

OPEN ACCESS

EDITED BY Amélia Delgado, University of Algarve, Portugal

REVIEWED BY
Md Atiqul Haque,
Hajee Mohammad Danesh Science &
Technology University, Bangladesh
Orachos Napasintuwong,
Kasetsart University, Thailand

*CORRESPONDENCE
Amar Mankar

☑ amarmankar0109@gmail.com
Umesh Kawalkar
☑ umeshkawalkar01@gmail.com

RECEIVED 09 June 2025 ACCEPTED 08 September 2025 PUBLISHED 30 September 2025

CITATION

Mankar A, Kawalkar U, Quazi Syed Z and Gaidhane A (2025) Nutrition literacy: a key factor in public health improvement in India. *Front. Nutr.* 12:1643629. doi: 10.3389/fnut.2025.1643629

COPYRIGHT

© 2025 Mankar, Kawalkar, Quazi Syed and Gaidhane. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Nutrition literacy: a key factor in public health improvement in India

Amar Mankar^{1*}, Umesh Kawalkar^{2*}, Zahiruddin Quazi Syed³ and Abhay Gaidhane³

¹Department of Community Medicine, Datta Meghe Institute of Higher Education and Research, Wardha, India, ²Department of Community Medicine, Government Medical College, Akola, India, ³Datta Meghe Institute of Higher Education and Research, Wardha, India

Nutrition literacy is the capacity to obtain, understand, and apply nutrition information. It plays a pivotal role in addressing India's coexistence of undernutrition, micronutrient deficiencies, and rising non-communicable diseases. This perspective synthesizes evidence on how nutrition, food, and health literacy shape dietary behavior and program uptake. This will highlight the rural—urban and adolescent—young adult gaps. We argue for participatory action research (PAR) approaches to co-design context-specific interventions and propose a multilevel strategy spanning schools, antenatal care, and community platforms. We present a conceptual framework linking literacy domains to improved dietary quality and NCD prevention, and outline priorities for measurement and policy integration in India.

KEYWORDS

nutrition literacy, India, malnutrition, non-communicable disease, food literacy

Introduction

India, a land of cultural diversity, is confronted with a multitude of nutritional challenges, ranging from malnutrition to the growing prevalence of diet-related diseases (1, 2). Undernutrition and micronutrient deficiencies remain common, especially in women and children. At the same time, lifestyle changes and urbanization have increased the number of people with obesity, diabetes, hypertension, and other non-communicable diseases (NCDs). This double burden affects health, productivity, and national development (3, 4).

Nutrition literacy means the ability to obtain, understand, and use nutrition information in daily life. It helps people choose balanced diets, read food labels, and avoid unhealthy food practices. Nutrition literacy is more than knowledge; it also includes skills and confidence to apply information for better health. When people have good nutrition literacy, they are more likely to improve their diet and reduce the risk of disease (5).

In India, nutrition literacy is especially important because of cultural diversity, socioeconomic differences, and rapid dietary transitions. Rural and urban populations often face different challenges, and adolescents and young adults are particularly at risk of poor dietary habits (6, 7). Improving nutrition literacy can support existing programs such as POSHAN Abhiyaan, Mid-Day Meal Scheme, and Integrated Child Development Services (ICDS). This perspective highlights the importance of nutrition literacy, identifies gaps, and suggests practical strategies for public health action in India (8, 9).

A validated instrument for assessing nutrition literacy is essential for evaluating individuals' comprehension of nutritional concepts in a standardized manner. Such an instrument facilitates the identification of knowledge gaps, monitors progress, and guides the development of effective educational strategies and interventions. These tools provide valuable insights for policymakers, assist healthcare providers in customizing their advice, and enable cross-cultural comparisons. Ultimately, they enhance public health planning and ensure that programs effectively improve dietary behaviors and health outcomes (10, 11).

