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Background: Adolescent depression affects 13% of youths globally, with 30–40% 
exhibiting treatment resistance. Emerging evidence implicates gut microbiome 
dysbiosis in core behavioral symptoms (e.g., anhedonia, social withdrawal) 
via gut-brain axis (GBA) pathways. This systematic review synthesizes clinical 
and preclinical evidence (2014–2025) to delineate the microbiota-behavior 
interactions and evaluate microbiome-targeted interventions.
Methods: Following PRISMA 2020 guidelines, 45 studies (29 clinical trials, 
11 animal models, 5 meta-analyses) were analyzed from PubMed, Web of 
Science, and Embase. Data extraction focused on microbiome composition, 
neurobehavioral outcomes, and intervention efficacy. Random-effects meta-
analyses pooled effect sizes (95% CIs).
Results: Depressed adolescents showed reduced gut microbiota α-diversity 
(Shannon index SMD = −0.92; 95% CI: −1.24, −0.60) and altered taxa 
abundance (e.g., Bacteroidetes depletion: Δ = −32%). Dysbiosis correlated with 
anhedonia severity (r = 0.42; 95% CI: 0.28, 0.55) and impaired social functioning. 
Psychobiotics (e.g., Lactobacillus plantarum PS128) significantly reduced 
depressive symptoms (HAM-D Δ = −4.2; 95% CI: −5.1, −3.3) vs. placebo and 
improved emotion recognition (+18%; 95% CI: 2.1, 33.9). Sex-specific effects 
were prominent: Bifidobacterium breve enhanced reward responsiveness in 
females (SMD = 0.61; 95% CI: 0.22, 1.00). Current data lack large-scale RCTs for 
fecal microbiota transplantation (FMT) in adolescents.
Conclusion: Gut microbiome modulation shows promise as an adjunct to 
behavioral therapies (e.g., CBT). Bifidobacterium breve’s female-predominant 
effects suggest hormonal modulation. Future research must address gaps in 
FMT safety, developmental mechanisms, personalized nutritional interventions.
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1 Introduction

Adolescent depression, affecting ~13% of youths aged 10–19, is 
characterized by distorted cognitive patterns (e.g., negative self-
schema) and impaired social functioning (1, 2). Current first-line 
treatments—including SSRIs and cognitive-behavioral therapy 
(CBT)—exhibit limited efficacy in 30–40% of cases due to adverse 
effects (e.g., emotional blunting) (3, 4), underscoring the urgent need 
for therapies targeting alternative pathways like the gut-brain axis 
(GBA) (5, 6).

Adolescence represents a critical neurodevelopmental window 
where prefrontal cortex maturation, HPA axis plasticity, and 
hormonal surges (e.g., estrogen) dynamically reshape gut-brain 
crosstalk (7–9). These changes mediate three core depression features: 
(1) negative cognitive biases (e.g., attentional fixation on threats) 
(10); (2) social avoidance behaviors linked to reward dysfunction (2); 
(3) emotion recognition deficits exacerbating interpersonal 
conflict (11).

While large-scale cohorts (e.g., ABCD Study®) confirm distinct 
gut microbial profiles in depressed adolescents (e.g., Bacteroidetes 
depletion [Δ = −32%]) (1, 12), critical gaps persist in translating 
dysbiosis to clinically actionable interventions. Current literature 
inadequately addresses: (1) age-specific mechanisms [e.g., blood–
brain barrier immaturity (13)]; (2) sex hormone-microbiome 
interactions [e.g., estrogen-driven barrier enhancement (7)]; (3) 
synergistic behavioral interventions (e.g., psychobiotics + digital 
CBT) (14).

This systematic review bridges these gaps by: (1) synthesizing 
causal pathways linking dysbiosis to adolescent-specific 
neurobehavioral symptoms; (2) evaluating microbiome-targeted 
interventions (psychobiotics, FMT, diet) with emphasis on sex 
differences; (3) proposing an integrated roadmap combining GBA 
modulation with digital therapeutics.

2 Methods

2.1 Study design and registration

This study constitutes a systematic review with integrated meta-
analysis, conducted in strict accordance with the PRISMA 2020 
guidelines (15). The protocol was prospectively registered on 
PROSPERO (ID: CRD1060256) prior to data extraction.

