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Objective: To assess the association between daily carbohydrate (CHO) intake
and glycemic control in adults with type 1 diabetes (T1D).

Methods: Patients with T1D who received continuous glucose monitoring
(CGM) to manage their blood glucose levels were enrolled in the study. A
dietitian analyzed dietary components, including carbohydrate, protein, and
fat percentages in the total dietary intake. Mean individual daily CHO intake
(MIDC) and relative deviation from MIDC (<80% low; 81%—120% medium, >120%
high CHO consumption) were compared with parameters of glycemic control
assessed by CGM.

Results: Records from 36 patients [11 male, 25 female; age 39.5 £+ 13.9 years;
HbAlc 9.0 £ 2.8% (75 £31 mmol/mol)]. Provided 356 days of data for a total
of 1,068 meals. Time in range (3.9-10 mmol/l) for low, medium, and high CHO
consumption was 81.6 (70.96, 90.28)%, 74.65 (59.55, 84.9)%, and 64.58 (51.04,
77.78)%, respectively (P < 0.001). Time above range (>10 mmol/L) was 9.55 (1.39,
17.95)%, 10.42 (2.78, 27.43)%, and 27.08 (11.46, 47.92)%, respectively (P < 0.001).
There was no between-group difference for time in hypoglycemia (<3.9 mmol/L;
P = 0.136). After adjusting for HbAlc, total calorie intake, and total daily insulin
dose, carbohydrate intake was negatively correlated with achieving TIR > 70%.
Conclusions: Daily CHO intake was inversely associated with glycemic control
in adults with T1D. A carbohydrate energy percentage between 40% and 50% and
a relatively low daily carbohydrate intake may be a strategy to optimize glucose
control in suboptimal-controlled T1D in real-world settings.

KEYWORDS

continuous glucose monitoring, diet effect, carbohydrate, type 1 diabetes,
hypoglycemia

Introduction

Type 1 diabetes is a metabolic disorder characterized by the progressive autoimmune
destruction of pancreatic B-cells in genetically predisposed individuals, ultimately leading
to absolute insulin deficiency. According to the International Diabetes Federation (IDF),
in 2022, an estimated 8.75 million individuals worldwide were living with T1D (95%
confidence interval: 8.4-9.1 million) (1). Despite geographical variations, the overall
annual incidence of T1D is projected to increase by ~3%—4% (1-4).

Despite the significant advancements in insulin therapy that have markedly enhanced
patient outcomes, glycemic control in Type 1 Diabetes (T1D) continues to be suboptimal.
For instance, the T1D Exchange registry indicates that only 21% of adult patients attain
a hemoglobin Alc (HbAlc) level below 7.0% (5). Inadequate long-term glycemic control
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can precipitate severe acute and chronic complications.
Epidemiological studies conducted in the United States and
Europe over the past decade have emphasized a concerning
increase in hyperglycemic emergencies among adults with T1D
(6, 7). Additionally, the overall mortality rate resulting from
diabetic ketoacidosis (DKA) presents a significant concern; data
from national registries in Scotland reveal that nearly 16% of
fatalities in T1D patients under the age of 50 are attributable
to diabetes-related coma or DKA (8). Chronic microvascular
complications, such as retinopathy, nephropathy, and neuropathy,
demonstrate occurrence rates as high as 30%—50% among T1D
patients with a disease duration exceeding 10-15 years (9, 10).

Another area of concern is the cardiovascular disease (CVD)
risk associated with T1D. The ESC CVD risk stratification applied
to 34,705 T1D subjects in the Italian AMD Annals Initiative found
that 64.7% of these individuals were at very high risk for CVD.
Furthermore, females diagnosed with T1D before the age of 10
experienced a loss of 17.7 life years (95% CI: 14.5-20.4), while males
lost 14.2 life years (95% CI: 12.1-18.2) (10).

