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Effects of prenatal iron deficiency 
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and related disorders in offspring 
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The fetal origins of adult disease hypothesis proposes that a variety of adverse 
stimuli during critical development stages can impair the structure and function 
of fetal organs, thereby increasing the risk of disease later in life. Iron affects fetal 
growth and development by facilitating oxygen and electron transport and by 
serving as a cofactor for enzymes that affect enzyme activity. Fetal iron deficiency 
(ID) can result from various factors during pregnancy, including inadequate 
maternal iron intake, maternal obesity, diabetes, smoking, prenatal stress, and 
prenatal alcohol exposure. These conditions disrupt fetal brain development 
and are associated with neurological disorders in offspring, such as cognitive 
impairment, anxiety, depression, schizophrenia, and autism. However, the 
mechanisms by which maternal iron deficiency leads to abnormal neurological 
development, as well as cognitive impairment and psychiatric disorders in 
the offspring, remain unknown. In this review, we summarize the causes of 
prenatal iron deficiency, the effects of iron deficiency on brain development and 
behavioral phenotypes, and the potential molecular mechanisms. 

KEYWORDS 

iron deficiency, pregnancy, fetal origins of adult disease, neurologic development, 
offspring, behavior 

1 Introduction 

Iron deficiency (ID) is a common nutritional deficiency worldwide, especially in 
women (1). Among pregnant women, the prevalence of ID is approximately 80% in 
developing countries and approximately 40% in developed countries (2). The global 
burden and inequality of ID continue to rise, which may be related to low utilization 
of public health intervention packages. Low socioeconomic status, low education levels, 
gender discrimination, religious beliefs, and frequency of antenatal care in countries 
with low Human Development Index (3–6). Iron–Folic Acid Supplementation (IFAS) 
is an effective strategy for preventing and managing prenatal iron deficiency anemia 
(IDA) during pregnancy. In Bangladesh, Ghana, the Philippines, and Northwest Ethiopia, 
the compliance with IFA intake among pregnant women is only 20%−50% (7–10). 
Even in developed countries such as Canada, there is a negative correlation between 
the socioeconomic status of pregnant women and the probability of a ferritin test 
(11). Currently, various healthcare systems lack effective policies for the detection 
and management of fetal iron deficiency (ID). The main indicators used to detect 
ID in pregnancy are ferritin, hemoglobin (Hb), and C-reactive protein (CRP) under 
inflammation (12). According to the US Preventive Services Task Force, there is insufficient 
evidence to support screening asymptomatic pregnant women for ID and IDA or 
treating them with iron supplements to prevent adverse maternal and infant health 
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outcomes associated with IDA (13). The American College 
of Obstetricians and Gynecologists recommends screening 
hemoglobin levels for anemia rather than ID, universal 
supplementation with low-dose iron during pregnancy, and 
low-dose iron supplementation and prenatal vitamin therapy for 
pregnant women with IDA after determining the cause (13, 14). In 
Asia, most medical institutions use Hb concentration as a proxy 
for ID/IDA (14). They further diagnose ID using serum iron, 
total iron-binding capacity, and transferrin saturation (15). In 
line with WHO recommendation, pregnant women in Southeast 
Asia should take oral iron and folic acid supplements daily if the 
prevalence of anemia is exceeds 40%, or intermittently on a weekly 
basis if the prevalence is below 20% (14). 

It is well-known that iron is crucial for maintaining the 
production of hemoglobin, which is the molecule that transports 
oxygen in the blood (16). In addition, iron is essential for 
maintaining cell development and metabolic function in the 
body, including DNA synthesis and repair, enzymatic activity, and 
mitochondrial function (17). The requirement for iron during 
pregnancy increases due to several factors: (1) the increased 
physiological plasma volume of pregnant women requires more 
iron to synthesize hemoglobin (18); (2) the fetus requires iron to 
synthesize endogenous reserves of iron as well as for its own oxygen 
transport and metabolism (19); and (3) the placenta, which is a 
metabolically active organ and a transporter between the maternal 
and fetal circuits, requires large amounts of iron (20). 

It is a priority to meet fetal iron needs in the case of mild 
maternal ID. However, the women with severe ID and exposure 
to adverse factors in pregnancy could cause fetal ID (19). Fetal 
ID affects fetal brain development, including hippocampal 
neuronal differentiation and synaptic plasticity and monoamine 
neurotransmitter metabolism (21). Neurodevelopmental 

Abbreviations: ID, iron deficiency; Fpn, ferroportin; Apo-Tf, iron-free 

transferrin; holo-Tf, holotransferrin; TfR1, transferrin receptor 1; Fe3+ , ferric 

iron; Fe2+ , ferrous iron; STEAP3/4, six-transmembrane epithelial antigen 

of the prostrate protiens 3 and 4; DMT1, divalent metal transporter; 

ZIP, Zrt/IRt-like protein; IDA, iron deficiency anemia; Hb, hemoglobin; 

BMI, body mass index; IL-6, interleukin-6; CRP, C-reactive protein; 

Gp130, glycoprotein 130; JAK, Janus kinase; STAT, signal transducer 

and activator of transcription; Tf, transferrin; IRP-1, iron regulatory 

protein-1; AChE, acetylcholinesterase; α7nAChR, α7 nicotinic acetylcholine 

receptors; PAE, prenatal alcohol exposure; SF, serum ferritin; BDNF, brain-

derived neurotrophic factor; OPC, oligodendrocyte progenitor cell; Fth, 

heavy chain; Ftl, light chain; GFAP, glial fibrillary acidic protein; CX43, 

connexin43; TNF-α, tumor necrosis factor-α; IL-1β, interleukin-1β; IGF-

1, insulin-like growth factor 1; FA, fractional anisotropy; LTP, long-term 

potentiation; VMB, ventral midbrain; Hct, hematocrit; PDMS-2, Peabody 

Developmental Motor Scale; BMP, bone morphogenetic protein; TET, 

Ten-Eleven translocation; JARID, jumonji and AT-rich interaction domain; 

5mC, 5-methylcytosine; 5hmC, 5-hydroxymethylcytosine; JmjC, Jumonji 

C; HDAC1, histone deacetylase 1; H3K4 me1/2, histone H3 lysine 4; 

miRNA, microRNA; OGT, O-GlcNAc Transferase; HPA, hypothalamic– 

pituitary–adrenal; GR, glucocorticoid receptor; GC, glucocorticoid; Hsp, 

heat shock protein; CRH, corticotropin-releasing hormone; ADHD, attention 

deficit/hyperactivity disorder; ERK, extracellular signal-regulated kinase; PI3K, 

phosphoinositide 3-kinase; UMP, uridine monophosphate; IFAS, iron–folate 

acid supplementation; Hp, Haptoglobin. 

abnormalities and mental health disorders, such as impairments in 
learning, memory, and emotion, occur in maternal ID offspring 
(22–24). In this review, we summarize the factors leading to 
prenatal fetal ID, the effects of prenatal ID on brain development 
and behavior of the offspring, the animal models of prenatal ID, 
and the possible mechanisms (Figure 1 and Table 1). 

