorders later in life (14, 17). Plants serve as a
key nutritional source of alpha-linolenic acid (ALA), the precursor
of PUFA -3, which undergoes elongation to produce -3
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)
(18). In this regard, chia seeds have recently attracted considerable
interest due to their high ALA content (55%—66%), underscoring
their potential advantages for human health and nutrition.

Furthermore, they are important sources of protein, dietary
fiber, minerals (including iron and calcium), and bioactive
compounds (such as tocopherols and phenolic compounds),
increasing their potential benefits to human health (19, 20). Chia
oil has been reported to improve lipid profiles by increasing HDL-c
levels and reducing total cholesterol. Additionally, it contributes to
glycemic homeostasis by enhancing glucose tolerance and insulin
sensitivity. Moreover, chia oil increases the activity of antioxidant
enzymes, including superoxide dismutase (SOD), catalase (CAT),
glutathione peroxidase (GPx), and glutathione reductase (GR) (21).

Much research has focused on the association between
malnutrition and specific micronutrient deficiencies, while there
are little data on essential fatty acids in children with severe
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malnutrition (22). We hypothesized that plant-based w-3 fatty
acids, as in maternal supplementation, attenuate metabolic
alterations induced by postnatal dietary restriction, such as
glucose disturbances and oxidative stress. Thus, our study focused
on evaluating the effects of maternal supplementation with
plant-based w-3 fatty acids (ALA) via chia oil on attenuating
metabolic dysfunctions, such as glucose imbalance and oxidative
stress, induced by postnatal undernutrition in rat offspring. To
test this hypothesis, we evaluated the role of maternal chia
oil supplementation at two dosages in mitigating metabolic
abnormalities in undernourished BALB/c mice and identified the
optimal dose of chia oil.

2 Materials and methods

2.1 Phytochemical analysis of the chia oil
(GC/FID)

The chia oil used in this study was purchased from a local
market (Pazze, 05071-6). Phytochemical analysis of chia oil (ChO)
was conducted at the Central Laboratory for Chemical Analysis
and Prospecting of the Federal University of Lavras. Commercially
available Chia Oil (Pazze, 05071-6, Panambi/RS, Brazil) was used.
Fatty acid samples were analyzed using gas chromatography (GC
2010-Shimadzu) equipped with a flame ionization detector and
split injector at a split ratio of 1:50. A 100 m long, 0.25 mm diameter,
and 0.2pm thick Supelco film-fused silica capillary column
(SP-2560; Bellefonte, PA, USA) was used. The chromatographic
conditions consisted of an initial column temperature of 140 °C
held for 5 min, followed by a temperature ramp of 4 °C/min until
reaching 240 °C, which was maintained for 30 min, resulting in
a total run time of 60 min. Both the injector and detector were
set at 260 °C. Helium was used as the carrier gas. Fatty acids
were identified by comparing their retention times with those of
the chromatographic standards (Supelco 37 standard FAME Mix,
Supelco Inc., USA). The results were expressed as the percentage of
total fatty acids detected.

2.2 Animals

The experimental protocol involving animals was reviewed
Ethics

mice,

and approved by the local Animal Committee
(CEUA/UFLA/050/2019). Thirty BALB/c

twenty-two females and eight males aged between 45 and 55

comprising

days, were sourced from the Animal Care Facility at the Federal
University of Lavras (UFLA). All animals were maintained under
conditions that complied with the ethical standards established by
our institution. The BALB/c mice had free access to water and a
standard rodent diet in pellet format (23) (Table I; Nuvilab CR-1,
Quimtia S/A, Colombo, PR, Brazil).

2.3 Maternal supplementation
Following a review of the main findings of chia oil

supplementation in animal models (21), it was concluded that there
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TABLE 1 Nutritional composition of the normocaloric Nuvilab Cr-1
commercial chow.

Component Amount (g/kg) Energy (kcal/kg)
Carbohydrates

Corn starch (5.Q.) 530 2,120
Cellulose 80 -
Proteins

Casein 220 880
L-cystine 3

Fats and extracts

Soybean oil 70 630
Ether extract 40 360
Fibers

Brute fiber 50 -
Micronutrients

Mineral mix 35 -
Vitamin mix 10 -
Choline 2.5 -
Total 1,000 3,990

S.Q., sufficient quantity. Nutritional information and ingredient composition were based on
the formulation of the Nuvilab CR-1 irradiated feed, manufactured by Quimtia (Curitiba,
Brazil). Data based from da Silva Monteiro et al. (23).

is no consensus in the literature regarding the optimal dose for
preclinical investigations. Therefore, two doses (2.5 and 5 g/kg
body mass) were selected for evaluation in this study based on the
recommended intake of ALA, which is reported to be 1.1-2.2 g/day
(24). The mice were allocated into three experimental groups: two
groups received different doses of chia oil supplementation, and the
third group served as an unsupplemented control group. Female
mice were administered chia oil via oral gavage at doses of 2.5 g/kg
or 5 g/kg body weight, starting from mating and continuing until
the offspring were weaned at 21 days of age. The total duration
of supplementation ranged from 38 to 42 days. All animals were
fed ad libitum with the same diet (53% carbohydrate, 7% fat, 22%
protein), as described in Table 1. Feeding restriction occurred only
during the nursing period by increasing the litter size, as detailed in
the section below.

