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Artificial Intelligence (AI) is emerging as a key driver at the intersection of

nutrition and food systems, o�ering scalable solutions for precision health,

smart manufacturing, and sustainable development. This study aims to present a

comprehensive review of AI-driven innovations that enable precision nutrition

through real-time dietary recommendations, meal planning informed by

individual biological markers (e.g., blood glucose or cholesterol levels), and

adaptive feedback systems. It further examines the integration of AI technologies

in food production, such as machine learning–based quality control, predictive

maintenance, and waste minimization, to support circular economy goals

and enhance food system resilience. Drawing on advances in deep learning,

federated learning, and computer vision, the review outlines how AI transforms

static, population-level dietary models into dynamic, data-informed frameworks

tailored to individual needs. The paper also addresses critical challenges related

to algorithmic transparency, data privacy, and equitable access, and proposes

actionable pathways for ethical and scalable implementation. By bridging

healthcare, nutrition, and industrial domains, this study o�ers a forward-looking

roadmap for leveraging AI to build intelligent, inclusive, and sustainable

food–health ecosystems.

KEYWORDS

artificial intelligence, personalized nutrition, food manufacturing, machine learning,
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1 Introduction

With nutrition-related chronic conditions such as obesity, diabetes, and cardiovascular
diseases on the rise, there is a growing imperative to shift from generalized dietary
guidelines toward individualized, data-driven nutritional strategies. While the importance
of optimal nutrition in health promotion and disease prevention is well-established,
traditional dietary planning often relies on generalized frameworks that overlook inter-
individual variability (1, 2). These static, population-level guidelines are insufficient to
address the complex interplay of genetics, metabolic markers, lifestyle behaviors, and
environmental exposures that influence nutritional needs. Consequently, a significant
proportion of individuals receive dietary recommendations that fail to produce
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the intended health benefits. At the same time, the food
manufacturing sector faces mounting scrutiny over issues related
to nutrient degradation, lack of transparency, and limited
adaptability in production processes. Conventional manufacturing
practices frequently compromise the nutritional quality of food
products, while insufficient traceability in the food supply chain
raises concerns over safety and nutritional reliability (3). These
dual challenges, generic dietary guidance and inefficient food
production systems, necessitate a paradigm shift driven by
technological innovation.

Artificial intelligence (AI) has emerged as a transformative
enabler in this context. Through advanced techniques such as
machine learning (ML) and deep learning (DL), AI facilitates the
extraction of actionable insights from complex health and dietary
datasets (4, 5). AI-powered systems are increasingly capable of
delivering real-time, individualized dietary recommendations,
especially for chronic disease management. Continuous glucose
monitoring platforms, for example, leverage AI algorithms to
support personalized dietary decisions for diabetic patients,
fostering better glycemic control and improved outcomes
(6). Similarly, AI-enabled remote patient monitoring systems
dynamically adjust nutritional recommendations based on
ongoing physiological changes, offering a responsive approach to
dietary management (7).

Beyond personalized nutrition, AI contributes significantly to
enhancing the food manufacturing process. Tools such as artificial
neural networks and fuzzy logic models have been applied to
optimize drying technologies, enabling manufacturers to better
preserve nutritional content during processing (1, 8). AI also
supports the production of customized food formulations to
meet specific dietary needs, contributing to the broader goal of
precision nutrition. Furthermore, AI-driven traceability systems
improve transparency and monitoring across the supply chain,
ensuring that food quality is maintained from source to consumer
(3). However, the adoption of AI in nutrition and food science
is not without challenges. Data privacy, security, and ethical
concerns surrounding algorithmic decision-making are critical
barriers that demand careful scrutiny (9). Additionally, long-term
evidence on the efficacy, scalability, and societal impact of AI-based
nutrition interventions remains limited, particularly across diverse
populations and healthcare systems (1, 10). Limited explainability
in complex AI models further complicates clinical and consumer
trust, emphasizing the need for transparent, interpretable, and
user-centered AI tools (2).

To address these critical gaps, this study aims to provide
a comprehensive review of AI applications at the intersection
of personalized nutrition and intelligent food manufacturing. By
synthesizing current research and highlighting both opportunities
and constraints, the paper contributes to advancing knowledge and
practice in this evolving domain. Specifically, the study focuses on:

• Personalized dietary planning: exploring AI-driven methods
for real-time, individualized nutrition strategies to support
chronic disease management and preventive care.

• Food manufacturing innovation: investigating AI applications
in food processing, including nutrient preservation, quality
control, waste reduction, and resource optimization.

• Data privacy and security: assessing privacy-preserving
AI approaches such as Federated Learning (FL) and
homomorphic encryption for secure health data handling.

• Ethical and regulatory challenges: identifying the ethical
dilemmas, interdisciplinary needs, and policy gaps associated
with AI deployment in nutrition and food systems.

• Scalability and explainability: discussing the need for
transparent, explainable AI models and scalable solutions
across diverse populations and infrastructures.

By positioning AI at the intersection of personalized healthcare
and intelligent food production, this study aims to advance
research, support industry integration, and foster the development
of ethical, resilient, and sustainable food–health ecosystems. To
ensure a coherent and comprehensive analysis, the remainder
of this paper is organized as follows: Section 2 examines AI-
driven approaches to personalized dietary planning, focusing on
ML and DL techniques. Section 3 discusses the use of predictive
analytics to optimize health outcomes based on physiological and
nutritional data. Section 4 explores the integration of AI in food
manufacturing, with emphasis on quality control, sustainability,
and process optimization. Section 5 highlights the importance of
interdisciplinary collaboration among AI experts, nutritionists, and
food technologists. Section 6 addresses ethical, regulatory, and
societal challenges related to AI adoption in this domain. Finally,
Section 7 summarizes key insights and outlines directions for future
research to support responsible and impactful implementation of
AI in nutrition and food systems.

2 AI in personalized nutrition:
methods and applications

2.1 Defining personalized nutrition and its
relevance in precision health

Personalized nutrition (PN) is defined as the adaptation of
dietary recommendations based on individual-level variability
in biology, behavior, and environment. It represents a shift from
generalized nutritional guidance to precision-based approaches
that accommodate genetic profiles, metabolic phenotypes,
disease risks, and lifestyle patterns (11, 12). This paradigm is
especially critical in addressing chronic conditions such as obesity,
diabetes, and cardiovascular diseases, where standardized dietary
interventions often fall short of achieving clinically meaningful
outcomes (13).