2 Iron homeostasis during pregnancy 

Maternal physiological iron requirements rise significantly 
during pregnancy, with approximately 1 g of additional iron needed 
to maintain maternal iron homeostasis and to provide sufficient 
iron for fetal growth and development. Although maternal iron 
requirements are lower in the first trimester, they increase as the 
pregnancy progresses (25). Maternal hepcidin levels fall throughout 
the second and third trimesters of pregnancy, resulting in decreased 
binding and degradation of ferroportin (Fpn) (26, 27). Plasma 
iron is elevated through increased intestinal iron absorption, 
recycling of iron from senescent erythrocytes to macrophages, and 
mobilizing iron stores in the liver (26). In the interstitial fluid, iron 
ions bind to iron-free transferrin (apo-Tf) to form holo-transferrin 
(holo-Tf), which then binds to transferrin receptor 1 (TfR1) on 
the apical membrane of placental trophoblast cells to form the 
TfR1–transferrin complex. Upon binding, the TfR1–transferrin 
complex is internalized via clathrin-coated vesicles into an acidic 
environment (28). Then, the ferric iron (Fe3+) is separated from 
transferrin and reduced to ferrous iron (Fe2+) by iron reductases, 
such as the 6-transmembrane epithelial antigen of the prostate 
proteins 3 and 4 (STEAP3/4)(29). The specific pathway by which 
Fe2+ is transported from vesicles to the cytoplasm is unclear, and 
it may be related to iron transporters divalent metal transporter 
1 (DMT1) and Zrt/Irt-like protein (ZIP) 8 (30, 31). Consequently, 
the TfR1–apolipoprotein complex returns to the membrane and is 
released (28). Fe2+ is exported from the syncytiotrophoblast by Fpn 
and oxidized to the Fe3+ by mammalian multicopper ferroxidases, 
such as ceruloplasmin, hephaestin, and zyklopen, which bind to 
fetal transferrin and are transported from endothelial cells to fetal 
circulation (Figure 2) (32–34). 

When ID occurs during pregnancy, the expression levels of 
the molecules mediating placental iron uptake (TfR1) and output 
(Fpn) are altered. In mice, TfR1 increases, while Fpn decreases to 
maintain placental iron content in ID fetuses. In the placentas of 
pregnant women with mild ID, TfR1 expression is elevated, whereas 
Fpn remains unchanged. When severe ID is induced in human 
trophoblasts in vitro, TfR1 increases while Fpn decreases. The 
placenta cannot compensate for maternal ID to maintain fetal iron 
levels (35). In rats, fetuses exposed to prenatal ID can adaptively 
increase the expression of iron regulatory proteins (IRP-1 and IRP-
2) and iron transport proteins (TfR and DMT1) in the hippocampus 
and the cerebral cortex to maintain brain iron requirements (36). 

3 Causes of prenatal iron deficiency 

3.1 Low maternal iron intake 

Women with low iron intake, such as vegetarians or patients 
with gastrointestinal disorders, are at an increased risk of 
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FIGURE 1 

Schematic diagram of iron transport from mother to fetus. Maternal hepcidin is decreased during pregnancy, Fpn is increased, and iron flow into 
plasma is increased through increased intestinal iron absorption, macrophage iron recovery from aging red blood cells, and mobilization of ferritin in  
the liver. Fe3+ in plasma increases and binds to apo-Tf to form holo-Tf, which then binds to TfR1 on the apical membrane of placental trophoblastic 
cells to form the TFR1-transferrin complex, which is internalized by actin-coated vesicles. In vesicles, after the release of iron from transferrin, Fe3+ is 
reduced to Fe2+ by iron reductase and then transported from the vesicles to the interstitium by the iron transporters DMT1, Zip14, and Zip8. Fe2+ can 
be oxidized to Fe3+ after being transported by Fpn, which then combines with fetal Tf to form Holo-Tf and transported into the fetal blood, or 
directly into the fetal circulation in the form of NTBI. Fpn, ferroportin; RBC, red blood cell; STEAP3/4, 6-transmembrane epithelial antigen 3 and 4; 
Holo-Tf, holotransferrin, apo-Tf, iron-free transferrin; TfR1, transferrin receptor 1; DMT1, divalent metal transporter 1; Zip, Zrt/Irt-like protein; NTBI, 
non-transferrin-bound iron. 

developing ID due to increased physiological iron requirements 
during pregnancy. Daily oral iron supplementation can decrease 
maternal anemia and full-term iron deficiency (37). When maternal 
ID is mild, iron is supplied preferentially to the fetus to ensure 
adequate fetal iron stores. However, when maternal ID is moderate 
or severe, fetal iron homeostasis is disrupted (2). Currently, it is 
believed that ID in pregnancy is defined as serum ferritin (SF) <30 
μg/L (38). Fetal ID will occur when maternal ferritin concentration 
is less than 12 μg/L (39). Severe maternal ID is clinically manifested 
as iron deficiency anemia (IDA). When the maternal hemoglobin 
(Hb) concentration is <85 g/L, umbilical cord serum ferritin is <60 
μg/L, indicating impaired fetal iron stores. When maternal Hb is 
<60 g/L, umbilical cord serum ferritin concentration is <30 μg/L, 
and umbilical cord Hb concentration is also decreased, indicating 
a progressive decline in umbilical cord ferritin levels as maternal 
anemia severity increases (40). 

3.2 Maternal obesity 

Maternal obesity and rapid weight gain are independent risk 
factors for fetal ID and are associated with elevated hepcidin levels 
(41–43). During pregnancy, high maternal body mass index (BMI) 
could induce maternal inflammatory responses, such as increased 
concentrations of interleukin-6 (IL-6) and C-reactive protein 
(CRP), which in turn lead to overexpression of hepcidin (44, 45). 

