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Oxidative balance score predicts 
chronic kidney disease risk in 
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Background: Oxidative stress plays a pivotal role in the pathogenesis of chronic 
kidney disease (CKD), particularly in overweight and obese populations where 
adipose tissue dysfunction exacerbates systemic inflammation and metabolic 
derangements. The oxidative balance score (OBS) is a composite index that 
integrates dietary antioxidants and pro-oxidant exposures, offering a quantifiable 
surrogate of oxidative burden. However, its utility in CKD prediction among 
overweight adults remains unclear.

Methods: We analyzed data from 28,377 overweight or obese participants 
in ten NHANES cycles (1999–2018). OBS was calculated based on 16 dietary 
components and 4 lifestyle factors. CKD was defined using KDIGO guidelines. 
Survey-weighted logistic regression models were used to assess the association 
between OBS and CKD, with multivariable adjustment. Restricted cubic spline 
regression examined dose–response patterns, and subgroup analyses evaluated 
effect modifiers. Additionally, 14 machine learning algorithms were trained and 
validated using SMOTE-balanced data and five-fold cross-validation. Model 
interpretability was enhanced through SHapley Additive exPlanations (SHAP) 
analysis.

Results: A higher OBS was inversely associated with CKD risk (fully adjusted OR 
per unit increase, 0.975; 95% CI, 0.969–0.981; p  < 0.0001), with a significant 
linear dose–response relationship. This protective association was attenuated 
in morbid obesity (BMI ≥ 40 kg/m2; Pinteraction  < 0.001), a finding driven by the 
abrogation of the dietary score’s effect, while the lifestyle score remained 
protective in this subgroup. Among 14 machine learning models, GLMBoost was 
the top performer, achieving an Area Under the Curve (AUC) of 0.833 on the 
independent test set. SHAP analysis identified age, LDL-C, and SBP as primary 
predictors, but also revealed the significant protective contributions of OBS 
components—most notably physical activity and magnesium—and showed that 
age critically modifies the effects of both clinical and lifestyle factors.

Conclusion: Higher OBS was associated with lower CKD risk in overweight and 
obese adults. This may support the role of oxidative balance in kidney health and 
its potential for early prevention strategies.
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Introduction

Chronic kidney disease (CKD) has emerged as a significant global 
public health concern, distinguished by its insidious onset, slow yet 
progressive course, and modifiable trajectory through early preventive 
interventions. In recent decades, the rising prevalence of obesity and 
metabolic disorders has fundamentally reshaped the epidemiological 
profile of CKD, placing obesity-related kidney dysfunction at the 
center of clinical and public health discourse. Epidemiological studies 
estimate that obesity-associated CKD accounts for approximately 
2.7% of the general population, with obesity implicated in 15–30% of 
all CKD cases. Overweight individuals are reported to have a fivefold 
higher risk of developing CKD compared to those with normal body 
weight (1). Notably, a subset of these patients presents with atypical 
renal pathologies—such as tubulointerstitial injury and reduced 
glomerular filtration rate—in the absence of conventional 
nephropathic etiologies. These observations suggest that obesity-
related CKD may represent a distinct clinical and pathophysiological 
phenotype, characterized by marked etiological heterogeneity and 
mechanistic complexity (2, 3).

Within this context, the early identification of high-risk 
overweight individuals and the prediction of renal functional 
decline—particularly through modifiable lifestyle and nutritional 
factors—remain pressing challenges in nephrological epidemiology 
and preventive nutrition. Oxidative stress, a well-recognized 
pathogenic nexus linking obesity, chronic inflammation, and renal 
dysfunction, is believed to play a pivotal role in the pathogenesis of 
this emerging CKD subtype. In individuals with excess adiposity, 
pro-inflammatory activation of adipose tissue, mitochondrial 
dysfunction, and dysregulation of the NADPH oxidase (NOX) 
enzyme system collectively drive the overproduction of reactive 
oxygen species (ROS). These elevated ROS levels contribute to renal 
microvascular injury, interstitial fibrosis, and progressive deterioration 
of kidney function (4).

The oxidative balance score (OBS) is a composite index that 
integrates both dietary and behavioral exposures to quantify an 
individual’s oxidative–antioxidative status. Unlike conventional 
approaches that focus on isolated nutrients or behaviors, OBS 
encompasses a wide range of dietary antioxidants and health-related 
behaviors, thereby providing a more holistic assessment of oxidative 
stress burden. OBS has shown promising predictive value for a variety 
of chronic diseases (5–7). However, its utility in predicting the risk of 
CKD among overweight individuals remains insufficiently studied. 
Considering the mechanistic complexity of obesity-associated CKD 
and the inherent limitations of existing predictive biomarkers, further 
investigation into OBS as a potential early indicator of renal injury and 
a tool to inform preventive strategies is clearly warranted.

