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In recent times, the industrial high demand for Persea americana (PA) fruits has 
swiftly increased its production globally. This has resulted in the excessive presence 
of avocado peel (AVDP) waste as an environmental pollutant since the peel is 
commonly discarded without any further application. AVDP has been revealed as a 
key and rich source of manifold nutritional and bioactive components. These include 
polyphenols, flavonoids, organic acids, hydroxybenzoic, hydroxycinnamic acid 
derivatives, (epi) catechin derivatives, pro-anthocyanidins, procyanidins, quercetin 
derivatives. AVDP possessed enriched nutritional profiles ranging from protein, 
carbohydrate, lipids, fibers, and ashes, with various applications in the medicinal, 
cosmetics, and food industry. Bioactive components in the AVDP have been linked 
with several pharmacological properties, like antioxidants, anti-inflammatory, and 
antimicrobial. The enriched nutritional profile has confirmed AVDP utilization in 
the food industry as a functional food, food additives, feed formulations, and 
preservatives. Hence, the valorization of this AVDP recycling to produce diverse 
materials with potential industrial and medicinal impact is necessary. This review 
will focus on the nutritional profile and bioactive components of the AVDP, its 
pharmacological and food industrial applications.
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Introduction

One of the best ways to maintain a healthier and safer environment is by effectively 
recycling various types of waste within the ecosystem. In addition, recycling environmental 
waste can significantly contribute to global economic development. Globally, the massive 
production of agricultural waste products from the agro-industrial sector has recently become 
a major international issue. Pollutants and waste, especially agricultural by-products, are 
continuously released into the ecosystem every second, causing numerous problems for the 
environment. A global waste production of about 2.1 billion tons was reportedly generated in 
2016, which is projected to reach 2.59 billion tons by 2030, and predicted to reach 3.4 billion 
tons by 2050, with agricultural waste constituting a substantial fraction of this total (1–5). 
Hence, the conversion of these waste products into an effective and useful product or agent, 
with efficient functional properties, has become one of the attractive areas of research recently. 
These will efficiently sustain the environmental health by removing them from the environment 
and transforming them into a valuable industrial product that would potentially enhance or 
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improve the health status of the individuals and the economic status 
of the nation.

Avocado (AVD) fruit is one of the agricultural products 
commonly available in the tropics and sub-tropics, widely 
recognized as a food source for over 8,000 years (6). Globally, the 
production of AVD fruit is estimated to be around 4 million metric 
tonnes per year, while Ethiopia is reported to account for about 
25,633 metric tonnes annually (7). The industrial processing of fruit 
juice and oil, along with individual demand for AVDs as an agro-
based product, has rapidly increased their production. This surge 
has led to the generation of substantial quantities of byproducts, 
including peels, seeds, pulp, and other organic matter, which account 
for about 30–45% of the total fruit weight (8–13). Wong et al. (14) 
reported a global production increase of about 52%, which is 
accompanied by their high nutritive value. So, surprisingly, an 
upward trend in avocado production from 6,842,058 tons, to 
8,978,275 tons was revealed from 2018 to 2022 (15). These 
byproducts are primarily discarded into the environment. While 
industries often focus on the immediate treatment of waste, this is 
usually prompted by uncontrolled decay, contributing to global 
warming and raising health risks as significant concerns (16–21). 
This situation poses severe economic and environmental 
consequences, resulting in estimated annual losses of around 
940 billion dollars (22). Notably, AVDP has emerged as the largest 
part of the AVD consistently released into the environment without 
any further utilization (9, 13).

However, several studies have investigated and established the 
diverse functional components composition present in different parts 
of the AVD, encompassing the peel, pulp, and seed. This composition 
could be utilized in various industries, such as food, cosmeceuticals, 
and pharmaceuticals (12, 23–27). Functional foods are food categories 
with inherent health-promoting functional components that proffer 
advantages beyond basic nutrition, but incorporate the potential 
improvement of overall health and reducing the risk of disease. 
AVDPs are shown to be  a rich source of valuable nutritional 
components, which are key parts of food and diet, while their diverse 
bioactive compounds contribute to potential treatment options for 
many diseases (25, 26). Valorizing this waste could be achieved by 
converting it into a value-added product through the extraction of 
important constituents like protein and phytochemicals that can 
be utilized in various industries in diverse ways (12, 25, 26).

The emancipation of nanobiotechnology, which incorporates the 
application and adoption of biological materials to synthesize different 
nanoparticles, have received great attention with great importance of the 
synthesized nanoparticles in diverse fields of life (28–31). The 
application of biological materials has been linked to their 
eco-friendliness, low cost, ease of availability, and diverse bioactive 
composition. Biological materials, via microorganism and their 
metabolites, plant materials, including agro-industrial waste, have been 
used for the synthesis of nanoparticles (28–30, 32, 33). AVDPs have 
been repeatedly used in synthesizing different nanoparticles, including 
silver nanoparticles, gold nanoparticles, zinc oxide nanoparticles, and 
many more (28, 33). These synthesized nanoparticles mediated by 
AVDP have been shown with different biological activities better than 
the extract alone (28). Hence, this review will focus on the nutritional 
profile and bioactive constituents of the AVDP, its pharmacological and 
food industrial applications.

Taxonomy of Persea americana

AVD is a fruit classified under the genus Persea and the family 
Lauraceae, (Figure  1), which includes about 50 species primarily 
cultivated in warm temperate climates (28). The Lauraceae family 
consists of dicotyledonous perennial plants that are native to Mexico. 
The earliest record of AVD cultivation dates back to Mexico as early 
as 500 BC, but it is now grown in various tropical and subtropical 
regions worldwide (25, 34, 186). The term AVD originates from the 
Aztecs and is derived from Nahuacatl. However, this fruit is known by 
various names in different countries, including aguacate, cupandra, 
avocatier, cura, abacate, alligator pear, butter pear, and palta (23, 
25, 35).

AVD is botanically classified into three groups based on their 
origin, cultivation conditions, and other features of the fruit: the 
Mexican (PA var. drymifolia), Guatemalan (Persea nubigena var. 
guatemalensis), and West Indian (PA var. americana) (23, 36). AVDs 
come in several different varieties, among which the cultivars, Hass 
and Fuerte, remain the most commonly cultivated (25, 36, 37). More 
than 500 varieties of AVD have been identified, including Hass, 
Lamb Hass, Shepard, Reed, Wurtz, Fuerte, Sharwil, Zutano, Ettinger, 
and Edranol, among others (23, 38–40). However, various issues, 
such as the cultivation period, protein and fat composition, their 
ability to withstand adverse environmental challenges, and 
postharvest damage, have reduced most of them from 
commercial production.

AVDs differ greatly based on their weight, size, form, and flavor, 
although the most renowned difference is the color of the ripened 
skin/peel (23, 41). Hass AVD (PA) is reported as the most cultivated 
and consumed AVD cultivar globally. It remains the most widely 
studied, with approximately 95 percent of the total commercialized 
capacity generated by the Guatemalan/Mexican hybrid in the 
United States (24, 42, 43).

FIGURE 1

Taxonomy of avocado.
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Morphological appearance

Generally, AVD (P. americana) is of diverse varieties, all of which 
were broadly classified into three major categories. Each variety was 
named based on its geographical location, where it originated or was 
domesticated (10). In the West Indian, it is scientifically known as 
P. americana, in Guatemala referred to as P. guatemalensis, while it’s 
known as P. drymifolia by the Mexicans. In addition, AVDs are 
furnished with dissimilar morphological characteristics based on the 
texture and color of the peel, coupled with the fruit size at large. For 
instance, a higher quantity of oil content with a small size was 
associated with the Mexican variety of AVDs, which is higher than 
that of the West Indian variety (10).

AVD trees are about 20 m tall and are tropical evergreens. The tree 
has a thick bark with a grayish-brown color and broad leaves between 
7 and 14 cm long. They have flowers ranging between 1 and 1.3 cm in 
width, with color yellow or green. The fruit itself is a drupe, and each 
AVD fruit has a big seed. Their cultivar determined their size (10, 
44–46). AVD is composed of the edible part (pulp or mesocarp), a 
hard black cover, and a rough skin. As a whole AVD fruit consist of 
the outer flesh skin (exocarp), the edible part (mesocarp) coupled with 
the inner seed (endocarp) weighing about 100 and 1,000 g, and of 
about 33% of the fruit total weight (23, 25, 45, 47). AVDs were unique 
in ripening; the ripening process starts after harvesting, which could 
be up to about 5 to 7 days at ambient temperature, but never ripens on 
the tree (35).