2.4 Experimental design

Female mice were housed in groups of three animals per
cage under controlled environmental conditions. One male was
introduced into each cage for mating and remained with the
females for 14 days, which was the time needed to ensure all
females were pregnant. After this period, the males were removed,
and the females remained together until the offspring were born.
On postnatal day 3, the litters were reassigned to their respective
experimental groups. To induce early postnatal undernutrition, as
described by Caron et al. (25), the original litter was increased
to 15-16 pups (females and males). Litters of this size were
assigned to the Undernutrition (UN) and Undernutrition + Chia

Frontiersin Nutrition

10.3389/fnut.2025.1636396

Oil supplementation (2.5 g/kg or 5 g/kg body mass; UN2.5 and
UNG, respectively) groups. The Control group (C) litters contained
8-10 pups (females and males).

In this study, only male pups were used. Therefore, the
experimental procedure was repeated as necessary to meet the
minimum statistical requirements for each group. After weaning,
males were separated from females and housed in groups of five in
each cage. An overview of the experimental design is presented in
Figure 1.

Body weights were recorded at 21, 70, and 120 days of age,
and food consumption was monitored weekly, beginning on day
21. The percentage of body mass gain was calculated using the
following formula: (FW — IW) x 100, FW represents the final
weight (g) at 120 days, and IW represents the initial weight (g) at
21 days. The Lee index was calculated using the following formula:
[f/weight (g)/nose — to — anus length (cm)] (26).

At 121 days of age, the animals underwent a 12-h fasting period

before being anesthetized with a combination of ketamine (200
mg/kg body weight), xylazine (15 mg/kg body weight), and inhaled
isoflurane. Euthanasia was performed via cardiac exsanguination.
Samples of epididymal, retroperitoneal, and liver tissues were
collected, weighed, and stored at —80 °C. A portion of the liver was
preserved in formaldehyde for histological analysis. Blood samples
were drawn for analysis, and the plasma was separated and frozen
at —80 °C for later use.

PND70 and PND120 were chosen to evaluate outcomes during
early and established adulthood in mice, respectively (27).

2.5 Assessment of glucose tolerance

An oral glucose tolerance test (OGTT) was performed on mice
at 70 and 120 days of age, as described previously. The animals
were fasted overnight for 12 h with unrestricted access to water ad
libitum. Glucose was administered via oral gavage at a dose of 2 g/kg
body mass, and blood samples were collected from the tail vein at
0, 30, 60, 90, and 120 min after the administration. Blood glucose
concentrations were measured using an Accu-Chek® glucometer
(Roche Diagnostics, Indianapolis, IN, USA) and expressed in
mmol/L. The area under the curve (AUC) was determined using
the trapezoidal method based on glucose concentrations over time.

2.6 Analysis of glycemic and lipid
parameters

Fasting glucose, triglyceride, and total cholesterol levels were
quantified using colorimetric assay kits (Labtest, Brazil). The results
are presented in mmol/L.

2.7 Histological preparation and analysis
Liver tissue fragments were collected for histological analysis
and fixed in 4% formaldehyde solution for 72 h. The samples were

then dehydrated using serial ethanol concentrations (70%, 80%,
90%, and 100%) and embedded in paraffin. The material was
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h with two of Chia oil (2.5 or 5g/kg
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FIGURE 1
Experimental design. Pregnant female mice were housed in groups of three, each paired with a male for mating, and which the males were removed.
Following birth, the litter sizes were adjusted based on the experimental group requirements. Only male pups were used in the study. The oral
glucose tolerance test was conducted at 70 and 120 days post-birth to assess glucose levels. Additionally, lipid profiles, histological parameters, and
oxidative stress were evaluated. C, control; UN, undernutrition group; UN2.5, undernutrition group with chia oil (2.5 g/kg b.m.) supplementation;
UNS5, undernutrition group with chia oil (5 g/kg b.m.) supplementation; b.m., body mass.

sectioned using a microtome (Lupetec MRP09) to a thickness of
5pm and distributed on three glass slides for each sample. The
sections were stained with hematoxylin and eosin for the general
analysis of liver morphology. The sections were analyzed using
an Olympus CBA light microscope to evaluate the presence of
histopathological changes.