Recent reviews emphasize that nutrigenomics, a field at the
intersection of nutrition, genomics, and bioinformatics, forms
a scientific foundation for PN by uncovering gene–nutrient
interactions and enabling genotype-based dietary interventions
(14). The integration of AI with nutrigenomics and multi-
omics approaches has accelerated the implementation of PN
strategies, providing more precise, individualized insights into
dietary needs and health outcomes. For example, Waheed
et al. (15) discuss how diet–gene interactions are crucial in
managing neurological disorders such as Alzheimer’s disease and
Parkinson’s disease. Their findings indicate that personalized
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diets guided by genetic insights and AI-assisted screening can
significantly improve cognitive health. Similarly, Ferreira et al.
(16) highlight how AI-enabled techniques such as random forests
and gradient boosting enhance the prediction of individual
responses to diets, particularly when microbiome data are
included. These methods have demonstrated potential in managing
weight, gastrointestinal health, and metabolic risks. Furthermore,
Saha et al. (17) report that AI and computer vision driven
automation in the food industry can achieve over 99% accuracy
in food classification and nutrient detection. This high level
of accuracy enables the real-time deployment of personalized
dietary algorithms.

These advances point to a significant transformation in the
PN landscape: a move from traditional heuristic-based dietary
planning toward dynamic, data-driven frameworks powered by
AI and supported by wearable biosensors, such as continuous
glucose monitors (CGMs) and real-time nutrient trackers (18).
As these technologies become increasingly integrated into health
management platforms, AI-driven personalized nutrition is
expected to play a crucial role in preventing disease, optimizing
performance, and enabling long-term wellness strategies tailored to
individual needs (19, 20).

2.2 Adaptive dietary planning with ML and
reinforcement learning techniques

AI techniques, particularly ML and reinforcement learning
(RL), have significantly advanced PN by enabling the integration
and interpretation of complex, multimodal datasets. Supervised
models such as multilayer perceptrons (MLPs) and long
short-term memory (LSTM) networks have been employed
to predict postprandial glycemic responses, lipid fluctuations, and
weight dynamics, thereby transforming user-specific parameters
into personalized, actionable dietary recommendations (21).
Unsupervised methods like k-means clustering and principal
component analysis (PCA) support phenotype-driven stratification
for targeted interventions (22). Recent efforts have emphasized
model transparency through symbolic knowledge extraction,
facilitating explainable and rule-based recommendations aligned
with expert guidance–demonstrated to reach 74% precision and
80% fidelity (23). RL algorithms, such as Deep Q-Networks and
Policy Gradient methods, enable continuous personalization
via feedback loops from behavioral and physiological data (e.g.,
CGM), reducing glycemic excursions by up to 40% (21, 24).
Additionally, mobile health tools like Diet Engine have achieved
86% classification accuracy using DL (YOLOv8) for real-time food
recognition and nutrient estimation (20).

Recent comprehensive reviews highlight recommender systems
as a cornerstone in the field, often integrating wearable and
app-based inputs (25). Hybrid models combining content-based
filtering, collaborative algorithms, and knowledge graphs are
increasingly adopted to enhance personalization and user wellbeing
(26). In parallel, ML models such as random forests and
XGBoost have been applied to biomarker prediction (e.g., plasma
vitamin C), although limitations in data granularity remain (22).

Despite promising outcomes, several implementation barriers
persist, including ethical concerns related to autonomy and bias,
variability in food databases, and the limited interpretability of
deep models. Addressing these through explainable AI, robust
validation, and clinical integration is essential for scalable and
equitable PN applications (27, 28).

2.3 Image-based dietary assessment using
DL and computer vision

Advancements in DL, especially convolutional neural networks
(CNNs), have significantly enhanced the accuracy and efficiency
of dietary assessment tools. These technologies automate tasks
such as food image classification, portion size estimation, and
nutrient content prediction, enabling more objective and scalable
nutritional tracking. CNN-basedmodels have consistently achieved
classification accuracies above 85% across standard datasets (29,
30), and when paired with transformer-based architectures, such
as CSWin or vision transformers, accuracy rates can exceed 90% in
fine-grained food identification (31, 32).

A growing trend is the integration of attention mechanisms
and multi-level feature fusion to improve recognition robustness
in challenging conditions like intra-class similarity and variable
lighting (30). Multi-level attention networks and knowledge
distillation strategies have been shown to improve classification
accuracy on large-scale datasets such as CNFOOD-241, a
curated image dataset of Chinese food items with top-1
performance reaching 86.22% and top-5 accuracy up to 98.49%
(32, 33). Similarly, ensemble-based models have leveraged
both global context from transformers and local perception
from CNNs to improve visual differentiation in complex food
environments (33).

New frontiers include multimodal approaches that incorporate
audio, text, and visual cues for enhanced summarization and
dietary analysis. For example, transformer-based summarization
models using GPT and Inception-V3 have been applied to cooking
videos, extracting both visual ingredients and auditory recipe
steps into structured meal records (34). Additionally, Multimodal
Large Language Models are emerging in food energy estimation,
incorporating reasoning capabilities and volume-aware inputs
to improve caloric assessments (35). These innovations are not
limited to academic development, real-world applications such
as “Diet Engine” and mobile dietary assistants now employ
YOLOv8-based CNN pipelines for real-time food recognition
and nutrient estimation, achieving classification accuracy of 86%
(20). Beyond image classification, AI systems now estimate
the nutrient composition of complex dishes with a mean R2-
top5 of 0.86, even for region-specific cuisines like Chinese
dishes (33).

Despite these promising advances, several challenges
persist, including the need for diverse, annotated food datasets,
managing cross-cultural dietary differences, and ensuring model
interpretability and generalizability across demographics. Table 1
summarizes the state-of-the-art models, datasets, and performance
metrics associated with food image-based dietary assessment.
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TABLE 1 Summary of deep learning-based models in image-based

dietary assessment.