Global production and distribution

AVDs are produced in large quantities each year, representing one 
of the fruits with the highest production and consumption rates 
worldwide, with significantly increasing demand as illustrated in 

Figure 2 (8, 11). AVD production rose from 2.2 million tons to 6.4 
million tones globally between 1995 and 2018, with approximately 
10.47 million metric tons in 2023 (35, 48). AVD production has 
received a significant increase, doubling its annual production rate 
over the last 10 years (Emir (49)).

The first cultivation of AVD is believed to have taken place around 
500 BC in Mexico, which remains the leading producer, accounting 
for approximately 30% of annual AVD production globally, about 
1.8 million tons per year in 2019, while the production increased to 
2.3 million tons in 2020 and 2.5 million tons in 2022 (48, 50). 
Colombia is the second-largest producer with 1.0 million tons (12%), 
followed by Peru, the third-largest producer globally, yielding over 
866 thousand tons annually (10%) (15, 51). Additionally, the 
Dominican Republic, Indonesia, Kenya, and Brazil were responsible 
for approximately 7, 6, 5, and 3% of global AVD production, 
respectively (10). In 2022, based on the overall productions per 
continent, America leads, followed by Africa, Asia, Europe, and 
Oceania with 72, 14, 11, 2 and 1%, respectively.

The consumption rate of AVD was reported to be about 5.8 million 
tons in 2018, which significantly increased to 7.1 million tons in 2020. 
The Americas were shown to be the largest AVD consumer with 63% 
of global consumption in 2020 (44). Asia was the second-largest 
consumer with 14%, followed by Africa with 11% with the least 
consumption of 2% in Oceania. A market price of about 
US$1.70 billion was evaluated in 2018, while a rise to nearly 
US$2.70 billion is predicted by 2024 (15, 40, 52). The United States 
takes the lead in AVD consumption, followed by Mexico, Colombia, 
Indonesia, and the Dominican Republic, with 1.2 million, 1.0 million, 
719 thousand, 557 thousand, and 500 thousand tons of consumption 
rate, respectively, in the year 2020 (15).

The AVD pulp is primarily utilized in industrial processes for 
various purposes, including oil extraction from the pulp and the 
production of paste, among other products. In contrast, the other 

FIGURE 2

Avocado production volume worldwide from 2000 to 2023 (178).
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parts (peels and seeds) are discarded into the environment, resulting 
in approximately 2.42 million tons of by-products (40). The AVDP 
accounts for about 13–18% of the total weight of the fresh fruit 
(23, 53–55).

Avocado peels functional components

Nutritional profile
AVDP has been established by several studies as a significant 

source of valuable nutritional constituents (Table  1). It has been 
shown to contain carbohydrates, proteins, lipids, and fibers at levels 
of 62–73.3%, 4–8.3%, 4.4–9.1, and 50%, respectively (6, 56). 
Additionally, the elements within the AVDP include carbon 
(49.83%), nitrogen (0.97%), hydrogen (5.71%), and oxygen (42.2%) 
(35, 57). Figure 3 illustrates some nutritional and phytochemical 
constituents of AVDP. Hence, AVDPs remain a promising material 
as functional foods in the food industry and for producing 
nutraceuticals, cosmeceuticals, and pharmaceutical products. They 
can also serve as a natural source for producing eco-friendly 
adsorbents (35, 58–60).

Nyong (61) examined the nutritional components of flour made 
from fifteen (15) AVD seeds and peels collected at a market in River 
State, Calabar, Nigeria. The results showed that AVDP flour contained 
approximately 13.00% moisture, 12.00% ash, 15.80% lipids, 13.00% 
fiber, 25.46% protein, and 20.74% carbohydrates. The moisture, ash, 
and protein contents of AVDP flour were similar to those of AVD seed 
flour, while the fiber and carbohydrate contents were higher in AVDP 
flour compared to seed flour. These findings indicate that AVDPs and 
seeds have substantial nutrient profiles capable of meeting the body’s 
protein and fat requirements. Therefore, they could be  used as 
potential functional foods in formulations for both humans 
and animals.

Teshome et al. (62) reported that AVDPs are rich in proximate 
composition, including moisture, ash, protein, fat, carbohydrate, and 
fiber. They observed a higher carbohydrate content compared to other 
by-product fruits such as apple pomace, ripe mango peel flour, banana 
peel, AVD seed, raw pineapple peel, raw papaya peel, raw papaya seed, 
grape pomace, and citrus peel. Additionally, the mineral composition 
(mg/100 g) of AVDP includes potassium (K), calcium (Ca), sodium 
(Na), magnesium (Mg), iron (Fe), zinc (Zn), copper (Cu), and 
manganese (Mn), with respective values of 899.8, 679.3, 21.1, 46.9, 2.3, 
1.6, 14.5, and 1.4 mg/100 g. High levels of K and low Na amounts are 
considered beneficial for individuals on low-sodium diets and can 
help protect against heart-related diseases. All these factors support 
its potential use as a functional food ingredient in the food industry.

The AVDP were categorized into raw, oven-dried, and freeze-
dried groups, and each was analyzed for nutritional and mineral 
compositions. The raw peel, oven-dried peel, and freeze-dried peel 
contain 65.7, 4.0, and 2.3% moisture on a wet basis (%WB); 1.5, 2.0, 
and 1.7 grams of ash; 6.3, 6.4, and 6.7 grams of protein; 3.5, 4.7, and 
2.4 grams of lipid; and 46.9, 43.9, and 43.5 grams of fiber, expressed as 
a percentage of the fruit part on a dried basis (g per 100 g DB), 
respectively. Significantly higher values of moisture (65.7%) and fiber 
(46.9 g) were observed in raw peel, while ash content (1.7 g) and 
protein content (6.7 g) were higher in the freeze-dried peel, along with 
lipid (4.7 g). Additionally, the mineral composition of the oven-dried 
sample showed contents of K (899.0 mg), Ca (679.3 mg), Na (21.1 mg), 

Mg (46.9 mg), Fe (2.3 mg), Zn (1.6 mg), Cu (14.5 mg), and Mn 
(1.4 mg) per 100 g of the dried fruit part (63).

Bioactive profile
AVDP is rich and serves as a valuable source of bioactive 

components as shown in Figure 3 (53, 64). Studies have established 
the presence of various bioactive components, including organic acids, 
phenolic acids, and phenolic alcoholic derivatives (Table 1). They also 
identify flavonoids, quercetin and its derivatives, catechins, 
procyanidins, chlorophyll a and b, chlorogenic acid, and quercetin. 
Additionally, some studies have reported 1,2-dihydroxybenzene, 
2,3-dihydroxybenzoic acid, gallic acid, rutin trihydrate, syringic acid, 
and caffeic acid as part of the phenolic constituents found in AVDP 
(65–67). Figure 4 displays the chemical structure of some common 
phenolic and flavonoid compounds in AVDP.

AVDPs contain significantly higher phenolic content and 
antioxidant activity compared to the edible part of the AVD fruit. 
However, a fresh AVDP was reported to contain phenolic content 
ranging from 0.6 to 6.8 mg GAE/g sample, while dry AVDP had been 
shown with a range from 4.3 to 120.3 mg GAE/g sample for dry 
AVDP, which could vary based on the cultivars (34, 35, 68, 69). 
Additionally, dry AVDPs have superior total phenolic content (TPC) 
and antioxidant activity compared to other tropical fruit peels, 
including banana, melon, passion fruit, papaya, pineapple, and 
watermelon, while fresh peels exhibit the highest flavonoid content 
(35, 55, 64, 70).

More than thirty (30) individual phenolic compounds, along with 
higher polymeric compounds, have been identified in AVDPs. They 
are categorized into three (3) groups: hydroxycinnamic acids, 
flavanols, and flavan-3-ols (35). Chlorogenic acid (5-O-caffeoylquinic 
acid) is recognized as the main hydroxycinnamic acid in AVDP, while 
quercetin derivatives are noted as the dominant flavanols in AVDPs 
(34, 35, 59, 64). Flavan-3-ols were reported to be highest in AVDPs 
(34). Epicatechin, catechin, and A- and B-type dimers are recognized 
as subgroups of procyanidins, the main polyphenols (55). The level of 
procyanidin in AVDP has been reported to be comparable to that in 
natural cocoa powder, which is known for its exceptional procyanidin 
content. Rosero et al. (71) explore the phenolic composition of AVDPs 
and Avocado seeds (AVDS). The findings reveal several bioactive 
constituents, particularly the phenolic compounds, including 
catechins, procyanidins, and others, identified in the most active 
fractions of AVD by-products. The fractions with the highest 
antioxidant activity contained phenolic compounds of higher 
molecular weight (condensed tannins).