Accordingly, this study utilizes data from the National Health and 
Nutrition Examination Survey (NHANES)—a nationally 
representative cohort in the United  States—to investigate the 
relationship between OBS and the risk of CKD in overweight adults. 
Additionally, machine learning models enhanced by SHapley Additive 
exPlanations (SHAP) are employed to identify key predictive features 

and assess their relative contributions to CKD risk. The primary 
objective of this study is to evaluate the utility of OBS as an integrative 
biomarker that reflects lifestyle patterns, nutritional exposures, and 
oxidative stress in the context of primary CKD prevention. By 
improving risk stratification and enabling precision nutritional 
interventions for individuals with elevated body mass index (BMI), 
the findings aim to establish both a theoretical basis and practical 
framework for the early identification and management of obesity-
associated CKD.

Methods

Study population and data source

This study utilized data from NHANES, a nationally representative 
surveillance program jointly conducted by the Centers for Disease 
Control and Prevention (CDC) and the National Center for Health 
Statistics (NCHS). NHANES employs a multistage, stratified 
probability sampling design to assess the health and nutritional status 
of the non-institutionalized U. S. population. All survey protocols 
were approved by the NCHS Research Ethics Review Board, and 
written informed consent was obtained from all participants.

Data from 10 consecutive NHANES cycles spanning 1999 to 2018 
were pooled, yielding an initial sample of 101,316 individuals. To 
derive the final analytical cohort, the following exclusion criteria were 
sequentially applied: individuals aged <20 years (n = 46,235); those 
with a BMI < 25 kg/m2 (n = 19,055), in order to restrict the analysis to 
overweight and obese adults; pregnant women (n = 1,038); 
participants with missing key dietary or laboratory variables required 
to compute OBS (n = 5,638); and those lacking essential biomarkers 
for CKD evaluation, such as estimated glomerular filtration rate 
(eGFR) or urinary albumin data (n = 973). After applying these 
exclusions, a total of 28,377 overweight or obese adults were included 
in the final analysis (Figure 1).

Definition of overweight

BMI was calculated as weight in kilograms divided by height in 
meters squared (kg/m2), with both measurements obtained by trained 
health technicians following standardized protocols at NHANES 
mobile examination centers (MECs). In accordance with the criteria 
established by the World Health Organization (WHO) and the 
National Institutes of Health (NIH), individuals with a 
BMI ≥ 25.0 kg/m2 were classified as overweight.

Assessment of OBS

OBS is a composite metric designed to reflect an individual’s 
overall oxidative–antioxidative status. It was calculated based on 20 
components, comprising 16 dietary nutrients—dietary fiber, 

https://doi.org/10.3389/fnut.2025.1641496
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Zhao et al. 10.3389/fnut.2025.1641496

Frontiers in Nutrition 03 frontiersin.org

carotenoids, riboflavin, niacin, vitamin B6, vitamin B12, vitamin C, 
vitamin E, total folate, calcium, magnesium, zinc, copper, selenium, 
total fat, and iron—and 4 lifestyle factors: physical activity, alcohol 
intake, serum cotinine, and BMI (8) (Supplementary Table S1). 
Dietary intake and alcohol consumption were assessed using two 24-h 
dietary recalls: the first was administered in person during the MEC 
visit, and the second was conducted via telephone 3–10 days later. 
Nutrient values were derived using the U. S. Department of 
Agriculture’s Food and Nutrient Database for Dietary Studies 
(FNDDS) for the 2017–2018 and 2019–2020 cycles. The average 
intake across both days was used to determine nutrient levels; when 
only one recall was available, that value was used. Physical activity was 
assessed via self-reported questionnaires. Metabolic equivalent task 
(MET) scores were assigned following NHANES protocols: vigorous-
intensity work and leisure activities were given a score of 8.0, while 
moderate-intensity activities, walking, and bicycling for transportation 
were assigned scores of 4.0. Exposure to tobacco smoke was estimated 
using serum cotinine levels, measured by isotope-dilution high-
performance liquid chromatography coupled with atmospheric 
pressure chemical ionization tandem mass spectrometry (ID 

HPLC-APCI MS/MS). BMI was calculated from directly measured 
weight and height. Each of the 20 OBS components was categorized 
into sex-specific tertiles. Antioxidant components (e.g., dietary fiber, 
vitamins, minerals, physical activity) were scored from 0 to 2 across 
the lowest to highest tertile. In contrast, pro-oxidant components (e.g., 
total fat, iron, serum cotinine, alcohol intake, and BMI) were scored 
in reverse order. The total OBS ranged from 0 to 40, with higher scores 
indicating a more favorable antioxidative profile. Participants were 
required to have valid data for at least 19 of the 20 OBS components 
to be included in the score calculation.

Definition of CKD

The primary outcome of interest was the presence of CKD, 
defined according to the diagnostic criteria established by the Kidney 
Disease: Improving Global Outcomes (KDIGO) guidelines (9). eGFR 
was calculated using the updated Chronic Kidney Disease 
Epidemiology Collaboration (CKD-EPI) equation, incorporating 
serum creatinine, age, sex, and race. The albumin-to-creatinine ratio 
(ACR), expressed in mg/g, was derived from spot morning urine 
samples and served as an indicator of microalbuminuria. Participants 
were classified as having CKD if they met either of the following 
criteria: eGFR < 60 mL/min/1.73 m2 or ACR > 30 mg/g.

