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Dietary components substantially influence aging-related health outcomes 
through the interaction with the gut microbiome. In this narrative review, 
we compiled human dietary intervention trials with varying complexities: from 
simple modifications like the addition of herbs and spices, nuts and beans, to 
whole-diet patterns such as the calorie-restricted high-polyphenol Green-
Mediterranean diet. We show that the addition of fiber- and polyphenol-rich 
foods consistently enrich short-chain fatty acid (SCFA) producing bacteria 
such as Faecalibacterium, Eubacterium, Roseburia, and Blautia, and modulate 
various plasma and fecal metabolites, including increased levels of propionic 
acid when combining nuts with caloric restriction, increased visceral fat loss 
mediated by urolithins, and enhanced anti-inflammatory effects, potentially due 
to synergistic action between SCFAs and polyphenol metabolites. Furthermore, 
we highlight that relatively simple dietary modifications can produce meaningful 
microbiome and metabolite shifts, particularly in elderly and metabolically 
compromised populations, where the microbiome may be more responsive 
to intervention, and intervention effects are more pronounced. When added 
to strategies like caloric restriction, these foods can help preserve microbial 
diversity, maintain beneficial taxa, and enhance anti-inflammatory effects. These 
insights can inform the development of microbiome-targeted dietary strategies 
for improving health in high-risk populations.
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1 Background: dietary patterns, microbial 
modulation, and intervention potential

Large-scale, population-based epidemiological studies show that dietary habits 
strongly influence the risk of disease, mortality, and disability, and the likelihood of 
healthy aging (1, 2). The quantity and types of nutrients affect metabolic and aging-
related pathways (3), and shape the gut microbiome, including microbial diversity, 
composition, and metabolite production. These microbial changes closely correlate with 
health status and age-related physiological decline, both reflecting and potentially 
contributing to deteriorating health (4, 5). Differences in microbial composition and 
microbially produced metabolites have been consistently identified across a broad range 
of non-communicable diseases: in cardiovascular disease (6), hypertension (7), metabolic 

OPEN ACCESS

EDITED BY

Hengyi Xu,  
Nanchang University, China

REVIEWED BY

Nadia Serale,  
National Research Council (CNR), Italy
Xueyan Gu,  
Jiangxi Normal University, China

*CORRESPONDENCE

Franziska Meiners  
 franziska.meiners@uni-rostock.de

RECEIVED 16 June 2025
ACCEPTED 07 August 2025
PUBLISHED 29 August 2025

CITATION

Meiners F, Ortega-Matienzo A, Fuellen G and 
Barrantes I (2025) Gut microbiome-mediated 
health effects of fiber and polyphenol-rich 
dietary interventions.
Front. Nutr. 12:1647740.
doi: 10.3389/fnut.2025.1647740

COPYRIGHT

© 2025 Meiners, Ortega-Matienzo, Fuellen 
and Barrantes. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Review
PUBLISHED  29 August 2025
DOI  10.3389/fnut.2025.1647740

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2025.1647740&domain=pdf&date_stamp=2025-08-29
https://www.frontiersin.org/articles/10.3389/fnut.2025.1647740/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1647740/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1647740/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1647740/full
mailto:franziska.meiners@uni-rostock.de
https://doi.org/10.3389/fnut.2025.1647740
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2025.1647740


Meiners et al.� 10.3389/fnut.2025.1647740

Frontiers in Nutrition 02 frontiersin.org

syndrome (8) and diabetes (9), chronic kidney disease (10), 
colorectal cancer (11), frailty (12), age-related macular 
degeneration (13) and Alzheimer’s disease (14). This knowledge, 
together with the widespread prevalence of high-risk dietary 
habits, i.e., high intake of sodium, meat, sugar, and trans fats, and 
low consumption of vegetables, whole grains, fruits, nuts, low-fat 
dairy, and seeds (1, 2) have driven the development of 
microbiome-targeted dietary interventions.

Such interventions tend to be  more effective when they 
include fiber- and polyphenol-rich foods, which are selectively 
fermented by gut microbes into health-promoting metabolites 
such as short-chain fatty acids (SCFAs) and phenolic acids. These 
metabolites contribute to gut barrier integrity, immune 
modulation, and metabolic regulation. This fermentation process 
underlies, at least in part, the health benefits commonly associated 
with fiber- and polyphenol-rich foods. For example, in patients 
with Parkinson’s disease, diets high in fiber have been associated 
with anti-inflammatory SCFA producers and reduced 
neuroinflammation, while higher sugar intake correlates with 
potentially pathogenic bacteria (15).