2.8 Determination of hepatic lipid content

Hepatic lipids were extracted using organic solvents as
described by Folch et al. (28). For the assay, the lipid extracts
were incubated at 37 °C overnight for complete drying. The
total hepatic lipid content was measured. The dried lipids were
then solubilized in 500 pl of isopropanol. Total cholesterol and
triglyceride levels were quantified using commercially available

colorimetric kits (Labtest, Sdo Paulo, Brazil).

2.9 Evaluation of oxidative markers in liver
and epididymal adipose tissue

Liver and epididymal adipose tissue samples (100 mg per
animal) were homogenized in phosphate-buffered saline (PBS).
The resulting homogenates were centrifuged at 7250 x g for 10 min
at 4
°C for further analysis. Total protein content was determined to

°C. The supernatants were collected and stored at —20

normalize the data using the Bradford method (29) for the analyses
described below.

2.9.1 Peroxidation assay

Lipid peroxidation was determined using the Thiobarbituric
Acid Reactive Substances (TBARS) technique according to Wallin
et al. (30), by adding 0.5 ml TBARS solution (15g trichloroacetic
acid and 0.375g thiobarbituric acid) to 6.25ml of 4.0M HCIL
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The samples were incubated at 100 °C for 15min and then
cooled to room temperature. Following the addition of 0.75ml
of butanol, the mixture was centrifuged, and the absorbance was
recorded at 535 nm. TBARS levels were expressed as nanomoles of
malondialdehyde (MDA) per milligram of total protein.

2.9.2 Hydroperoxide assay

Hydroperoxide concentrations were measured as described by
Banerjee et al. (31). Briefly, hydroperoxides oxidize ferrous ions
(Fe?*) to ferric ions (Fe?*) in an acidic medium. The resulting
ferric ions then interact with xylenol orange in the reagent to form a
colored complex. Absorbance was measured at 550 nm. The results
are expressed as umol/mg of protein.

2.9.3 Catalase activity assay

Catalase (CAT) activity was measured as described by Aebi
(32). Catalase activity was assessed by monitoring the decrease in
absorbance due to H,O, consumption at 240 nm. Each reaction
mixture contained 100 pl of the sample, 2000 pl of PBS, and
50 pl of 0.3M H,0O,. Enzyme activity was calculated using the
following equation: (absOsec — abs60sec/0.1) x dilution factor/mg
protein, where absOseg is the initial absorbance and abs60seg
is the final absorbance. The results are expressed as protein
concentration (mg/ml).

2.9.4 Superoxide dismutase activity

Superoxide dismutase (SOD) activity was determined based on
its ability to inhibit auto-oxidation, measured at an absorbance
of 550nm (33). The assay relies on superoxide generation
through pyrogallol autoxidation and the subsequent inhibition of
the superoxide-mediated reduction of the tetrazolium salt MTT
[3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide].
The reaction was terminated by adding 150 pl dimethyl sulfoxide
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TABLE 2 Content of fatty acids in chia oil. Fatty acids are expressed as
equivalent milligrams of each compound per 100g of chia oil (g/100g).

Fatty acids (g/100g) Chia oil

Linolenic acid 523
Linoleic acid 22.7
Oleic acid 13.4
Palmitic acid 7.2

Stearic acid 3.7

cis-8,11,14 Eicosatrienoic acid 0.16
Arachidic acid 0.15
Eicosapentaenoic acid 0.09
> fatty acids 99.7

> fatty acids: total amount of all measured fatty acids.

(DMSO). The results were expressed as SOD units per milligram of
protein per milliliter (U SOD/mg protein/ml).

2.10 Statistical analysis

Statistical analyses were performed using GraphPad Prism
software (version 8.0). Prior to the analysis, the normality of
the data distribution was assessed using the Shapiro-Wilk test.
Group differences were analyzed using one-way analysis of variance
(ANOVA), followed by Bonferroni post hoc comparisons when
appropriate. Results are presented as mean =+ standard error of the
mean (S.E.M.), and statistical significance was defined as p < 0.05.

3 Results

3.1 Chemical characterization of chia oil

Chromatographic analysis of chia oil composition revealed that
linolenic acid is the predominant biocomponent, accounting for
52.3% of the oil. The other significant components include linoleic
acid (22.7%), oleic acid (13.4%), palmitic acid (7.2%), and stearic
acid (3.7%), as well as various other fatty acids which are present in
smaller quantities (Table 2). The chemical components of chia oil
found in this study were similar to those reported in other studies
(34). However, other studies suggest that the quantities of these
compounds are slightly different from those observed in this study
(35, 36).

These variations in composition can be explained by factors
such as the geographical region where the crop is grown, species
type, physical and chemical characteristics of the soil, time of
harvest, plant age, and extraction methods used (37).