Globally, validated instruments like the Food Literacy Assessment Tool (FLAT) and the Nutrition Literacy Assessment Instrument (NLAI) are available, yet their application in India remains limited (10, 12). While adapting these tools for India's cultural and socio-economic diversity is crucial, there is an urgent need to develop a context-specific instrument for the Indian population. Such a tool would effectively capture local dietary patterns, traditional food practices, and the unique barriers to healthy eating. It could provide reliable evidence on nutrition literacy across various groups, including adolescents, women, and vulnerable communities, and inform the design of targeted interventions, program evaluations, and effective public health nutrition strategies in the country (13).

Designing such context-specific tools requires understanding of India's diverse dietary patterns, which are strongly shaped by culture, region, religion, and socio-economic factors. India's rich cultural tapestry influences what people eat and how they make food choices (14). Dietary habits in India exhibit significant regional variation. For instance, in the coastal regions of Kerala and West Bengal, seafood constitutes a major component of the diet due to their proximity to the ocean, whereas in northern regions such as Punjab, wheat-based dishes like roti and paratha are dietary staples (15-17). Furthermore, religious practices exert a substantial influence on dietary choices; for example, vegetarianism is prevalent among Hindus, while Muslims frequently incorporate meat into their diets, particularly during religious festivals such as Eid (18). Nutrition literacy plays a crucial role in understanding and appreciating this diversity while promoting balanced diets within cultural contexts. By fostering awareness of traditional foods and culinary practices, nutrition literacy encourages individuals to make healthier food choices that align with their cultural preferences. Additionally, it aids in the preservation of indigenous knowledge related to food and nutrition, thereby contributing to efforts aimed at preserving cultural heritage (15, 19).

However, cultural diversity alone does not safeguard against poor nutrition. India continues to face a heavy burden of malnutrition, including persistent undernutrition, widespread micronutrient deficiencies, and a rising trend of overnutrition. These challenges underscore the urgent need to strengthen nutrition literacy as a core public health priority (20).

India continues to face a heavy burden of malnutrition, with anemia and protein-energy malnutrition remaining the

Abbreviations: NCDs, non-communicable diseases; FLAT, Food Literacy Assessment Tool; NLAI, Nutrition Literacy Assessment Instrument; NFHS-5, National Family Health Survey-5; FNS, food and nutrition security; DALYs, Disability-Adjusted Life Years; FAO, Food and Agriculture Organization; ICDS, Integrated Child Development Services; MDMS, Mid-Day Meal Scheme; NIPI, National Iron Plus Initiative; NIDDCP, National Iodine Deficiency Disorders Control Program.

most common public health concerns. According to National Family Health Survey-5 (NFHS-5, 2019-21) conducted by the Ministry of Health and Family Welfare, Government of India, anemia affects 67.1% of children under five and 57% of women of reproductive age. Iron deficiency is a major contributor to this high prevalence, leading to impaired cognitive development, reduced physical capacity, lower productivity, and increased risks of maternal and infant mortality (21). Protein-energy malnutrition is also widespread, with 35.5% of children under five stunted and 19.3% wasted, reflecting long-term risks for growth, learning, and overall health as per NFHS-5 (22). Micronutrient deficiencies further compound the problem. Vitamin A deficiency continues to affect about 62% of preschool children (WHO, 2009), increasing vulnerability to infections, weakening immunity, and raising the risk of blindness (23). Iodine deficiency persists as well, with 23% of households consuming inadequately iodized salt (NFHS-5, 2019-21), which is linked to poor cognitive development and thyroid-related disorders (24). The prevalence of inadequate absorbable zinc intake in India has risen from 17.1% in 1983 to 24.6% in 2011-12, affecting an additional 82 million people, and is projected to further increase with population aging and climate change, potentially placing 65 million more individuals at risk by 2050 (25). In addition, emerging deficiencies such as vitamin D and vitamin B12 are gaining attention. Vitamin D deficiency is increasingly reported, with links to bone health, immune dysfunction, and potential associations with chronic diseases, though nationwide prevalence data remain limited. Vitamin B12 deficiency varies across regions and dietary groups but is associated with neurological disorders, anemia, and cognitive decline, particularly among older adults (26).