Among health-promoting dietary strategies, interventions 
enriched in polyphenols, including the addition of specific foods 
(e.g., spices, legumes, and nuts) as well as whole-diet patterns such 
as the Mediterranean and Green-Mediterranean diets, can 
modulate the microbial community and enhance the production 
of beneficial microbial metabolites (16–18). This review focuses 
on these dietary interventions, exploring their effects on the gut 
microbiome, host metabolite profiles and gut barrier integrity, and 
the mechanisms by which these effects are mediated.

2 Microbial metabolism of dietary 
components

Fermentable polysaccharides, polyphenols, residual peptides and 
amino acids, and biopolymers that consist of polysaccharides bound 
to phenolic acids, can be broken down by the colonic microbiota in a 
series of biochemical reactions, involving different species of 
microorganisms and intermediary products. The metabolic products 
from microbial fermentation have metabolic, immunomodulatory, 
and neurological effects (19), modifying the local gut environment 
and host health. The composition (and potential benefits) of the 
metabolic output is determined by availability and composition of 
substrates present for fermentation, and the functional capacity of the 
microbiota to break down these components.

2.1 Microbial fermentation of dietary fibers 
and SCFA-mediated host effects

Dietary fibers are complex carbohydrates that escape digestion in 
the upper gastrointestinal tract and reach the colon, where they serve 
as substrates for microbial fermentation. Fermentable fibers include a 
broad range of plant-derived polysaccharides, such as pectin, 
arabinoxylan, beta-glucans, fructo-oligosaccharides (FOS), galacto-
oligosaccharides (GOS), inulin, xyloglucans, and resistant starches 
(20, 21). These fibers differ in solubility, structure, and fermentability, 
and have been studied for their influence on gut microbial 
composition, particularly on fiber-degrading taxa, and the 
concentration of microbial metabolites (22). While humans lack the 
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enzymes required to break down plant cell wall components, the 
majority of gut microbes have the functional capacity to do so, and to 
use them as carbon and energy source (23, 24). The main fermentation 
end products from fiber are short-chain fatty acids (SCFAs), which 
have been extensively studied because of their role in metabolic health 
(25). SCFAs are organic acids containing two to six carbon atoms, with 
acetate (C2), propionate (C3), and butyrate (C4) being the most 
abundant, and produced in a ratio of approximately 3:1:1 (26). The key 
SCFAs, their microbial producers, and host-relevant functions are 
summarized in Table 1.

The ability to generate SCFAs is functionally redundant across 
taxonomically distinct bacteria (27): acetate is formed by the vast 
majority of gut bacteria while butyrate and propionate are 
produced by subsets of bacteria that form functionally distinct 
groups, and multiple products can be  generated by the same 
species (28).

Cross-feeding also takes place; e.g., acetate can increase butyrate 
production, noted between acetate-producing Bifidobacterium and 
butyrate-producing Faecalibacterium (29). Examples of propionate-
producing genera are Akkermansia, Bacteroides, Dialister, 
Phascolarctobacterium, and Phocaeicola via primarily the succinate 
pathway, and Anaerobutyricum (formerly Eubacterium halii), Blautia 
and Mediterraneibacter via the propanediol pathway (30, 31).

Butyrate is mostly formed by genera of the highly oxygen-sensitive 
anaerobic Clostridia families Lachnospiraceae and Ruminococcaceae, 
and examples include Agathobacter, Anaerobutyricum, Anaerostipes, 
Butyricicoccus, Coprococcus, Faecalibacterium, Gemminger, 
Lachnospira, Oscillibacter, Roseburia and Ruminococcus (31–33).

SCFAs serve as signaling molecules, energy supply, and regulators 
of metabolism (e.g., insulin sensitivity and fat storage), the immune 
system, and the gut barrier.

Butyrate provides 70% of the energy requirement of the colonic 
epithelium (34), facilitates tight junction assembly and promotes 
wound healing of the intestinal epithelium (35, 36). Butyrate (and 
acetate) can stimulate mucin 2 (Muc2) expression, mucus production 
and secretion (37).

SCFAs exert their functions by signaling through surface-
expressed (free fatty acid) G-protein coupled receptors on epithelial 
cells, fat cells, and immune cells (38) or via histone deacetylase 
(HDAC) inhibition (39). Both signaling routes can regulate T-cell 
differentiation to induce IL-10-producing regulatory T-cells (40, 41). 