Model/study Key features and
applications

Performance
metrics

FoodCSWin (29) CSWin transformer with local
feature dual enhancement block
(LFDB); designed to manage large
visual variance in food images

94.11% top-1
accuracy

MAF-Net (30) Multi-level attention fusion using
CNN backbones and
KL-divergence regularization for
fine-grained classification

90.61% (UEC
Food-100)

ResVMamba (31) Combines residual learning with
selective state-space modeling;
efficient for complex food image
analysis in CNFOOD-241

81.70% top-1
accuracy

YOLOv8 – diet
engine (20)

Mobile nutrition app using
YOLOv8 and CNNs; supports
image-based food recognition and
chatbot-guided diet suggestions

86% classification
accuracy

MLLM
volume-aware
model (35)

Multimodal large language model
with volume-aware reasoning for
improved caloric estimation from
food images

Improved energy
estimation
accuracy on
Nutrition5K

Ensemble CNN+

transformer (32)
Uses ensemble learning and
knowledge distillation to improve
classification robustness and
reduce model size

86.22% top-1
accuracy
(Food2K)

RegNet fusion
model (33)

Combines RegNet-Y with
cutmix/mixup for nutrient
estimation in Chinese cuisine;
validated on CNFOOD-241 dataset

R2-Top5=
0.8636

GPT+ CNN
video summarizer
(34)

Automates cooking video
summarization using CNN+

GPT-based summarization
pipeline; supports visual+ audio
synthesis

High qualitative
accuracy in recipe
extraction

2.4 Natural language processing for
behavioral insights and digital dietary
coaching

Natural Language Processing (NLP) plays an increasingly
central role in capturing the behavioral dimensions of dietary
assessment by analyzing text-based inputs such as food diaries,
conversational logs with chatbots, and social media entries.
Transformer-based architectures, including BERT and GPT
models, have been deployed to extract patterns in eating behavior,
detect anomalies (e.g., binge eating, late-night snacking), and
assess emotional states influencing food choices (36, 37). One key
application area is digital dietary coaching. Fadhil and Gabrielli
(36) demonstrated that AI-based dietary chatbots significantly
improved user adherence to nutrition plans by 32% over
conventional counseling. This was attributed to AI’s ability to offer
continuous, context-aware, and emotionally adaptive feedback.
Similarly, studies on multimodal journaling practices highlight
users’ varied preferences in food description strategies, ranging
from vague portion sizes to detailed textual specifications, that
challenge standard NLP pipelines (38).

Furthermore, Lan et al. (39) developed and evaluated “iFood,”
a social-media-based applet designed for dietary monitoring. The
system integrates food image recognition with NLP to interpret
user-generated text from platforms like Weibo, demonstrating
promising usability in real-world dietary logging. The study also
highlighted the potential of combining visual and textual content
for more accurate and user-friendly dietary monitoring. These
findings indicate that combining multimodal NLP approaches
with personalized feedback mechanisms offers a promising route
for increasing user engagement, adherence, and effectiveness
in digital nutrition programs. However, challenges remain in
ensuring interpretability, cross-linguistic adaptability, and ethical
considerations related to data sensitivity in user-generated content.

2.5 Clinical integration and consumer
applications of AI-driven nutrition systems

AI-driven systems are increasingly integrated across clinical,
consumer, and performance-based nutrition applications. In
clinical contexts, explainable ML models such as support vector
machines (SVMs) and random forests have demonstrated efficacy
in identifying conditions like sarcopenic obesity using non-
invasive, easily available features (e.g., body mass index, neck/thigh
circumference), and are now supported by web-based tools for
geriatric screening (40). Moreover, ChatGPT-generated dietary
plans for metabolic dysfunction-associated steatotic liver disease
(MASLD) show promising accuracy in caloric and fiber content,
though improvements are needed in aligning macronutrient ratios
with clinical guidelines (41).

Consumer-facing apps such as MyFitnessPal, Noom, and
the WeChat-integrated iFood platform demonstrate how AI,
combined with user-friendly interfaces and social media data,
can promote self-tracking, adherence, and personalized dietary
monitoring (39). NLP-powered tools like ChatGPT also show
potential for multilingual dietary advice, though performance
disparities remain in underrepresented languages such as Kazakh
(42). This highlights the need for local dietary data integration and
tailored LLM training. Mobile and decentralized implementations,
like the SpeziLLM fog-computing framework, offer privacy-
aware execution of LLMs for diet-related interventions across
healthcare scenarios (43). Studies evaluating GPT-4’s analysis of
health data also reveal its strength in detail-rich summaries,
although expert oversight is essential for ensuring interpretive
accuracy (44).

Importantly, a forward-looking research agenda emphasizes
personalized food advice as a means to address chronic conditions
such as hypertension and allergies through recommender systems
(AI tools that suggest personalized options based on user
data), along with behavioral modeling and clinical validation
(45). However, achieving widespread clinical adoption requires
interdisciplinary collaboration, evidence-backed implementation,
and transparent model governance. A summary of key AI
applications in personalized nutrition, including domains,
scientific contributions, and representative references, is provided
in Table 2.
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TABLE 2 AI applications in personalized nutrition: domains,

contributions, and evidence.

Application
domain

Scientific contribution Representative
references

Personalized diet
planning via
multi-omics

Tailors diets using genomic,
microbiome, and metabolic data
integrated with ML

(11, 12, 14–16)

Dynamic dietary
adjustment

RL and DL models personalize
recommendations based on
metabolic and behavioral
feedback

(20, 21, 24–26)

Food image
analysis with DL

CNNs and transformers identify
food, estimate portion size and
nutrients in real time

(29–35)

NLP for dietary
coaching

Uses GPT/BERT models to
interpret food diaries, support
chatbot coaching, and boost
adherence

(36–39)

Clinical diagnosis
and monitoring

AI models support diet planning
for MASLD, and metabolic
syndromes; enable explainability

(40–42, 44)

Decentralized and
privacy-aware
deployment

LLMs deployed on fog
computing and mobile devices
enhance privacy and local
context sensitivity

(43)

Policy, ethics, and
interoperability

Addresses equity, algorithmic
transparency, language bias, and
evidence-based guidance gaps

(27, 28, 45)

2.5.1 Real-world applications of AI in
personalized nutrition: the cases of ZOE and
DayTwo

AI-powered platforms, such as ZOE and DayTwo, exemplify
the practical implementation of personalized nutrition, showcasing
how data-driven insights can be harnessed to tailor dietary
recommendations at the individual level. ZOE, a pioneering startup
in precision nutrition, leverages advanced ML algorithms together
with comprehensive biological data such as gut microbiome
composition, postprandial glycemic responses, and blood lipid
profiles to generate individualized dietary recommendations
tailored to users’ metabolic and physiological responses. By
leveraging CGM data alongside microbiota and metabolic
biomarkers, ZOE predicts individual responses to different foods
in real time and adjusts dietary suggestions accordingly. This
holistic and adaptive approach aims to optimize metabolic health
and prevent diet-related chronic diseases (46).