Factors influencing the kind and quantity 
of functional components recovery from 
AVDP

Morphological appearance
The quantity and quality of chemical compounds in AVDP differ 

based on factors such as the ripening and maturation level, the 
conditions under which the AVD is grown, the AVD variety, the 
region or country of origin, and the geographical locations of AVD 
plant growth (25, 35, 59). Wang et al. (55) present Hass variety among 
eight different cultivars examined, which has the highest phenolic 
content (51.6 mg GAE/g) and ranks as the third highest antioxidant 
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TABLE 1  Extraction methods, bioactive components, and biological properties of some reported AVDP.

Cultivars Region Methods Solvent Bioactive components Biological 
properties

Concentrations Experiment Ref

NS Nigeria Maceration. % 

Recovery (14–21%)

Acetones, water, ethanol, 

methanol, and water at a 

concentration of 90% (V/V)

Phenol, flavonoids Antioxidant and 

Antibacterial Potentials

5,10,15,20,25,100,150,20

0,250,300,350,400,450, 

and 500 mg/mL

In vitro Bassey et al. (179)

NS India Maceration % 

Recovery (14–21%)

NS Alkaloids, flavonoids, phenols, tannins, 

glycosides

Antioxidant and 

Antibacterial Potentials

100,150, 

250,350,450 mg/mL

In vitro Kamaraj et al. (113)

Hass Chile Microwave-assisted 

Hydrolysis. % recovery 

(18.56–42.58%) eight-

fold higher phenols 

than conventional 

solid–liquid extraction

Ethanol, Water, the organic 

fraction, the aqueous fraction, 

and the acid-microwave 

hydrolyzed APE

Higher phenolic composition, 

including proanthocyanidin

Antioxidant activity 20 μL In vitro Trujillo-Mayol et al. 

(132)

Hass Portugal Maceration % 

Recovery (14–21%)

Hydroethanolic extracts 

(ethanol: water, 80:20 v/v)

(Epi)catechin derivatives, chlorogenic 

derivatives

Antioxidant, antimicrobial, 

and cytotoxic activities

250 μL In vitro Melgar et al. (34)

Hass and 

Fuerte

Maceration % 

Recovery (14–21%)

- Polyphenols Anticancer, antidiabetic, and 

antihypertensive effects

In vitro Araújo et al. (23)

Hass and 

Fuerte

Spain Maceration % 

Recovery (14–21%)

Ethyl acetate, 70% acetone, 

and 70% methanol extracts 

acetone/water (70:30 v/v); or 

methanol/water (70:30 v/v)

Catechins, procyanidins, and 

hydroxycinnamic acids

Antioxidant and 

Antibacterial Potentials

200 μL In vitro Rodríguez-Carpena 

et al. (54)

Haas Brazil Maceration % 

Recovery (14–21%)

Dried peels used in a 

functional beverage 

formulation (tea rich in 

antioxidants)

Phenolic compounds 

(10,848.27 ± 162.34 mg GAE kg-1), 

flavonoids (1,360.34 ± 188.65 mg EQ 

kg-1).

Antioxidant activity, 

Microbiological assay, and 

sensory analysis

250 μL In vivo and in vitro Rotta et al. (68)

Hass Spain Maceration % 

Recovery (14–21%)

Ethanol-water mixtures Phenolic acids (hydroxybenzoic and 

hydroxycinnamic acids), flavonoids 

(flavanols, flavanonols, flavones, 

flavanones and chalcone, 

phenylethanoids and lignans)

Antioxidant, Anticancer 

(using Caco-2, A549, and 

HeLa cell lines) (using Caco-

2, A549, and HeLa cell lines)

8, 16, 32, 63, 125, 250, 

500, and 1,000 μg/mL

In vitro Rodríguez-Martínez 

et al. (11)

NS Indonesia Maceration % 

Recovery (14–21%)

Methanol Phenol, flavonoids, tannin, saponin, 

and alkaloid

Antioxidant 20, 40, 60, 80, 100 ppm In vitro Rahman et al. (119)

Hass Brazil Maceration % 

Recovery (14–21%)

Vanillic acid, ferulic acid, gallic acid, 

hesperidin, procyanidins, dimers, and 

trimers in various shapes

Antioxidant 200 μL In vitro Santana et al. (180)

(Continued)
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TABLE 1  (Continued)

Cultivars Region Methods Solvent Bioactive components Biological 
properties

Concentrations Experiment Ref

Hass and 

Fuerte

Brazil Maceration

sonicated in an 

ultrasonic bath 

Unique. % Recovery 

(20–46%)

Ethanol/water, 80/20 v/v Catechin, epicatechin, procyanidins B 

1 and B 2, and trans-5-O-caffeoyl-D-

quinic acid

Antioxidant, anti-

inflammatory, and cytotoxic 

properties

0.1, 0.5, 1, 5, 10, 50, and 

100 μg/mL

In vitro Tremocoldi et al. (69)

Hass Spain Accelerated solvent 

extraction % Recovery 

(90–95%)

Water and ethanol Sixty-one compounds belonging to 

eleven families were identified. 

Procyanidins, flavonols, 

hydroxybenzoic, and hydroxycinnamic 

acids were the most common 

compounds

Antioxidant and 

Antibacterial

250 μL In vitro Figueroa et al. (92)

NS Colombia Maceration

% Recovery (14–21%)

70% aqueous acetone and 80% 

methanol

Organic acids, hydroxycinnamic acids, 

catechins, glycosylated flavonoids, 

dimeric and trimeric procyanidins, 

epicatechin, six quercetin derivatives, 

four dimeric procyanidins (three type 

B and one type A), three trimeric 

procyanidins (two type B and one 

type A)

Antioxidant properties 100 μL In vitro Rosero et al. (71)

NS Portugal Maceration

% Recovery (14–21%)

Ethanolic Phenolic compounds Antioxidant and antibacterial 

properties

250 μL In vitro Ferreira et al. (90)

Hass Spain Maceration

% Recovery (14–21%)

Optimal consumption 

ripeness (CRA), whereas half 

of the avocados were left until 

overripeness (ORA).

34 recoveries, while 5 came from 

AVDP, including quinic acid, 

chlorogenic acid, quercetin-3,4′-

diglucoside, quercetin-3-O-arabinosyl-

glucoside, and rutin

NS NS In vitro López-Cobo et al. 

(64)

Hass and 

Shepard

Australia Maceration

% Recovery (14–21%)

Methanol (80%) extraction 

with solid to solvent ratio 

1:8 in a shaking water bath at 

60 °C

Four (4) polyphenolic classes: flavanol 

monomers, proanthocyanidins, 

hydroxycinnamic acids, and flavonol 

glycosides

Antioxidant properties 250 μL In vitro Kosińska et al. (59)

Fortuna Brazil Maceration

% Recovery (14–21%)

Hexane and ethanol Fifty-five metabolites were detected in 

the extracts, consisting mainly of 

phenolic acids, flavonoids, and 

alkaloids

Antioxidant capacity, 

acetylcholinesterase 

inhibition, and 

neuroprotective capacity

500 μg/mL, 10 mg/mL In vivo and in vitro da Silva et al. (181)

NS Nigeria Methanol

% Recovery (14–21%)

n-hexane extract, when 

administered

NS Antihypertensive activity at a dose of 100, 200, 

and 400 mg/kg

In vivo Mamza et al. (182)

(Continued)
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activity by the ORAC assay (428.8 μmol TE/g) in the peels compared 
to other varieties.

The phenolic content and antioxidant potential of AVDPs from 
two different cultivars, Hass and Shepard, were evaluated by Kosińska 
et  al. (59). In this study, Hass cultivar peel has catechin and 
procyanidin dimers, but absent in the Shepard cultivar peels, while 
caffeoylquinic acid and quercetin derivatives were present in both 
varieties. Tremocoldi et al. (69) reported a higher TPC in the Fuerte 
variety peels (120.3 mg GAE/g of dry AVD) compared to the Hass 
variety (63.5 mg GAE/g of dry AVD). During and after the maturation 
stage, AVDP texture and color are altered, which affects the types and 
amounts of bioactive compounds along with their biological activities 
(36, 72). The Persin content of Hass AVDPs was monitored throughout 
the maturation stage and was found to decrease, with 30% of overripe 
peel containing less total Persin. The concentrations were also 
observed to decline with an increasing number of ripening and 
storage; total epicatechin content reduced between the early and late 
harvest seasons. In contrast, the differences observed in storage and 
ripening were much less pronounced than the changes related to 
maturation (72).