Butyrate is especially associated with intestinal and immuno-
modulatory functions (19, 42, 43), due to its inhibitory effect on 
NF-κB (44) as well as IL-12 and IFN-γ (45), which play a role in 
chronic low-grade inflammation (46).

Similarly, propionate was shown to be  inversely regulated by 
fasting and refeeding, and to reduce inflammatory CD4+ T cell 
responses by inhibiting NF-κB activity and histone deacetylase 
activity, leading to lower levels of IL-6, IFN-γ, and IL-17 (47).

2.2 Protein fermentation and 
health-relevant microbial metabolites

While our focus is on fiber- and polyphenol-rich dietary 
interventions, it is important to understand the complete metabolic 
landscape of the colon, where the availability and type of substrates 
change along its length, influencing microbial metabolism and the 
resulting health effects.

In the first part of the large intestine (the proximal colon), 
microbes primarily ferment carbohydrates, the amount of which 
gradually decreases toward the descending colon (48), where microbes 
are specialized to harvest energy from residual peptides and proteins, 
yielding a more diverse array of metabolic products compared to the 
fermentation of dietary fibers (23).

Of these metabolites, branched-chain fatty acids (BCFAs) have 
gained attention because of their association with metabolic 
imbalances and poor colonic health (49–51). BCFA levels are 
influenced by diet, and reduced when changing from a Western to a 
Mediterranean diet, and negatively correlate to butyrate- and acetate 
generating bacteria, and microbial diversity (52).

Metabolite profiles of prediabetic individuals can feature increased 
levels of BCFAs (53). Prevotella copri and Bacteroides vulgatus are two 
examples of microbes that were found to drive the association between 
BCFA synthesis and insulin resistance (53). Besides metabolic 
imbalances, there is also a link between BCFAs and cancer 
development. A study found that BCFAs produced by Clostridium 
symbiosum led to increased cholesterol synthesis via mTORC1, in turn 
activating hedgehog signaling, resulting in increased colorectal cancer 
stemness and tumor growth in mice (54). Other (unfavorable) 
metabolites from amino acids include the uremic toxin p-cresol, 
produced from the fermentation of tyrosine, and associated with 

TABLE 1  Overview of major short-chain fatty acids (SCFAs) produced through microbial fermentation of dietary fibers in the colon, associated bacterial 
genera, and reported effects on host metabolism, gut barrier integrity, and immune function.

SCFA Producing genera Host-relevant functions References

Acetate Produced by the majority of gut bacteria; involved in cross-

feeding

Energy source; substrate for butyrate production, 

stimulates mucin 2 expression, mucus production and 

secretion

(28, 29, 37)

Propionate Akkermansia, Bacteroides, Dialister, Phascolarctobacterium, 

Phocaeicola (succinate pathway); Anaerobutyricum, Blautia, 

Mediterraneibacter (propanediol pathway)

Substrate for gluconeogenesis in the liver, Anti-

inflammatory, reduces CD4+ T cell responses by 

inhibiting NF-κB and HDAC activity; lowers IL-6, 

IFN-γ, and IL-17 expression

(30, 31, 47)

Butyrate Agathobacter, Anaerobutyricum, Anaerostipes, 

Butyricicoccus, Coprococcus, Faecalibacterium, Gemminger, 

Lachnospira, Oscillibacter, Roseburia, Ruminococcus

Main energy source for colonocytes; enhances tight 

junction assembly and wound healing; increases mucin 

production; inhibits NF-κB; reduces IL-12 and IFN-γ; 

inhibits HDAC activity and supports anti-inflammatory 

immune regulation

(19, 31–35, 37, 42–45, 152)

https://doi.org/10.3389/fnut.2025.1647740
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Meiners et al.� 10.3389/fnut.2025.1647740

Frontiers in Nutrition 04 frontiersin.org

chronic kidney disease (55), generated by, e.g., Clostridium 
difficile (56).