In a similar vein, DayTwo employs metagenomic sequencing
combined with AI-driven predictive modeling to generate
individualized meal plans. These plans are specifically designed
to minimize glycemic responses in individuals, particularly
those with metabolic syndrome, prediabetes, or type 2 diabetes.
DayTwo’s methodology is grounded in large-scale clinical
data and validated through studies demonstrating significant
improvements in glycemic control and patient adherence (47).
Together, these platforms illustrate how AI technologies are
translating the principles of precision nutrition into scalable and
clinically relevant tools, enabling more proactive and personalized
health interventions.

3 Predictive analytics for health
optimization

3.1 Predictive modeling for nutritional
deficiency and disease risk

This methodology leverages predictive modeling to assess
nutritional deficiencies and disease risks through the integration of
ML and AI, enabling early identification of at-risk individuals and
supporting personalized dietary interventions (48).

Data sources and preprocessing: predictive models are built
using diverse sources such as electronic health records (EHRs),
dietary intake surveys, and genomic data. Preprocessing steps
include normalization, imputation of missing values, and encoding
of categorical data, ensuring consistent integration across lifestyle,
clinical, and genetic variables (49).

Feature selection and model training: feature selection
incorporates domain-specific risk models (e.g., QRISK3 for
cardiovascular risk in the UK, and SCORE2 for estimating 10-year
risk of heart disease in Europe) (48, 50) using methods such as
recursive feature elimination and SHapley Additive exPlanations
(SHAP) analysis to identify high-impact predictors. Models trained
include gradient boosting decision trees (GBDT) and deep neural
networks, optimized with frameworks like AutoPrognosis (51), and
supported by high-performance libraries such as TensorFlow (52)
and PyTorch (53). Batch normalization (54), which accelerates
training and improves convergence, and dropout regularization
(55), which helps prevent overfitting, are also used to enhance
model training stability.

Risk stratification and personalized intervention: individuals
are stratified using clustering (e.g., k-means) and quantile
binning to generate targeted dietary guidance. Outputs guide
interventions addressing common deficiencies, including calcium
and vitamin D (48).

Validation and performance metrics: model reliability is
validated using external datasets and evaluated with metrics
such as AUC-ROC and calibration plots (56, 57). Tools such as
Scikit-learn (58) ensure reproducibility and comparability across
pipelines. The integration of predictive modeling into nutrition
science empowers early intervention and personalized healthcare
by translating multidimensional data into actionable dietary
strategies. Foundational advances in CNN architectures (59) and
contemporary optimization algorithms support robust, scalable
implementation across diverse health settings.

3.2 Federated learning for
privacy-preserving health data analytics

FL has emerged as a key approach to addressing privacy
concerns in AI-driven healthcare analytics. Unlike traditional
ML methods that require centralized data storage, FL enables
decentralized model training by keeping patient data localized
while only sharing encrypted model updates. This paradigm
is particularly relevant in health and nutrition analytics,
where privacy and security are critical concerns (60, 61).
Recent advancements in FL frameworks have introduced
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secure aggregation protocols that protect individual gradients
during model updates. For instance, VerifyNet employs a
double-masking protocol to ensure that sensitive patient data
remains confidential throughout the training process (60).
Additionally, FL models incorporating differential privacy
and homomorphic encryption techniques have been explored
to further enhance security, mitigating risks associated with
potential data breaches (62, 63). Consent-based protocols, such
as Consent-based Privacy-preserving Decision Tree Evaluation
(CPDE), allow for encrypted decision tree evaluations in
healthcare services while complying with patient consent
requirements (63).

The integration of FL with blockchain technology has been
proposed to enhance trust and transparency in decentralized health
data analytics. Blockchain-based FL architectures allow immutable
record-keeping of model updates without exposing raw health
data, supporting applications like cross-domain EHRs sharing
and nutrition recommendation systems (61, 64). In smart city
health monitoring systems, FL is increasingly combined with
Internet of Medical Things (IoMT) to track obesity risk and
support tailored interventions (61). Practical implementations
of FL have emerged across healthcare education and mental
health monitoring. For example, the FAITH project demonstrates
a federated AI framework to monitor depressive symptoms
in cancer survivors using data from nutrition, sleep, activity,
and voice markers via wearable technologies (65). Similarly,
the hybrid FL-enabled depression prediction model proposed
by 66. Quang Tran and Byeon (66) applies synthetic tabular
data from national nutrition surveys and integrates transformer-
based models to enhance explainability and privacy. Educational
innovations have also adopted federated or privacy-preserving
paradigms. Game-based nutrition learning integrated with digital
diet assessment tools has shown effectiveness in promoting
dietary behavior among adolescents (67), and interprofessional
curricula on health promotion, encompassing nutrition, physical
activity, mindfulness, and emotional regulation–are increasingly
incorporating AI and secure data tools in medical and nursing
education (68).

Despite its advantages, FL presents challenges including
computational overhead, communication efficiency, and
regulatory compliance. The ethical and legal implications of
decentralized AI in healthcare necessitate robust governance
frameworks. Researchers emphasize the importance of privacy-
preserving techniques in AI governance to ensure alignment
with General Data Protection Regulation (GDPR) and Health
Insurance Portability and Accountability Act (HIPAA) regulations
(62). The application of hyperparameter-tuned ML models
in youth health monitoring has yielded high classification
accuracy for physical fitness assessment, highlighting the
parallel need for robust ethical standards in educational data
practices (69). As AI-driven health analytics continue to evolve,
FL remains a promising solution for enabling secure and
privacy-preserving data analysis. Future research directions
include refining privacy-enhancing techniques, optimizing
computational efficiency, and ensuring that FL-based systems
comply with ethical and legal standards in healthcare and nutrition
applications (60, 65, 69).

3.3 AI-driven strategies for chronic disease
prevention and management

The growing prevalence of chronic diseases such as diabetes,
obesity, and cardiovascular conditions necessitates novel strategies
that combine AI with digital health innovations. AI has proven
effective in generating adaptive nutrition plans, enhancing self-
management, and supporting decision-making in clinical and
community settings (70–72).