The increased number of macrophages in the placenta suggests 
that the inflammatory response in obese mothers extends to the 
uterus (46). Ultimately, fetal iron status is impaired. The released 
IL-6 forms a complex with the IL-6 receptor and glycoprotein 130 
(gp130) to activate Janus kinase (JAK) (47). JAK phosphorylates 
tyrosine residues, which activates signal transducer and activator 
of transcription 3 (STAT3), and then enters the nucleus, binds 
to the hepcidin promoter, and induces hepcidin expression (48). 
In addition, maternal obesity increases the size of fat cells to 
produce more leptin, which induces hepcidin overexpression (49). 
In conclusion, obese women have a smaller decrease in hepcidin 
levels during pregnancy than non-obese women. Fpn located in 
intestinal cells, reticulocytes, and hepatocytes can bind more to 
hepcidin and be internalized and hydrolyzed by lysosomes, which 
can increase iron concentration in cells and reduce iron transport 
to plasma. However, some studies have shown that maternal obesity 
does not affect maternal and fetal iron status (50, 51), which may be 
related to the different degrees of maternal obesity and race. 

3.3 Maternal diabetes 

The offspring of diabetic mothers have abnormal iron 
distribution and decreased brain iron concentration, which may 
be associated with impaired iron transport (52, 53). In pregnant 
women with insulin-dependent diabetes, increased N-glycosylation 
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TABLE 1 Animal models used for maternal iron deficiency. 

Species Age test Prenatal iron deficiency 
conditions 

Method Offspring 
influence 

References 

Rhesus 
monkeys 

At birth Give pregnant rhesus monkeys iron-deficient 
(10 mg Fe/kg) and iron-sufficient (100 mg 
Fe/kg) diet throughout pregnancy 

Hematologic measures 
and bone marrow 
measures 

Iron homeostasis was 
impaired in iron-deficient 
neonates. 

(133) 

Rhesus 
monkeys 

First four months of 
life 

Give pregnant rhesus monkeys iron-deficient 
(prenatal 10 mg Fe/kg or early postnatal 
1.5 mg Fe/L formula) diet and iron-sufficient 
(prenatal 100 mg Fe/kg or early postnatal 
12 mg Fe/L formula) diet throughout 
pregnancy 

Motor and postural 
maturation, Novelty 
preference and eye–hand 
coordination, and grasp 
maturation 

Weakened inhibitory 
response in iron 
deficiency group 

(134) 

Rhesus 
monkeys 

Between 6 and 12 
months of age 

Give pregnant rhesus monkeys iron-deficient 
diet (prenatal 10 mg Fe/kg or early postnatal 
1.5 mg Fe/L formula) diet and iron-sufficient 
(prenatal 100 mg Fe/kg or early postnatal 
12 mg Fe/L formula) diet throughout 
pregnancy 

Spatial maze, 
discrimination reversal 
(DR) task, concurrent 
object discrimination 
(COD) and delayed 
non-match to sample 
(DNMS) test 

Weakened inhibitory 
response in iron 
deficiency group 

(135) 

Guinea pigs P24 and P84 Give pregnant Guinea pigs iron-deficient diet 
(11.7 mg/kg) and iron-sufficient diet (114 
mg/kg) from the beginning of pregnancy 
until postnatal day 9 

Auditory brainstem 
response 

Auditory brainstem 
response decreased in 
iron-deficient group. 

(130) 

Guinea pigs P24 Give pregnant Guinea pigs iron-deficient diet 
(11.7 mg/kg) and iron-sufficient diet (114 
mg/kg) from the beginning of pregnancy 
until postnatal day 9 

ABR recording Neural synchrony and 
auditory nerve 
conduction speed 
decreased in the 
iron-deficient group. 

(131) 

Guinea pigs P24 and P40 Give pregnant Guinea pigs iron-deficient 
(10.1 mg/kg) diet and iron-sufficient diet 
(130 mg/kg) from the beginning of 
pregnancy until postnatal day 9 

Open field test and 
Morris water maze test 

Offspring anxiety 
increased in the iron 
deficiency group. 

(132) 

Rats Between P25 and 
P67 

Give pregnant rats iron-deficient diet (3 
ppm) and iron-sufficient diet (45 ppm) 10 
days before delivery 

Fear conditioning test The iron-deficient group 
had learning disabilities. 

(127) 

Rats Between P32 and 
P39 for young rats 
and between P63 
and P69 for adult 
rats 

Give pregnant rats iron-deficient diet (3 
ppm) and iron-sufficient diet (45 ppm) from 
12 days gestation to 12 days after delivery 

Eyeblink conditioning 
test 

The learning ability of 
blinking conditioned 
reflex decreased in 
iron-deficient group. 

(128) 

Rats P65 Give pregnant rats iron-deficient diet (3–6 
mg/kg) and iron-sufficient (198 mg/kg) diet 
from 2 days gestation to 7 days after delivery 

Eight-arm radial arm 
maze test 

The learning ability of the 
offspring of iron 
deficiency group 
decreased. 

(126) 

Rats Between P6 and P35 Give pregnant rats iron-deficient diet (2–6 
ppm) and iron-sufficient (40 ppm) diet from 
5 days gestation to weaning 

Surface righting reflex, 
negative geotaxis reflex, 
sensorimotor function, 
and novel object 
recognition (NOR) task 

Impaired myelination and 
behavior disorder in 
iron-deficient group 

(81) 

Rats P15, P30, and P65 Give pregnant rats iron-deficient diet (3–6 
ppm) and iron-sufficient (196 ppm) diet from 
5 days gestation to weaning 

Paired-pulse facilitation 
recordings and induction 
of long-term 
potentiation 

Impaired synaptic 
plasticity in the 
iron-deficient group 

(109) 

Mice 3 months of age  Mice with hippocampal neuron-specific 
Slc11a2 knockout were obtained by mating 
Camk2a gene promoter-driven cre 
recombinase (cre) transgenic (Camk2a- cre) 
mice with Slc11a2 flox/flox mice 

Morris water maze test Disrupt hippocampal 
neuronal development 
and spatial memory 
behavior 

(129) 

Mice 2–4 months of age Give pregnant mice iron-deficient (48 ppm) 
and iron-sufficient (96  ppm) diet from the  
beginning of pregnancy until postnatal day 10 

Sucrose preference test, 
open field test, 
light–dark box test, 
forced swim test, and tail 
suspension test 

Anxiety and 
depression-like behavior 
increased in the offspring 
of the iron-deficient 
group. 