2.3 Fiber-dependent generation of 
beneficial aromatic amino acid metabolites

Some amino acid metabolites are thought to benefit human 
health. The effects on colonic and systemic health have been noted 
for tryptophan metabolite indolepropionate and phenylalanine-
metabolite phenylpropionate. Indolepropionate can be produced by 
members of the Clostridium genus or by a two-step transamination 
and reduction reaction by lactic acid bacteria and Bifidobacterium 
(57). Several Clostridium species were found to generate 
indolepropionate: C. sporogenes (58), three strains of C. cadaveris 
(59), the toxin-producing C. botulinum (60), as well as 
Peptostreptococcus anaerobius CC14N (59). An important link 
between the generation of beneficial tryptophan metabolites and 
dietary fiber intake was established by Qi et al., who found that the 
intake of fiber-rich foods was most strongly associated with 
indolepropionate concentrations (50). Interestingly, a study 
deciphered a mechanism by which specific tryptophan metabolites 
were generated, which was independent of abundances of 
tryptophan-metabolizing gut bacteria, but regulated in a substrate-
specific manner of metabolic pathways that involved different species 
and cross-feeding mechanisms (57). In more detail, in an in vitro 
experiment, indole-producing E. coli and indolepropionate-
producing C. sporogenes were shown to compete for tryptophan, and 
fiber-degrading Bacteroides thetaiotaomicron moved the scale in favor 
of C. sporogenes, by cross-feeding monosaccharides to E. coli, making 
more tryptophan available to C. sporogenes (57). The results suggest 
that fermentable fibers can regulate indole production as a beneficial 
tryptophan metabolite (57), which is in line with studies that found 
positive associations of indolepropionate with fiber intake (61) but 
also with polyphenols (62). Finally, it was shown that fiber-mediated 
regulation of indole generation was not limited to particular species 
or communities, but is more of a typical phenomenon taking place in 
the human gut microbiota (57). Indolepropionate concentrations 
were found to be inversely associated with T2DM risk (50), and lower 
concentrations were present in patients with heart failure with 
preserved ejection fraction (HFpEF) in two separate cohorts (63). 
Indolepropionate is an ligand of aryl hydrocarbon receptors (AhR), 
and engages with other receptors including pregnane X receptor 
(PXR) and Toll-like Receptor 4 (63, 64). In a mouse model of HFpEF 
it was shown that indolepropionate supplementation attenuated 
diastolic dysfunction, oxidative stress and inflammation by enhancing 
the nicotinamide adenine dinucleotide salvage pathway, suppression 
of NNMT (nicotinamide N-methyltransferase) expression, and 
restoration of nicotinamide, NAD+/NADH, and SIRT3 levels (63). 
Indolepropionate was also shown to upregulate occludin, which is a 
tight junction protein (63), thereby strengthening the gut barrier and 
decreasing intestinal permeability (59). A similar protective action 
was observed for Bacteroides fragilis-derived phenylpropionate in 
pigs, activating AhR signaling and maintaining the integrity of the 
intestinal epithelial barrier (65). These examples show how microbial 
amino acid fermentation can result in metabolites with either 
beneficial or unfavorable effects on host health, as summarized in 
Table 2.

2.4 Microbial metabolism of dietary 
polyphenols

Polyphenols are a diverse group of bioactive plant compounds 
long recognized for their antioxidative capacity and health benefits 
(66). Most polyphenols have low bioavailability and require microbial 
transformation for better bioaccessibility (67–69). There are different 
classes of polyphenols, such as flavonoids (including flavonols and 
flavanols), ellagitannins, isoflavones and lignans, differing in chemical 
structure, complexity and origin, that are converted to phenolic acids 
by the microbiota (70). Proanthocyanidins are oligomeric flavanols, 
which are themselves a subclass of flavonoids (71), and are abundant 
in foods like spices, cocoa, beans, legumes, nuts, berries, grains, tea 
and fruits (72). Flavonols, on the other hand, are broken down by 
microbiota-mediated ring-fission, resulting in low molecular weight 
phenolic catabolites including benzoic acid, phenylacetic acid and 
phenylpropionic acid, hippuric acid, and valerolactones (70, 72, 73).

Phenolic compounds can modulate gut microbial composition and 
barrier integrity. For example, mice supplemented with epigallocatechin 
gallate, a polyphenol found in tea, featured increased Faecalibacterium, 
Bifidobacterium and Akkermansia abundances and butyrate production 
and an anti-inflammatory effect as well as an enhanced gut barrier 
function in a model of inflammatory bowel disease (IBD) (74).

As described above, fiber played an important role in the generation 
of indolepropionate from tryptophan. The presence of fiber is often 
necessary for the beneficial action of polyphenols as well, as described 
below, but fiber is not a mandatory mediator in this case. For example, a 
fiber-free diet combined with polyphenols indicated that polyphenol-
supplementation can suppress mucus barrier degradation (75). In this 
experiment, mice fed a high-fat/high-sucrose (HFHS) diet were 
supplemented with a cranberry-rich extract or water. Akkermansia 
abundances then reached 30% relative abundance upon the HFHS diet 
supplemented with the cranberry extract, associated with a number of 
protective effects, including reduced weight gain and visceral obesity and 
blunted oxidative stress and inflammation compared to the HFHS control 
group. A potential explanation for the protective effect of polyphenols was 
indicated by the significantly higher expression of mucus-encoding Muc2 
and tumor suppressing transcription factor Krüppel-like factor 4 (Klf4) 
in the colon (76) compared to HFHS controls. Significantly higher Muc2 
expression points toward the higher production of mucin, thereby 
maintaining the mucus lining and providing the fermentation substrate 
for Akkermansia (75).