India is currently experiencing a significant rise in overnutrition, overweight, and obesity, particularly in urban and peri-urban regions, alongside the persistent issue of undernutrition. According to NFHS-5, approximately one in four adults are classified as overweight or obese, with a higher prevalence observed among women and individuals from wealthier households. This nutritional transition, characterized by dietary shifts toward processed foods, sedentary lifestyles, and urbanization, is closely associated with the increasing incidence of diabetes, cardiovascular diseases, and other non-communicable diseases (NCDs). Consequently, addressing both undernutrition and overnutrition is imperative. Nutrition literacy emerges as a comprehensive strategy to address this dual burden by promoting healthier dietary choices and lifestyle behaviors (3, 27).

These nutritional challenges do not affect all population groups equally. Different stages of life present unique vulnerabilities and opportunities, making it essential to examine nutrition literacy across the life cycle from maternal and child health to adolescence, adulthood, and older age. Maternal nutrition literacy has a direct impact on pregnancy outcomes, infant feeding practices, and child growth. Women who are better informed about dietary diversity and supplementation are more likely to initiate breastfeeding early, adopt appropriate complementary feeding, and use available health services effectively (28, 29). The high levels of maternal anemia and child undernutrition reported in national surveys highlight the importance of equipping women with the skills to translate nutrition knowledge into practice. Evidence shows that interventions such as antenatal counseling, community health worker engagement, and mass media campaigns can significantly

improve maternal diets and child feeding behaviors. Enhancing maternal literacy is therefore a critical step in breaking the intergenerational cycle of malnutrition (30). Adolescence is a critical window for establishing lifelong dietary patterns, yet poor nutrition literacy often results in unhealthy habits such as low intake of fruits and vegetables, reliance on processed foods, and irregular meal patterns (31, 32). These behaviors contribute not only to iron deficiency anemia but also to early onset of overweight and obesity, particularly in urban populations. Studies have shown that nutrition education delivered through schools, peerled initiatives, and digital platforms can improve dietary choices and promote healthier behaviors. Investing in adolescent nutrition literacy is essential, as this group represents the future workforce and parents of the next generation, and their dietary practices will influence both current and long-term health outcomes (33).

Among adults, nutrition literacy plays a central role in preventing and managing non-communicable diseases (NCDs) (34). Individuals with stronger literacy skills are better able to interpret food labels, adhere to dietary guidelines, and make informed choices that reduce the risk of diabetes, hypertension, and cardiovascular disease. Poor literacy, on the other hand, contributes to unhealthy dietary patterns and delays in seeking care. In the elderly, nutrition literacy supports independence by guiding choices that prevent deficiencies of vitamin D, calcium, and vitamin B12, which are associated with frailty, bone disorders, and cognitive decline. Tailored interventions delivered through workplace programs, community centers, and healthcare providers can help adults and older populations improve diet quality, reduce disease complications, and enhance quality of life (35, 36).

Beyond individual health outcomes, nutrition literacy also plays a broader role at the community level, particularly in addressing issues of food security and equitable access to nutrition. Food security, ensuring all individuals have access to sufficient, safe, and nutritious food, remains a critical challenge in India. Despite progress, the country still grapples with issues of food availability, access, and utilization, particularly among vulnerable populations. According to the Food and Agriculture Organization (FAO), around 189.2 million people in India are undernourished, highlighting the persistent threat of hunger. Furthermore, malnutrition, both undernutrition and overnutrition, persists, with significant portions of the population experiencing deficiencies in essential nutrients (37-39). Nutrition literacy empowers communities to utilize available resources effectively, maximize the nutritional value of their diets, and advocate for policies that promote food security and healthy eating habits, thereby contributing to the overall well-being of the population.

Developing a validated nutrition literacy scale tailored to the Indian context is essential for accurate measurement and effective program design. Such a tool should capture local dietary practices, food environments, and cultural diversity, while undergoing rigorous testing for reliability and validity. Once developed, it can guide interventions, track progress, and inform policies to strengthen nutrition outcomes nationwide (40). Nutrition literacy, when measured and applied effectively, is instrumental in shaping public health interventions. Informed individuals are more likely to adopt healthy behaviors, participate in community-based programs, and benefit from school-, workplace-, and community-level initiatives. It also enhances the effectiveness of nutrition counseling and healthcare services by enabling individuals to make

informed choices and take ownership of their health. At the policy level, nutrition literacy supports advocacy for healthy food environments, regulation of marketing practices, and multisectoral approaches to nutrition governance. Embedding nutrition literacy initiatives within existing systems, and aligning them with culturally relevant measurement tools, can strengthen program delivery, improve population health, and promote sustainable development in India (41–44).