Covariates

Covariates included demographic characteristics, clinical 
comorbidities, and prescription medication use obtained from 
NHANES. Demographic variables encompassed sex, age, race/
ethnicity, marital status (married/living with partner vs. not), and 
educational attainment (below high school vs. high school and above). 
Clinical variables included hypertension, hyperlipidemia, diabetes 
mellitus, and atherosclerotic cardiovascular disease (ASCVD). 
Hypertension was defined as a mean systolic blood pressure 
≥140 mmHg, diastolic blood pressure ≥90 mmHg, self-reported 
diagnosis, or current antihypertensive medication use. Hyperlipidemia 
was defined as triglycerides ≥150 mg/dL, total cholesterol ≥200 mg/
dL, LDL-C ≥ 130 mg/dL, HDL-C ≤ 40 mg/dL in men or ≤50 mg/dL 
in women, or use of lipid-lowering therapy (10). Diabetes mellitus was 
identified by self-reported diagnosis or at least one of the following: 
HbA1c ≥ 6.5%, fasting glucose ≥7.0 mmol/L, random glucose 
≥11.1 mmol/L, 2-h OGTT ≥11.1 mmol/L, or use of antidiabetic 
medications (11). ASCVD was based on self-reported physician 
diagnosis of coronary heart disease, angina, myocardial infarction, 
or stroke.

Prescription medication data were collected via in-home 
interviews using the NHANES drug questionnaire. Participants 
reported all prescription drugs taken in the previous 30 days, and 
interviewers verified information by inspecting medication containers 
(12). Drug names were matched to the Lexicon Plus® classification 
system (Cerner Multum, Inc.), updated annually to reflect U. S. market 
availability. Two nephrotoxic drug classes were evaluated: (1) renin–
angiotensin system inhibitors (RASIs), including angiotensin-
converting enzyme inhibitors (ACEIs) and angiotensin II receptor 
blockers (ARBs); and (2) nonsteroidal anti-inflammatory drugs 
(NSAIDs). Each was included as a binary variable (user vs. non-user) 

FIGURE 1

Flow of participant inclusion and exclusion. CKD, Chronic kidney 
disease; BMI, Body mass index; OBS, Oxidative balance score; eGFR, 
Estimated glomerular filtration rate.
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in multivariable models and subgroup analyses to account for 
potential confounding.

Feature preprocessing for machine 
learning

A total of 36 candidate variables were initially selected for machine 
learning model development. To optimize model performance and 
ensure training stability, a multi-step preprocessing pipeline was 
implemented: Feature variance filtering: Variables with near-zero 
variance (≥95% identical values) were excluded from the analysis. 
Multicollinearity reduction: Pearson correlation coefficients were 
computed for continuous variables. For each pair with a correlation 
coefficient >0.8, one variable was removed to reduce redundancy. 
Normalization: All retained features were rescaled using MinMax 
normalization to mitigate the impact of differing numerical scales on 
model training. Class imbalance adjustment: The Synthetic Minority 
Oversampling Technique (SMOTE) was applied to the training set to 
address class imbalance and improve model generalizability. The final 
feature set encompassed demographic characteristics (e.g., sex, age, 
race/ethnicity, education level, marital status, and poverty-income 
ratio), biochemical markers (e.g., HbA1c, uric acid, C-reactive protein 
[CRP], TG, HDL-C, LDL-C, and blood pressure), and lifestyle/
nutritional factors (e.g., alcohol intake, BMI, and intake of dietary 
vitamins and minerals).

Machine learning model development and 
evaluation

Fourteen classification algorithms, encompassing both 
conventional and state-of-the-art machine learning techniques, were 
developed using the mlr3 framework. These included: CatBoost, 
support vector machine (SVM), random forests (implemented via 
rfsrc, ranger, and randomForest packages), XGBoost, LightGBM, 
gradient boosting machine (GBM), generalized linear model with 
elastic net regularization (GLMNet), GLMBoost, naïve Bayes, 
k-nearest neighbors (kNN), classification and regression tree (CART), 
and a feedforward neural network (nnet). All models were trained 
using default hyperparameters to enable fair and unbiased 
performance comparisons. The dataset was randomly partitioned into 
a training set (80%) and an independent test set (20%). Five-fold 
cross-validation was conducted within the training set to assess model 
stability and minimize performance variance. Model performance was 
primarily evaluated using the area under the receiver operating 
characteristic curve (AUC). After cross-validation, the model with the 
highest AUC was selected and further validated on the independent 
test set. Additional performance metrics—including accuracy, 
precision, recall, and F1-score—were also computed to 
comprehensively evaluate generalizability and classification robustness.

Model interpretation using SHAP

To interpret model predictions and quantify the contribution 
of individual features, SHAp values were calculated for the best-
performing model. SHAP is a state-of-the-art post hoc 

interpretability framework that estimates the marginal impact of 
each input variable on the model’s output, based on principles 
from cooperative game theory (13). This framework was employed 
to facilitate a multi-level interpretation of the model. Global 
feature importance was assessed by ranking predictors based on 
their mean absolute SHAP values. To move beyond simple feature 
ranking and specifically investigate complex, non-linear 
interactions, we generated SHAP dependence plots. These plots 
are designed to visualize how the marginal effect of a given feature 
on the model’s output is modified by the value of a second, 
interacting feature. This approach enhances model transparency 
and provides a deeper understanding of the synergistic effects 
between variables.