3.2 Body parameters
Body weights were recorded at 21 and 70 days of age. At both

time points, all undernutrition groups (UN, UN2.5, and UN5)
exhibited significantly lower body mass than the control group (p
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FIGURE 2

Postnatal undernutrition leads to a lower body mass than the
control litter at 21, 70, and 120 days. Data are presented as mean +
standard error of the mean. *p < 0.05 vs. C. #p < 0.05 vs. UN2.5.
Data were analyzed using one-way analysis of variance, followed by
Bonferroni post hoc test. Control (C, n = 9), undernutrition (UN, n =
5), undernutrition with 2.5 g/kg b.m. chia oil supplementation
(UN2.5, n = 8), and undernutrition with 5 g/kg b.m. Chia oil
supplementation (UN5, n = 10).

< 0.05). Notably, at 21 days, the UN5 group showed higher body
weight than the UN2.5 group (p < 0.05). By 120 days, only the
UN group continued to display reduced body mass relative to the
controls (p < 0.05). The trajectory of body mass over time is shown
in Figure 2.

Although slight differences in weight were observed at specific
time points, overall body mass gain was higher in the UN,
UN2.5, and UN5 groups than in the control group. Within the
undernourished groups, the UN2.5 group exhibited significantly
greater weight gain than the UN5 group (p < 0.05). No significant
differences in food intake were observed among the experimental
groups. Similarly, the Lee index remained unchanged across
all groups.

All organ and tissue weights were expressed relative to the
body mass of each mouse. Epididymal adipose tissue weight was
significantly reduced in all undernutrition groups (UN, UN2.5,
and UN5) compared to the control group (p < 0.05). Similarly,
retroperitoneal adipose tissue weights were also lower in these
groups than in the control group (p < 0.05), as shown in Table 3.
In contrast, liver weight was significantly greater in the UN, UN2.5,
and UN5 groups compared to the Control group (p < 0.05).

3.3 Metabolic parameters

The fasting glucose and lipid profiles of the experimental
groups are shown in Table 4. The UN5 group exhibited greater
fasting glucose levels than the control group (p < 0.05), but
no significant difference was observed compared to the UN
group. No significant differences were found among the
groups regarding plasma triglyceride and total cholesterol
levels. Similarly, no significant differences were detected in
hepatic cholesterol and triglyceride levels between the groups.
Notably, the UN5 group presented reduced total hepatic lipid
content compared to the Control, UN, and UN2.5 groups (p
< 0.05).
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Glucose tolerance was evaluated at 70 and 120 days (Figure 3).
No significant differences in glycemic response were observed
among the groups at 70 days. At 120 days, however, the UN group
showed higher blood glucose levels at 30 and 60 min than the
control group (p < 0.05). The UN2.5 and UN5 groups displayed
significantly lower glucose concentrations at 30, 60, 90, and 120 min
than the UN group (p < 0.05). Moreover, these two supplemented
groups had reduced glucose levels at 90 and 120 min relative to the
controls (p < 0.05). The total glycemic exposure over time was also
lower in the UN2.5 and UN5 groups than in the UN group at 120
days (p < 0.05).

Histopathological analysis of liver tissue from animals in
the experimental groups did not reveal significant alterations
(Figure 4). The control group presented discrete microvacuoles in
the hepatocyte cytoplasm in the centrilobular regions (Figure 4A),
which is considered normal due to the liver’s role in lipid
metabolism. In contrast, the UN group exhibited multifocal areas
with discrete to moderate cytoplasmic vacuolation in centrilobular
hepatocytes (Figure 4B), which may be associated with food
deprivation during the neonatal period and increased mobilization
of triglycerides from adipose tissue (38). The UN2.5 and UN5
groups showed discrete microvacuoles similar to those observed in
the control group (Figures 4C, D).

The UN5 group exhibited reduced TBARS levels in liver
tissue compared to the Control (p = 0.04), UN (p = 0.007), and
UN2.5 (p = 0.02) groups (Figure 5A). Liver hydroperoxide content
(Figure 5B) was significantly lower in the UN5 group than in the
UN group (p < 0.05). The UN2.5 group had higher catalase activity
in the liver than the C (p = 0.02) and UN5 groups (p = 0.0001)
(Figure 5C). Liver SOD activity was higher in the UN and UN2.5
groups than in the UN5 group (p < 0.05) (Figure 5D).

Oxidative stress markers were also evaluated in the epididymal
adipose tissue (Figure 6). TBARS levels were significantly decreased
in the UN2.5 (p = 0.03) and UN5 (p = 0.003) groups compared
to the controls (Figure 6A). Hydroperoxide concentrations were
elevated in the UN2.5 group compared to those in the Control,
UN, and UNS5 groups (p < 0.05) (Figure 6B). CAT activity was
higher in the UN2.5 group than in the control group (p < 0.05),
whereas the UN5 group showed reduced CAT activity compared to
the UN group (p = 0.005) (Figure 6C). No significant differences
were observed in SOD activity in the liver tissue across the groups
(Figure 6D).