(23) 
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FIGURE 2 

Schematic diagram of the effects of fetal iron deficiency on neurological development and related diseases. Low maternal iron intake during 
pregnancy, maternal obesity, maternal diabetes, prenatal stress, maternal smoking, and prenatal alcohol exposure have all been linked to fetal iron 
deficiency. Fetal iron deficiency affects fetal brain development, such as neurogenesis, emerging myelination, synaptic plasticity, and 
neurotransmitter metabolism, through epigenetics, endocrine axis dysfunction, and mitochondrial oxidative damage. Fetal iron deficiency is also 
associated with neurocognitive and mental health disorders in the offspring, such as depression and anxiety behaviors increased, impaired 
psychomotor development, learning and memory decline, autism, and schizophrenia. 

of transferrin receptor (TfR) released from the placenta can reduce 
its binding capacity to transferrin (Tf), thereby reducing iron 
transport in the placenta (54). Then, decreased fetal iron reserve 
leads to increased expression of placental iron regulatory protein-1 
(IRP-1), which binds to iron-responsive elements on the TfR mRNA 
and plays a stabilizing role in the upregulation of its expression (55, 
56). However, Yang et al. (57) found that maternal iron transport to 
the fetus was reduced in gestational diabetes but was not associated 
with TfR expression. 

3.4 Prenatal stress 

Prenatal stress can lead to sex-specific fetal ID, which occurs 
predominantly in male fetuses and is associated with the fetal 
stress response system (58–63). Chronic stress can alter maternal 
expression of the acetylcholinesterase (AChE) gene, thereby 
converting the normal AChE-S splicing variant into an unstable 
AChE-R variant. On the one hand, the ratio of AChE-S to AChE-R 
can downregulate the expression of Fpn and metal ion transporters 
by modulating cholinergic pathway signaling via microglial α7 
nicotinic acetylcholine receptors (α7nAChR) (64). On the other 
hand, elevated AChE-R is associated with chronic inflammation, 
which may lead to an increase in hepcidin (65). The above changes 
can reduce extracellular iron, thus affecting maternal and fetal 
iron homeostasis. 

3.5 Maternal smoking 

Fetal ID is associated with maternal smoking and is influenced 
by the frequency and number of days smoked. Iron stores might 
not be significantly impaired in pregnant women who smoke, 
but they are reduced in newborns. First, maternal smoking 
increases catecholamines in the maternal blood, which affects blood 
flow and vascular resistance in the placenta, as well as reduces 
blood nutrients and oxygen delivered to the fetus (66). Second, 
carbon monoxide in tobacco causes carboxyhemoglobinemia, 
which reduces the supply of hemoglobin to the fetus (67). Third, 
cyanide compounds contained in tobacco can exacerbate fetal 
hypoxia by impairing fetal oxidative mechanisms (67). Fourth, 
maternal smoking is positively associated with increased fetal lead 
concentration, which may contribute to hypoxia by interfering with 
hemoglobin synthesis and reducing the number of red blood cells 
(68). Conversely, a study showed that fetal iron homeostasis was not 
affected when women were exposed to smokeless tobacco during 
pregnancy (69). 

3.6 Prenatal alcohol exposure 

In pregnant women, prenatal alcohol exposure (PAE) increases 
maternal ferritin levels and decreases maternal hemoglobin-to-log 
(ferritin) ratio (70). In the fetus, PAE can decrease iron 
concentration and iron utilization in the brain (71). This may be 
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related to elevated maternal and fetal hepcidin and the transfer of 
iron from the fetal brain and erythrocytes to the liver for storage. 
PAE can increase maternal and fetal inflammatory cytokines, 
such as IL-6, and activate hepcidin transcription, which impairs 
fetal iron homeostasis through the JAK/STAT signaling pathway 
(72). Due to PAE, serum ferritin (SF), Tf, and TfR cannot be 
upregulated in time, while fetal brain iron level drops (73). In 
addition, PAE upregulates the expression of the IL-1β gene in the 
placenta, which increases iron storage via promoting iron uptake 
into macrophages, the destruction of erythrocytes, and ferritin 
biosynthesis, as well as blocks the transport of iron in cells by 
inhibiting FPN-1 (74). 

3.7 Gene–environment interactions 

Gene–diet interactions and diseases indicate that genetic 
variations can also influence iron absorption and utilization. 
Haptoglobin (Hp) prevents oxidative damage mediated by free 
heme iron by removing it from cells (75). Hp gene polymorphisms 
constitute three main phenotypes: Hp 1-1, Hp 2-1, and Hp 2-2 
(76). During mid-to-late stages of pregnancy, Hp phenotypes may 
increase susceptibility to ID in pregnant women. Pregnant women 
carrying the Hp 1 alleles may have increased susceptibility to ID 
if they do not have sufficient dietary iron intake or use prenatal 
supplements related to erythropoiesis. Additionally, obese women 
carrying the Hp 2-2 phenotype may have an increased risk of 
developing functional ID (77). 

4 Consequences of iron deficiency on 
the nervous system 

In fetal iron homeostasis, iron allocation is prioritized for 
red blood cells, rendering the brain susceptible to ID-mediated 
impairment even when hemoglobin levels remain within the 
normal ranges (21). Adequate iron during fetal brain development 
is necessary for neurogenesis, myelination, synaptic plasticity, 
and energy metabolism in neuronal and glial cells. Different 
durations and degrees of ID and the developmental stage at 
which ID occurs have various effects on brain development and 
function (21). 

4.1 Reduced neurogenesis 

Prenatal ID is associated with the inhibition of neurogenesis 
in the hippocampus of offspring mice and a reduction in the 
number of pyramidal cells and granule cells. The occurrence 
of ID at different stages of pregnancy may contribute to 
selectively change the volume of different parts of the fetal 
hippocampus and affect corresponding memory function. The 
critical time for susceptibility of the CA1 region of the 
hippocampus to ID is prenatal, and the dentate gyrus region 
of the hippocampus is susceptible to ID both prenatally and 
postnatally. Prenatal ID induces reduced neurogenesis and 
altered hippocampal volumes in the offspring, which may be 

associated with reduced brain-derived neurotrophic factor (BDNF) 
signaling (78). 