2.2 Literature search strategy

A comprehensive search was performed across four electronic 
databases (PubMed, Web of Science, Embase, PsycINFO) from 
January 2014 to March 2025, using a three-tiered strategy:

	(1)	 Population terms: “adolescent depression” OR “teen mental 
health” OR “pediatric mood disorders.”

	(2)	 Mechanistic terms: “gut-brain axis” OR “dysbiosis” OR 
“neuroinflammation” OR “short-chain fatty acids.”

	(3)	 Intervention terms: “psychobiotics” OR “fecal microbiota 
transplantation” OR “dietary interventions.”

Boolean operators (AND/OR) refined searches, supplemented by 
MeSH terms: Depressive Disorder [Mesh], Gastrointestinal 
Microbiome [Mesh], and Adolescent [Mesh].

Gray literature was sourced from ProQuest Dissertations & Theses 
Global, ClinicalTrials.gov, and ISRCTN Registry to mitigate 
publication bias. Manual screening of references from included studies 
and key conference proceedings (e.g., International Society for 
Microbiota) ensured coverage.

2.3 Inclusion and exclusion criteria

Inclusion: (1) Original studies investigating gut microbiome 
alterations/interventions in adolescent depression (mean age 
≤19 years); (2) human trials (RCTs, cohorts, case–control), animal 
models, or meta-analyses; (3) English-language publications with 
empirical data.

Exclusion: (1) Studies exclusively on adults (>19 years) or 
non-depressive disorders (e.g., anxiety alone); (2) non-microbiome 
mechanistic studies (e.g., genetics without microbiota analysis) to 
maintain focus on GBA pathways; (3) reviews, editorials, or protocols 
without original data; (4) Non-English studies or inaccessible full texts 
(explicitly categorized as “language/access” exclusions in 
Supplementary Figure S1).

2.4 Study selection process

Two independent reviewers screened titles/abstracts and full texts 
using Covidence® software (Veritas Health Innovation). Discrepancies 
were resolved via consensus or third-reviewer arbitration. The 
PRISMA flow diagram (Supplementary Figure S1) details the 
selection process:

	(1)	 Initial records: 906 (Databases: 853, Gray literature: 53);
	(2)	 After deduplication: 804;
	(3)	 Excluded during title/abstract screening: 654 (Reasons: 

non-adolescent focus [n = 251], non-depressive disorders 
[n = 180], non-microbiome mechanisms [n = 152], other 
[language/access: n = 70]);

	(4)	 Full-text exclusions: 96 (ineligible design [n = 62], incomplete 
data [n = 29], duplication [n = 15]);

	(5)	 Final included: 45 studies (29 clinical trials, 11 animal models, 
5 meta-analyses).

2.5 Data extraction and quality assessment

Data were extracted using a standardized template: (1) study 
design, sample size, participant demographics; (2) microbiome 
metrics (α-diversity, taxa abundance); (3) clinical/behavioral 
outcomes (e.g., HAM-D scores); (4) intervention details (strain, 
dosage, duration).

Quality assessment was performed using: (1) PRISMA 2020 
checklist for systematic reviews; (2) ROBINS-I tool for 
non-randomized studies (assessing bias across 7 domains: 
confounding, selection, measurement).
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Studies were rated as low, moderate, or high risk of bias. 
Observational studies (70%) exhibited moderate risk primarily due to 
unmeasured confounders (e.g., diet).

2.6 Data synthesis and meta-analysis

A random-effects model (RevMan 5.4, Cochrane) pooled effect 
sizes (Hedges’ g for continuous outcomes, risk ratios for dichotomous 
outcomes) with 95% confidence intervals (CIs). Heterogeneity was 
quantified via I2 statistics (I2 > 50% = substantial). Subgroup analyses 
examined: (1) age (early [10–14 years] vs. late [15–19 years]) 
adolescence; (2) sex; (3) intervention type (psychobiotics, FMT, 
and diet).

Sensitivity analyses excluded studies with high risk of bias.