2.5 Health effects of microbially derived 
polyphenol metabolites

Ellagitannins and their hydrolysis product ellagic acid, found, e.g., 
in walnuts, berries, pomegranates, pecans and almonds, are known to 
be  metabolized by Gordonibacter and Ellagibacter, certain 
Lachnospiraceae members and Enterocloster species into urolithins 
(77, 78). Enterocloster species harbor a urolithin C dehydroxylase 
operon, recently identified as a key mechanism for converting 
urolithin C to urolithin A, potentially explaining inter-individual 
differences in urolithin A production (78). Urolithin A has attracted 
particular interest due to its broad health benefits. It has been shown 
to increase lifespan in model organisms such as C. elegans and mice 
by enhancing mitophagy, improving cellular function, and alleviating 
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systemic inflammation (79, 80). In a mouse model of colitis, urolithin 
A (derived from caffeic and ellagic acid) was associated with reduced 
inflammation and improved gut barrier function (81). In humans, 
urolithin A acts as a direct AhR ligand, repressing the transcription of 
pro-inflammatory mediators, including IL6 and prostaglandin-
endoperoxide synthase 2 (PTGS2) (82–84). Additional studies have 
reported its role in enhancing mitophagy, improving mitochondrial 
function and reducing inflammatory responses (85) as well as its 
association with increased loss of visceral fat (86).

Urolithin A supplementation (1,000 mg) in elderly individuals 
improved muscle endurance and reduced inflammatory biomarkers 
while being safe and well tolerated (87).

Polyphenol-rich foods, including strawberries, can enhance urolithin 
A production and increase abundances of SCFA-producing bacteria. For 
instance, daily consumption of 500 g strawberries for nine days 
significantly increased urinary urolithin A and plasma antioxidant capacity 
(88), and a 10-week dietary intervention based on strawberries increased 
diversity and Faecalibacterium and Prevotella abundances (16).

Hippurate is another microbially derived metabolite that has been 
positively associated with gut microbial diversity, polyphenol 
metabolism, and diets high in fruit and whole grains (89, 90). Elevated 
hippurate levels have been linked to reduced risk of metabolic 
syndrome and increased visceral fat loss (86, 89, 91). Additionally, 
hippurate correlates with higher abundance of Faecalibacterium 
prausnitzii and lower levels of Ruminococcus and Eubacterium, 
suggesting a specific role in metabolic health regulation (89). Elevated 
blood hippurate has also been associated with increased adipose tissue 
expression of neuroglobin, a neuroprotective oxygen-binding protein 
primarily expressed in brain neurons (89, 92).

These two microbially derived metabolites exemplify the diverse 
host benefits of polyphenol metabolism by the gut microbiota.

2.6 Microbial breakdown of 
polyphenol-bound dietary fiber

The microbial fermentation of plant fibers can release bioactive 
phenolic compounds from the plant matrix. Many polyphenols are 

associated with dietary fibers through hydrophobic interactions, 
hydrogen bonding via hydroxyl groups, or covalent ester bonds; they 
may also accumulate inside vacuoles or become integrated in the plant 
cell wall (93, 94).

Polyphenol-bound dietary fibers, such as those in whole-grain 
cereals, have been experimentally shown to have higher antioxidant 
capacity than polyphenols alone (95). In grains like wheat, corn, rice 
and rye, the primary structural polysaccharide is arabinoxylan, a 
pentose sugar polymer, composed of a xylose backbone with arabinose 
side chains (96, 97). The phenolic compound ferulic acid is ester-
linked to these arabinose side chains where it contributes to the 
structural integrity of the grain cell wall by crosslinking adjacent 
arabinoxylan polymers (98). The bran, which includes the aleurone 
and outer grain layers, contains approximately 90% of whole grain 
phenolic acids, primarily ferulic acid. Most of it is concentrated in the 
aleurone, which also stores proteins, phytate, and inorganic nutrients 
(98, 99). Upon reaching the colon, the antioxidant fiber is fermented 
by gut microbes, for example Bacteroides species can cleave the ester 
bond linking ferulic acid to arabinoxylan, releasing ferulic acid for 
absorption (100).