Statistical analysis

All statistical analyses accounted for the complex, multistage 
sampling design of NHANES, incorporating sampling weights, 
stratification, and clustering. Continuous variables were summarized 
as means ± standard deviations (SD), while categorical variables were 
reported as frequencies and percentages. The association between 
OBS and CKD was evaluated using survey-weighted generalized 
linear models with a binomial distribution to fit logistic regression. 
Odds ratios (ORs) and their 95% confidence intervals (CIs) were 
reported, with covariates progressively adjusted across multiple 
models. Multivariable adjustment was conducted sequentially: Model 
1 adjusted for race/ethnicity, age, sex, marital status, and educational 
attainment. Model 2 further adjusted for clinical comorbidities, 
including hypertension, hyperlipidemia, diabetes mellitus, and 
ASCVD. A final Model 3 was constructed by additionally adjusting for 
the use of NSAIDs and RASI. To assess potential non-linear dose–
response relationships between OBS and CKD, restricted cubic spline 
(RCS) models were constructed using knots placed at the 10th, 50th, 
and 90th percentiles of OBS distribution. Subgroup and interaction 
analyses were performed across predefined categories, including age 
(20–59 vs. 60–80 years), sex, degree of obesity (BMI < 40 vs. ≥40 kg/
m2), hypertension, hyperlipidemia, diabetes mellitus, ASCVD, and the 
use of RASI and NSAIDs, to explore potential effect modification.

Several sensitivity analyses were conducted to assess the 
robustness of our primary findings. First, to mitigate potential reverse 
causality where advanced CKD could influence participants’ diet and 
lifestyle, we repeated the primary analysis after excluding individuals 
with high-risk or very-high-risk CKD as defined by the KDIGO risk-
prognosis heat map. The association between total OBS and CKD risk 
was then re-evaluated in the remaining cohort. Second, to address the 
equal weighting of the OBS construct and explore the contributions 
of its constituent parts, we deconstructed the total score into two 
distinct sub-scores: a lifestyle score (comprising the 4 components: 
physical activity, alcohol intake, serum cotinine, and BMI) and a 
dietary score (comprising the 16 nutritional components). The 
association between each of these continuous sub-scores and the odds 
of CKD was then assessed separately using the fully adjusted 
multivariable logistic regression model, and corresponding subgroup 
analyses were also performed. All analyses were conducted using R 
software (version 4.4.2). Key packages included survey, mlr3, 
mlr3benchmark, mlr3extralearner, kernelshap, and shapviz. A 
two-tailed p-value < 0.05 was considered statistically significant.

https://doi.org/10.3389/fnut.2025.1641496
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Zhao et al. 10.3389/fnut.2025.1641496

Frontiers in Nutrition 05 frontiersin.org

Results

Baseline characteristics

A total of 28,377 overweight and obese adults were included in 
the final analytical cohort. Participants were stratified according to 
the presence or absence of CKD, and their baseline characteristics 
are presented in Table 1. The overall mean age was 48.92 ± 0.19 years, 
with females accounting for 48.72% of the population. The average 

BMI was 31.75 ± 0.06 kg/m2, and the mean OBS was 19.84 ± 0.10. 
Compared to individuals without CKD, those with CKD were 
significantly older, more likely to be female, and had lower levels of 
educational attainment. The prevalence of former smoking and 
alcohol consumption was also significantly higher in the CKD 
group. Regarding clinical comorbidities, participants with CKD 
exhibited a markedly greater burden of hypertension, 
hyperlipidemia, ASCVD, and diabetes mellitus (p < 0.0001). In 
terms of metabolic parameters, individuals with CKD had 

TABLE 1 Baseline characteristics of participants.

Total Without CKD With CKD p-value

Age, years 48.92 ± 0.19 46.87 ± 0.19 60.88 ± 0.30 <0.0001

Sex, % <0.0001

  Male 14,227 (51.28) 11,613 (52.31) 2,614 (45.25)

  Female 14,150 (48.72) 11,316 (47.69) 2,834 (54.75)

Ethnicity/race, % <0.0001

  White 12,680 (69.39) 10,192 (69.68) 2,488 (67.68)

  Black 6,137 (11.27) 4,673 (10.60) 1,464 (15.19)

  Mexican American 5,473 (8.70) 4,605 (8.93) 868 (7.36)

  Other races 4,087 (10.63) 3,459 (10.78) 628 (9.77)

Education level, % <0.0001

  Below high school 7,608 (16.91) 5,761 (15.65) 1,847 (24.37)

  Above high school 20,748 (83.03) 17,154 (84.35) 3,594 (75.63)

Marital status, % <0.0001

  Married or living with a partner 17,571 (66.00) 14,556 (67.97) 3,015 (59.39)

  Not married nor living with a partner 10,518 (32.93) 8,133 (32.03) 2,385 (40.61)

Smoker, % <0.0001

  Now 17,775 (68.47) 15,004 (74.44) 2,771 (60.97)

  Former 5,102 (15.42) 3,723 (15.11) 1,379 (23.54)

  Never 3,704 (10.56) 2,821 (10.45) 883 (15.49)