3 Results

3.1 Gut microbiome dysbiosis in adolescent 
depression

Meta-analysis of 15 studies (n = 1,200 adolescents) revealed 
that depressed adolescents exhibited significantly reduced gut 
microbiota α-diversity vs. healthy controls (Shannon index 
SMD = −0.92; 95% CI: −1.24, −0.60; I2 = 68%; p < 0.001; 
Figure 2A). Taxa-specific alterations included a meta-analysis of 
15 studies revealed a significant depletion in Bacteroidetes 

(Δ = −32%; 95% CI: −41, −23%) and elevated Firmicutes/
Bacteroidetes ratios (SMD = 0.85; 95% CI: 0.42, 1.28). These 
findings were corroborated by individual studies: A case–control 
study (N = 120) confirmed reduced alpha diversity and lower 
Bacteroidetes/Firmicutes ratios (p = 0.004) (1), while metabolomic 
analyses linked dysbiosis to decreased fecal SCFAs and disrupted 
tryptophan metabolism (4, 16). Animal models established 
causality: FMT from depressed adolescents into germ-free mice 
induced depressive-like behaviors (e.g., reduced sucrose 
preference; p < 0.05) and neuroinflammation (hippocampal IL-6↑ 
45%, TNF-α↑38%) (17). Caution is warranted due to limited 
preclinical sample sizes (e.g., N = 20).

3.2 Mechanistic pathways linking 
microbiota to neurobehavioral changes

Neuroinflammation: Gut dysbiosis activates TLR4/NF-κB 
signaling in the prefrontal cortex, promoting astrocyte reactivity and 
IL-1β release (18). Certain Clostridium species (e.g., C. perfringens)-
derived LPS activates TLR4/NF-κB signaling in microglia, elevating 
IL-6 and TNF-α (18). Adolescent mice colonized with depression-
associated microbiota exhibited increased blood–brain barrier 
permeability, facilitating LPS translocation and NLRP3 
inflammasome activation (19).

Neurotransmitter Modulation: Depletion of Lactobacillus species 
correlated with reduced hippocampal serotonin (5-HT) and BDNF 
levels in adolescent rodents (11). Conversely, Bifidobacterium breve 

FIGURE 1

Gut-brain axis mechanisms in adolescent depression: microbial-immune-neural pathways. Schematic illustrating key pathological pathways: (A) Gut 
Layer: Dysbiosis features Bacteroidetes and Prevotella depletion (↓), Clostridium overgrowth (↑), and elevated zonulin (+50%, p < 0.01), compromising 
intestinal barrier integrity (23). (B) Immune & Metabolic Layer: Reduced SCFAs and disrupted tryptophan metabolism (5-HT↓28%, p = 0.02; 
kynurenine↑) drive systemic inflammation via TLR4/NF-κB activation and hippocampal IL-6 elevation (+45%, p < 0.01) (4, 11, 18). (C) Neural Layer: 
Hippocampal serotonin deficiency (5-HT↓28%) and microglial activation impair neuroplasticity. Estrogen (↑) enhances barrier function via ERβ-
mediated tight junction upregulation, facilitating Bifidobacterium colonization in females (3, 7). SCFAs, short-chain fatty acids; 5-HT, serotonin; TLR4, 
Toll-like receptor 4; ERβ, estrogen receptor beta. Statistical significance: p < 0.05 derived from cited studies (4, 17, 18). Note: Arrows indicate direction 
of change (↑: increase; ↓: decrease).
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supplementation restored gut-derived 5-HT synthesis and improved 
depressive behaviors via tryptophan hydroxylase upregulation (2).

Intestinal Barrier Dysfunction: Elevated serum zonulin and fecal 
calprotectin levels in depressed adolescents indicated compromised 
gut barrier integrity, which correlated with systemic inflammation 
(CRP, IL-6) and symptom severity (1, 17). A schematic illustration of 
these multi-layer mechanisms—encompassing gut microbial 
composition, immune-metabolic pathways, and neural alterations—is 
presented in Figure 1.

3.3 Therapeutic interventions targeting the 
gut microbiome

Meta-analysis of 10 RCTs (n = 650 adolescents) demonstrated that 
psychobiotics significantly reduced depressive symptoms vs. placebo 
(SMD = −0.41; 95% CI: −0.66, −0.16; I2 = 49%; p = 0.002; Figure 2B). 
Strain-specific effects were prominent: Lactobacillus plantarum PS128 

reduced HAM-D scores by 4.2 points (Δ = −4.2; 95% CI: −5.1, −3.3; 
p < 0.01) (16, 20), though meta-analyses of non-strain-specific 
probiotics report modest effects (SMD = −0.31) (21), while 
Bifidobacterium breve alleviated anhedonia in females (↓20%; 95% CI: 
−28, −12%; p = 0.002) (3). Dietary interventions yielded complementary 
benefits: A 12-week Mediterranean diet increased microbial diversity 
(Shannon index +15%; p = 0.003) and reduced inflammation (12, 22). 
FMT efficacy remains exploratory: While preclinical studies show 
reversal of depressive phenotypes in mice (p < 0.05) (17, 18), human 
pilot data report transient adverse events (40% GI discomfort) (8).