2.7 Synergy between phenolic acids and 
SCFAs

Zheng et al., demonstrated that phenolic acid metabolites and 
SCFAs can act synergistically to reduce inflammation in Caco-2 
cells, a commonly used model of the intestinal epithelial barrier 
(73). The study showed that the combination of butyrate with any 
of three phenolic metabolites (phenyl acetic acid, benzoic acid, 
and phenyl propionic acid) at physiologically relevant 
concentrations significantly reduced IL-8 production more 
effectively than the individual compounds alone. The anti-
inflammatory synergy was mediated through the downregulation 
of IL-8, TNF-α, and VCAM-1, at both gene and protein expression 
levels (73). The findings suggest that SCFAs and polyphenol 
metabolites may work synergistically to restore gut homeostasis 
by reducing inflammation (73).

TABLE 2  Selected microbial metabolites derived from amino acid fermentation, their substrates, examples of known producers, and host effects as 
described in the text.

Metabolite Substrate Producing/correlated 
taxa

Reported effects Health 
relevance

References

BCFAs Branched-chain amino 

acids

Prevotella copri, Bacteroides 

vulgatus (correlated taxa); 

generally negatively associated 

with SCFA-producers

Associated with metabolic 

imbalances, insulin resistance 

and colorectal tumor 

promotion; linked to low 

microbial diversity

Unfavorable (49–54)

p-Cresol Tyrosine Clostridium difficile Uremic toxin; associated with 

chronic kidney disease

Unfavorable (55, 56).

Indolepropionate Tryptophan C. sporogenes, C. cadaveris, 

Peptostreptococcus anaerobius, 

Bifidobacterium, lactic acid 

bacteria

Strengthens gut barrier, reduces 

inflammation and oxidative 

stress, lowers T2DM and HFpEF 

risk

Beneficial (50, 57–60, 63, 64).

Phenylpropionate Phenylalanine Bacteroides fragilis Enhances epithelial barrier via 

AhR signaling (shown in pigs)

Potentially beneficial (65)

Metabolites include both health-promoting and potentially harmful compounds. HFpEF, heart failure with preserved ejection fraction.
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3 Influence of aging and diet on the 
gut environment

The human gut and its microbiota undergo progressive changes 
with aging. These include a decline in commensal bacteria, an increase 
in potentially pathogenic species and greater interindividual variability 
in microbiota composition. These shifts are accompanied by local 
changes in the gut environment, including reduced capacity to 
maintain barrier integrity and an altered inflammatory profile.

3.1 Aging of the gut barrier

Studies have shown that impaired barrier function is associated 
with thinning of the mucus layer, increased intestinal permeability, 
and, in older individuals, a slower turnover of the intestinal epithelium. 
These changes are influenced by both dietary factors and the host 
microbiota (101, 102). The gut barrier plays a critical role in preventing 
the translocation of microbes, endotoxins and food antigens into 
systemic circulation, a function essential for avoiding inflammation 
and sepsis (103, 104).

Fecal microbiota transfer studies highlight the role of the 
microbiota in barrier function and host aging. When microbiota from 
aged mice are transferred to young mice, the young mice exhibit 
increased intestinal permeability along with inflammation in the 
central nervous system and retina, and altered cytokine signaling 
(103). Conversely, transferring microbiota from young to old mice can 
reverse these effects (103).

In humans, intestinal permeability is often assessed using 
plasma zonulin levels, a physiological modulator of tight junctions 
secreted by intestinal epithelial cells in response to dietary or 
microbial stimuli (105, 106). Zonulin lowers the expression of tight 
junctions and thereby increases intestinal permeability. Elevated 
zonulin levels have been linked to aging, frailty, chronic obstructive 
pulmonary disease (107, 108), arthritis (106) and cognitive 
impairment, particularly during the progression to Alzheimer’s 
disease (AD) (109). In AD, changes in gut barrier integrity have 
been suggested as a potential trigger before AD onset (109). 
Furthermore, microbial encroachment into the inner mucus layer 
is a feature observed in dysglycemia, independent of obesity (110). 
Zonulin levels also correlate with metabolic and microbial profiles. 
Higher zonulin is associated with increased waist circumference, fat 
mass, and systemic inflammation (111). In contrast, lower zonulin 
levels are linked to greater microbial diversity, particularly higher 
abundances of butyrate-producing Faecalibacterium prausnitzii, 
and reduced abundances of Bacteroidaceae, Veillonellaceae, 
Bacteroides, and Blautia (112). These microbial differences are 
associated with healthier dietary patterns, including greater intake 
of fiber, omega-3 polyunsaturated fatty acids, vitamins, and 
minerals (112).