Postprandial glucose fluctuations significantly challenge
glycemic control in individuals with T1D. In patients with
reasonable diabetes management (HbAlc < 7.3%), postprandial
plasma glucose contributes 70% to overall glycemic variability
(11). CHO intake is recognized as a primary determinant of
postprandial glucose levels and glucose variability (12, 20). The
ISPAD 2022 guidelines recommend that carbohydrates account for
40%—50% of total energy intake (13). However, the 2025 guidelines
from the American Diabetes Association (ADA) emphasize that
there is no ideal macronutrient proportion for individuals with
diabetes (14). The impact of daily carbohydrate intake on glycemic
control and fluctuations remains unclear. In this pilot study,
we aim to investigate the relationship between dietary CHO
intake and glucose levels, as monitored via CGM, in free-living
conditions among individuals with T1D. We hypothesize that
dietary carbohydrate intake is the primary driver of daily time in

range (TIR).

Methods

Participants

This observational study, conducted at the Endocrinology
Department of Yunnan Provincial First People’s Hospital, enrolled
participants with type 1 diabetes (T1D) from June 2023 to June
2024. Eligible participants met the ADA diagnostic criteria for T1D,
had a disease duration of at least six months, were aged between
18 and 55, and had HbA1lc levels ranging from 6.5% to 11.0% in 3
months before enrollment. Participants needed to follow a basal-
bolus insulin regimen using multiple daily injections (MDI) or
continuous subcutaneous insulin infusion (CSII), and they were
required to maintain a dietary record independently. Exclusion
criteria included refusal to utilize continuous glucose monitoring
(CGM) technology or share blood glucose data; usage of automated
insulin delivery systems; any occurrence of diabetic ketoacidosis
(DKA) or severe complications, such as eGFR <30 mL/min/1.73
m? or proliferative retinopathy, within 3 months before enrollment;
active gastrointestinal disorders or celiac disease; and a history of
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cognitive dysfunction or mental illness. This study was approved by
the Medical Ethics Committee of Yunnan Provincial First People’s
Hospital (Approval No: KHLL2022-KY165), and all participants
provided written informed consent.

Nutritional assessment

Nutritional intake was evaluated using a standardized food
weighing method along with dietary diaries. The research
center provided electronic kitchen scales (accuracy + 1g)
and standardized dietary record booklets. Nutritional data for
packaged foods were obtained from food labels, while data
for non-packaged foods were analyzed with the TangTangQuan
dietary analysis software (Aibaowei Biotechnology, China). Before
enrollment, participants underwent a 30-min standardized training
session conducted by a registered dietitian, which covered
food portion estimation, weighing techniques, and addressing
exceptional circumstances (e.g., semi-quantitative recording for
meals eaten out).

The dietary diary needed to capture the following details: food
type and brand, time of consumption, dining context (whether at
home or dining out), and insulin dosage. Records were omitted
from the final analysis if the daily energy intake fell below 800
kcal or meals were missed. The same dietitian evaluated all
dietary diaries, determining daily caloric intake and the amounts
of carbohydrates, fats, and proteins. A minimum of 3 days
of dietary records was necessary, with an average daily caloric
intake surpassing 800 kcal; records lacking complete meal entries
were excluded from the final analysis. All dietary records were
analyzed with TangTangQuan® software to calculate total caloric
intake and the macronutrient breakdown. Mean individual daily
carbohydrate intake (MIDC, g/day) and the rMIDC (relative
deviation from MIDC, %MIDC) were utilized to reflect variations
in daily carbohydrate consumption between individuals. Based on
rMIDC, participants were stratified into low (<80%), medium
(81%—120%), and high (>120%) (15), e.g., 80% rMIDC: mean
individual daily CHO intake * 0.8.

Demographic and biomedical data

The following parameters were collected: demographics (age,
sex, height, weight, duration of diabetes); metabolic indicators
(HbAlc, liver and kidney function, lipid profile including
total cholesterol, high-density lipoprotein cholesterol, low-
density lipoprotein cholesterol, and triglycerides); and treatment
information [type of insulin therapy (MDI or CSII), average daily
total insulin dose (U/kg/d) from the past week, and understanding
of carbohydrate counting (yes/no)].