Extraction technique
The extraction techniques and conditions under which the 

extractions occur significantly impact the quality and quantity of the 
recovered chemical compounds, as well as their biological activities. 
Recovery of functional components, including phenolic contents, 
from the AVDPs was performed using both conventional and 
non-conventional extraction methods (Table  1). Generally, 
conventional extraction methods, such as maceration (M) or 
maceration assisted by ultrasonic bath, hydro-distillation, soxhlet, and 
hydrodistillation, have commonly been utilized and are still preferred 
in the industry due to their ease of handling, compatibility with 
ambient conditions, and relatively mild temperatures (26, 49, 53, 64, 
70, 73–77). Figure  5 presents some commonly used extraction 
techniques for AVDP.

Several other non-conventional methods of extractions for the 
efficient recovery of chemical compounds from the AVDPs have been 
studied and reported. Some of these approaches includes heat reflux 
extraction (78); ultrasound-assisted extraction (UAE) (79, 80); 
microwave-assisted extraction (81), enzyme-based extraction (EBE), 
surfactant-mediated extraction, pulsed-electric field extraction, 
centrifugal partition extraction, pressurized liquid extraction, 
supercritical fluid extraction, three-phase partitioning, high voltage 
electric discharge plasma, natural deep eutectic solvents extraction, 
and two-phase aqueous systems, among others are effective and come 
with some advantages, including improve efficiency thereby reducing 
environmental pollution and other associated risks (82–86). However, 
some utilize organic solvents such as methanol, ethanol, chloroform, 
acetone, etc., which can have negative effects on the ecosystem, 
causing great damage both to humans and to the environment, in 
addition to their high cost (85, 87–89). Besides, the non-conventional 
techniques require specialized equipment.

Applications of conventional technology via M have been studied 
using different extraction parameters and solvents to depict the 
specific and total amount of bioactive compounds, coupled with the 
biomedical evaluations of the extracts. Some of the reported 
parameters includes methanol at 80%, ethanol at 20, 60, 80 and 95%, 
acetone at 70 and 80%, acetone/water/acetic acid at 70:29.7:0.3, T
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FIGURE 3

Nutritional and phytochemical constituents of AVDP.

FIGURE 4

Chemical structure of common phenolic and flavonoid compounds in AVDP.
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v/v/v/v, ethyl acetate, acetone/water at 70:30 v/v, methanol/water at 
70:30 v/v, methanol with 0.10% trifluoroacetic acid, absolute ethanol 
and boiled water (26, 34, 52–55, 59, 64, 69, 72, 90–97).

A complete analysis of the bioactive components present in AVDP 
was evaluated by Figueroa et al. (93) using an accelerated solvent 
extraction approach, with water and ethanol as extraction solvents. 
Sixty-one (61) compounds from several structural classes were 
identified. Out of the five identified hydroxybenzoic acids, only three 
were reported before using dynamic mercerization extractions 
approaches (77), while the other two, gentisic acid and benzoic acid, 
were first reported in this study. Five different groups of 
hydroxycinnamic acids were identified in this study. Caffeic acid and 
p-coumaric acid have been reported by Wong et al. (77) and Saavedra 
et al. (26), respectively, using dynamic maceration approaches, while 
3-0-caffeoylquinic acid was reported by Rodríguez-Carpena et al. (54) 
using Accelerated solvent extraction approaches. However, isomer 
4-O-caffeoylquinic acid, hydroxytyrosol glucoside, tyrosol-glucoside, 
tyrosol-hexoside-pentoside, phenolic alcohol derivatives, quercetin 
glucuronide, quercetin 3-glucoside, kaempferol 
O-glucosylrhamnoside, and flavonoid group were reported in AVDP 
for the first time. Flavanols, catechin, epicatechin, and procyanidins 
were quantified in larger amounts than those earlier reported due to 
different extraction approaches (53, 54, 59, 64, 70, 75, 77, 97).

Martínez-Gutiérrez et al. (49) studied the impact of six different 
methods of extractions, including M plus β-cyclodextrin, solid-state 

fermentation (SSF), sonication with water or ethanol, wet grinding, 
and wet grinding plus maceration (WGM) in recovering the bioactive 
components from the AVDP. Twenty-seven (27) phenolic compounds 
were recovered, while thirty-eight (38) compounds were identified 
using GC–MS analysis. It was found that the used extraction approach 
had a great influence on the quantity of the recovered bioactive 
compounds. The WGM presents the highest total phenols, epicatechin, 
and chlorogenic acid contents among the six different extraction 
methods adopted. Thus, wet WGM displayed good yields of phenolics 
while using an easily accessible and environmentally friendly 
technology. This is similar to the study carried out by Emir et al. (49), 
six different extraction methods were utilized to recover phenols, 
epicatechin, and chlorogenic acid from the AVDPs. The highest 
recovery was obtained using the WGM method, allowing for an 
eco-friendly reaction using available technology.

Marović et al. (98) studied the effects of various drying techniques, 
including hot air, vacuum, and hot-air microwave (HAMD), on the 
content of fatty acids and tocopherols in AVDPs, Avocado pulp 
(AVDPP), and AVDS. All methods were subjected to the same 
temperature (60 °C) but different durations: 35 min, 150 min, and 
200 min, respectively. Oleic acid exhibited the highest percentage, 
followed by palmitic and linoleic acids, with ranges of 41.28–57.93%, 
19.90–29.45%, and 8.44–14.95%, respectively. Significant reduction in 
oleic acid content was observed in the drying samples, while palmitic 
acid showed the greatest stability. The dried AVDPP and AVDP 

FIGURE 5

Commonly reported extraction techniques for AVDP.
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samples contained higher oleic and linoleic acid concentrations 
compared to those from the vacuum and HAMD methods. However, 
samples prepared using HAMD contain a higher α-linolenic acid 
concentration. The findings indicated that HAMD is the most efficient 
technique. A consistently higher total tocopherol content was noted. 
Therefore, AVDP is suggested to offer promising health benefits due 
to its higher content of this valuable chemical component.

The influence of temperature and solvent-feed (S/F) ratio on the 
extraction yield, as well as the quality and quantity of chemical 
components, including TPC and total flavonoid content (TFC), and 
antioxidant capacity of AVDPs extract at two different maturation 
stages was investigated by García-Ramón et  al. (2). Solid–liquid 
extraction through M was employed to determine the amount of 
phenols present and their antioxidant activities. Notably, the unripe 
AVDPs yielded the highest extraction rates, TPC, TFC, and 
antioxidant capacity. The extraction utilized 40% ethanol at 49.3 °C 
with a solvent-to-feed ratio of 14.3 mL/g for 60 min. Vanillic acid and 
4-hydroxyphenylacetic acid remained the main recovered phenolic 
components. Therefore, the study suggests that AVDPs serve as a 
natural source of phenolic compounds, presenting industrial 
significance, especially in food formulations and functional foods, as 
an environmentally friendly and health-conscious alternative to 
synthetic antioxidants.

The efficacy of UAE arises from acoustic cavitation, which 
enhances mass transfer across cell membranes (99, 100). Conversely, 
the effectiveness of EBE relies on an enzyme’s capability to degrade the 
cell wall, resulting in a greater release of intracellular components 
(101). Hefzalrahman et al. (102) examined the effects of EBE and UAE 
on the recovery of bioactive constituents from AVDPs. The bioactive 
composition of the extract was identified, and antioxidant activity was 
determined. Benzoic acid, vanillic acid, resveratrol, and syringic acid 
were identified as the main phenolic compounds. Both extraction 
methods produced extracts with strong antioxidant potential; 
however, the enzyme-assisted extract demonstrated a higher 
antioxidant capacity than the ultrasound-assisted extract. This 
indicates that more phenolic compounds were released or recovered 
through enzyme-assisted extraction, leading to enhanced antioxidant 
potential. Therefore, AVDP extract is regarded as a promising 
antioxidant agent, which is essential in food as a functional food and 
preservatives, drug formulations, and cosmeceutical industries.