3.2 The essential role of dietary fiber in gut 
homeostasis

Studies in both model organisms and humans have shown dietary 
fiber is essential for maintaining a homeostatic relationship between 
host and microbiota.

This becomes especially evident when examining the 
consequences of fiber deprivation on gut microbiome composition 
and barrier integrity. In mice, fiber-deprivation leads to significant 
compositional changes in both the small and large intestinal 
microbiota (113–115). In the small intestine, a decline in segmented 
filamentous bacteria has been observed, coinciding with impaired 
intestinal Th17 and intraepithelial T-cell development and enhanced 
susceptibility to infection. These alterations were also observed in the 
offspring, but could only be  reversed through fecal microbiota 
transplantation, not with a high-fiber diet alone (115).

In the large intestine, low-fiber diets are associated with higher 
abundances of glycan-degrading microbes, particularly Akkermansia 
muciniphila, and intestinal barrier dysfunction (101, 113, 116).

Low-fiber intake has also been linked to increased abundances of 
IgE-coated commensals, reduced mucus thickness, exacerbated 
allergic responses and increased inflammation (116). In addition, 
antitumor immunity is adversely affected by low-fiber intake (117).

Desai et al. demonstrated that both chronic and intermittent fiber-
deficiency shifted the microbiota from saccharolytic fermentation to 
use of host-derived mucus glycans as a fermentation substrate. This 
shift was characterized by a rapid expansion of glycan-degrading 
bacteria such as Akkermansia muciniphila and Bacteroides caccae, 
alongside a reduction in polysaccharide-fermenting species, without 
changing plasma levels of propionate or butyrate. The resulting 
thinning of the mucus layer favored pathogen expansion, increased 
inflammation and morbidity (113).

Holmberg et  al. further showed that fecal microbiota 
transplantation from individuals on a low-fiber diet failed to induce 
adequate mucus production in mice. However, increasing fiber intake 
by 14 g significantly shifted the microbial composition and restored 
commensal-mucus interaction, mediated by Blautia through its 
production of acetate and propionate (101).

Although A. munciniphila is often considered a beneficial genus 
due to its propionate-generating ability, recent evidence points to a 
context-dependent role. Derosa et  al. found that baseline 
A. munciniphila abundance was a negative predictor of 12-month 
survival in non-small cell lung cancer patients undergoing immune 
checkpoint inhibitor therapy (118). Patients with A. muciniphila 
abundances below 4.8% (considered normal) had the longest median 
survival (27 months), while those with levels above 4.8% had the 
shortest (8 months). Those patients with no detectable A. muciniphila 
had a median survival of 16 months after treatment (118). Those in 
the normal range also exhibited higher microbial diversity (Shannon 
Index) compared to patients with high or absent A. muciniphila levels 
(118). This represents a clear example of a U-shaped association of a 
microbial biomarker, in which extremes in one direction or the other 
are associated with the lowest benefits, or even with negative outcomes.

4 Dietary interventions: microbiome 
modulation, microbial diversity, and 
baseline composition

The microbial response to dietary interventions is partly 
determined by the initial composition and diversity of the gut 
microbiota, and the lead-in diet (52). Given the high interindividual 
variability in microbiomes, responses vary widely. For example, 
individuals with low abundances of fiber-degrading taxa such as 
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Prevotella are more likely to experience an increase in butyrate-
producing bacteria (31). In a short-term Mediterranean diet 
intervention, participants with lower initial diversity exhibited greater 
variability in microbial response (52). However, even individuals with 
higher diversity show changes in metabolites profiles that deviated 
from their initial state, highlighting the importance of considering the 
metabolome when attempting to define a healthy microbiome and to 
evaluate intervention outcomes (119).

In the following sections, we will review dietary intervention 
studies in elderly individuals and those with ongoing disease 
processes such as prediabetes, obesity, and metabolic syndrome. In 
these conditions, lower abundances of fiber-degrading bacteria are 
common (3, 22, 25, 120). We  focus on clinical trials involving 
polyphenol-rich foods, high-fiber and complex-fiber interventions, 
and whole-diet interventions, organized by increasing complexity: 
from simple additions of single foods or food groups (sections 
4.2–4.6), to food reformulation strategies (section 4.5.3), whole 
dietary patterns (sections 4.8–4.9), and finally personalized nutrition 
approaches (section 4.10). We begin with a contrasting example of 
fiber restriction (section 4.1) to highlight the importance of fiber for 
maintaining a healthy gut microbiome. This progression allows us 
to examine how interventions of varying complexity can achieve 
similar beneficial outcomes through shared mechanisms of 
increasing SCFA production and polyphenol metabolism. Where 
relevant, we  will refer to previous sections on how dietary 
components are processed by the microbiome and their influence on 
host physiology, drawing from observational studies, in  vitro 
research, and animal models.