Alcohol user, % <0.0001

  Now 17,775 (68.47) 15,004 (74.44) 2,771 (60.97)

  Former 5,102 (15.42) 3,723 (15.11) 1,379 (23.54)

  Never 3,704 (10.56) 2,821 (10.45) 883 (15.49)

Systolic blood pressure, mmHg 124.07 ± 0.18 122.44 ± 0.19 133.74 ± 0.38 <0.0001

Diastolic blood pressure, mmHg 72.22 ± 0.17 72.44 ± 0.18 70.89 ± 0.28 <0.0001

HbA1c (%) 5.68 ± 0.01 5.58 ± 0.01 6.26 ± 0.03 <0.0001

TG, mmol/L 1.66 ± 0.02 1.62 ± 0.02 1.91 ± 0.05 <0.0001

LDL, mmol/L 3.08 ± 0.01 3.10 ± 0.01 2.90 ± 0.02 <0.0001

HDL, mmol/L 1.29 ± 0.00 1.29 ± 0.00 1.28 ± 0.01 0.73

BMI, kg/m2 31.75 ± 0.06 31.57 ± 0.07 32.84 ± 0.14 <0.0001

OBS, score 19.84 ± 0.10 20.10 ± 0.10 18.31 ± 0.14 <0.0001

Comorbidities

  Hypertension, % 13,823 (43.85) 9,679 (39.08) 4,144 (71.75) <0.0001

  Hyperlipidemia,% 22,435 (78.87) 17,781 (77.67) 4,654 (85.91) <0.0001

  Diabetes mellitus,% 6,022 (16.26) 3,647 (12.41) 2,375 (38.76) <0.0001

  Atherosclerotic cardiovascular disease,% 3,235 (9.21) 1,838 (6.85) 1,397 (23.01) <0.0001
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significantly higher levels of HbA1c, TG, and SBP. Although HDL-C 
levels were slightly lower in the CKD group, the difference was not 
statistically significant (p = 0.73). Additionally, the mean BMI was 
significantly higher among participants with CKD (32.84 ± 0.14 vs. 
31.57 ± 0.072; p < 0.0001), and their mean OBS was significantly 
lower compared to those without CKD (18.31 ± 0.14 vs. 20.10 ± 0.10; 
p < 0.0001).

Association between OBS and CKD risk

In multivariable logistic regression analyses, a higher OBS was 
significantly associated with reduced odds of CKD (Table 2). When 
modeled as a continuous variable, each one-unit increase in OBS 
was linked to a 3.6% decrease in the odds of CKD in the unadjusted 
model (OR = 0.964; 95% CI: 0.959–0.969). This inverse association 
remained statistically significant, though slightly attenuated, after 
adjusting for demographic variables (Model 1: OR = 0.971; 95% CI: 
0.965–0.977) and further for clinical comorbidities (Model 2: 
OR = 0.975; 95% CI: 0.969–0.982). Additional adjustment for the 
use of RASI and NSAIDs in the fully adjusted model (Model 3) did 
not materially change the association (OR = 0.975; 95% CI: 0.969–
0.981). When OBS was examined in quartiles, a clear dose–
response relationship emerged. In the fully adjusted model (Model 
3), individuals in the highest OBS quartile (Q4) had 37.3% lower 
odds of CKD compared to those in the lowest quartile (Q1) 
(OR = 0.627; 95% CI: 0.548–0.717). Statistically significant and 
graded reductions in CKD risk were also observed in the second 
and third quartiles (Q2 and Q3). The test for linear trend across 
quartiles remained highly significant after full adjustment 
(Ptrend < 0.0001).

Nonlinear relationship between OBS and 
CKD risk

To further characterize the functional relationship between OBS 
and CKD risk, a RCS model was constructed (Figure 2). After full 
adjustment for covariates, the spline curve revealed a monotonic inverse 
association between OBS and CKD risk. Statistical analysis confirmed 
the overall significance of this relationship (Poverall < 0.0001), while the 
test for non-linearity was not statistically significant (Pnon-linearity = 0.303), 
indicating a predominantly linear dose–response pattern.

Subgroup analyses

To evaluate the consistency of this association, we  performed 
subgroup analyses across several key demographic and clinical strata 
(Figure 3). The protective effect of a higher OBS was largely consistent 
across the majority of subgroups examined. However, we  found 
statistically significant evidence of effect modification by both age 
(Pinteraction  = 0.009) and obesity status (Pinteraction  < 0.001). Notably, the 
interaction by obesity status revealed a critical threshold. While OBS was 
protective in individuals with a BMI < 40 kg/m2, this effect was completely 
abrogated in those with morbid obesity (BMI ≥ 40 kg/m2), for whom a 
higher OBS was no longer associated with lower odds of CKD (OR, 1.002; 
95% CI, 0.985–1.019). The protective association was, however, more 
pronounced in older adults. No other significant interactions were 
detected, including for subgroups defined by comorbidities or 
medication use.