4.2 Inhibition of myelin regeneration 

ID is associated with myelin degeneration in both human 
studies and animal models. In human studies, the latency of 
auditory brainstem potentials as indirect markers of myelination is 
prolonged in infants with ID (79). In a rat model, severe ID may 
lead to persistent hypomyelination, the production of immature 
astrocytes, and increased pericyte permeability in offspring exposed 
to a maternal iron-deficient diet (80). Delayed myelination in 
specific parts of the brain is associated with behavioral disorders 
in rats (81). Oligodendrocyte progenitor cells (OPCs) and mature 
myelin oligodendrocytes are rich in iron and play an important 
role in myelination. In the brain, insufficient iron supply affects 
enzyme synthesis, which further affects the proliferation and 
differentiation of OPCs and myelin synthesis (82, 83). On the 
one hand, TfR expression on OPCs peaks during oligodendrocyte 
maturation and declines in mature myelinating cells to maintain 
iron homeostasis and development (84–86). Due to ID in the 
brain, the binding of apo-Tf produced by oligodendrocytes and 
epithelial choroid plexus cells to iron is decreased. This impairs 
holo-Tf formation, which is required for high-affinity binding 
to TfR, ultimately leading to a decreased iron uptake by OPCs 
(87). The effects of apo-Tf on oligodendrocyte maturation and 
myelination may be mediated by the following signaling pathways: 
(1) Apo-Tf injection improves oligodendrocyte maturation and 
myelination by the Notch signaling pathway, which participates in 
focal demyelination and regeneration by increasing the F3/contact 
protein levels and Hes5 expression (88, 89). (2) The Fyn/MEK/ERK 
and PI3K/Akt pathways are also active post apo-Tf treatment 
(90, 91). Iron-related pathways (e.g., Fyn/MEK/ERK, PI3K/Akt, 
Notch) are closely related to neurological diseases, such as cognitive 
impairment and schizophrenia (92–94). On the other hand, ferritin 
in oligodendrocytes consists of an equal combination of heavy 
chain (Fth) and light chain (Ftl) (87). As an antioxidant protein, 
Fth may prevent the formation of reactive oxygen species, but it 
also increases cytoplasmic iron levels and oxidative stress (87). 
In oligodendrocyte-specific Fth1 KO mice, knocking out Fth in 
oligodendrocytes leads to neuronal loss and oxidative damage, thus 
affecting myelination (95). 

Under ID, the increased proliferation of astrocytes and the 
decreased expression of glial fibrillary acidic protein (GFAP) and 
connexin 43 (CX43) suggest that astrocyte maturation is impeded 
(96). Astrocytes can inhibit remyelination by secreting cytotoxic 
factors and conversely promote myelin repair by secreting trophic 
factors, such as tumor necrosis factor-α (TNF-α) and cytokines 
interleukin-1β (IL-1β) (97–99). Insulin-like growth factor 1 (IGF-
1) in response to TNF-α and fibroblast growth factor 2 (FGF-
2) in response to IL-1β are important for myelination (97, 100). 
Astrocytes have high expression of iron influx proteins and iron 
efflux proteins and, thus can safely uptake and recycle iron 
in the brain during demyelination (101). Iron distribution in 
astrocytes is critical for the remyelination process. When the 
iron efflux transporter Fpn is knocked out in astrocytes, there is 
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a decrease in the proliferation of OPCs and a decrease in the 
expression of IL-1β and IGF-1, which are associated with decreased 
remyelination (102). When multi-copper ferroxidases are knocked 
out in astrocytes, iron efflux is impaired and free radical production 
is increased, which ultimately drives myelin damage (103). 

4.3 Impaired synaptic plasticity 

Synaptic plasticity is defined as the ability of synapses to change 
their structure, connectivity, and function in response to internal 
or external stimuli (104). In newborns, a previous study has shown 
that low maternal iron intake accelerates the decline of fractional 
anisotropy (FA) values in gray matter, indicating reduced synaptic 
formation and dendritic arborization in offspring (105). In rodents, 
fetal ID regionally affects dendrite morphology and branching 
before adulthood, despite subsequent iron supplementation in 
the brain (106–108). ID reduces the basal dendrite length of 
pyramidal neurons in the hippocampus without affecting branch 
complexity and increases the proximal branches of apical dendrites 
without affecting total length. In contrast, both apical and basal 
dendrite branch complexity are reduced in cortical neurons, but 
total length remained unchanged (107). The decreased long-term 
potentiation (LTP) indicates abnormal synaptic plasticity in fetal 
iron-deficient mice (109). ID leads to the reduction of four synaptic 
proteins: CaMKIIα, PSD-95, Fkbp1a, and Vamp1 (110). During 
repeated stimulation, iron deficiency can change synaptic plasticity 
by keeping the content of synaptic vesicles constant but reducing 
their release, and iron supplementation partially reverses this (111). 

4.4 Abnormal neurotransmitter metabolism 

Iron is involved in the synthesis of neurotransmitters as a 
cofactor of enzymes such as tyrosine hydroxylase and tryptophan 
hydroxylase (112). The striatum, one of the basal ganglia of 
the brain, delivers dopamine-rich substances to the prefrontal 
cortex and is involved in cognitive and motor functions (8). 
Altered dopamine function has been associated with an increased 
risk of schizophrenia in adult offspring of maternal ID (113). 
In the striatum, dopamine concentration is high due to high 
iron concentration (114). When ID occurs, cellular uptake of 
dopamine is reduced because the density and function of dopamine 
transporters as well as dopamine receptors are reduced in 
the caudate-putamen (115, 116). Injection of physiological iron 
concentrations into the ventral midbrain (VMB) alleviates ID-
induced decrease in dopamine concentration in the striatum (117). 
Thy-1 is a cell adhesion molecule that regulates the release of 
neurotransmitter vesicles, and the fact that ID leads to a decrease 
in Thy-1 provides a new explanation for impaired dopaminergic 
transmission in the brain (118). Changes in local monoamine 
metabolism across various brain regions are sensitive, proportional 
to the degree of ID, and occur prior to the severe decrease in 
brain iron concentration (114, 119). Prenatal ID is associated with 
impaired monoamine metabolism in the offspring’s brain, leading 
to abnormalities in learning and memory functions. These changes 
cannot be treated by postpartum iron supplementation (120). In 

addition, ID can also alter the density of serotonin transporters and 
norepinephrine transporters, which is more pronounced in male 
offspring (121). 

5 Animal models used for iron 
deficiency 

To better understand the effects of iron deficiency during 
pregnancy on brain development and behavioral phenotypes in 
animal offspring and the possible mechanisms involved, multiple 
animal models of ID in pregnancy have been established, as shown 
in Table 1. 

In terms of pregnancy physiology, mice and rats have shorter 
gestation periods and multiple pregnancies, with fetuses being born 
with underdeveloped organs (122, 123). Regarding endocrinology, 
the entire pregnancy period is highly dependent on ovarian 
progesterone production to maintain pregnancy (123). With regard 
to the structure and efficiency of the placenta, there are uterine 
endothelial cells, maternal capillary endothelial cells, trophoblast 
cells, and fetal capillary endothelial cells between maternal blood 
and fetal tissue, resulting in low efficiency of material exchange 
(122). Guinea pigs have a longer gestation period than rats and 
mice, produce fewer offspring, and experience a rapid phase of 
brain development at birth (123, 124). Guinea pig placenta is 
discoid, labyrinthine, and haemomonochorial, resulting in higher 
efficiency of material exchange across the placenta than mice and 
rats (122). Rhesus monkeys are also similar to humans because they 
experience single-offspring pregnancies, have similar hematological 
changes during pregnancy (125), and share characteristics with 
humans in terms of placental transport, relative fetal growth, and 
regional brain development (21). 