Glycemic outcomes
For analysis, the following CGM metrics were evaluated:

percentage of time in the glucose range of 3.9-10 mmol/L (%TIR),
percentage of time below range <3.9 mmol/L (%TBR), and
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percentage of time above range >10 mmol/L (%TAR), mean
glucose levels, and glycemic variability calculated as the coefficient
of variation (CV = SD/mean).

Statistical analysis

All statistical analyses were performed using R software
(version 4.2.2; R Foundation for Statistical Computing, Vienna,
Austria). Data preprocessing and cleaning involved several
R packages: magrittr (version 2.0.3) for pipeline operations,
dplyr (version 1.1.1) and data.table (version 1.14.8) for data
manipulation, tidyr (version 1.3.0) for data tidying, and stringr
(version 1.5.0) for string processing. Missing values were handled
using the drop_na() function from the tidyr package.

Depending on the circumstances, categorical variables were
compared using Pearson’s chi-square test or Fisher’s exact test.
Continuous variables were assessed with the independent samples
t-test if they were normally distributed; otherwise, the Mann-
Whitney U test was employed, with normality established via
the Shapiro-Wilk test. Generalized linear mixed models were
implemented using the lme4 package (version 1.1-32). In the
model, total CHO intake was treated as a fixed effect, while HbAlc,
daily insulin intake, and total caloric intake were included as
covariates. The sample ID was designated as a random effect. Forest
plots were generated using the forestplot package (version 3.1-1).

Results

Participant characteristics

A total of 36 patients with T1D were included in the
study, consisting of 25 females (69.4%) and 11 males (30.6%)—
thirteen participants (36.1%) utilized carbohydrate counting. We
collected a comprehensive dietary record spanning 356 days, which
included 1,068 meals, a median recording duration of 9 days. The
participants had a mean age of 39.5 £ 13.9 years and a diabetes
duration of 13.2 4 9.2 years. The mean glycated hemoglobin
(HbA1c) level was 9.0% = 2.8%, and the average total daily insulin
dosage was 34.7 £ 11.0 units. The mean time in range (TIR) was
also 64.2 £ 12.1% (Table 1).

Daily carbohydrate intake linked to
glycemic outcomes

Table 2 summarizes daily CHO intake, total daily insulin
dosage, and CGM metrics categorized by rMIDC. The mean
daily CHO intake was 164.21 £ 60g. Specifically, daily CHO
intake for the low, medium, and high rMIDC groups was 108.3 g
(95.33, 120.2), 152.8 g (142.4, 172.75), and 251.7 g (222.2, 269.25),
respectively (P < 0.001). The total calorie intake for the low,
medium, and high rMIDC groups was 1,012.2 Kcal (889.47,
1,186.76), 1,277.7 Kcal (1,101.5, 1,471), and 1,748.8 Kcal (1,608.86,
1,903.8), respectively (P < 0.001). CHO intake accounted for
42.09% =+ 9.04%, 49.65% =+ 9.72%, and 58.17% (52.73, 63.71%) of
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TABLE 1 Baseline characteristics.

Characteristics Mean =+ SD or Median (IQR)

Participants, n 36
Female, n (%) 25 (69.4)
Age, years 39.54+13.9
BMI, kg/m? 21.6£32
Duration of diabetes, years 132492
Portion of using carbohydrate 36.1%
counting
HbA1lc % mmol/mol 9.0+2.8
75+ 31
Fasting C-Peptide (nmol/L) 0.08 +0.01
MDI therapy, n (%) 28 (77.8)
Pump therapy, n (%) 8(22.2)
TDD (U) 3474+ 11.0
TDD/Weight [U/(kg.day)] 0.66 £ 0.27
Mean daily basal insulin (U) 13.7 £5.5
Mean daily bolus insulin (U) 19.46 £+ 1.30
TIR (%) 64.2 £ 12.1

Data are mean =+ SD or median (IQR), unless otherwise indicated.
BMI, body mass index; MDI, multiple daily insulin injections; TDD, Total insulin delivered;
TIR, time in range.

total daily energy in the low, medium, and high rMIDC groups,
respectively (P < 0.001).