The applications of various drying methods, including oven 
drying, lyophilization, airflow rate, and loading density when using 
drying as a pretreatment method, significantly affect the total 
concentrations of phenolic and flavonoid content in AVDP. Higher 
drying temperatures and airflow rates result in lower TPC in AVDP 
(26). Reports indicate that lyophilization treatment decreases phenolic 
content in AVDP, while the oven drying process increases it. 
Conversely, the TFC in AVDP has been shown to decrease with both 
lyophilization and oven drying compared to raw samples. However, 
under similar drying conditions for phenolic compounds, some were 
found to increase while others decreased (70). The use of heat as a 
treatment method could effectively liberate phytochemicals into their 
free forms, thereby increasing the total of each bioactive compound 
along with their biological activities. Heat applications may lead to the 
degradation of thermo-sensitive phenolic and flavonoid compounds, 
causing the denaturation of these compounds (103).

Typically, the concentration of the solvent, the solvent-to-feed 
ratio, and temperature are the key parameters that influence extraction 

efficiency and minimize the loss of these compounds, especially in the 
solid–liquid extraction method (89, 104–107). The temperature at 
which plant materials are subjected significantly impacts the phenol 
content. Polyphenol contents are better preserved at specific 
temperatures due to the inactivation of the enzyme polyphenolic 
oxidase. However, at any temperature exceeding this, heat-sensitive 
polyphenols may be destroyed (66, 67).

Industrial applications of AVDPs

The large production of AVD worldwide results in the release of a 
substantial number of peels into the environment. The unexplored 
bioactive constituents of these peels lead to the loss of several valuable 
phytochemicals, which could be used in the production of various 
products of high economic value (6, 108, 109). Many economically 
valuable, phytochemically rich materials are often lost from the large 
amount of AVDP generated daily from its processing (108, 109). 
AVDPs are a rich source of phytochemicals, which can be utilized in 
providing various nutritional and therapeutic solutions. Different 
studies have established that AVDPs contain higher phenolic contents 
than the seeds. These phenolic contents have been linked to various 
biomedical applications. Traditionally, the AVD seeds and peels are 
currently used as active materials in producing foods and 
beverages (40).

AVDPs are rich in bioactive compounds, particularly phenolic 
content, even more so than the pulp and seed, which are highly 
beneficial in the food, pharmaceutical, and other industries (59, 68, 
69). Recently, there has been increasing interest in investigating the 
bioactive composition along with their applications in various fields. 
Numerous biological activities are associated with AVDPs due to 
presence of beneficial components, combined with the absence of 
potentially toxic or harmful substances commonly found in many 
dermatological products, establishes AVDPs as a preferred natural raw 
material for cosmetics, in addition to their various applications in the 
food and pharmaceutical sectors (25, 59, 69, 94, 110, 111). AVDP has 
been recognized as a promising source of essential compounds for 
food, pharmaceutical, and other industrial uses. It serves as a valuable 
source of phenolic content, which is greater than that found in the 
pulp and seed (68, 69).

Functional potential and industry

The pharmaceutical applications of the AVDP as an antioxidant, 
anticancer, antibacterial, and insecticidal agent have been reported 
(112–115). Okoye (116) reported the chemoprotective potential of 
these polyphenols against cancer activities. Another study noted the 
platelet aggregation inhibition properties, anti-allergenic, 
antihypoglycemic (117), anti-inflammatory, and antioxidant 
properties, as well as the ability to improve lipid metabolism of these 
polyphenols in the AVDP (118).

Antioxidant
Some bioactive compounds in AVDP have significant antioxidant 

potential. Procyanidins, chlorogenic acid, pigments like chlorophyll, 
and flavonoids such as flavonols are antioxidant compounds found in 
AVDP that exhibit free radical scavenging activity, helping to prevent 
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cardiovascular diseases, cancer, and neurodegenerative conditions. 
While chlorophyll, an antioxidant pigment, is present in AVDP, it is 
not the dominant antioxidant compound due to the weak correlation 
between pigment concentration and antioxidant activity (35, 55). 
Rahman et  al. (119) investigated the antioxidant potential of the 
AVDP extract using methanol as the extraction solvent. Phenols, 
flavonoids, tannins, saponins, and alkaloids were identified with total 
values of 21.833 mg/100 g extract, 2.607 mg/100 g extract, 
38.357 mg/100 g extract, 8.874 mg, and 9.95 mg CE/g extract, 
respectively. The extract exhibited high antioxidant potential, reaching 
185.891 ± 1.598 ppm, linked to the presence of these 
phytochemical compounds.

Araújo et al. (23) investigated the phenolic content of the AVDPs 
and AVDS cultivars of Hass and Fuerte and evaluated their potential 
as antioxidants, anti-inflammatory, and cytotoxic agents. AVDPs 
predominantly contain procyanidin, trans-5-O-caffeoyl-D-quinic 
acid, catechin, and epicatechin, while procyanidin B and epicatechin 
were predominant in AVDS, which contributes to their high radical 
scavenging activity. The AVDPs effectively suppress TNF-α and nitric 
oxide (NO) generation, which is associated with the high phenolic 
content. Therefore, the study suggests that AVDPs are a promising 
natural source of antioxidant and anti-inflammatory agents that could 
serve as a biennially useful resource in food for functional foods 
formulation and pharmaceutical applications.

Chlorogenic acid, also known as 5-O-caffeoylquinic acid, belongs 
to the hydroxycinnamic acid group and has demonstrated anti-
hyperglycemic properties, superior DPPH activity compared to 
vitamin E, and effectiveness as an antioxidant for preventing oxidation 
and the formation of free radicals (64, 120, 121). Furthermore, 
derivatives of quercetin, representing one of the largest classes of 
flavanols, have been associated with controlling oxidation and 
inflammation, as well as serving as protective agents against cardiac 
diseases (93).

The antioxidant properties of AVDP extract have been widely 
documented by several studies. Ferreira and Santos (90) reported Hass 
AVDP with 93.92% DPPH inhibition, while Melgar et al. (34) reported 
Hass AVDP with antioxidants of EC50 ranging from 11.7 to 152 μg/mL 
(DPPH, reducing power, and β-carotene bleaching inhibition), which 
were attributed to the presence of phenolic compounds. Figueroa et al. 
(92) reported antioxidant activity assays using ABTS 
(1.34 mmol Eq T/g DE), FRAP (2.66 mmol Eq F (II)/g DE), and 
ORAC (3.02 mmol Eq T/g DE). It has also been reported to exhibit 
neuroprotective activity (122), further solidifying its potential 
application in the food industry. It can serve as an ingredient in many 
functional foods, enabling the use of AVD waste, a latent concern of 
the circular economy (40). Several studies also report potential use 
cases of the AVDP extract in addressing diseases related to oxidative 
stress (122–125).

Antimicrobial
The inefficacy of the existing and used synthetic drugs has become 

more pronounced and keeps increasing due to their resistance to 
microorganisms. In addition, the more toxic side effect associated 
with these synthetic drugs have limited their uses (126, 127). This 
resistance of pathogens to antibiotics and ineffectiveness of the 
antibiotics for the treatment of diseases has become alarming and has 
resulted from the misuse, inappropriate use, and indiscriminate use of 
these antibiotics. To forestall this alarming incidence of antimicrobial 

resistance accompanied by increasing infectious diseases, a proactive 
and better approaches are required (127, 128). In this respect, natural 
materials, including plants, plant products, and their byproduct, have 
been presented as an acceptable and satisfactory agent furnished with 
an enormous range of efficacious and active antimicrobial chemicals.

A remarkable antimicrobial potential of the synergistic effect of 
AVDP extract with nisin has been revealed against Listeria innocua 
(ATCC 33090), Escherichia coli (JMP101), Lactobacillus sakei, 
Weissella viridescens, and Leuconostoc mesenteroides. The highest 61% 
inhibitory activity was shown by AVDP extract against L. innocua, 
surpassing nisin’s inhibitory activity of 39% (53). Higher antimicrobial 
potentials of AVDP extract were reported against Gram-positive 
bacteria, with a strong in vitro antioxidant potential attributed to its 
richness in polyphenolic compounds compared to the pulp (54).