Implementing these measurement and literacy initiatives in practice necessitates their integration with existing national nutrition programs and the adoption of innovative strategies like participatory action research (PAR). In India, efforts to combat micronutrient deficiencies are bolstered by targeted programs such as the National Iron Plus Initiative (NIPI), National Vitamin A Prophylaxis Program, and the National Iodine Deficiency Disorders Control Program (NIDDCP), alongside platforms like the Integrated Child Development Services (ICDS), Mid-Day Meal Scheme (MDMS), and National Nutrition Mission (POSHAN Abhiyaan). PAR can enhance these efforts by codeveloping solutions with communities, frontline workers, and local institutions. The typical process involves: (i) community-led identification of literacy gaps and food environments; (ii) cocreation of messages, labels, and counseling aids in local languages; (iii) small-cycle testing (plan-do-study-act) within ICDS, school, and SHG platforms; and (iv) joint reflection using simple monitoring dashboards (literacy scores, dietary diversity, service uptake). Embedding PAR within district nutrition missions fosters local ownership and scalability. Despite these initiatives, gaps in nutrition literacy remain, impeding the effective implementation and uptake of micronutrient interventions (45-47). Bridging these gaps requires comprehensive strategies that integrate nutrition education, community engagement, and targeted interventions. A coordinated approach should encompass policy, delivery platforms, content, methods, and measurement, embedding literacy targets in POSHAN, school health, and NCD programs; utilizing schools, ANC/PNC, VHNDs, workplaces, and SHGs as delivery points; focusing on content such as label reading, budgetbased meal planning, and myth-busting; employing methods like PAR-based co-design, peer educators, and digital micro-learning; and ensuring rigorous measurement through validated tools such as FLAT/NLAI with follow-up on dietary diversity, anemia services, and NCD risk behaviors (48, 49).

Nutrition literacy is emerging as a cornerstone for improving dietary behaviors, reducing the dual burden of malnutrition and non-communicable diseases, and strengthening public health in India. Despite multiple national programs and targeted initiatives, gaps in awareness, comprehension, and application of nutrition knowledge persist across the population. Developing and validating an India-specific nutrition literacy scale, embedding literacy goals into existing nutrition and health platforms, and employing participatory action research (PAR) can provide sustainable, culturally relevant solutions. By integrating nutrition literacy into schools, maternal and child health services, workplaces, and community structures, India can empower individuals to make healthier choices, enhance program uptake, and build community resilience. Strengthening nutrition literacy is not only a public health priority but also a pathway toward achieving broader goals of food security, social equity, and sustainable development.

Data availability statement

The original contributions presented in this study are included in this article/supplementary material, further inquiries can be directed to the corresponding authors.

Author contributions

UK: Methodology, Writing – original draft, Validation, Visualization, Conceptualization, Project administration, Writing – review & editing. AM: Writing – review & editing, Formal analysis, Writing – original draft, Resources, Project administration, Software, Conceptualization, Methodology, Visualization, Validation. ZQ: Writing – original draft, Resources, Supervision, Validation, Writing – review & editing, Visualization. AG: Supervision, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships

that could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision

Generative Al statement

The authors declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

- 1. Li X, Yadav R, Siddique K. Neglected and underutilized crop species: the key to improving dietary diversity and fighting hunger and malnutrition in Asia and the Pacific. Front Nutr. (2020) 7:593711. doi: 10.3389/fnut.2020.593711
- 2. Mohan P, Mohan S, Dutta M. Communicable or noncommunicable diseases? Building strong primary health care systems to address double burden of disease in India. *J Family Med Prim Care.* (2019) 8:326–9. doi: 10.4103/jfmpc.jfmpc_67_19
- 3. Misra A, Singhal N, Sivakumar B, Bhagat N, Jaiswal A, Khurana L. Nutrition transition in India: secular trends in dietary intake and their relationship to diet-related non-communicable diseases. *J Diabetes.* (2011) 3:278–92. doi: 10.1111/j.1753-0407. 2011.00139.x
- 4. Basheer S, Grover A, Ashique V. The Food and Nutrition Status in India: A Systematic Review. Singapore: Springer Nature (2023). p. 143–59.
- 5. Taylor M, Sullivan D, Ellerbeck E, Gajewski B, Gibbs H. Nutrition literacy predicts adherence to healthy/unhealthy diet patterns in adults with a nutrition-related chronic condition. *Public Health Nutr.* (2019) 22:2157–69. doi: 10.1017/S136898001900 1289
- 6. Brown R, Seabrook J, Stranges S, Clark A, Haines J, O'Connor C, et al. Examining the correlates of adolescent food and nutrition knowledge. *Nutrients*. (2021) 13:2044. doi: 10.3390/nu13062044
- 7. Jayawardena R, Ranasinghe P, Wijayabandara M, Hills A, Misra A. Nutrition transition and obesity among teenagers and young adults in South Asia. *Curr Diabetes Rev.* (2017) 13:444–51. doi: 10.2174/1573399812666160808100211
- 8. Butcher L, Platts J, Le N, McIntosh M, Celenza C, Foulkes-Taylor F. Can addressing food literacy across the life cycle improve the health of vulnerable populations? A case study approach. *Health Promot J Austr.* (2020) 32:5–16. doi: 10.1002/hpja.414
- 9. Kim S, Avula R, Ved R, Kohli N, Singh K, van den Bold M, et al. Understanding the role of intersectoral convergence in the delivery of essential maternal and child nutrition interventions in Odisha, India: a qualitative study. *BMC Public Health*. (2017) 17:161. doi: 10.1186/s12889-017-4088-z

- 10. Gibbs H, Chapman-Novakofski K. Establishing content validity for the nutrition literacy assessment instrument. *Prev Chronic Dis.* (2013) 10:E109. doi: 10.5888/pcd10. 120267
- 11. Doustmohammadian A, Omidvar N, Shakibazadeh E. School-based interventions for promoting food and nutrition literacy (FNLIT) in elementary school children: a systematic review protocol. *Syst Rev.* (2020) 9:87. doi: 10.1186/s13643-020-01339-0
- 12. Yuen E, Thomson M, Gardiner H. Measuring nutrition and food literacy in adults: a systematic review and appraisal of existing measurement tools. *Health Lit Res Pract.* (2018) 2:e134–60. doi: 10.3928/24748307-20180625-01
- 13. Wijayaratne S, Mavondo F, Reid M, Worsley A, Westberg K. Food literacy, healthy eating barriers and household diet. *Eur J Mark.* (2018) 52:2449–77. doi: /10. 1108/EJM-10-2017-0760
- 14. Samaddar A, Cuevas R, Custodio M, Ynion J, Ray Chakravarti A, Mohanty S, et al. Capturing diversity and cultural drivers of food choice in eastern India. *Int J Gastron Food Sci.* (2020) 22:100249. doi: 10.1016/j.ijgfs.2020.100249
- 15. Tak M, Shankar B, Kadiyala S. Dietary transition in India: temporal and regional trends, 1993 to 2012. *Food Nutr Bull.* (2019) 40:254–70. doi: 10.1177/0379572119833856
- 16. Kehoe S, Krishnaveni G, Veena S, Guntupalli A, Margetts B, Fall C, et al. Diet patterns are associated with demographic factors and nutritional status in South Indian children. *Matern Child Nutr.* (2013) 10:145–58. doi: 10.1111/mcn.12046
- 17. Padmadas S, Dias J, Willekens F. Disentangling women's responses on complex dietary intake patterns from an Indian cross-sectional survey: a latent class analysis. *Public Health Nutr.* (2006) 9:204–11. doi: 10.1079/phn2005842
- 18. Arslan S, Aydın A. Religious dietary practices: health outcomes and psychological insights from various countries. *J Relig Health.* (2024) 63:3256-73. doi: 10.1007/s10943-024-02110-8
- 19. Ghosh-Jerath S, Singh A, Lyngdoh T, Magsumbol M, Kamboj P, Goldberg G. Estimates of indigenous food consumption and their contribution to nutrient intake

in oraon tribal women of Jharkhand, India. Food Nutr Bull. (2018) 39:581–94. doi: 10.1177/0379572118805652