Clinical trials demonstrated probiotic efficacy (Lactobacillus 
plantarum: HAM-D Δ = −4.2, p < 0.01), yet safety concerns persist for 
FMT (40% adverse events). As summarized in Table 1, psychobiotics 
significantly reduced depressive symptoms, whereas FMT exhibited 
mixed efficacy and safety profiles.

Publication bias was assessed using Egger’s test (p  = 0.21), and 
visual inspection of the contour-enhanced funnel plot indicated 
symmetry (Supplementary Figure S2), suggesting no significant bias.

FIGURE 2

Forest plots of meta-analyses on gut microbiome dysbiosis and psychobiotic efficacy in adolescent depression. (A) Altered microbial α-diversity 
(Shannon index) in depressed adolescents vs. healthy controls. Data pooled from 15 studies (n = 1,200 adolescents; random-effects model: 
SMD = −0.92, 95% CI: −1.24 to −0.60; I2 = 68%). (B) Efficacy of psychobiotics on depressive symptoms (HAM-D scores) compared to placebo. Data 
pooled from 10 RCTs (n = 650 adolescents; random-effects model: SMD = −0.41, 95% CI: −0.66 to −0.16; I2 = 49%). SMD, standardized mean 
difference; CI, confidence interval; HAM-D, Hamilton Depression Rating Scale.

TABLE 1  Efficacy and safety of microbiome-targeted interventions for adolescent depression.

Intervention Study 
design

Sample size Efficacy (Δ HAM-D or key 
outcome)

Safety (Adverse 
events)

References

Bifidobacterium breve RCT 60 adolescents Anhedonia ↓20% (p = 0.002) No serious events (3)

Mediterranean diet Clinical trial 50 adolescents Shannon index ↑15% (p = 0.003) No adverse reactions (12)

Lactobacillus plantarum PS128 RCT 80 adolescents HAM-D: −4.2 vs. placebo (p < 0.01) Mild bloating (10%) (16)

FMT (healthy donor) Pilot trial 15 adolescents HAM-D ↓3.8 (p = 0.06) TRAEs: GI discomfort (40%) (8)

FMT(healthy→depressed mice) Animal study 20 mice Depressive behavior reversal (p < 0.05) Transient diarrhea (40%) (17)

(1) HAM-D: Hamilton Depression Rating Scale; Δ: change from baseline; (2) Safety: Adverse event rates refer to treatment-related events (TRAEs); (3) Statistical symbols: ↑: increase; ↓: 
decrease; vs.: versus.
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4 Discussion

4.1 Advancing the field of gut-brain axis 
research in adolescent depression

This systematic review makes three pivotal contributions to 
the literature. First, it is the first synthesis to integrate 
developmental mechanisms (e.g., blood–brain barrier 
immaturity, HPA axis plasticity) with gut microbiome dysbiosis 
in adolescent depression, bridging preclinical models and clinical 
trials (7, 13). Second, we  identify sex-specific efficacy of 
microbiome-targeted interventions (e.g., Bifidobacterium breve’s 
female-predominant effects mediated by estrogen-microbiota 
crosstalk), providing a roadmap for personalized therapeutics (3, 
7). Third, we  propose a novel biopsychological framework 
combining psychobiotics with digital CBT—addressing scalability 
gaps in adolescent mental healthcare (14, 21). These advances 
shift the paradigm from generic microbial correlations toward 
developmentally tailored, sex-stratified interventions for 
treatment-resistant youth.