AI-driven systems are increasingly used to monitor
physiological data and personalize care. Tools like AI-based
telemedicine platforms and electrochemical breathomics sensors
allow continuous monitoring of patient metrics, e.g., glucose,
dietary intake, and respiratory biomarkers, thereby improving
the management of diseases such as COPD, CKD, and diabetes
(73, 74). Breathomics coupled with AI further enables early
diagnosis through noninvasive volatile organic compound analysis,
demonstrating potential in chronic respiratory and renal disease
detection (73). In diabetes care, AI tools assist in clinical risk
assessment, glycemic control, and public health decision-making,
particularly in underserved regions (74). AI-integrated education
tools such as ChatGPT have also shown promise in nursing and
dermatology settings by supporting clinical reasoning and training
in high-stakes environments (75, 76). Similarly, game-based
learning and VR-enhanced self-directed education for students
have improved health literacy, nutritional awareness, and disease
preparedness (77), highlighting AI’s integrative role in patient care
and public health initiatives (see Table 3).

ML applications have also enabled risk prediction and behavior
analysis related to water sustainability, fitness classification, and
foresight on global health challenges among students (69, 78, 79).
Furthermore, FL frameworks offer scalable, privacy-preserving
solutions for chronic disease monitoring across distributed
healthcare networks, as exemplified in cancer survivorship
studies and obesity management using IoMT devices (61, 65).
The convergence of AI, ML, and bioinformatics also facilitates
compound identification in medicinal research, supporting
the development of plant-based therapeutics and personalized
treatment strategies (80). These tools extend to allergy and
immunology, where AI supports allergen prediction, immune
profiling, and targeted interventions (81).

Despite these advances, challenges persist. Ethical concerns
around data privacy, interpretability of models, and algorithmic
bias require transparent, secure, and patient-centered design
frameworks (76, 82). To ensure the sustainability and efficacy
of AI in chronic disease management, future research must
focus on long-term clinical outcomes, adaptability to diverse
populations, and the integration of AI into regulatory and
educational infrastructures.

3.3.1 Real-world application: nutrino health’s
AI-powered solutions for diabetes management

Nutrino Health, a company in AI-driven nutrition analytics,
developed predictive models that integrate data from CGM
systems, dietary intake logs, and individual health profiles to
forecast personalized glycemic responses. By analyzing the complex
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TABLE 3 AI applications in chronic disease prevention and management:

domains, contributions, and evidence.

Application
domain

Scientific contribution Representative
references

Adaptive
nutrition and
metabolic
control

AI-driven tools personalize diet
plans, track glucose levels, and
optimize interventions for obesity
and diabetes

(70–72, 74)

Respiratory and
renal
diagnostics

AI-integrated breathomics enables
noninvasive VOC-based early
detection for COPD, CKD, and
lung disease

(73)

AI-enabled
education

ChatGPT supports
decision-making and clinical
training in clinical practice

(75, 76)

Gamified health
literacy

VR-enhanced, ML-guided
education boosts student
awareness on nutrition,
sustainability, and chronic risk

(77)

Risk
stratification
and youth
monitoring

ML predicts water usage behavior,
fitness level, and foresight on
public health challenges

(69, 78, 79)

FL for IoMT
health systems

Distributed FL systems support
privacy-preserving monitoring for
obesity and cancer survivorship
across health networks

(61, 65)

AI in medicinal
plant
therapeutics

AI and bioinformatics identify
active plant compounds and
support personalized herbal
medicine

(80)

Immunological
precision care

AI supports allergen prediction,
immune profiling, and targeted
interventions in
allergy/immunology

(81)

Ethics and
explainability in
healthcare AI

LLMs used in clinical practice and
patient education raise concerns on
algorithmic bias and data
transparency

(76, 82, 131)

interplay between food intake and glucose fluctuations, Nutrino’s
algorithms provide insights into how specific meals affect blood
sugar levels in real-world settings. This personalized predictive
approach enables more effectivemeal planning and glucose control,
especially for individuals managing diabetes. The clinical utility of
Nutrino’s technology attracted significant interest, leading to its
acquisition by Medtronic. The integration of Nutrino’s analytics
into Medtronic’s diabetes management platforms aimed to enhance
closed-loop insulin delivery systems and provide real-time, tailored
dietary guidance for patients. This case exemplifies how AI-based
nutritional modeling can be translated into tangible clinical tools,
supporting both improved therapeutic outcomes and patient self-
management (83).

4 AI-driven innovations in food
manufacturing

4.1 AI in smart food production

The integration of AI technologies in food manufacturing is
transforming traditional practices by enhancing efficiency, quality

assurance, and sustainability (84). AI-driven automation supports
predictive decision-making, streamlines process workflows, and
minimizes operational waste. For instance, Kumar et al. (85)
demonstrate that ML models can optimize ingredient mixing,
energy usage, and production parameters. Similarly, Misra
et al. (86) highlight the role of AI, IoT, and big data analytics
in enabling intelligent, responsive decision-making across agri-
food systems.

Significant advancements in supervised learning and machine
vision have improved quality control. Zhu et al. (87) report the
successful deployment of CNNs for real-time defect detection,
increasing both accuracy and consistency. Cognitive cloud robotics,
as discussed byWan et al. (88), further enhances logistical planning
and energy efficiency in food plants. However, as Sarker et al. (89)
caution, the increasing reliance on interconnected AI systems
elevates cybersecurity risks, necessitating robust frameworks to
safeguard food manufacturing infrastructure. A summary of
AI applications across production automation, quality control,
inventory, and traceability is provided in Table 4.

4.1.1 Real-world application: Timestripr smart
indicators in intelligent food packaging

Timestripr is a widely adopted smart packaging solution that
offers visual indicators for tracking elapsed time and temperature
exposure, particularly in cold-chain logistics. These indicators
change color or display a visual signal once a product has been
exposed to conditions that may compromise its safety or quality.
Originally developed for simplicity and low-cost implementation,
Timestripr devices have become a foundational technology in
supply chainmonitoring.When integrated with IoT infrastructures
and AI-driven analytics, Timestripr solutions evolve beyond
passive indicators. In smart packaging ecosystems, these indicators
serve as real-time data sources, transmitting information on
environmental conditions to centralized platforms. AI models
can analyze this data to predict spoilage risk, estimate remaining
shelf life, and dynamically optimize storage and transportation
strategies. This integration enables food manufacturers, retailers,
and logistics providers to enhance product safety, minimize waste,
and ensure compliance with temperature-sensitive regulations (90).

4.2 Waste reduction and resource
optimization

AI plays a crucial role in advancing sustainability goals
in food manufacturing by improving inventory management,
enabling predictive maintenance, and supporting environmentally
conscious waste treatment strategies.