4 Discussion

Our results demonstrate that maternal supplementation with
ChO, a rich source of ALA, effectively improved glucose
tolerance and redox homeostasis in offspring subjected to postnatal
undernutrition during lactation. The ALA content in ChO may
be the key bioactive component responsible for improvements
in glucose metabolism and insulin sensitivity. However, its
concentration can vary depending on the seed variety and
environmental factors such as temperature, climate, and soil
conditions (39, 40). In the present study, gas chromatography
analysis revealed that ALA accounted for 52.3% of the total fatty
acid content in ChO. Based on this, the dose of 5 g/kg corresponds
to 2.61g of ALA, while the dose of 2.5 g/kg corresponds to
1.31 g/day.
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We did not find any alterations in the

histopathological analysis. In fact, ChO has been linked with

significant

the amelioration of hepatic disturbances in rats fed a high-fat and
high fructose diet (41). It is important to note that our analysis
was limited to hematoxylin and eosin staining, which may not
reveal more subtle morphological changes. Despite the absence
of clear morphological changes, functional metabolic outcomes
were positively affected by maternal ChO supplementation. We
observed an improvement in glucose tolerance, as the UN2.5 and
UNS5 groups exhibited reduced AUC at 120 days compared to
the UN group, even though the UN5 group had greater fasting
glucose levels than the Control group. Undernourished animals
exhibit normal glucose tolerance (42, 43), despite a reduction in
glucose-stimulated insulin secretion. Previous studies have shown
that 3g ALA supplementation improves insulin sensitivity and
glucose tolerance, but fasting glucose levels may be influenced by
other factors, such as hepatic metabolism (44, 45).

ChO has been shown to positively regulate the transcript
levels of insulin receptors. Additionally, the phenolic compounds
present in ChO may aid in regulating glucose levels by inhibiting
gluconeogenesis (46). The supplementation with 10% flaxseed oil,
another source of ALA, also led to a significant increase in hepatic
mRNA expression of PPAR-y, suggesting that ALA may activate
the PPAR-y dependent pathway to alter liver lipid metabolism
and enhance insulin sensitivity (47). Souza et al. (48) observed
improved glucose responses in Swiss mice fed a high-fat diet and
supplemented with ChO in a dose of 1.5g/kg b.m. for 6 weeks.
Poudyal et al. (45) supplemented Wistar rats with ChO at 30ml/kg
of diet for 8 weeks and found improvements in glucose tolerance
and insulin sensitivity without changes in lipid plasma.

Maternal fatty acids are believed to be transported to the fetus
via specific transmembrane proteins: fatty acid transport proteins
(FATPs), fatty acid translocase (FAT/CD36), and intracellular fatty
acid-binding proteins (FABPs). Once fatty acids enter the cells
surrounding the fetus, they can be translocated to the nucleus
to modulate gene expression, stored for later use, or directed
to the mitochondria to regulate mitochondrial function (15-
17). Maternal dietary enrichment with w-3 PUFAs is linked to
increased w-3 PUFA accumulation in the offspring liver (47), which
increases the activity of key mitochondrial enzymes, including
citrate synthase, isocitrate dehydrogenase, and o-ketoglutarate
dehydrogenase. These enzymes are essential components of the
tricarboxylic acid cycle, and their enhanced activity suggests
improved mitochondrial efficiency. By supporting mitochondrial
function, w-3 PUFA intake during the perinatal period may
help prevent insulin resistance via glycemic control. Another
suggested mechanism is that maternal w-3 supplementation
modulates offspring glucose metabolism by upregulating genes
involved in fatty acid oxidation (e.g., carnitine palmitoyltransferase
I and acyl-CoA oxidase 1) and glycolysis/gluconeogenesis (e.g.,
glycerol-3-phosphate dehydrogenase 1), while downregulating
genes responsible for fatty acid synthesis (e.g., ATP-citrate lyase
and stearoyl-CoA desaturase 1). This gene expression profile
promotes greater triglyceride catabolism and reduces hepatic lipid
synthesis in offspring. Moreover, -3 has been shown to decrease
pyruvate kinase activity, suggesting a decrease in glucose oxidation
as fatty acid oxidation increases. This highlights the central
role of w-3 fatty acids in regulating fatty acids and glucose in
neonates (49, 50).
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TABLE 3 Effect of maternal supplementation with chia oil on body parameters in mice from litter control and undernourished.

‘ Body parameters C UN UN2.5 UN5 ‘
BM gain (%) 147.9 +7.38 306.0+£37.6* 377.9 £29.1* 242.2 4 34.17*&
Lee index at 120 days 1.13 £ 0.01 1.06 & 0.02 1.08 £0.03 1.09 £0.03
EAT weight (mg/g b.m.) 16.32 +0.95 8.52 £ 1.19% 8.87 £ 1.07* 8.03 + 1.35%
Liver weight (mg/g b.m.) 38.38 £ 0.6 41.1540.8* 40.82 + 0.6* 47.76 £ 2.9*
Retroperitoneal adipose tissue 3.35+0.2 1.81 £0.3* 2.10 £ 0.3* 1.24 £ 0.2%**
weight (mg/g b.m.)