TIR values for the low, medium, and high rMIDC groups
were 81.6% (70.96, 90.28), 74.65% (59.55, 84.9), and 64.58% (51.04,
77.78) (P < 0.001). TAR percentages were 9.55% (1.39, 17.95),
10.42% (2.78, 27.43), and 27.08% (11.46, 47.92) (P < 0.001).
No significant difference in TBR was observed (P = 0.136). The
proportion of subjects achieving comprehensive control, defined as
TIR > 70%, TBR < 5%, and TAR < 25%, was 39.17%, 21.77%, and
14.61% in the low, medium, and high rMIDC groups, respectively
(P < 0.001).

Additionally, glycemic variability metrics, including the
coefficient of wvariation (CV), mean amplitude of glycemic
excursions (MAGE), and largest amplitude of glycemic excursions
(LAGE), showed significant differences among the three groups
(P < 0.001). Compared to the medium and high rMIDC groups,
the low rMIDC group exhibited decreased diurnal blood glucose
variability. Concerning insulin dosage, significant differences were
noted only in bolus insulin dosage across the groups (P < 0.001).
Compared to the medium and high rMIDC groups, the low rMIDC
group observed lower bolus insulin dosage.

Predictor of TIR > 70%

The forest plot analysis (Figure 1) displays the effect sizes (8
coefficients) and their corresponding 95% confidence intervals
(ClIs) for the categorical predictor defined as TIR > 70%.

The results indicated several factors negatively associated with
TIR: HbAlc showed a significant effect (8 = —0.18, P < 0.05);
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TABLE 2 Associations between carbohydrate intake and blood glucose control.

TIR (3.9-10 mmol/L) (%) 81.6 (70.96, 90.28) 74.65 (59.55, 84.9)*** 64.58 (51.04, 77.78) " *### <0.001
TBR (<3.9 mmol/L) (%) 4.46 (0.69, 11.8) 6.6 (1.56, 15.28)* 3.43 (0, 13.19)* 0.136
TAR (>10 mmol/L) (%) 9.55 (1.39, 17.95) 10.42 (2.78, 27.43) 27.08 (11.46, 47.92)** ##:# <0.001
TIR (3.9-10 mmol/L) > 70% (%) 80 (96, 120) 58.5 (86, 147)*** 40.45 (36, 89)* # <0.001
TIR > 70% & TBR < 5% (%) 44.17 (53, 120) 22.45 (33, 147)** 19.1 (17, 89)*** <0.001
TIR > 70% & TBR < 5% & TAR < 25% 39.17 (47, 120) 21.77 (32, 147)** 14.61 (13, 89)™* <0.001
(%)

Mean glucose (mmol/L) 6.93 (6.27,7.92) 6.97 (6.13, 8.39) 8.27 (7.1, 10.03)***### <0.001
SD (mmol/L) 1.97 (1.71,2.38) 2.23 (1.9, 2.93)** 2.7 (2.02, 3.33)*+# <0.001
MAGE (mmol/L) 5.03 (4.12, 6.78) 6.08 (4.78,7.93)™* 6.82 (5.22, 8.81)"**# <0.001
LAGE (mmol/L) 8.6 (7.27,10.5) 10 (8.05, 12.15)** 11.03 (6.82, 15.26)*** <0.001
CV glucose (%) 28.45 (23.93,33.99) 32.02 (27.64, 38.77)** 33.71 (21.9, 45.52)** <0.001
Insulin dosage

TDD (U) 30 (22,37) 39 (29.95, 43)*** 36 (29, 39) ™ ## 0.173
Basal insulin dosage (U) 12.3 (9.5, 18.3) 13 (12.3, 14.95)* 13 (12, 14.25) 0.084
Bolus insulin dosage (U) 15.75 (12.2, 20) 25 (16, 28)*** 21 (16.8, 25)**## 0.045

Asterisks denote significance levels of postestimations comparing the rMIDC group <80% against the rMIDC group 80%—120%, and the rMIDC group > 120%: *P < 0.05, **P < 0.01, ***P <
0.001. * denote significance levels of postestimations comparing the rMIDC group 80%—120%, and against the rMIDC group > 120%: *P < 0.05, P < 0.01, ***P < 0.001.