4.2.1 AI-powered inventory management for
food waste reduction

AI-based inventory management systems are transforming
food supply chains by enhancing efficiency and reducing waste.
Through real-time demand forecasting, AI algorithms are capable
of accurately predicting consumption trends, thereby minimizing
overproduction and spoilage (91). In addition, sensor-enabled
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TABLE 4 AI applications in food manufacturing: domains, innovations,

and impact.

Application
domain

Technological
contributions

Representative
references

Smart production
automation

Optimization of mixing, energy,
and logistics using ML and
robotics

(85, 86, 88)

Machine vision
for quality control

Real-time defect detection and
image-based contamination
screening

(87, 98, 99)

Inventory
management

AI-based demand forecasting
and smart packaging for
perishables

(91, 92)

Predictive
maintenance

Condition monitoring and
failure prediction via ML and
DL models

(93–95)

Waste
management

AI-assisted composting and
anaerobic digestion systems

(96, 97)

Food safety and
traceability

AI with blockchain for tracking,
quality assurance, and
compliance

(102–104)

smart packaging, combined with AI analytics, enables continuous
monitoring of product freshness and shelf life. This facilitates
better-informed storage and logistics decisions, significantly
reducing the chances of inventory expiration (92). Furthermore,
data-driven models empower dynamic stock control mechanisms,
ensuring timely rotation and efficient allocation of perishable
goods. These innovations collectively support sustainable inventory
practices while reducing operational and environmental costs.

4.2.2 Predictive maintenance for sustainable
production

Predictive maintenance frameworks, empowered by AI,
play a crucial role in advancing sustainable food production.
ML models are adept at detecting early signs of equipment
malfunction by identifying subtle deviations in operational data,
thus enabling timely interventions before costly breakdowns
occur (93, 94). Moreover, AI-driven algorithms help optimize
maintenance schedules by predicting the optimal time for service
and repair, which prolongs equipment lifespan and ensures
consistent production efficiency (95). These strategies contribute to
minimizing unplanned downtime and conserving resources across
manufacturing operations.

4.2.3 Waste management and environmental
sustainability

AI technologies are increasingly aligned with circular economy
principles, offering advanced solutions for waste reduction and
environmental sustainability in food manufacturing. Intelligent
systems enhance composting efficiency by improving the
classification of organic waste and enabling real-time monitoring
of decomposition processes (96). Additionally, AI supports
anaerobic digestion by optimizing operational parameters, leading

to more efficient bioenergy production. This not only helps reduce
greenhouse gas emissions but also facilitates the conversion of food
waste into renewable energy resources (97). These applications
underscore AI’s role in promoting eco-friendly waste treatment
and resource recovery strategies.

4.3 Quality control and food safety with AI

AI technologies are transforming food safety and quality
control by introducing automation, precision, and enhanced
traceability across the food supply chain. Advanced machine vision
systems, driven by AI algorithms, are now capable of identifying
microbial and fungal contaminants in both raw ingredients and
finished food products, enabling early detection and mitigating
the risk of foodborne outbreaks (98, 99). Furthermore, AI has
been employed to optimize natural preservation strategies–for
example, by enhancing the performance of lactic acid bacteria
used as bio-preservatives, thereby extending shelf life while
maintaining safety (100). The integration of metabolomic profiling
with predictive AI models further supports proactive food
safety management by identifying early spoilage indicators and
physiological markers of contamination (101). In addition, the
convergence of AI and blockchain technologies has given rise
to comprehensive traceability systems that automate regulatory
compliance, ensure supply chain transparency, and rapidly
pinpoint sources of contamination (102–104).

4.3.1 Real-world application:
blockchain-enabled food traceability through
IBM food trust and TE-FOOD

Blockchain technology has emerged as a transformative tool
in the realm of food traceability, offering transparency, data
immutability, and real-time access across the supply chain. IBM
Food Trust, one of the most prominent blockchain platforms
in this space, enables end-to-end traceability of food products
by securely recording transactions and movements from farm
to shelf. Major global retailers such as Walmart and Carrefour
have adopted the system to rapidly identify sources of foodborne
illness, authenticate the origins of products, and streamline recall
processes. By digitizing each step in the food supply chain, IBM
Food Trust enhances accountability, reduces response times in food
safety incidents, and builds consumer trust (105).

Complementing this, TE-FOOD offers blockchain-based
solutions specifically tailored for the traceability of livestock
and agricultural produce. Operating in both developed and
emerging markets, TE-FOOD integrates digital identification,
GPS tracking, and mobile data collection to ensure food safety,
prevent fraud, and comply with regulatory frameworks. Its
implementation in developing countries has been especially
impactful, supporting local authorities and producers in building
more transparent and efficient food systems (106, 107). Together,
platforms like IBM Food Trust and TE-FOOD exemplify how
blockchain can reinforce resilience, integrity, and sustainability
in global food supply networks by creating tamper-proof
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records and fostering stakeholder collaboration across complex
distribution channels.

5 Interdisciplinary collaboration in
nutrition and AI research

The integration of AI into the field of nutrition science
necessitates robust interdisciplinary collaboration, particularly
between data scientists, healthcare professionals, and nutrition
experts. Data scientists offer sophisticated analytical tools capable
of processing high-dimensional, heterogeneous datasets, while
clinicians and dietitians ensure that these AI-driven systems
are grounded in medical relevance, ethical soundness, and
adherence to evidence-based nutritional guidelines (4, 5). This
cross-disciplinary synergy is essential for advancing precision
nutrition paradigms that reflect inter-individual variability in
genetic makeup, lifestyle factors, and health status. In parallel,
the ethical implementation of AI in personalized nutrition calls
for the incorporation of privacy-preserving mechanisms such as
FL and homomorphic encryption. These techniques are critical
for safeguarding sensitive personal and clinical data, particularly
in decentralized or multi-institutional healthcare environments.
Beyond data security, promoting transparency and interpretability
in AI model outputs is vital to building trust among end-users,
clinicians, and regulatory bodies (108, 109). Figure 1 represents a
conceptual framework for interdisciplinary collaboration in the AI
and Personalized Nutrition landscape