BM, body mass; EAT, epididymal adipose tissue. Values are presented as the mean & SEM. *p < 0.05 and ***p < 0.0001 vs. Control; ¥p < 0.05 vs. UN2.5. The data were analyzed using a
one-way analysis of variance followed by the Bonferroni post hoc test. Control (C, n = 9), Undernutrition (UN, n = 5), Undernutrition with 2.5 g/kg b.m. Chia oil supplementation (UN2.5, n
= 8), and Undernutrition with 5 g/kg b.m. Chia oil supplementation (UNS5, n = 10).

TABLE 4 Effect of maternal supplementation with chia oil on metabolic parameters in mice from litter control and undernourished.

Metabolic parameters

Blood plasma

Fasting glucose (mmol/L) 3.7+£03 55+£1.2 50£0.7 6.8 £ 0.6
Triglycerides (mmol/L) 0.7+£0.1 09402 0.7 +£0.1 12402
Total cholesterol (mmol/L) 1.6 £0.2 20+0.3 1.74+03 20+0.4

Hepatic lipids

Total lipids (mg of lipids/g of liver) 64.1+3.0 557+ 6.4 591475 27.8 £ 6.9
Hepatic cholesterol (mmol/L) 38+04 37+0.1 3.8+ 0.6 38+1.0
Hepatic triglycerides (mmol/L) 1.9+02 1.8+03 2.6£0.1 1.4+0.2

Values are presented as mean + SEM. *p < 0.05 vs. control; *p < 0.05 vs. UN; &p < 0.05 vs. UN2.5. The data were analyzed using a one-way analysis of variance followed by the Bonferroni
post hoc test. Control (C, n = 9), undernutrition (UN, n = 5), undernutrition with 2.5 g/kg b.m. Chia oil supplementation (UN2.5, n = 8), and undernutrition with 5 g/kg b.m. Chia oil
supplementation (UN5, n = 10).
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FIGURE 3

No significant differences in glycemic response were observed among the groups at 70 days (A, B). The undernutrition litters from females
supplemented with chia oil exhibited lower glycemic curves at 30, 60, 90, and 120 min (C) and lower glucose concentration at 120 days (D) compared
to the undernutrition litter control. Data are presented as mean + standard error of the mean. *p < 0.05 vs. C. #p < 0.05 vs. UN. The data were
analyzed using a one-way analysis of variance followed by the Bonferroni post hoc test. Control (C, n = 9), undernutrition (UN, n = 5), undernutrition
with 2.5 g/kg b.m. Chia oil supplementation (UN2.5, n = 8), and undernutrition with 5 g/kg b.m. Chia oil supplementation (UN5, n = 10).
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FIGURE 4
Histological sections of the liver were stained with hematoxylin and eosin (H&E). Central lobular region. (A) Control Group with multifocal areas of
discrete vacuolization in the cytoplasm of hepatocytes (arrow); (B) undernutrition Group with moderate vacuolization in the cytoplasm of
hepatocytes (arrows). (C) Undernutrition with 2.5 g/kg b.m. chia oil supplementation and (D) undernutrition with 5 g/kg b.m. chia oil
supplementation with multifocal areas of discrete vacuolation in the cytoplasm of hepatocytes (arrow). Scale bars: 50 um.

In addition to these lipid-regulating effects, w-3 PUFAs have
also been shown to mitigate oxidative stress through multiple
mechanisms. Indeed, prior investigations have demonstrated
that -3 supplementation reduces malondialdehyde (MDA)
levels, an end product of lipid peroxidation and an established
oxidative stress marker (51). This effect may occur through
w-3-mediated modulation of prostaglandin composition,
as -3 acts as a potent inhibitor of the arachidonic acid
prostaglandin production pathway, which is known for its
pro-inflammatory properties. Additionally, w-3 has been shown
to inhibit cyclooxygenase-2 (COX-2) enzyme activity (39, 40, 52—
55), potentially explaining its MDA-lowering effects, as COX-2

Frontiersin Nutrition

generates oxidative and inflammatory prostaglandins that promote
lipid peroxidation.