Sensitivity analysis

To assess the robustness of our findings, we  conducted two 
prespecified sensitivity analyses. The first was designed to mitigate 
potential reverse causality by repeating the primary analysis after 
excluding participants with high-or very-high-risk CKD. In this 
sub-cohort, the inverse association between a higher total OBS and 
CKD risk remained statistically significant after full multivariable 
adjustment (Model 3; OR, 0.980; 95% CI, 0.972–0.987) 
(Supplementary Table S2). The dose–response relationship was also 
consistent; individuals in the highest OBS quartile had 31.1% lower 
odds of CKD compared to those in the lowest quartile (Model 3 OR for 
Q4 vs. Q1, 0.689; 95% CI, 0.592–0.802) (Supplementary Table S3), and 
the test for linear trend remained significant (Pnon-linearity < 0.0001) 
(Supplementary Figure S1). Further subgroup analysis of this cohort 
confirmed that the significant effect modification by morbid obesity 
persisted (Pinteraction = 0.001) (Supplementary Figure S2).

A second sensitivity analysis was performed to explore the 
independent contributions of the OBS dietary and lifestyle 
components. In fully adjusted models, both the dietary score (OR, 
0.979; 95% CI, 0.972–0.985) and the lifestyle score (OR, 0.874; 95% 
CI, 0.844–0.904) were independently associated with lower odds 
of CKD (Supplementary Tables S4–S7). Consistent with the total 
OBS analysis, restricted cubic spline models for both the dietary 
score (Pnon-linearity = 0.052) and the lifestyle score (Pnon-linearity = 0.061) 

TABLE 2 Multivariable-adjusted associations between OBS and CKD.

Groups Crude model Model 1 Model 2 Model 3

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value

Continuous 0.964 (0.959, 0.969) <0.0001 0.971 (0.965, 0.977) <0.0001 0.975 (0.969, 0.982) <0.0001 0.975 (0.969, 0.981) <0.0001

Q1 ref ref ref ref ref ref ref ref

Q2 0.780 (0.705, 0.863) <0.0001 0.793 (0.711, 0.886) <0.0001 0.803 (0.714, 0.904) <0.001 0.797 (0.708, 0.897) <0.001

Q3 0.626 (0.570, 0.688) <0.0001 0.679 (0.613, 0.752) <0.0001 0.707 (0.635, 0.788) <0.0001 0.701 (0.629, 0.781) <0.0001

Q4 0.509 (0.452, 0.574) <0.0001 0.588 (0.516, 0.669) <0.0001 0.633 (0.553, 0.724) <0.0001 0.627 (0.548, 0.717) <0.0001

P for trend <0.0001 <0.0001 <0.0001 <0.0001

Low exposure (Q1) was used as the reference group. Model 1: ethnicity, age, sex, education, marital status.
Model 2: ethnicity, age, sex, education, marital status, hypertension, hyperlipidemia, ASCVD, DM.
Model 3: ethnicity, age, sex, education, marital status, hypertension, hyperlipidemia, ASCVD, DM, RASI, NSAID.
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indicated predominantly linear inverse associations with CKD risk 
(Supplementary Figures S3, S4). Subgroup analyses of these 
components provided further insight, particularly regarding the 
effect modification by morbid obesity. This analysis revealed that 
the protective effect of the dietary score was abrogated in 
individuals with a BMI ≥ 40 kg/m2 (Pinteraction < 0.001) (Figure 4A). 
In contrast, the lifestyle score remained significantly protective in 
this same subgroup, with no evidence that its effect was modified 
by morbid obesity (Pinteraction = 0.169) (Figure 4B).

Comparison of machine learning model 
performance for CKD prediction

Fourteen machine learning algorithms were evaluated via five-fold 
cross-validation on the training data to identify the optimal model. The 
GLMBoost algorithm achieved the highest mean area under the receiver 
operating characteristic curve (AUC) during cross-validation (0.778; 
Figure 5A; Supplementary Table S8) and was therefore selected for final 
evaluation. When applied to the independent internal test set, the final 
GLMBoost model demonstrated strong predictive performance with an 
AUC of 0.833 (Figure 5B), an accuracy of 77.0%, a precision of 94.9%, 
a recall of 77.3%, and an F1-score of 85.2%. These findings confirm the 
robustness and generalizability of the selected model for CKD risk 
prediction in this population.

SHAP-based interpretation and feature 
importance

Figure 6 illustrates the SHAP-based interpretability analysis of the 
GLMBoost model, encompassing both global feature importance 
(Figure 6A) and individualized feature contributions (Figure 6B). The 
SHAP framework quantifies the marginal impact of each predictor on 

the model’s output, enabling both global and local interpretation of 
CKD risk predictions. At the global level, age emerged as the most 
influential predictor, as indicated by the highest mean SHAP value, 
highlighting its central role in CKD pathophysiology. This was 
followed by LDL-C and SBP, underscoring the contribution of 
cardiometabolic risk factors to renal function decline. Other 
top-ranking features included serum uric acid, HbA1c, total MET, 
marital status, CRP, and dietary intakes of vitamin B6 and magnesium. 
Notably, multiple micronutrients included in the OBS were consistently 
ranked among the most impactful features, reinforcing the significance 
of nutritional exposures in CKD risk stratification. The SHAP 
beeswarm plot (Figure 6B) further visualized the directionality of each 
feature’s effect. Higher values of age and LDL-C were associated with 
positive SHAP values, indicating increased CKD risk, whereas elevated 
levels of physical activity, magnesium, and vitamin B6 were associated 
with negative SHAP values, suggesting potential protective effects.