rMIDC, the relative deviation from mean individual daily carbohydrate intake; TIR, time in range; TAR, time above range; TBR, time below range; SD, standard deviation; MAGE, mean
amplitude of glycemic excursions; LAGE, largest amplitude of glycemic excursions; CV, coefficient of variation; TDD, total insulin delivered.

fasting C-peptide levels (8 = —6.29, P < 0.05); total daily insulin
dose (B = —1.05, P < 0.05); total daily caloric intake (8 = —1.15,
P < 0.01); and daily carbohydrate intake (8 = —1.32, P < 0.001),
all demonstrating a negative impact on the likelihood of achieving
TIR > 70%.

After adjusting for HbAlc, total calorie intake, and total daily
insulin dose, carbohydrate intake was negatively correlated with
achieving TIR > 70% [ = —1.19, OR = 0.30; 95% CI (0.12, 0.80); P
= 0.016]. Specifically, a 50% increase in CHO intake was associated
with a 49% decrease in the probability of meeting the TIR target.

Each square represents the point estimate (§), with horizontal
lines denoting 95% ClIs. The range of the X-axis is set from —2 to
2, with any lines that extend beyond the axis indicating confidence
interval (CI) values that fall outside this range.

Discussion

In this study, we investigated the effects of dietary CHO intake
on glucose levels and glycemic control in adults with T1D and high
baseline HbAlc who lived in free-living conditions. Our findings
indicate a negative correlation between daily CHO intake and
glycemic control. However, the benefits of CHO restriction may
differ in individuals with well-controlled T1D.

Previous research has primarily focused on the relationship
between macronutrient distribution and HbAlc levels. For
instance, a study involving 136 adolescents with T1D (aged 8-
17 years) over a one-year observation period found that greater
CHO intake was associated with lower HbAlc and higher CV (16).
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However, HbA1c reflects average glucose levels over the preceding
3-4 months, and fluctuations in macronutrient intake during
this period may compromise the reliability of this association.
Cherubini et al. observed in a cohort of 197 children with T1D
that a diet comprising 40%—44% carbohydrates was associated with
a significantly higher percentage of participants achieving TIR >
70% compared to those consuming 45%—50% carbohydrates (17).
Similarly, Lehmann et al. (15) noted in a study of 36 adults with
T1D using a Hybrid Closed-Loop System that daily CHO intake
inversely correlated with glycemic control, particularly in patients
who frequently used the automatic mode. Our study corroborates
these findings, as lower CHO intake significantly improved TIR
by 17.02% compared to higher CHO intake. Additionally, parallel
to previous studies identifying carbohydrate intake as a negative
predictor of TIR during breakfast and dinner (18), our research
found that CHO intake was also a negative predictor of 24-h TIR.
While HbAlc explains only a portion of the risk for
diabetes-related complications, recent studies have shown that
glycemic variability is associated with various microvascular and
macrovascular complications of diabetes (19). Previous research
has indicated that CHO intake is linked to greater postprandial
glycemic variability over 3-5h (12, 20). Data from the Type 1
Diabetes Exercise Initiative Pediatric (T1DEXIP) study revealed
that higher CHO meals increased postprandial variability in glucose
CV and SD (20). However, the relationship between CHO intake
and daily blood glucose fluctuations has yet to be validated (21).
Our study found that CHO intake is associated with higher 24-
h SD, MAGE, and LAGE. Compared to the rMIDC group <80%
(28.45%), the rMIDC groups 80%—120% (32.02%) and >120%
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Predictor Variable B(CIl) P value
Duration - 0.04(-0.01~0.1) 0.116
Age & -0.01(-0.05~0.02) 0.543
Gender I = -0.85(-1.84~0.14) 0.092
HbA1c | -0.18(-0.34~-0.02) 0.03
Fasting C-Peptide { -6.29(-12.42~-0.17) 0.044
Basic_insulin_dosage — -0.45(-1~0.1) 0.106
Dietary_insulin_dosage —a— -0.58(-1.23~0.07) 0.082
Daily_insulin_dosage = | -1.05(-2.04~-0.07) 0.036
Total_calorie l = { -1.15(-1.94~-0.35) 0.005
Total_carb — -1.32(-1.95~-0.68) <0.001
Total_fat —a— -0.18(-0.65~0.3)  0.465
Total_protein —_ -0.08(-0.68~0.53) 0.808

[ I I I 1
-2 -1 0 1 2
p
FIGURE 1
Forest plot of restricted mixed-effects model for TIR > 70%. Each square represents the point estimate (), with horizontal lines denoting 95% Cls. The
range of the X-axis is set from —2 to 2, with any lines that extend beyond the axis indicating confidence interval (Cl) values that fall outside this range.