A strong inhibitory effect of AVDP extract against the tested 
bacteria was demonstrated in a study conducted by Skenderidis et al. 
(129). Procyanidin A and B, catechins, quercetin, glycerides, 
triamcinolone acetaminophen, saponins, steroids, caffeoalkinic acid, 
and coumaric acid, which are polyphenolic compounds, were 
identified as key bioactive components associated with these 
antimicrobial activities (34, 111, 129, 130). Based on the antimicrobial 
mechanisms of action of AVDP-derived bioactive compounds, the 
general effects included destabilization of the cytoplasmic membrane, 
permeabilization of the cell membrane, inhibition of extracellular 
microbial enzymes, disruption of microbial metabolism, and a 
deficiency of microbial growth substrates (primarily essential 
minerals), which remain the key antimicrobial mechanisms linked to 
proanthocyanidin type A (129, 131). The ability to disrupt cell 
membranes, bind with cell proteins, inhibit enzymes, deprive 
substrates, complex with metal ions, and interfere with essential 
microbial metabolic processes has been established as a major 
antimicrobial mechanism enacted by these bioactive compounds (129).

Effective antibacterial activity was exhibited by AVDP extract 
against E. coli, Salmonella spp., Pseudomonas aeruginosa, Listeria 
monocytogenes, Staphylococcus aureus, and Bacillus cereus at 
concentrations up to 750 μg/mL. However, the organic fraction 
showed better inhibitory effects, achieving an increase of 83.34% 
against L. monocytogenes at a MIC of 125 μg/mL, indicating an 
improvement of up to 25% (132). Additionally, the acid-microwave 
hydrolyzed APE (HAPE) demonstrated a concentration-time-
dependent inhibition of biofilm formation at lower concentrations 
compared to amoxicillin. Ripe AVDP extract contained cardenolides, 
bufadienolides, 2-deoxy sugars, unsaturated steroid/triterpenoid, 
unsaturated lactone, and flavonoids, demonstrating a stronger 
inhibitory effect against S. aureus, P. aeruginosa, Methicillin-Resistant 
S. aureus, and five other clinical isolates (133). The studied ripe AVDP 
extract, a crude extract, exhibited efficient antibacterial properties 
when compared with the synthetic antibiotics used as the control.

The ethanolic extraction of the AVDP, as prepared and studied by 
Amado et al., demonstrated its antimicrobial potential was examined 
against S. aureus, B. cereus, E. coli, and Salmonella typhi. Effective 
bactericidal and bacteriostatic activities of the AVDP were revealed 
(113, 132). Many other studies have documented the antimicrobial 
efficacy of the AVDP. Ferreira and Santos (90) reported antimicrobial 
activities of Hass AVDP against E. coli, S. aureus, and Staphylococcus 
epidermidis with a zone of inhibition of 5.0 mm, 13.0 mm, and 
14.0 mm, respectively. Melgar et  al. (34) reported Hass AVDP 
antimicrobial activities against B. cereus (MIC 0.015 mg/mL, MBC 
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0.030 mg/mL), L. monocytogenes, Micrococcus flavus, and S. aureus 
with the same value of MIC 0.030, MBC 0.075, Enterobacter cloacae 
(MIC 0.015 mg/mL, MBC 0.030 mg/mL), E. coli (MIC 0.03 mg/mL, 
MBC 0.45 mg/mL), P. aeruginosa (MIC 0.030 mg/mL, MBC 0.075 mg/
mL), and Salmonella typhimurium with MIC 0.10 mg/mL and MBC 
0.15 mg/mL. Four Aspergillus spp., Two Penicillium spp. and 
Trichoderma viride were reported with the same value of MIC of 
0.3 mg/mL (34). Raymond and Dykes (94), reported Hass and Fuerte 
AVDP antimicrobial activity ranged between 104.2–416.7 μg/mL 
against L. monocytogenes, S. epidermidis, S. aureus, Enterococcus 
faecalis, E. coli, Salmonella Enteritidis, Citrobacter freundii, 
P. aeruginosa, S. typhimurium, and E. aerogenes, and three fungi, 
Aspergillus flavus, Penicillium spp., and Zygosaccharomyces bailii. 
Figueroa et  al. (92) reported antimicrobial activities ranged from 
9.4–22.0 μg/mL against S. epidermidis and E. faecalis, Enterobacter 
hormaechei, Kluyveromyces marxianus, and Galactomyces candidus.

Amado et  al. (134) compared the antioxidant properties, 
antibacterial properties, and toxicity effects of AVDP, AVDS, and 
AVDPP of Quintal, Fortuna, Margarida, and Hass varieties. The result 
showed the highest antioxidant and antibacterial activity against food 
pathogens, exhibited by Quintal variety AVDP ethanolic extract, with 
no toxicity in the preliminary tests, which presents AVDPs as an 
efficient additive, significantly useful in food formulations.

Anti-inflammatory
Inflammation arises in the process of the body trying to control 

tissue healing and eliminate foreign substances, infections, or irritants 
(135). Persistence in inflammatory reactions may lead to tissue 
deterioration, or excessive inflammatory responses may occur, which 
may give rise to diverse diseases in the body system; hence, 
management of the inflammatory reactions is necessary (136). 
Recently, scientists have been in search of natural materials that could 
be  effective in reducing inflammation and alleviation pain. 
Inflammation was induced by carrageenan in the mice, and they were 
exposed to a specific concentration of infusion, decoction, and extract 
of AVDPs. The result revealed a significant anti-inflammatory 
potential of the treated with the AVDP extracts, with the best anti-
inflammatory potential shown by shorter extraction time by infusion 
(15 min) compared to the decoction (30 min). The findings established 
that the extraction method and the solvent used had a great influence 
on the anti-inflammatory property of AVDP (135).

AVDP extract inhibits the release of the pro-inflammatory TNF-α 
and the inflammatory mediator nitric oxide. These effects may 
be  linked to its abundance of phenolic compounds and its higher 
radical scavenging and antioxidant activity compared to nisin, a 
natural antimicrobial dipeptide (69, 137). Anti-inflammatory 
compounds present in AVDPs, such as trans-5-O-caffeoyl-D-quinic 
acid, procyanidin, and catechin, are effective anti-inflammatory 
agents. Procyanidins, which are found in AVDPs, represent one of the 
largest groups of phenolic compounds in food products and have been 
demonstrated by several studies to help prevent cancer, inflammation, 
urinary tract infections, and various chronic diseases (35, 55, 138).

Ovalle Marín et al. (139) characterized and investigated the anti-
inflammatory potential of AVDP extract. Aqueous and hydroalcoholic 
solutions were used as a medium for extractions. The Folin-Ciocalteau 
technique was adopted to quantify the Total polyphenol content 
present. Antioxidant capacity was determined using FRAP and DPPH, 
while NO and TNF-α release, and by TNF-α gene expression were 

used to measure the inflammatory features of the AVD extract. The 
result revealed an adequate presence of polyphenol content in both. 
However, higher polyphenol content was reported in the 
hydroalcoholic extracts than in the aqueous extract. Furthermore, a 
pronounced and higher antioxidant activity and anti-inflammatory 
efficacy were revealed in the hydroalcoholic extracts than in the 
aqueous extract. These show that higher bioactive contents are found 
in hydroalcoholic extracts than in the aqueous extract, which accounts 
for its higher biomedical application.

Investigations into the extraction of bioactive compounds from 
AVDP extract were carried out by Rodríguez-Martínez et al. (11) 
using UAE techniques. The antioxidants and the anticancer potentials 
of the recovered AVDP extract were assessed against cancer cell lines. 
Hydroxybenzoic, hydroxycinnamic acids, flavanols, flavanonols, 
flavones, flavanones, chalcone, phenylethanoids, and lignans represent 
the most detected chemical compounds. Aqueous ethanol extracts 
present the highest contents of chemical composition with high 
antioxidant activities. The extract showed strong anticancer potentials 
against the Caco-2, A549, and HeLa cell lines and did not significantly 
affect normal cells (L929) with low cellular toxicity in normal cells 
used in this study. Thus, the work presented the utilization of 
ultrasound as a workable extraction technique and confirmed the 
safety of AVDP extract for human consumption. Hence, this affirms 
AVDP utilization as an effective agent as a functional ingredient. The 
therapeutic potential of the epicatechin derived from AVD has been 
established against diabetes and cancer (140, 141).

Potential in the food industry

Hunger incidence is one of the global challenges, of which more 
than 820 million people were suffering from hunger in 2018, stressing 
the immense challenge and importance of achieving the Zero Hunger 
target by 2030 (142). In addition, antioxidant and antimicrobial agents 
have remained key and significant agents in the food industry. Hence, 
the continuous search for natural alternative food sources of high 
nutritional value furnished with bioactive compounds with 
antioxidants and antimicrobial potentials has been of great interest as 
an alternative to synthetic compounds, which are associated with 
negative health effects (143). These natural food sources will fill/cover 
almost 70% of the needed food materials to meet the exponentially 
growing human population. Bioactive compounds derived from 
natural materials are both safer, with no side effects on human health 
and the ecosystem (93, 143). Food industries are so much concerned 
and engrossed in the bioactive compounds with antioxidant and 
antibacterial potentials to impede the oxidative process and microbial 
contaminations in the food product, thereby improving the shelf-life 
and quality of products (144).