The UN2.5 group exhibited higher CAT activity in both
tissues and greater hydroperoxide levels in the epididymal tissue.
Earlier studies have established that hydroperoxides are absent
in normal plasma owing to degradative systems such as catalase
(56). Thus, the increase in catalase activity suggests an attempt
to reduce the hydroperoxides, which are increased in conditions
of oxidative stress, as in the undernutrition model used in our
study. Consistent with these findings, Rincén-Cervera et al. (57)
provided 21 days of chia oil (100 g/kg of diet) and observed
high antioxidant enzyme (SOD, CAT, glutathione peroxidase, and
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FIGURE 5

Maternal supplementation with chia oil influences the oxidant profile
in the liver of undernourished offspring. The UN5 group exhibited
lower TBARS and hydroperoxide levels (A, B). The UN2.5 group
exhibited higher CAT and SOD activities (C, D). Data are presented
as mean = standard error of the mean. *p < 0.05; **p < 0.01; ***p <
0.001. The data were analyzed using a one-way analysis of variance
followed by the Bonferroni post hoc test. Control (C, n =9),
Undernutrition (UN, n = 5), Undernutrition with 2.5 g/kg b.m. Chia
oil supplementation (UN2.5, n = 8), and Undernutrition with 5 g/kg
b.m. Chia oil supplementation (UN5, n = 10).

*k
z 02 1000 . o
2 *
5o _ 800
s £
M 53
£ TE
o £z
a £s
N £f
g " =3
Z o
H
4
=
= X
c UN  UN25  UNS UN  UN25 UNS
*
¢
* *

soD
(Umg/mL of protein)

c UN UN25 UNS

FIGURE 6

Maternal chia oil supplementation affects the oxidant profile of
undernourished offspring in the epididymal adipose tissue. The
UN2.5 and UNS5 litters exhibited lower TBARS concentrations (A). UN
2.5 exhibited higher hydroperoxide levels, while UN 5 showed lower
levels (B). Catalase activity was higher in the UN2.5 group (C). No
significant changes were observed in SOD activity (D). Data are
presented as mean =+ standard error of the mean. *p < 0.05; **p <
0.01; ***p < 0.001. The data were analyzed using a one-way analysis
of variance followed by the Bonferroni post hoc test. Control (C, n =
9), Undernutrition (UN, n = 5), Undernutrition with 2.5 g/kg b.m.
Chia oil supplementation (UN2.5, n = 8), and Undernutrition with 5
g/kg b.m. Chia oil supplementation (UN5, n = 10).

glutathione reductase) activity in the liver. Other studies have
shown the enhancement of antioxidant enzymes and improvement
in oxidative stress parameters through ChO supplementation. It
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described the improvement of antioxidant activity in plasma and
liver, from several doses of ChO (1.61 g/mL, 4.28 g/mL, 4.22 g/ml)
(41, 51, 58, 59). Moreover, previous studies have suggested that
-3 fatty acids may stimulate the NF-kB pathway via activation
of PPAR-o, a mechanism that regulates the expression of several
antioxidant enzymes, a previous work by Han et al. (51), showed
that a supplementation of 3,8 g/kg b.m. upregulated the PPAR-
a. The non-enzymatic peroxidation of w-3 generates a product
called J3-isoprostanes, which leads to the expression of several
antioxidant enzymes in the liver, formation of glutathione, and a
decrease in lipid peroxidation rates (60, 61).

Moreover, ChO is a source of bioactive compounds due to
its high content of polyphenolic compounds (e.g., chlorogenic
acid, caffeic acid, myricetin, quercetin, and kaempferol) (62).
The antioxidant activity of these polyphenols involves multiple
mechanisms, including reactive oxygen species (ROS) scavenging,
suppression of ROS generation by inhibiting specific enzymes,
chelation of trace elements, and upregulation of endogenous
antioxidant defenses (63). Some studies have demonstrated
that polyphenols can reduce oxidative stress markers without
significant changes in antioxidant enzyme activity, suggesting
a direct antioxidant effect (63, 64). The UN5 group showed
reduced oxidative stress biomarkers (TBARS and hydroperoxides),
along with lower activity of antioxidant enzymes (CAT and
SOD). In contrast, the UN2.5 group presented higher levels
of hydroperoxides in adipose tissue and increased activity of
antioxidant enzymes in both analyzed tissues. These findings
suggest a dose-dependent effect on oxidative stress. The higher
dose (UN5) may exert antioxidant effects through mechanisms
independent of antioxidant enzymes, possibly by directly
scavenging ROS or suppressing their generation via inhibition
of specific enzymes, thus reducing the need for upregulation of
endogenous antioxidant defenses. On the other hand, the 2.5 g/kg
dose appears to induce the activation of antioxidant enzymes as a
compensatory response to oxidative stress.

Our findings indicate that postnatal undernutrition leads to
reduced body weight during the early stages of development.
Triglycerides are the predominant lipids in milk. Throughout
the suckling period, their concentration tends to decline,
and in large litters, competition among pups further reduces
individual milk intake. Kozak et al. (65) have demonstrated
that undernourished animals have smaller adipocytes, indicating
reduced lipid accumulation. In rodents, most white adipose tissue
development occurs during the postnatal period, particularly
during lactation, although some adipogenesis begins prenatally.
Despite their higher weight gain, undernourished offspring did
not reach the body mass of the Control group up to 120 days of
life, which aligns with previous findings (8, 9, 25, 42). Previous
studies have found alterations in body composition, such as fat
redistribution, decreased fat mass, and increased lean mass, in
animals supplemented with ALA derived from chia oil (45, 66—
68). Additionally, maternal dietetic supplementation with ALA (7g
of linseed 0il/100g of diet) (69) has been linked with lower fat
accumulation, which is seen both in lower fat mass and in reduced
adipocyte size in offspring.