- 20. Narayan J, John D, Ramadas N. Malnutrition in India: status and government initiatives. *J Public Health Policy*. (2018) 40:126–41. doi: 10.1057/s41271-018-0149-5
- 21. Benedict R, Pullum T, Riese S, Milner E. Is child anemia associated with early childhood development? A cross-sectional analysis of nine demographic and health surveys. *PLoS One.* (2024) 19:e0298967. doi: 10.1371/journal.pone.0298967
- 22. Kundu R, Hossain M, Bharati S, Chatterjee A, Pal M, Bharati P. Zonal Distribution and Determinants of Stunting, Wasting, Underweight, and Thinness among the Indian Under-Five Children: Findings from NFHS-5. Singapore: Springer Nature (2024). p. 63–84.
- 23. Sahota R, Sandalinas F, Chagumaira C, Johnston R, Khokhar J, Lark R, et al. Vitamin A deficiency in India and seasonality of vitamin A-rich food consumption. *Br J Nutr.* (2025) 133:1522–31. doi: 10.1017/S0007114525103681
- 24. Ao M, Sen R, Pangkam M, Mundu G. Association of Socio-economic and media exposure on inequality of micronutrients intake among children in Odisha: a district level analysis from NFHS-5 (2019-21). *JCM*. (2024) 3:164–72. doi: 10.58966/ ICM20243214
- $25.\ Smith$ M, DeFries R, Chhatre A, Ghosh-Jerath S, Myers S. Inadequate zinc intake in India: past, present, and future. Food Nutr Bull. (2019) 40:26–40. doi: 10.1177/0379572118825176
- 26. Sundarakumar J, Shahul Hameed S, Ravindranath V. Burden of Vitamin D, Vitamin B12 and Folic acid deficiencies in an aging, rural indian community. *Front Public Health.* (2021) 9:707036. doi: 10.3389/fpubh.2021.707036
- 27. Chaudhary M, Sharma P. Abdominal obesity in India: analysis of the National family health survey-5 (2019-2021) data. *Lancet Reg Health Southeast Asia.* (2023) 14:100208. doi: 10.1016/j.lansea.2023.100208
- 28. Dhami M, Ogbo F, Diallo T, Olusanya B, Goson P, Agho K, et al. Infant and young child feeding practices among adolescent mothers and associated factors in India. *Nutrients*. (2021) 13:2376. doi: 10.3390/nu13072376
- 29. Mason J, Saldanha L, Ramakrishnan U, Lowe A, Noznesky E, Girard A, et al. Opportunities for improving maternal nutrition and birth outcomes: synthesis of country experiences. *Food Nutr Bull.* (2012) 33:S104–37. doi: 10.1177/15648265120332S107
- 30. Fadare O, Amare M, Mavrotas G, Akerele D, Ogunniyi A. Mother's nutrition-related knowledge and child nutrition outcomes: empirical evidence from Nigeria. *PLoS One.* (2019) 14:e0212775. doi: 10.1371/journal.pone.0212775
- 31. Koca B, Arkan G. The relationship between adolescents' nutrition literacy and food habits, and affecting factors. *Public Health Nutr.* (2020) 24:717-28. doi: 10.1017/51368980020001494
- 32. Rathi N, Riddell L, Worsley A. Food consumption patterns of adolescents aged 14-16 years in Kolkata, India. *Nutr J.* (2017) 16:50. doi: 10.1186/s12937-017-0272-3
- 33. Wrottesley S, Pedro T, Fall C, Norris SAA. review of adolescent nutrition in South Africa: transforming adolescent lives through nutrition initiative. *South African J Clin Nutr.* (2019) 33:94–132. doi: 10.1080/16070658.2019.1607481
- 34. Thakur S, Mathur P. Nutrition knowledge and its relation with dietary behaviour in children and adolescents: a systematic review.