Substantial progress has also been observed in the application
of AI to genomics and microbiome research. In nutrigenomics,
ML models are increasingly employed to elucidate complex gene-
diet interactions, providing a foundation for the development of
tailored dietary recommendations. Concurrently, the use of AI

in microbiome science has facilitated a deeper understanding of
host-microbiota dynamics and their implications for metabolic and
immunological health (5, 47). DL architectures, such as CNNs, are
particularly valuable in decoding genomic andmicrobial signatures
that serve as biomarkers of nutritional responsiveness (4). These
technologies enhance both the predictive accuracy and scalability
of biomarker discovery, advancing the clinical applicability of
personalized nutrition strategies. To further accelerate innovation
and translational impact, partnerships between academia and the
health and food industries have become increasingly prominent.
These collaborations support the development of functional
foods, nutraceuticals, and AI-enabled platforms for dietary
assessment and personalized recommendation. For example,
industry-academic consortia have pioneered smart packaging
technologies capable of real-time quality monitoring, thereby

reducing food spoilage and ensuring safety across the supply
chain (91, 110). Such innovations exemplify the practical
deployment of AI-informed systems in both consumer and clinical

nutrition contexts.
Finally, the successful implementation of AI technologies

in nutrition and healthcare demands the establishment of

comprehensive policy frameworks and regulatory governance
structures. Public policy must address concerns related to
algorithmic fairness, transparency, and the clinical validation of
AI tools. Regulatory harmonization across sectors can facilitate the
standardization of AI practices and enhance public confidence in
digital health interventions (62). Moreover, government agencies
play a strategic role in funding and supporting interdisciplinary
research initiatives that bridge AI, nutrition, and public health.
These efforts are particularly crucial in developing scalable,
evidence-based solutions for managing malnutrition, obesity,
and other chronic conditions through individualized dietary
interventions (48).

FIGURE 1

A conceptual framework illustrating interdisciplinary collaboration in AI-driven personalized nutrition. The model integrates contributions from data

science, healthcare, nutrition, industry, and policy to produce ethically grounded, clinically valid, and context-sensitive dietary solutions.
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6 Ethical considerations and
challenges

As AI transforms nutrition and food manufacturing, it brings
forth a spectrum of ethical considerations, ranging from the
protection of personal data and equitable algorithmic design to
workforce implications and ecological sustainability. Addressing
these challenges is essential to ensure that AI adoption advances
public health, equity, and sustainability.

6.1 Data privacy and security in AI-driven
nutrition

Managing sensitive health and dietary data remains a
core concern in AI-based nutrition systems. Given the deeply
personal nature of such data, ensuring robust safeguards against
breaches and misuse is imperative. Differential privacy, FL, and
homomorphic encryption have emerged as key strategies to protect
user data during model training without compromising analytical
performance (111, 112). Compliance with regulatory frameworks
such as the GDPR and HIPAA is necessary to uphold ethical
standards in AI deployment. However, despite these innovations,
data breaches and adversarial vulnerabilities persist. Aldoseri et al.
(113) emphasize the need for domain-specific data protection
strategies tailored to the unique risks posed by dietary and health
datasets. Moving forward, the development of user-centric privacy
frameworks that promote transparency and informed consent will
be crucial.

6.2 Bias and fairness in AI nutrition models

Bias embedded in training datasets and algorithmic design
can lead to unequal access and skewed health recommendations,
particularly for underserved or culturally diverse populations. As
Saraswat et al. (114) point out, models trained on homogenous or
Western-centric data may fail to generalize across socio-economic
or ethnic groups. Zhao and Chen (112) suggest differential privacy
as a mechanism to improve demographic representativeness during
training. Nonetheless, there remains a critical need for standardized
evaluation frameworks to assess fairness and inclusivity in AI-
generated nutrition advice. Research should also prioritize the
inclusion of culturally relevant dietary patterns and genetic
diversity in model development.

6.3 Ethical dilemmas in AI-driven food
manufacturing

The deployment of AI in food manufacturing introduces socio-
ethical trade-offs, especially concerning labor displacement and
transparency in decision-making. While AI-driven automation
improves efficiency and reduces operational costs, it may also
threaten the livelihoods of manual workers. Bartoletti (115)
and Himeur et al. (116) call for strategies that incorporate
human-AI collaboration rather than substitution. Additionally,

ensuring interpretability of AI decision processes in manufacturing
settings is vital for maintaining stakeholder accountability. Ethical
implementation requires proactive reskilling programs, inclusive
workforce policies, and explainable AI frameworks that demystify
decision-making processes.

6.4 Sustainability and environmental ethics
in AI deployment

AI can significantly advance sustainability in food systems
through precision manufacturing, waste reduction, and supply
chain optimization. However, the energy demands of AI,
particularly DL, raise concerns about their ecological footprint.
Režek Jambrak et al. (117) caution against overlooking the
environmental costs of training large-scale AI models. In contrast,
Selvarajan et al. (118) emphasize the potential for AI to
contribute to net-positive sustainability outcomes through efficient
resource management. Agrawal et al. (119) also highlight AI’s
transformative potential for sustainability in food manufacturing
by integrating circular economy practices and minimizing
environmental externalities. A careful balance must be maintained
between AI’s resource consumption and its capacity to drive
sustainable practices.

Furthermore, the ethical use of AI in dietary interventions
for vulnerable populations must consider access, digital
literacy, and equity. Kalyoncu Atasoy et al. (120) highlights
the importance of developing inclusive AI-powered nutrition
strategies that are sensitive to the needs of at-risk groups.
The ethical deployment of AI in nutrition and food systems
necessitates a multi-stakeholder approach that integrates
regulatory oversight, interdisciplinary collaboration, and
inclusive societal engagement. Recent contributions have also
emphasized the necessity of transparent, explainable, and socially
accountable AI frameworks in high-stakes environments such as
healthcare (108, 109).

7 Future perspectives and innovations

The intersection of FL, AI, IoT, and sustainability presents
transformative opportunities across healthcare, food systems, and
hospitality sectors. Emerging directions focus on privacy-
respecting data ecosystems, intelligent automation, and
environmentally conscious design principles. Key thematic
advancements are outlined below and also in Figure 2.

• FL in healthcare: next-generation FL frameworks address
challenges of data heterogeneity through non-IID degree
estimation (121), incorporate adaptive regularization,
and integrate differential privacy mechanisms for clinical
applicability (122, 123). These systems promote collaborative,
secure, and equitable healthcare innovation.

• AI in food manufacturing: AI applications in food processing
increasingly support real-time optimization, predictive
quality control, and defect detection. Integration with
circular economy models enhances resource efficiency
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FIGURE 2

Conceptual mapping of emerging innovation trajectories across key application domains. The figure illustrates how advanced technologies such as

federated learning, IoT, and AI-driven systems intersect with healthcare, food production, packaging, and hospitality, enabling targeted outcomes in

privacy, sustainability, and e�ciency.

and aligns manufacturing with sustainable development
goals (119, 124).