To further explore the interplay among top predictors, 
we generated SHAP dependence plots, focusing on age as a potential 
effect modifier (Figure 7). These plots revealed that the protective 
effects of key OBS components, including physical activity (Figure 7A), 
Magnesium (Figure  7B), and vitamin B6 (Figure  7C), were more 
pronounced in older individuals. Conversely, the analysis showed a 
strong synergistic interaction between age and systolic blood pressure, 
where the risk conferred by hypertension was substantially amplified 
in the elderly population (Figure 7D). Taken together, these analyses 
reveal that age critically modulates the impact of both protective 
lifestyle factors and traditional clinical risk factors on CKD risk.

Discussion

This study, leveraging nationally representative data from 
NHANES, is the first to systematically examine the association 
between OBS and CKD specifically among overweight and obese 

FIGURE 2

The RCS analysis of the association between OBS and CKD risk. The model was adjusted for age, sex, race/ethnicity, marital status, education, 
hypertension, hyperlipidemia, diabetes mellitus, ASCVD, RASI, and NSAID.
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adults. By integrating traditional survey-weighted logistic 
regression with SHAP-enhanced machine learning techniques, 
we  evaluated the predictive value of OBS for CKD from both 
statistical and interpretative standpoints. The incorporation of 
SHAP analysis enhanced model transparency and allowed for the 
quantification of individual feature contributions, providing novel 
insights into the role of specific OBS components in CKD 
risk stratification.

Our study’s primary finding—a significant inverse association 
between OBS and CKD—builds upon the established role of 
oxidative stress as a key pathological driver in obesity-related 
diseases. The OBS is an integrative metric designed to provide a 
holistic estimate of an individual’s systemic oxidative state by 
synthesizing numerous dietary and lifestyle factors into a single, 
quantifiable score. Its utility has been previously demonstrated 
through associations with various cardiometabolic outcomes, 
including hypertension, type 2 diabetes, and mortality (14–18). 

However, its specific application to CKD risk within the large and 
growing population of overweight and obese adults has remained 
underexplored (19). This study addresses that gap, providing 
evidence for the utility of this composite lifestyle score in a high-
risk clinical context where metabolic dysfunction and inflammation 
are prevalent (20). Our study confirms a significant and linear 
inverse association between OBS and CKD risk specifically within 
this large cohort, which persisted after comprehensive adjustment 
for demographic, clinical, and medication-related confounders. 
This dose–response relationship suggests that any incremental 
improvement in oxidative balance may confer a protective benefit.

Our subgroup analyses revealed a critical interaction by obesity 
status (Pinteraction  < 0.001). While a higher OBS was consistently 
protective in individuals with a BMI < 40 kg/m2, this overall 
association was attenuated to the null in the morbidly obese group. 
To explore this further, our sensitivity analysis deconstructed the 
OBS into its lifestyle and dietary components, which provided a 

FIGURE 3

Subgroup analysis of the association between OBS and CKD risk. The model was adjusted for age, sex, race/ethnicity, marital status, education, 
hypertension, hyperlipidemia, diabetes mellitus, ASCVD, RASI, and NSAID.
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crucial insight. This analysis revealed that the loss of association 
was driven entirely by the dietary score, which showed no 
significant protective effect in the morbidly obese subgroup. In 
striking contrast, a higher lifestyle score, which includes physical 
activity, remained significantly associated with lower odds of CKD 
even in individuals with a BMI ≥ 40 kg/m2.

This suggests a potential “threshold effect” of severe obesity, 
where the overwhelming systemic inflammation and metabolic 
dysregulation may blunt the benefits of dietary antioxidants (21, 

22). Pathological processes such as irreversible podocyte loss and 
advanced glomerulosclerosis may reach a point where the benefits 
of an improved dietary oxidative balance are marginal (23). 
However, the protective mechanisms associated with key lifestyle 
behaviors—such as improved insulin sensitivity and endothelial 
function from physical activity—appear to be more robust and 
remain impactful (24, 25).

The application of SHAP analysis provided a granular view of 
the predictors driving CKD risk in our model. While confirming 

FIGURE 4

Subgroup Analyses of the Association between OBS Components and CKD. (A) Dietary score. (B) Lifestyle score. The model was adjusted for age, sex, 
race/ethnicity, marital status, education, hypertension, hyperlipidemia, diabetes mellitus, ASCVD, RASI, and NSAID.