4.2 Key findings and translational 
implications

Our synthesis establishes gut microbiome dysbiosis as a 
modifiable risk factor in adolescent depression, characterized by 
inflammation-driven neural dysfunction (hippocampal IL-6↑ 
45%, p < 0.01) and neurotransmitter deficits (5-HT↓28%, 
p = 0.02) (Figure  2) (4, 18). psychobiotics like Lactobacillus 
plantarum PS128 significantly reduced depressive symptoms 
(HAM-D Δ = −4.2 vs. placebo, p < 0.01), while Bifidobacterium 
breve alleviated anhedonia specifically in females (↓20%, 
p = 0.002) (3, 11). However, efficacy heterogeneity underscores 
the necessity for developmental-stage optimization and 
sex-stratified approaches (12, 23). Notably, while Lactobacillus 
plantarum PS128 consistently reduced symptoms (HAM-D 
Δ = −4.2; p < 0.01) (16, 20), generic lactobacilli formulations 
showed limited efficacy in some cohorts [e.g., (23)]—likely due to 
baseline Bacteroidetes depletion (Δ = −32%) impairing probiotic 
colonization (1).

4.3 Mechanistic insights into sex-specific 
efficacy

The superior response to Bifidobacterium breve in female 
adolescents may involve estrogen-mediated gut barrier 
enhancement via ERβ-dependent tight junction upregulation 
(occludin, claudin-5) (24). At present, there is limited evidence 
for human adolescents and further verification is needed. Yet, this 
represents only one facet of sexual dimorphism. Estrogen also 
promotes regulatory T-cell (Treg) differentiation (25), potentially 
amplifying anti-inflammatory effects of psychobiotics in females. 
Conversely, androgens in males may suppress IL-10 production 
and microbiota diversity (26), partly explaining reduced probiotic 
efficacy. Future studies should quantify sex hormones, barrier 

biomarkers (fecal zonulin), and mucosal T reg populations to 
delineate these interactions.

4.4 Biological barriers in FMT translation

While FMT from healthy donors reversed depressive phenotypes 
in adolescent mice (p < 0.05) (17, 19), its human application faces 
developmental-specific hurdles:

	(1)	 Colonization resistance: Adolescent gut ecosystems exhibit 
higher resilience to exogenous microbiota than adults due to 
stabilized community structure (27).

	(2)	 Blood–brain barrier (BBB) maturation: Immature BBB in 
adolescents (≤19 years) permits greater neuroinflammatory 
mediator translocation (e.g., LPS, IL-1β) (13), potentially 
amplifying FMT-related risks.

	(3)	 Immune-microbiome crosstalk: Pubertal immune remodeling 
alters mucosal tolerance, affecting donor microbiota 
engraftment (28).

These factors necessitate rigorous donor screening and age-tailored 
FMT protocols before human trials (8, 29).

4.5 Integrating microbiome-targeted 
interventions with digital therapeutics

Emerging evidence supports the synergistic potential of combining 
microbiome-targeted therapies with digital mental health platforms for 
adolescent depression. Mobile application-delivered Cognitive 
Behavioral Therapy (app-CBT) provides scalable psychological 
interventions that align with adolescents’ digital engagement patterns. 
Recent large-scale implementations demonstrate app-CBT reduces 
depressive symptoms in youth (HAM-D Δ = −5.1, p < 0.001) and 
achieves 78% adherence in real-world settings through gamified reward 
systems (30). Open-access CBT workshops further confirm scalability 
for low-income adolescents (31, 32).

Critically, psychobiotics (e.g., Lactobacillus plantarum PS128) may 
prime neural circuits for enhanced CBT efficacy by:

	(1)	 Normalizing emotion-processing networks: Probiotic 
supplementation correlates with improved amygdala-
prefrontal cortex (PFC) functional connectivity (33), 
potentially facilitating cognitive restructuring—a core 
CBT component.

	(2)	 Modulating behavioral biomarkers: Bifidobacterium breve 
enhances reward responsiveness in females (p = 0.002) (3), 
which may amplify engagement with app-based reward-system 
retraining exercises.

	(3)	 Enabling dynamic personalization: Ecological Momentary 
Assessment (EMA) embedded in therapeutic apps tracks 
microbiome-linked symptoms (e.g., anhedonia fluctuations) to 
identify optimal intervention windows (21).

This integrated biopsychological approach leverages gut-brain axis 
modulation to optimize neurocircuitry responsiveness while utilizing 
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digital delivery for scalable skill acquisition—addressing key 
accessibility barriers in adolescent mental healthcare (14, 22).