The animal model of ID during pregnancy has been established 
by restricting dietary iron intake of pregnant mothers to study 
its effect on adverse outcomes in offspring. Rats and mice are 
the most common animal models. The rodent brain at 10 days 
of gestation is considered equivalent to the human brain at full-
term birth. Therefore, most rodent models of maternal ID are 
given an ID diet from pregnancy to about postnatal day 7, 
followed by which they are given an iron-sufficient diet (21). 
The pregnant rats are given an iron-deficient diet until after 
delivery, which decreases offspring’s brain iron concentration, 
delays myelination, and impairs synaptic plasticity (81, 109, 126). 
Moreover, the offspring of rats exposed to maternal ID have 
impaired cognitive development, such as poor hippocampus-
mediated spatial recognition learning and hippocampus-dependent 
trace fear conditioning and eyeblink conditioning (126–128). In 
addition, there are behavioral impairments in tests such as surface 
correction reflex and novel object recognition task (81). In the 
maternal iron-deficient mouse model, decreased iron level in the 
brain of the offspring is associated with anxiety and depression 
in adulthood (23). The mouse model with hippocampal neuron-
specific knockout of Slc11a2, a gene responsible for iron uptake, 
showed that reduced iron content impaired the memory function 
by affecting the hippocampal neurodevelopment, including energy 
metabolism and dendrite morphology (129). When ID occurs 
in pregnant guinea pigs, the hearing function of offspring 
is impaired by affecting neural synchronization and auditory 
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nerve conduction velocity (130, 131). Offspring of prenatal iron-
deficient guinea pigs have increased locomotor activity, suggesting 
increased nervousness due to anxiety (132). Rhesus monkeys in 
the experimental group were fed a low iron diet (10 mg Fe/g) 
from 28 to 30 days of gestation until delivery, while controls were 
fed an iron-rich diet (100 mg Fe/g) (133). Newborns of pregnant 
Rhesus monkeys with ID were born with reduced hemoglobin, 
volume, and number of red blood cells but without neurobehavioral 
abnormalities (133). Other studies have shown that the offspring 
of prenatal ID in rhesus monkeys have reduced spontaneous 
activity in a new environment and behavioral disorders such as 
reduced inhibitory responses (134, 135). Moreover, the offspring of 
prenatal ID in rhesus monkey showed more active exploration in 
a new environment and in the manipulation of new objects than 
the control group, suggesting the presence of impulsive behavior 
syndrome (134). 

6 Abnormal neurological behaviors 

6.1 Motor function 

Psychomotor development mainly encompasses gross and fine 
motor skills, and if impaired, it can affect an individual’s cognitive 
and emotional development (136). The gross motor scores consist 
of three parts: reflexes, locomotion, and stationary subscales. 
Reflexes are automatic responses to environmental changes, such 
as the righting reflex. The assessment of locomotion is based on 
the ability to move from one place to another. In addition, the 
assessment of stationary is based on the ability to control the 
center of gravity and maintain balance (137). Fine movement 
mainly focuses on the use of body muscles to complete specific 
actions, such as finger movements and hand–eye coordination 
(138). During pregnancy, the offspring of anemic mothers with 
low hemoglobin concentration have slightly low gross and fine 
motor scores, which are positively correlated when maternal 
hemoglobin is below 110 g/L (139). Children whose mothers 
had a low dietary iron intake or low umbilical cord ferritin 
concentration during pregnancy have lower gross motor and fine 
motor scores than children whose mothers had a diet rich in 
protein and micronutrients (22, 140). The severity of impaired 
motor development is related to the timing and duration of 
ID. When ID occurs in the third trimester of pregnancy, the 
Peabody Developmental Motor Scales, Second Edition (PDMS-2) 
gross motor scores are lower (141). However, a study showed that 
prenatal ID or IDA were not associated with motor development 
in the offspring despite low umbilical serum ferritin concentration, 
possibly because iron supplementation was not considered during 
pregnancy (142). 

6.2 Learning and memory 

Prenatal IDA or low cord ferritin concentration is associated 
with impaired cognitive and intellectual development in offspring 
(22, 143–146). Memory is categorized into two distinct types: 
explicit memory, employed to recall past events, and implicit 
memory, related to motor and skill tasks and cognition (147). The 

explicit memory is assessed by electrophysiological measurements 
and behavioral memory performance, which include evoked 
imitation of immediate recall and delayed imitation of 1-week 
delayed recall. The study shows that prenatal ID can have a lasting 
effect on memory function in offspring, as evidenced by impaired 
recall and compromised encoding and retrieval processes (148). 
Fetuses with low cord ferritin or high ratio of porphyrin/heme zinc 
in the umbilical cord blood allocated more attentional resources to 
mother’s voice and face recognition memory (24, 149, 150). Both 
the timing of the onset of ID and the age at which the infant’s 
recognition memory is assessed influence the results (150). In the 
animal model, prenatal ID in rats impairs hippocampus-dependent 
trace fear conditioning and eye-blinking conditioning in offspring, 
indicating implicit memory is impaired (127, 128). The offspring of 
prenatal iron-deficient rats are more likely to rely on the striatum 
to navigate spatial memory tasks (126). 

6.3 Affective and neurodevelopmental 
disorders 

Accumulating evidence suggests that prenatal ID is associated 
with affective disorders in the offspring. In mice, prenatal ID 
reduces brain iron levels and increases susceptibility to anxiety-
and depression-like behaviors in offspring (23). In rats, prenatal ID 
is associated with autism-like and schizophrenia-like behaviors in 
offspring, exhibiting abnormal pre-pulse inhibition of offspring’s 
acoustic shock and sensitivity in novel environments (151). In 
humans, low maternal iron intake or ferritin level during pregnancy 
are related to an increased risk of autism in offspring (152, 153). In 
addition, offspring with low maternal hemoglobin concentration or 
anemia during pregnancy have an increased risk of schizophrenia, 
suggesting that maternal ID is a risk factor for schizophrenia in 
offspring (154). 