ALA intake may be associated with reduced body adiposity
due to a lipid redistribution with FAT/CD36 (fatty acid
translocase/cluster of differentiation 36) recruitment to the
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plasma membrane, mitochondrial activity, and beta-oxidation.
The PUFAs n-3 positively regulate lipoprotein lipase and adipose
triacylglycerol lipase, which play important roles in catalyzing the
hydrolysis of triacylglycerol into fatty acids and monoacylglycerol
in lipoproteins, skeletal muscle, and adipose tissue. However,
the exact mechanism by which ALA exerts its effects remains
unclear. Owing to the differences in pharmacological response to
ALA and to EPA/DHA, ALA may have effects through alternative
mechanisms that require further investigation (45, 46, 59, 70). ALA
supplementation at 4 g/day in obese subjects reduced free fatty
acids and increased a gene that inhibits adipose triglyceride lipase
(G0S2) and PPAR-y expression in peripheral blood mononuclear
cell, indicating an antilipolytic effect (71). The upregulation of
GO0S2, may be beneficial in preventing excessive lipolysis and the
consequent release of free fatty acids into circulation, which is
associated with insulin resistance and metabolic dysfunction. In
this context, reducing lipolysis could help preserve metabolic
homeostasis, particularly under conditions of early-life nutritional
stress (72). Another study supplementing 3g of ALA showed a
significant serum reduction in IL-6, IL-1 and chemoattractant
protein-1 (MCP-1), suggesting that ALA supplementation prevents
the inflammatory process in animals fed a high-fat diet (73).

Our results suggest that the influence of ChO is dose-
dependent, where a dose of 5 g/kg, in parallel to a decrease in
fat mass, attenuated the total weight gain when compared to
the offspring from mothers supplemented with the dose of 2.5
g/kg. These findings may be partly explained by ALAs capacity
to alter plasma lipid composition and metabolism. Indeed, prior
evidence has demonstrated that 15-30 days of supplementation
with 10%—24% ALA in dietary lipids is sufficient to increase
levels of ALA and EPA in the bloodstream; in this way, the
enrichment of plasma lipids by the consumption of ALA influences
the type of lipoproteins synthesized by the liver (very-low-density
lipoprotein, high-density lipoprotein, low-density lipoprotein) and
the peripheral distribution of ALA by increasing the bioaccessibility
of PUFA -3 in the body (74). It has also been described that the
higher the dietary ALA content, the higher the hepatic conversion
of EPA and DHA (57).

Although our study suggests that maternal supplementation
with  ChO may long-term metabolic and
improvements in offspring, we did not directly assess epigenetic
mechanisms, which were hypothesized to underlie these effects.
Therefore, the involvement of epigenetic modulation remains

induce redox

speculative and should be interpreted with caution. In addition, the
study was conducted exclusively in male offspring, which limits the
generalizability of our findings. Given that sex-specific responses
to nutritional and oxidative challenges have been reported, future
investigations involving both sexes are necessary to provide a more
comprehensive understanding of the observed effects. Further
studies incorporating epigenomic and transcriptomic approaches
are warranted to confirm the potential molecular mechanisms
involved. Also, future studies employing complementary staining
techniques, such as Masson’s trichrome, Oil Red O, or PAS, are
warranted to provide a more detailed evaluation of liver structure,
including fibrosis, lipid accumulation, and glycogen content.
Based on our findings, maternal supplementation with chia oil
(ChO) attenuated several metabolic disturbances associated with
early-life undernutrition. Specifically, supplementation improved
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parameters such as compensatory weight gain, glucose tolerance,
hepatic and epididymal levels of TBARS and hydroperoxides,
and hepatic catalase (CAT) activity. The lower dose (2.5 g/kg
b.m.) was associated with improvements in glucose tolerance
and CAT activity, while the higher dose (5 g/kg b.m.) more
effectively reduced compensatory weight gain, improved glucose
handling, lowered oxidative stress markers, despite no observed
upregulation of antioxidant enzyme activity, and decreased hepatic
lipid accumulation. These dose-dependent effects indicate a modest
advantage of a higher dose in mitigating long-term metabolic
alterations. However, the precise mechanisms, particularly those
related to the role of ALA in early metabolic programming, remain
unclear. Further studies are needed to clarify these effects and
to determine the translational relevance of maternal ALA-rich
supplementation in undernutrition settings.
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