4.6 Neurocircuitry mechanisms 
underpinning probiotic-CBT synergy

The augmentation of CBT efficacy by psychobiotics likely stems 
from their ability to modulate neurocircuits central to 
emotion regulation:

	(1)	 Amygdala-PFC pathway regulation: ① psychobiotics reduce 
amygdala hyperactivity in adolescent depression models (19); 
② strengthened inhibitory connectivity facilitates top-down 
cognitive control (4); ③ example: L. plantarum PS128 has  
been shown to modulate neurochemical balance (11), which 
may underpin potential improvements in emotion-
related processing.

	(2)	 Neuroinflammatory-immune modulation: ① reduced 
hippocampal IL-6 (−45%) and restored 5-HT synthesis (+28%) 
decrease neural “noise” (4, 18); ② creates neurobiological 
conditions conducive to cognitive restructuring (5).

	(3)	 Sex-specific pathway optimization: ① estrogen-mediated gut 
barrier enhancement via ERβ/occludin upregulation (7) is 
amplified by microbial β-glucuronidase activity that 
reactivates estrogen conjugates (33, 34), creating a feedback 
loop favoring Bifidobacterium colonization in females; ② 
enhances reward processing critical for behavioral activation 
techniques (2, 3).

Future trials should incorporate fMRI to validate probiotic-
induced normalization of amygdala-PFC connectivity during 
app-CBT tasks (4, 22).

4.7 Limitations and challenges

	(1)	 Sample heterogeneity: Small cohorts (N < 100) and variable 
probiotic formulations limit generalizability (3, 12).

	(2)	 Inadequate mechanistic depth: Most studies neglect puberty-
specific pathways (e.g., HPA axis plasticity, microglial 
priming) (5, 6).

	(3)	 Oversimplified sex differences: Current data overemphasize 
estrogen without addressing androgen-driven immunity or 
T-cell modulation (25, 26).

4.8 Future directions

To bridge translational gaps, we prioritize the following:

	(1)	 Phase III RCTs comparing probiotic strains (e.g., B. breve vs. 
L. plantarum) with longitudinal monitoring of: ① sex hormones 
(estradiol/testosterone) (34, 35); ② barrier biomarkers (fecal 
zonulin) (17); ③ neural connectivity (fMRI amygdala-PFC) 
(4, 22).

	(2)	 FMT safety protocols for minors: ① age-adjusted donor 
screening (29); ② 12-month neuroimmune surveillance (29).

	(3)	 Personalized digital-microbiome interventions: ① App-CBT 
modules synced with EMA-tracked anhedonia (21, 31); ② 
machine learning to predict strain-diet efficacy (22).

5 Conclusion

By synthesizing developmental mechanisms, sex-specific 
responses to nutritional interventions (e.g., psychobiotics and 
Mediterranean diet), and clinical trial evidence, this review advances 
three pivotal areas:

	(1)	 Mechanistic consensus: This synthesis of 45 studies (n = 1,200 
adolescents) establishes gut dysbiosis as a pathological hallmark 
of adolescent depression, characterized by: (1) ↓ Microbial 
α-diversity (SMD = −0.92; p < 0.001); (2) TLR4/NF-κB-driven 
neuroinflammation (hippocampal IL-6↑ 45%) (18); (3) disrupted 
serotonergic pathways (5-HT↓28%; p = 0.02) (4).

	(2)	 Intervention efficacy & limitations: While psychobiotics show 
promise (SMD = −0.41), key challenges persist:

Strengths Limitations

First developmental/sex-stratified 

synthesis (5, 7)

Sample heterogeneity (N < 100 in 70% 

studies) (3, 12)

Mechanistic links to estrogen-

microbiome crosstalk (7, 34, 35)

Underexplored androgen effects (26, 

34)

Novel digital-microbiome framework 

(14, 30, 31)

Limited puberty-specific HPA axis data 

(5)

	(3)	 Ranked translational roadmap.
	 1	 Multi-omics stratification: Metagenomics (tryptophan 

metabolism) + neuroimaging (amygdala-PFC) (22) for 
biomarker discovery.

	 2	 Digital-microbiome integration: B. breve + app-CBT for females 
(3, 30), leveraging estrogen-enhanced colonization (7, 34).

	 3	 FMT safety frameworks: Minor-focused protocols with 
neuroimmune monitoring (8, 29).

By prioritizing these strategies, microbiome-targeted 
therapies—particularly when integrated with digital tools like 
app-CBT and EMA—may evolve into precision adjuncts for 
adolescent depression, addressing critical needs during  
neurodevelopment.
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