In this sense, AVDP is a rich source of different bioactive 
compounds such as tannins, phenolic acids, and flavonoids, including 
catechin and various procyanidins, flavonols, hydroxybenzoic and 
hydroxycinnamic acids, with antioxidant and antibacterial potentials 
(64, 93, 143). Extract from AVDP has been established as a good 
source of various phenolics, including flavanols, anthocyanins, and 
phenolic acids, which are known for their antioxidant abilities and use 
in preserving food products (52, 69). Sequel to the bioactive 
compounds as reported in the AVDPs, which contribute to its 
antioxidant and antimicrobial activities, could present AVDPs as a 
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valuable product in the food industry. Hence, these characteristics 
make them a rich and natural source of bioactive compounds for 
applications in the food sector (143). However, it is very necessary and 
will be a very useful decision for the food industry to implement the 
circular economy to promote or prioritize the reuse or recovery of 
by-products [Del Rio (22, 145)].

Consumptions of AVDs are made available in different forms, 
including guacamole, chips, ice cream, frozen products, AVD paste, 
AVD oil, and cosmetic products (6, 26, 60). Applications and 
adaptations of the AVD as a functional component for foods has 
gained outstanding interest due to their bioactive compounds such as 
unsaturated fatty acids, phenolic compounds dietary fibre, vitamin B, 
C, and E, lutein, and various pigments (carotenoids, chlorophylls, and 
anthocyanins) (26, 55, 59, 146).

A lipid profile of the AVDP, coupled with an in-depth update on 
the lipid fingerprint of Hass seed investigated using reversed-phase 
liquid chromatography–tandem mass spectrometry, was investigated 
by Neves et al. (147). The result revealed higher lipid content in the 
peel than seed. The reported lipid contents showed significant 
antioxidant and anti-inflammatory properties. Hence, this study 
suggests the lipid contents from AVDP and seed are promising sources 
of natural and functional bioactive compounds with biotechnological 
importance in the food/cosmetics industry, and nutraceuticals 
production. In addition, AVDP and seed lipid contents serve as a 
source of lipids for new plant-based products development and 
production of nutraceuticals and cosmeceuticals in managing 
oxidative stress and inflammation, as well as an additive to replace 
synthetic antioxidants, thus enhancing the implementation of AVD 
peels as a sustainable raw material.

The importance of iron in the body cannot be overemphasized. 
Lack of iron or a low iron diet in the body leads to a disease condition 
known as Anemia (148). Manganese is another important element 
involved in various biological activities within the body system and is 
generally obtained from a healthy diet, as the human body does not 
produce manganese. Although manganese is obtained from food and 
stored in various organs in the body. The widespread intake of flour 
and flour-based products makes the conversion of AVDPs into peel 
flour an easy and sustainable method of improving the quality of food, 
and it can also serve as a vehicle for functional dietary supplements, 
providing the necessary macro and micro elements including iron and 
manganese (149). There has been an increase in demand for the 
utilization of AVDs in food and nutraceutical industries due to these 
characteristics (25).

Food additives and preservatives
Preservation of food and food products has gained high demand 

by the food industry and the consumers to enhance and sustain 
healthy products (138). Due to the continually increasing demand for 
healthy food products from consumers, the adoption and applications 
of natural food preservative agents have received tremendous interest 
(138, 150).

Microbial decomposition and sensory alterations of meat and 
meat products have become one of the greatest issues in the food 
industry and industrial production of meat (151, 152). The microbial 
decomposition results from the oxidation of meat components caused 
by the free radicals and Reactive oxygen species (ROS), greatly 
reducing the meat product’s shelf life, and in addition, limiting their 
production. The synthetic form of the antioxidant agent presently in 

use has been reported with several side effects (153). Hence, there is a 
need to search for an efficient mechanism to solve these challenges. 
The potential search and use of natural agents as food additives in food 
preservation and fortification has gained the attention of scientists in 
recent years as an alternative to synthetic antioxidants (34, 147, 151).

Calderón-Oliver and López-Hernández (153) demonstrated the 
potency of AVDP extract to prevent protein oxidation. Inhibition of 
lipid and protein oxidation and spoilage prevention of meat products 
of AVDP extract were investigated by Rodríguez-Carpena et al. (54). 
This present AVDP, a valuable material in the food industry as a food-
grade preservative. Figueroa et al. (92) also investigated the potency 
of AVDP extracts in combating microorganisms, and the high 
antimicrobial activity displayed against both gram-positive and gram-
negative bacteria further highlights the effectiveness of AVDPs as 
natural preservatives to extend shelf life, and prevent rapid 
food spoilage.

The impact of integrating the AVDP extract on the physiological 
and antifungal properties of the developed gelatin-
carboxymethylcellulose active films containing Hass AVDP extract 
and their applicability in berry preservation has also been explored 
(187). Gelatin/carboxymethylcellulose active films were developed 
and incorporated with different concentrations of AVDP extract at 0, 
200, 300, and 400 mg L−1. The best barrier properties against water 
vapour were recorded at the 200 mg L−1 concentration of AVDP 
extract. The result showed that incorporating AVDP extract has the 
efficiency to reduce the moisture content and solubility of the films 
and showed higher colorimetric parameters and opacity than the 
control film. The developed gelatin-carboxymethylcellulose radical 
scavenging capability (from 24.16 to 41.12, 57.21, and 63.47%) was 
shown to be  significantly enhanced, with a robust antimicrobial 
inhibition against the growth of Rhizopus stolonifer and Aspergillus 
niger increasing with the increasing concentration of the AVDP 
incorporated. The preservative study was observed for 6 days of 
storage without any fungal development. This present AVDP extract 
as a natural alternative potential agent for active packaging and can 
preserve fresh fruit.

Velderrain-Rodríguez et al. (125) identified AVDP TPC profile 
and evaluated their antioxidant and antiproliferative properties. The 
study reported that AVDP showed the highest phenolic contents 
(309.95 ± 25.33 mMol GA/100 g of extract) with the lowest effective 
concentration (EC50) against DPPH and ABTS radicals (72.64 ± 10.70 
and 181.68 ± 18.47, respectively), better than the seed coat and seed 
extracts examined. AVDP extract antiproliferative activity was 
revealed, followed by the seed, then the seed coat. The meat lipids and 
proteins were preserved by AVDP extracts (70% acetone) by inhibiting 
the oxidative reactions in meat patties (54).

Animal feed formulation
The AVDP extract has been used in formulating animal feed due 

to their proximate and bioactive compound composition. These agro-
based wastes could be incorporated into the animal feed or used as a 
raw material in the production of animal diets (19). Traditionally, 
AVDP has been applied and used as feed for livestock (93).

Okibe et al. (154) examined the nutritional value of the AVDPs 
and seeds quantitatively. Higher contents of crude fibre and protein, 
than that of the seeds, coupled with a non-significant difference in ash 
content (5.10 ± 0.00) and carbohydrates (76.21 ± 0.03), but low values 
in lipids and moisture content when compared with that of the seed, 
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were reported. In addition, higher mineral content, including P 
(1.25 ± 0.01), Na (0.45 ± 0.00), with a non-significant difference in Ca 
(0.06 ± 0.00) and a lower value of Fe (0.13 ± 0.00) and Mg 
(0.11 ± 0.01), was revealed when compared with that of the seeds. 
High carbohydrate content contributes to the AVDP as a potential 
carbohydrate source for animal feed formulations. AVDP’s low 
moisture content contributes to its shelf-life extension, while its low 
ash contents point to a low level of inorganic impurities. Hence, 
present AVDP applications as an adequate source of these minerals in 
animal feed formulations.

Tea and beverages formulation
Beverages encompass drinks such as hot, soft, milk, and alcoholic 

varieties, generally consumed for refreshment (155). Understanding 
the important role of food products beyond their basic nutritional 
needs has led to significant advancements in the functional foods 
industry, and beverages serve as key vehicles for incorporating 
nutritional bioactive compounds into functional food products (156, 
157). The ease of distribution and the advantages of beverage bioactive 
compounds have made them the preferred carriers for functional 
ingredients (156). Consequently, AVDP is seen as a promising source 
of functional ingredients in the beverage sector due to its richness in 
bioactive compounds. Dried AVDPs were used to create a novel 
functional beverage. Rotta et al. (68) reported that the quality of the 
mate tea was comparable to that of the tea produced from the AVDP, 
with both having similar high concentrations of phenolic compounds, 
which were not significantly affected during storage. This tea is rich in 
polyphenols and antioxidants, mirroring the characteristics of mate 
tea and maintaining its content throughout storage. Utilizing AVDP 
in beverage preparation aims to enhance their functional properties.