• Personalized nutrition technologies: ML-driven mobile
platforms deliver context-aware dietary recommendations
tailored to physiological, behavioral, and demographic
profiles. Such systems enhance maternal health and broader
public health outcomes through scalable, user-centric
interventions (125, 126).

• Smart packaging and IoT integration: intelligent packaging
incorporates IoT connectivity, AI-based image analysis, and
entropy-based design optimization to improve tracking,
labeling, and freshness monitoring (127, 128). Emphasis
shifts toward sustainable packaging materials and real-time
data flow.

• Sustainable hospitality systems: AI-enhanced food waste
monitoring and predictive inventory management systems
enable eco-efficient hospitality operations while facilitating
compliance with regulatory standards (129).

• Micro/nanomotors in food safety: functionalized
micro/nanomotors emerge as versatile tools for pathogen
detection, allergen removal, and sterilization. Research
increasingly focuses on cost-effective fabrication,
multifunctional integration, and biocompatibility for
safe industrial deployment (130).

Current trends emphasize ethical data handling, intelligent
automation, and eco-innovation. This section outlines the core
areas of advancement and anticipated directions, with a synthesis
presented in Table 5.

8 Conclusion

The convergence of AI, personalized nutrition, and intelligent
food manufacturing marks a paradigm shift in how health
and food systems operate. By leveraging ML, DL, and FL, AI
transforms both dietary planning and production workflows into

TABLE 5 Emerging innovation trajectories across key domains: a

technological focus.

Innovation
area

Future perspective Key
references

FL in healthcare Robust architectures incorporate
non-IID adaptation,
privacy-preserving protocols, and
multi-institutional scalability.

(121–123)

AI in food
manufacturing

Circular economy-aligned systems
enable real-time optimization,
quality control, and waste reduction.

(119, 124)

Personalized
nutrition

AI-driven mobile platforms offer
adaptive and personalized nutrition
interventions.

(125, 126)

Smart packaging
and IoT

IoT-enabled packaging integrates
real-time monitoring, digital
labeling, and sustainability.

(127, 128)

Sustainable
hospitality

AI tools support food waste tracking
and operational efficiency in
hospitality environments.

(129)

Micro/nanomotors
in food safety

Micro/nanomotor systems address
food safety diagnostics and
functional processing tasks.

(130)

adaptive, data-driven ecosystems. These technologies enable the
real-time delivery of individualized nutritional guidance while also
ensuring sustainable, transparent, and optimized food production.
This study contributes to the field by offering a comprehensive
synthesis of AI applications across personalized nutrition and food
manufacturing, identifying key enablers, practical use cases, and
emerging research trajectories.

Findings from this comprehensive study highlight that AI has
the potential to:

• Deliver individualized nutrition recommendations through
multi-omics integration and behavioral modeling.
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• Support ethical and privacy-preserving data use via FL and
secure analytics frameworks.

• Enable predictive health risk stratification and early dietary
intervention for chronic disease prevention.

• Optimize food processing for quality retention, waste
reduction, and resource efficiency.

• Strengthen supply chain transparency through AI-driven
traceability and smart packaging.

AI’s integration into nutrition science and food manufacturing
holds transformative promise for public health and sustainability.
However, its success depends on addressing pressing challenges,
such as data bias, regulatory gaps, model explainability, and
digital inequity. Therefore, this study highlights the need
for interdisciplinary collaboration among nutritionists, AI
researchers, clinicians, and policymakers to establish ethical,
evidence-based, and culturally inclusive AI frameworks.
Through multi-stakeholder collaboration and a commitment
to responsible innovation, the food and nutrition sector can
harness the full potential of AI to build resilient, equitable,
and personalized health ecosystems. The insights provided
in this study lay the foundation for future advancements
in research, clinical integration, and sustainable industrial
transformation.
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Glossary

• AI (artificial intelligence): the simulation of human cognitive
functions such as learning, reasoning, and problem-solving
by machines.

• FL (federated learning): a privacy-preserving machine
learning approach where decentralized data sources
collaboratively train a shared model without exchanging
raw data.

• IoT (internet of things): a system of interconnected physical
devices that collect and transmit data via the internet to
enhance decision-making and automation.

• IoMT (internet of medical things): a subset of IoT
encompassing medical devices and health systems connected
to networks for real-time data exchange and monitoring.

• ML (machine learning): a branch of AI that enables systems
to learn patterns from data and make predictions or decisions
without being explicitly programmed.

• DL (deep learning): a subset of ML that uses multilayered
neural networks to analyze complex patterns and high-
dimensional data.

• CNNs (convolutional neural networks): a type of deep
learning model highly effective for image recognition,
classification, and feature extraction.

• NLP (natural language processing): an AI subfield enabling
computers to interpret, generate, and respond to human
language in a meaningful way.

• GANs (generative adversarial networks): a class of ML
models composed of two neural networks, generator
and discriminator, competing to produce highly realistic
synthetic data.

• Explainable AI (XAI): A framework of AI techniques
designed to make AI decision-making processes transparent,
interpretable, and understandable to humans.

• Blockchain: a decentralized, immutable digital ledger used
to securely record transactions, often employed in food
traceability and supply chain integrity.

• Smart packaging: packaging embedded with sensors or
indicators to provide information on the quality, safety, and
condition of the food product.

• Edge computing: a distributed computing paradigm that
processes data near the source of generation, improving
response times and reducing bandwidth.

• Big data: large, complex datasets that require advanced
tools and techniques for analysis, often used in personalized
nutrition and food safety analytics.

• Bioinformatics: an interdisciplinary field combining
biology, computer science, and statistics to analyze
and interpret biological data, particularly in genomics
and metabolomics.

• Personalized nutrition: a tailored approach to dietary
recommendations based on individual characteristics such as
genetic profile, lifestyle, microbiome, and biomarkers.

• Precision health: a broader concept that integrates
personalized data to prevent, diagnose, and treat diseases at
an individual level.

• Sensor fusion: the integration of data from multiple sensors
to improve accuracy and reliability of information in
monitoring systems.

• Digital twin: a virtual representation of a physical system
(e.g., production facility or human body) used for simulation,
prediction, and optimization.

• Sustainable food systems: food production and distribution
practices designed to minimize environmental impact while
ensuring nutritional adequacy and food security.

• Ethical AI: the practice of designing, deploying, and managing
AI systems in a manner that upholds fairness, transparency,
privacy, and accountability.
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