(33.71%) exhibited increased CV. Consistent with our findings,
de Wit et al. observed that higher CHO intake correlated with
increased CV in a cohort of 470 T1D patients monitored with
continuous glucose monitoring (CGM) over 2 weeks using three-
day dietary diaries [OR for CV <25% = 0.69 (95% CI 0.51,
0.90)] (22). Our study further demonstrated that fluctuations in
daily CHO intake are positively associated with CV beyond its
relationship with HbAlc (23). This supports the potential benefits
of maintaining consistency in CHO intake routines, as excessive
dietary flexibility may hinder glycemic management.

Regarding hypoglycemia risk, our study found no significant
impact of varying CHO intake on the 24-h TBR. The effects of
low-CHO diets on hypoglycemia risk in T1D remain debated. For
example, a study of 1,040 children with T1D found that those
on a low-CHO diet—defined as deriving less than 26% of energy
from carbohydrates—experienced more time in hypoglycemia
(<3.9 mmol/L) compared to those following a normal diet (8%
vs. 5%) (24). In contrast, Lennerz et al. (25) conducted an
online survey assessing the impact of very low carbohydrate diets
(VLCD) on TI1D in children and adults. Participants adhering to
a regimen of daily CHO intake of 36 + 15 grams experienced
a hypoglycemia incidence of only 1% over 2.2 £ 3.9 years.
Furthermore, a study involving 285 adult T1D patients, with
CHO intake ranging from 31.2 &+ 6.9% to 56.5 £ 6.8% of
total daily energy, revealed that those in the lowest quintile
(Q1) reported experiencing severe hypoglycemia less frequently
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compared to those in the third quintile (Q3) (QI: 60.0% vs.
Q3: 31.0%). However, there were no differences in the frequency
of grade 2 hypoglycemic events across quartiles (26). Unlike
previous studies on low-CHO diets, which associate low intake
with an increased risk of hypoglycemia, we conclude that a
CHO intake comprising 40%—50% of total energy does not
elevate the risk of hypoglycemia. Otherwise, we found that
daily CHO intake was negatively correlated with achieving a
TIR > 70% (OR = 0.30), indicating that a 50% increase in
daily CHO consumption is associated with a 49% decrease in
the probability of achieving a TIR > 70%. Maintaining daily
carbohydrate energy contributions at 40%—50% enables moderate
CHO intake reduction to significantly increase TIR without
elevating hypoglycemia risk.

We acknowledge several limitations in this study. First,
the single-center observational design restricts our ability to
eliminate selection bias or other systematic errors, such as
regional dietary habits, which may limit the applicability of our
results. Additionally, the limited observation period necessitates
the evaluation of longer-term effects. Second, our data do not
account for the type of carbohydrates consumed. At the same time,
quality factors (e.g., glycemic index and fiber content) and other
variables (such as exercise, meal frequency, stress, and sleep) may
also influence glucose dynamics. Future research should aim to
disentangle the effects of CHO quantity from CHO quality, as a diet
with the same carbohydrate amount but higher fiber content may
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yield different glycemic outcomes. Lastly, the participants primarily
used empirical estimations for pre-meal insulin dosages rather than
standardized carbohydrate counting methods for insulin dosing.

Conclusion

Our study provides real-world evidence that for adults with
suboptimally controlled T1D, aiming for a carbohydrate intake of
40%—50% of total energy and, crucially, maintaining consistency
in daily intake, is a safe and effective strategy to increase
TIR and reduce glycemic variability without elevating the risk
of hypoglycemia.
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