7 Possible mechanisms underlying the 
neurological disorders caused by 
prenatal iron deficiency 

7.1 Abnormal epigenetic modification 

Epigenetic regulation refers to chemical modifications of DNA 
and histones that affect gene expression without altering the genetic 
code, such as DNA methylation, histone modification, regulation of 
non-coding RNA, and chromatin remodeling (155, 156). In animal 
models, maternal ID-induced dysregulation of gene expression 
in hippocampal neuronal development and functional pathways 
is related to aberrant DNA methylation (157). These pathways 
are the β-adrenergic signaling pathway, the CAMP-PKA signaling 
pathway, Rho GTPase signaling, and reelin signaling, all of which 
are involved in synaptogenesis and synaptic plasticity (157). In 
humans, lower levels of DNA methylation in the umbilical cord are 
related to lower maternal serum ferritin concentrations during the 
first trimester, and these relationships partially persist in children 
(158). The concentration of transferrin in pregnant women 
is associated with increased DNA methylation at cg09996156 

Frontiers in Nutrition 08 frontiersin.org 

https://doi.org/10.3389/fnut.2025.1637398
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Zhao et al. 10.3389/fnut.2025.1637398 

(KIAA1324L), a regulator of the bone morphogenetic protein 
(BMP) pathway, which participates in apoptosis and autophagy 
and affects the development of the embryonic nervous system (158, 
159). Iron is involved in two families of epigenetic modifications— 
Ten-Eleven Translocation (TET) proteins and Jumonji and 
AT-rich interaction domain-containing (JARID) proteins—both 
of which regulate gene expression during critical periods of 
brain development (160). The TET enzyme demethylates DNA 
by catalyzing the oxidation of 5-methylcytosine to form 5-
hydroxymethylcytosine (5hmC), which serves as a stable epigenetic 
marker for neurons (161, 162). Syt1 and Nav2 are genes with 
high levels of 5hmC that play a role in neurogenesis and synaptic 
transmission (162, 163). 

Histone modifications include methylation, acetylation, 
phosphorylation, and ubiquitination, with methylation and 
acetylation being the most common (164). The expression of 
JARID1B gene is downregulated in the hippocampus of the 
offspring of maternal iron-deficient rats (165) due to enrichment 
of histone deacetylase 1 (HDAC1) at the JARID1B promoter and 
the low acetylation level of H3K9 (166). Proteins containing JmjC 
domain are known as demethylases and can regulate transcription 
by removing methyl groups from lysine residues in the tail of 
histones (167, 168). Low JARID1B (Kdm5b) demethylation from 
trimethylated and dimethylated histone H3 lysine 4 (H3K4me1/2) 
leads to an increase in chromatin compaction and a decrease 
in transcriptional activity, whereas low JMJD3 (Kdm6b) and 
JHDM1d demethylates from H3K9me3 and H3K27me3 leads to a 
decrease in transcriptional repression of chromatin conformation 
(169–171). Therefore, alteration of JARID1B expression under ID 
can regulate transcription levels by altering chromatin structure, 
such as BDNF-related genes (165). Increased levels of H3K27me3 
labeling are associated with promoter inhibition, and increased 
levels of H3K4me3 labeling are associated with promoter activity 
(172). Iron-deficient fetuses have an increased concentration 
of H3K27me3 and a decreased concentration of H3K4me3 in 
the hippocampus, which may be one of the mechanisms for 
decreased transcriptional activity of Bdnf-P4 (165, 173). Iron 
supplementation during the critical period of hippocampal 
development could partially increase JARID, but the recovery 
ability is limited (166). Choline supplementation during pregnancy 
reduces the expression of histone methyltransferase G9a and 
Suv39h1 in the hippocampus, which may be a potential mechanism 
for reversing maternal ID-induced HDAC1 enrichment and 
reduced H3K4me3 levels (173, 174). 

MicroRNAs are non-coding single-stranded RNAs of 
approximately 22 nucleotides in length that are widely involved 
in the regulation of neurogenesis, development, apoptosis, cell 
differentiation, proliferation, and other biological processes by 
inhibiting the translation of messenger RNAs or promoting mRNA 
degradation (175). Prenatal ID alters miRNA expression in the 
brain, such as miR-200a and miR-200b, which may increase the 
risk of depression and anxiety-like behaviors in the offspring (23). 

7.2 Mitochondrial dysfunction 

Iron is involved in enzymes that make up the electron 
transport chain and the tricarboxylic acid cycle; therefore, it can 

influence brain development through energy metabolism (176). ID 
in hippocampal neurons alters the mRNA levels of genes related to 
mitochondrial function and energy metabolism, causing impaired 
mitochondrial respiration and glycolysis, which in turn affects the 
dendritic growth and branching (177). In the early stage of ID, only 
the oxidative capacity of mitochondria is affected, but in the later 
stage, the density of mitochondria is reduced, suggesting that there 
may be long-term effects on neurons (177). There are three main 
approaches in which chronic ID alters dendritic mitochondrial 
movement: first, an increase in the frequency of dendritic 
mitochondrial pauses decreases the speed of mitochondrial motion 
(178). On the one hand, a reduction in localized transient ATP may 
influence the ATPase activity utilized by motor proteins, such as 
dynein motor proteins and dynamins in transporting mitochondria 
(179, 180). On the other hand, ID may enhance the mRNA 
expression levels of blood–brain barrier and neuronal glucose 
transporters in the hippocampus (181). Extracellular glucose 
alters Milton GlcNAcylation, which regulates the mitochondrial 
motility by O-GlcNAc transferase (OGT) (182). Second, changes 
in mitochondrial fusion and fission gene expression in response 
to ID can reduce mitochondrial size by inhibiting OPA1-
mediated fusion and stimulating DRP1-mediated fission (183, 
184). Third, reduced anterograde mitochondrial movement and 
increased retrograde segmental velocity are observed in ID, while 
overall retrograde motion remains unchanged (178). Therefore, 
mitochondrial malfunction due to ID may contribute to long-term 
neurological damage and psychiatric disorders in offspring. 