 Int J Adolesc Med Health. (2021) 34:381–92. doi: 10.1515/ijamh-2020-

- 35. Wahlqvist M, Saviage G. Interventions aimed at dietary and lifestyle changes to promote healthy aging. *Eur J Clin Nutr.* (2000) 54:S148–56. doi: 10.1038/sj.ejcn. 1601037
- 36. Bhatia V, Parida S, Panda M. Demographic dynamics and the changing faces of nutrition literacy in India: a tryst with the transition among communities over two decades. *J Int Soc Prev Community Dent.* (2023) 13:299–306. doi: 10.4103/jispcd. IISPCD 165 22
- 37. Muonde M, Maduka C, Olorunsogo T, Ogugua J, Omotayo O. Global nutrition challenges: a public health review of dietary risks and interventions. *World J Adv Res Rev.* (2024) 21:1467–78. doi: 10.30574/wjarr.2024.21.1.0177
- 38. Pradhan A, Panda AK, Wagh RD, Maske MR. Farming system for nutritiona pathway to dietary diversity: evidence from India. *PLoS One.* (2021) 16:e0248698. doi: 10.1371/journal.pone.0248698
- 39. Shankar B, Agrawal S, Beaudreault A, Avula L, Martorell R, Osendarp S, et al. Dietary and nutritional change in India: implications for strategies, policies, and interventions. *Ann N Y Acad Sci.* (2017) 1395:49–59. doi: 10.1111/nyas.13324
- $40.\,Silva$ P. Enhancing adolescent food literacy through mediterranean diet principles: from evidence to practice. Nutrients. (2025) 17:1371. doi: 10.3390/nu17081371
- 41. Glanz K, Mullis R. Environmental interventions to promote healthy eating: a review of models, programs, and evidence. *Health Educ Q.* (1988) 15:395–415. doi: 10.1177/109019818801500403
- 42. Oudat Q, Okour A. Utilizing the social ecological model to inform nursing practice for improved childhood eating behaviors. *Res Theory Nurs Pract.* (2025). doi: 10.1891/RTNP-2024-0169 Online ahead of print
- 43. Ares G, De Rosso S, Mueller C, Philippe K, Pickard A, Nicklaus S, et al. Development of food literacy in children and adolescents: implications for the design of strategies to promote healthier and more sustainable diets. *Nutr Rev.* (2023) 82:536–52. doi: 10.1093/nutrit/nuad072
- 44. Stockley L. Toward public health nutrition strategies in the European Union to implement food based dietary guidelines and to enhance healthier lifestyles. *Public Health Nutr.* (2001) 4:307–24. doi: 10.1017/s1368980001001562
- 45. Ball R, Duncanson K, Ashton L, Bailey A, Burrows T, Whiteford G, et al. Engaging new parents in the development of a peer nutrition education model using participatory action research. *Int J Environ Res Public Health*. (2021) 19:102. doi: 10.3390/ijerph19010102
- 46. Lawson, H. Participatory action research. Nat Rev Methods Primers. (2023) 3:1-14. doi: 10.1038/s43586-023-00214-1
- 47. Upreti Y, Devkota B, Bastien S, Luitel B. Developing a school-based nutrition education programme to transform the nutritional behaviours of basic-level schoolchildren: a case from participatory action research in Nepal. *Educ Action Res.* (2023) 32:528–47. doi: 10.1080/09650792.2023.2206580
- 48. Krishnan A, Ekowati R, Baridalyne N, Kusumawardani N, Suhardi, Kapoor SK, et al. Evaluation of community-based interventions for non-communicable diseases: experiences from India and Indonesia. *Health Promot Int.* (2010) 26:276–89. doi: 10.1093/heapro/dad067
- 49. Osborne R, Elmer S, Hawkins M, Cheng C, Batterham R, Dias S, et al. Health literacy development is central to the prevention and control of non-communicable diseases. *BMJ Glob Health*. (2022) 7:e010362. doi: 10.1136/bmjgh-2022-010362