FIGURE 5

Comparative performance of machine learning models in predicting CKD risk. (A) AUC values for 14 classification algorithms during five-fold cross-
validation. (B) ROC curves of selected models evaluated on the test set. AUC, Area under the curve; ROC, Receiver operating characteristic.
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the dominant role of traditional risk factors like age and systolic 
blood pressure, the analysis also highlighted several modifiable 
OBS components as significant contributors. Physical activity 
(Total MET) emerged as the most important protective lifestyle 
factor, reinforcing the independent renoprotective role of exercise 
through its known benefits on insulin sensitivity and systemic 

inflammation (26). Among nutritional factors, higher intakes of 
vitamin B6, magnesium, and antioxidant carotenoids like 
α-carotene were also associated with lower CKD risk. These 
components likely exert their protective effects through 
complementary mechanisms, including the facilitation of 
homocysteine metabolism (vitamin B6) (27) and the support of 

FIGURE 6

SHAP-based interpretation of the GLMBoost model for predicting CKD risk. (A) SHAP summary plot showing the global importance and directionality 
of top features contributing to CKD prediction. (B) SHAP beeswarm plot visualizing individualized feature contributions across participants. LDL-C, 
Low-density lipoprotein cholesterol; SBP, Systolic blood pressure; HbA1c, Hemoglobin A1c; CRP, C-reactive protein.
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renal vascular integrity (magnesium) (28). It is important to 
contextualize these findings within the broader evidence base; 
while our results underscore the importance of dietary patterns 
rich in these nutrients, high-dose single-nutrient supplementation 
has shown inconsistent results for renal outcomes in clinical trials 
(29–31).

Beyond ranking individual features, our interaction analysis 
revealed a critical dynamic: the pervasive influence of age as an effect 
modifier. We  observed a strong synergistic effect where the risk 
conferred by hypertension was substantially amplified in older 
individuals, suggesting a heightened vulnerability of the aging kidney 
to hemodynamic stress (32–34). Conversely, the protective effects of key 
OBS components, including physical activity and vitamin B6, were also 
more pronounced in the elderly. This novel finding may indicate that 
older adults, who are more likely to have a higher baseline of oxidative 
stress, derive a greater relative benefit from positive antioxidant and 
anti-inflammatory lifestyle inputs (35). These interactions highlight the 
importance of viewing CKD risk not as a set of static factors, but as a 
dynamic interplay where the impact of modifiable behaviors is critically 
modulated by the aging process (36, 37).

As a composite measure of modifiable behaviors, the OBS can serve 
as a practical, non-invasive tool for primary prevention, helping 

clinicians identify at-risk overweight individuals before clinical markers 
of kidney damage appear (38). It does not replace traditional risk factors 
but rather complements them by providing a quantifiable summary of 
a patient’s lifestyle-related risk profile (39). Our results suggest that 
intervention strategies based on the OBS could be tailored by obesity 
severity. For the majority of overweight and obese individuals 
(BMI < 40 kg/m2), a low OBS score can trigger targeted counseling 
focused on improving specific components identified by our SHAP 
analysis. This includes increasing physical activity and ensuring 
adequate dietary intake of foods rich in vitamin B6 and magnesium. 
However, for individuals with morbid obesity (BMI ≥ 40 kg/m2), our 
findings suggest that while improving the lifestyle components of OBS 
is still crucial, the benefits of dietary improvements may be diminished. 
This underscores the need for more intensive primary interventions for 
this group, such as structured weight management programs, in 
addition to behavioral counseling (21, 40).

Our study has several notable strengths, including its large, nationally 
representative cohort, comprehensive adjustment for confounders, and 
the innovative application of interpretable machine learning. Nevertheless, 
certain limitations warrant consideration. First, the OBS was calculated 
from 24-h dietary recalls, which are subject to recall bias and may not 
reflect long-term habitual intake, a common consideration in large-scale 

FIGURE 7

SHAP dependence plots visualizing the interaction of key predictors with age on CKD risk. (A) Physical activity (total MET), (B) magnesium, (C) vitamin 
B6, and (D) systolic blood pressure.
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nutritional epidemiology. Second, the study’s cross-sectional design 
establishes association but does not permit causal inference; future 
prospective cohort studies are warranted to confirm the temporal 
relationship between OBS and the incidence of CKD. Third, our analysis 
relied on the OBS as a proxy for oxidative stress, as direct measurement 
of circulating antioxidant levels or renal-specific biomarkers was not 
available within the NHANES dataset. Integrating such measures in 
future studies could provide deeper mechanistic insights. Fourth, our 
findings are based on a representative sample of the U. S. population and 
their generalizability to populations with different ethnic or dietary 
backgrounds requires further investigation. Finally, while our machine 
learning models demonstrated strong performance with internal 
validation, their transportability to other settings and their real-world 
clinical utility must be  established through external validation in 
independent, prospective cohorts. This represents a crucial next step for 
translating these predictive models into clinical practice.

Conclusion

This study, based on a large and nationally representative cohort 
of overweight and obese U. S. adults, demonstrates that a higher OBS 
is consistently associated with lower odds of CKD. Importantly, this 
protective association appears to be primarily driven by the lifestyle 
components of the OBS, which retained their effect even among 
individuals with morbid obesity—a condition in which the benefits of 
dietary components were markedly diminished. Additionally, our 
findings highlight age as a key effect modifier, amplifying both the 
adverse impact of clinical risk factors and the protective influence of 
health-promoting behaviors. Together, these results position the OBS 
as a valuable integrative framework for capturing the complex 
interplay between modifiable risk factors and renal health. Although 
these associations warrant validation in prospective studies, the OBS 
holds significant potential as a practical tool for guiding personalized, 
preventative strategies in high-risk populations with obesity.
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