7.3 HPA axis dysfunction 

Stress leads to activation of the hypothalamic–pituitary– 
adrenal (HPA) axis, which elevates glucocorticoid (GC) 
concentrations (185). Elevated GC leads to the apoptosis and 
atrophy of hippocampal neurons, which impairs neuroplasticity 
and leads to abnormal behavior (186). Glucocorticoid receptor 
(GR) in the hippocampus can regulate glucocorticoid levels 
through a negative feedback loop (187). GR binds to the 
cytoplasmic heat shock protein (Hsp) 40 and Hsp70 to form a 
GR–Hsp40/Hsp70 complex, which promotes GR folding and 
localization to the intermediate domain of Hsp90. The GR–Hsp90 
complex alters the structure of the protein to allow it to bind GC 
(188–190). The binding of FK506-binding protein (FKBP51) and 
p23 to the GR–Hsp90 complex increases the binding affinity of 
GR to GC. After GC binds to the GR–Hsp90 complex, FKBP51 
is replaced by FKBP52, which assists in nuclear translocation of 
the GC–GR heterocomplex and inhibits gene transcription of 
corticotropin-releasing hormone (CRH) in the nucleus (191, 192). 
On the one hand, when GC concentration is elevated, the increased 
expression of FKBP5 gene inhibits GR activity by limiting the 
translocation of the receptor complex to the nucleus (193). On 
the other hand, alterations in the self-phosphorylation state of 
GR regulate its transport from the cytoplasm to the nucleus 
(193, 194). The cognitive impairment of iron-deficient offspring 
may be related to the elevated serum glucocorticoid level and 
the reduced GR activity. In a mouse model of the offspring of 
iron-deficient mothers, serum glucocorticoid level is increased 
and GR activity is significantly reduced (195). In the case of ID 
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in the brain, the hippocampus GC–GR signaling pathway can be 
inhibited by impaired GR–HSP90 complex formation and nuclear 
translocation, which affects the negative feedback regulation 
function of GR and hyperactivates the HPA axis (195). Therefore, 
HPA axis dysfunction due to prenatal ID may also be one of 
the important pathways for neurodevelopmental and behavioral 
abnormalities in offspring. 

8 Future prospects 

Although previous studies have shown associations between 
maternal obesity, diabetes, smoking, alcohol exposure, stress and 
fetal ID, the underlying mechanisms remain unclear. Identifying 
these factors associated with fetal ID can help prevent neuronal 
dysfunction-related diseases. Currently, because the gestation 
process in rodents is different from that of humans, they cannot 
provide adequate models for neurodevelopment, disorders, and 
mechanisms of ID in pregnant offspring. Rhesus monkeys with 
similar pregnancy cycles to humans are used as animal models 
for ID in pregnancy. In human cohort studies, most researchers 
have linked fetal ID to disorders such as cognitive impairment, 
autism, and schizophrenia. However, perhaps due to the different 
diagnostic criteria for fetal ID and cognitive function, studies have 
shown no association with cognitive function changes in adulthood 
(196–198). In addition, further research is needed to determine 
whether there is a clear link between fetal ID and ADHD. 

Although it has been demonstrated that fetal ID affects 
the brain development of offspring, the relationship between 
neurological disorders and the specific molecular mechanism 
is still unclear. The study of maternal iron deficiency models 
will help us to further understand and lay a good foundation 
for treatment. Dietary therapy can enhance iron status in 
pregnant women at risk of or with mild ID during pregnancy. 
Pregnant women should eat more foods rich in ascorbic acid 
and carotenoids, such as kiwi fruit, and reduce their intake 
of foods that inhibit iron absorption, such as coffee, tea, and 
phytic acid in grains (199). In animal models, prenatal choline 
supplementation mitigated the expression of genes associated with 
ID-induced psychological disorders, such as schizophrenia, autism, 
and anxiety (200). Iron-deficient neurons treated with choline 
can stimulate dendritic growth, restore dendritic complexity, and 
improve ATP production rate and glycolysis but not be fully 
restored to normal (201). These changes are more pronounced 
in female rats (202). However, prenatal choline supplementation 
in iron-sufficient rats can dysregulate the expression of genes 
associated with cognitive and psychological disorders and promote 
epithelial to mesenchymal transformation by inhibiting fatty acid 
metabolism and oxidative phosphorylation activity, leading to 
cell adhesion and migration, which is similar to the adverse 
effects of ID (202). However, these changes do not affect 
the complexity of dendrites and the structural development 
of neurons (201). Prenatal choline supplementation attenuated 
ID-induced ADORA2 gene network in women and FEV gene 
network in men, which are associated with depression and 
attention disorders, respectively (202). In humans, existing studies 
indicate that choline supplementation during pregnancy may 

improve cognitive function in offspring (203, 204). In terms 
of the choline supplementation window during pregnancy, the 
cognitive ability improvement is lower in early pregnancy than 
in mid-pregnancy when choline intake is the same (204). 
Choline supplementation in late pregnancy enhances the attention 
maintenance ability of offspring (203). The recommended daily 
intake of choline for pregnant women is 450 mg/day (205). 
In the late stages of pregnancy, offspring with daily intakes of 
930 mg/day demonstrated higher cognitive abilities than those 
with daily intakes of 480 mg/day (203). Additionally, maternal 
plasma choline levels were positively correlated with cognitive 
development in full-term infants (206). However, the dosage 
and duration of choline supplementation to alleviate the adverse 
reactions caused by ID during the prenatal period have not yet 
been conclusive. Moreover, in terms of human health, nearly 
40%−50% of children with prenatal ID continue to experience 
intellectual disability and long-term neurological impairment 
despite iron supplementation (207). Early-life mitochondrial 
dysfunction is recognized as one of the potential factors for 
these psychiatric disorders (178). Supplementing dietary selenium 
can improve mitochondrial function by increasing the expression 
of selenoprotein K in the endoplasmic reticulum of neurons, 
promoting TfR-1 palmitoylation, and increasing intracellular iron 
levels (208). Idebenone is a Coenzyme Q10 analog that protects 
the mitochondria by acting as an antioxidant and increasing ATP 
production, thereby alleviating cognitive impairment. However, 
whether they can improve cognitive impairment in offspring of 
prenatal ID remains to be studied (209). Therefore, mitochondria 
are an attractive target for the design of alternative therapeutic 
interventions to prevent long-term neuropathology in many 
children, in addition to timely iron supplementation. 

Various models (cells, organ tissues, and animals) will be 
utilized to rigorously validate whether target regulation can rescue 
or improve neurodevelopmental phenotypes through genetic 
manipulation (overexpression, knockout, and knockdown) 
and pharmacological intervention. Conducting standard 
reproductive toxicity and developmental toxicity studies in at 
least two animal species (typically one rodent and one non-
rodent species such as non-human primates) to evaluate how 
different doses and administration timings (corresponding to 
various developmental stages) affect maternal and fetal health 
(including all organ systems, particularly the nervous and 
reproductive systems), as well as the long-term developmental 
outcomes of offspring. With strict regulatory and ethical 
oversight, the safety, tolerability, pharmacokinetic characteristics, 
and preliminary efficacy of fetal interventions in humans 
should be assessed, along with long-term postnatal follow-up. 
Professional societies should develop evidence-based clinical 
practice guidelines for fetal intervention procedures, clearly 
defining the indications, contraindications, operational standards, 
monitoring requirements, and long-term follow-up protocols. 
The following five aspects encompass ethical considerations 
regarding interventions during fetal development: the moral 
status of the fetus as a patient; the extreme uncertainty in risk-
benefit assessments; the complexity of informed consent; equity, 
accessibility, and resource allocation; and the establishment of 
regulatory and oversight frameworks. 
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