Rotta et al. (68) utilized AVDP for tea formulation. The AVDP tea 
formulation was shown to contain high phenolic and flavonoid 
compounds and exhibited a significant antioxidant activity. The 
reported phenolic and flavonoid contents in this study were found to 
be higher than apple and mate tea. The tea prepared using AVDP 
displayed a suitable sensory analysis, while containing a high content 
of phenol, was seen to be  present and exhibiting significant 
antioxidant activity.

Juice clarification
The application and importance of pectinolytic enzymes have 

received global attention from various scientists in catalyzing a diverse 
range of industrial processes. Notably, microorganisms have been 
used in the production of various types of pectinolytic enzymes and 
have been reported to account for about 25% of food enzymes sales 
worldwide, with steadily increasing market shares (158, 159). 
Pectinolytic enzymes are used in various industrial applications (160–
166). However, some agricultural waste, like AVDP, has been 
established as an alternative source of bacterial pectinase.

Pectinase-producing bacteria are mostly used by many sectors, 
most especially in the food industry. Significantly, pectinase is used 
to break down pectin polysaccharide compounds. Haile et al. (167) 
isolated four different pectinase-producing bacteria strains, 
including Serratia marcescens and Lysinibacillus macrolides from 
AVDP, while their potential in making juice clarification was 
evaluated. Clear apple, lemon, and mango juices were achieved and 
further processed to analyze the properties of each juice. Lemon 
juice presented the highest content of total titratable acidity, total 

phenols, and the highest antioxidant activities, while the apple 
juice was presented with the highest total soluble solids, reducing 
sugar content, and viscosity, and the mango juices showed the 
highest pH values. This presents AVDP as an alternative rich source 
of bacterial pectinase to microorganisms that could clear 
fruit juices.

Biotechnological applications of avocado 
peels

The applications of adsorbent agents for the removal of 
contaminants have garnered special attention recently due to their 
simplicity in design and ability to produce high-quality effluents (60, 
168). Carbonaceous material produced from the AVDP was used for 
dye removal in place of the conventional activated carbons, which are 
restricted in use due to their high costs and are limited by their 
exhaustion after long-term operations. Efficacy and possibility of the 
produced carbonaceous material were evidenced by the removal of 
various dyes. The result showed a complete removal of Naphthol Blue 
Black, Reactive Black 5, and Blue 41. Hence, the study presents the 
effective dye removal of the carbonaceous material produced from the 
AVDP as a low-cost, easily accessible, proven alternative to 
conventional and synthetic adsorbents.

The search for naturally activated carbon as an effective alternative 
to the commercial activated carbons (CAC) to reduce or remove the 
chemical and biological oxygen demand in processing wastewater has 
recently increased (169). The existing use of the commercial activated 
carbons (CAC) from peat, coal, or petroleum pitch is effective as 
adsorbents but very expensive, which has resulted in the search for 
alternative materials to CAC (169, 170). Sequel to this, agricultural 
wastes have been an alternative source for the production of activated 
carbon in recent times and are therefore considered as the most 
accessible and cheap carbonaceous materials instead of CAC (169, 
171). Different agricultural wastes, husk, wood, palm kernel, and AVD 
seeds have been employed in the assessment of bioremediation ability, 
and AVD by-products have been verified for their effectiveness as 
adsorbents in bioremediation (169–171).

AVD has been revealed as a potential agent for the production of 
activated carbon. Employing AVDP as a source of activated carbon 
serves as a cheaper substitute compared to existing high-priced 
activated carbon. It was shown that the adsorption capacity of AVDP 
activated Carbon was equivalent to the commercial produced ones. 
However, the quality of AVDP-treated water was reported to be more 
suitable for irrigation and safer for direct discharge to the water 
sources (35, 172). Applications of AVDPs as a precursor for AC 
synthesis can potentially solve the disposal problem and add value to 
the agricultural residue (173). The high percentage of starch contained 
in the AVDPs serves as a good indicator of their high carbon content 
in comparison with other agricultural wastes, resulting in high AC 
yield (174). Hence, the utilization of AVDPs as a biosorbent can solve 
the problem of managing the large amount of AVD waste.

AVDP produces ecology-friendly adsorbents that could be used 
for the removal of acidic and alkaline dyes instead of conventional 
activated carbons. Palma et al. (60) conducted a study, optimizing the 
conditions for the process, applying factorial design and response 
surface methodology at a carbonization temperature of 900 °C for 
65 min. Carbonized AVDP is a promising adsorbent for removing 
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different types of dye due to the wide availability of AVDP and its 
subsequent low cost, coupled with its potent adsorption capacity.

An innovative biomass solid catalyst recovered from AVDP was 
developed by Etim et  al. (175), and its potential in the 
transesterification of a bi-hybrid oil of used cooking–baobab oil 
(UC-BO) was evaluated. The result showed AVDPs rich in vital 
elements with high concentrations of K content. An effective catalytic 
potential of the AVDP catalyst was also revealed by converting the 
used cooking–baobab oil to biodiesel. The AVDP catalyst displayed an 
exceptional recyclability, attaining 92.85% biodiesel yield. The study 
considered a developed catalyst as a highly effective biomass-based 
catalyst for large-scale biodiesel production. Epicatechin and 
chlorogenic acid have also been reported to inhibit the formation of 
heterocyclic amines in charcoal-roasted lamb meats (176). AVDP 
extract, therefore, presents itself as a product with immense 
biotechnological potential, with applications in the production of 
colorants, biopolymers, natural antioxidants, and more.

Cosmetics/skin care effect of avocado 
peels

The search for a natural source of cosmetic ingredients by the 
cosmetic industry in the replacement of synthetic substances has 
currently received high demand (93). This is due to several side effects 
of the synthetic substances, including carcinogenic effects and many 
more. There has been a consistently increasing demand for the 
utilization of natural raw materials to replace synthetic substances 
(177). Agricultural by-products, therefore, pose as a promising 
alternative in providing these natural ingredients (55). AVDP has 
shown promise in cosmetic product incorporation, such as oil-in-
water emulsions. Their incorporation enhanced the antioxidant and 
antibacterial potency of the cosmetic products. This shows the AVDP 
as a promising alternative to the synthetic additives applied in the 
preparation and manufacture of cosmetics.

Ferreira et al. (90) obtained AVDP extract and incorporated it 
in oil-in-water and water-in-oil types of cosmetic formulations, and 
compared their stability with formulations containing synthetic 
preservatives. Based on the stability evaluation, extract from AVDP 
showed efficient use in the studied emulsion and specifically 
enhanced the antioxidant and antibacterial properties of the 
formulated emulsion. This further proves AVDP as a viable option 
to replace synthetic preservatives, proving more effective and stable. 
This suggests the feasibility of obtaining sustainable cosmetics by 
incorporating AVDP extracts, which serve as a low-cost, easily 
accessible, and eco-friendly alternative source of phenolic  
compounds.

Conclusion

AVDP serves as a rich source of diverse bioactive compounds that 
remain key components to several industries, most especially the food, 
pharmaceutical, and cosmeceutical industries, which, in addition, 
promote the circular economy agenda for zero waste and increase the 
economic status of the countries. They are rich in nutritional 
composition, which promotes the significant use in the food 
formulation/preservation and contains vital bioactive compounds 

including phenolic and flavanols like epicatechin, procyanidin, 
quercetin, chlorogenic acid, chlorophyll a and b, and many more. 
AVDP had diverse biological activities, like antimicrobial, antioxidant, 
and anti-inflammatory activities. Generally, different factors like the 
morphological appearance ripe and unripe, geographical origin, 
growth conditions, extraction methods, extraction solvent, 
temperature range, and others had a great effect on the quality, 
quantity, and the biological activities of the AVDP bioactive 
compounds. Hence, AVDPs serve as a promising agent in different 
industries, including food as functional food and food preservatives, 
in pharmaceuticals and cosmeceuticals containing vital bioactive 
compounds with great biomedical applications for health 
improvement and better economic performance.
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