4.1 High-protein, low-carbohydrate diets 
and microbiome effects

Before examining interventions beneficial for health and the 
microbiome, the following example aims to address the 
unintended effects on the host and microbiome of a high-protein, 
low-carbohydrate weight-loss diet. In a clinical trial, 80 overweight 
or obese postmenopausal women followed an 8-week very-low-
calorie diet based on a meal replacement shake (121). The shake 
contained skimmed milk powder, milk protein, sodium caseinate, 
maltodextrin, canola and sunflower vegetable oils, artificial 
sweeteners, and was fortified with minerals, vitamins and inulin. 
The intervention led to weight loss and transient improvements 
in glucose regulation. Gut microbiota shifted significantly, with 
increased abundance of Akkermansia, and reduced abundances of 
plant-metabolizing genera Roseburia, Ruminococcus, Eubacterium, 
which are known to produce SCFAs (see section 2.1). Levels of 
SCFAs acetate, butyrate and valerate were significantly reduced 
(121). To explore the role of the microbiome, human fecal samples 
from trial participants were transferred into mice. This reproduced 
weight loss but revealed an unexpected enrichment of pathogenic 
C. difficile post-intervention, despite similar baseline abundances 
pre-intervention. This suggested a diminished capacity of the 
post-diet to restrict pathogen growth (121). These findings 
underscore how a complex change in diet composition can lead to 
multifaceted effects on host biomarkers, involving changes in the 
microbiome and its metabolic output.

4.2 High-polyphenol dietary interventions

4.2.1 The MaPLE trial: substitution of low- with 
high-polyphenol foods

A randomized controlled trial, the MaPLE trial, evaluated the 
substitution of low-polyphenol- with high polyphenol-foods in 
elderly with increased intestinal permeability. Over 8 weeks, 
participants consumed three daily portions of polyphenol-rich 
foods, e.g., berries, blood orange, pomegranate juice, green tea, apple 
and dark chocolate, providing a broad spectrum of polyphenols 
including proanthocyanidins, tannins and flavonols. The 
intervention resulted in lower plasma zonulin and fecal calprotectin 
levels, lower blood pressure, increased abundances of SCFA-
producing bacteria, and modulation of multiple cytokines and 
metabolites (122–124).

Notably, participants with higher zonulin levels were also 
those with higher BMI and insulin resistance (123). Calprotectin 
levels (a biomarker used to evaluate gut inflammation) correlated 
with age, insulin, HOMA index, CRP, IL-6 and TNF-α (123, 124). 
Analysis of the serum metabolome showed that the intervention 
increased the microbially-produced polyphenol metabolites 
hippuric acid (see section 2.4), catechol sulfate, 
2-methylpyrogallol sulfate and HPPA-S (3-(3-hydroxyphenyl) 
propanoic acid sulfate) (122). Furthermore, the theophylline 
metabolites 3-methylxanthine and 7-methylxanthine increased 
in concentration, while deoxycarnitine, hydroxyhexanoylcarnitine 
and asparagine were reduced.

Theobromine, a diet-derived metabolite from cocoa, was 
positively correlated with SCFA-producing genera such as Roseburia, 
Butyricicoccus, Faecalibacterium, and Lactonifactor, and negatively 
with Methanobrevibacter, and Desulfovibrio. Faecalibacterium and 
members of the Ruminococcaceae family increased significantly and 
inversely correlated with inflammation markers (123). These 
important findings support that microbially metabolized plant 
compounds can reinforce gut barrier integrity and reduce systemic 
inflammation in elderly.

4.2.2 Adding herbs and spices to a Western dish
Another approach to increasing polyphenol intake was tested 

by adding herbs and spices to a Western-style dish. In a 
randomized cross-over controlled trial involving obese individuals 
at risk for cardiovascular disease, this simple dietary addition 
induced favorable shifts in microbiota composition and host 
health markers (125). A medium dose (3.3 g) and high dose (6 g) 
of spice significantly altered community composition (beta-
diversity) while the medium dose also increased alpha-diversity 
(125). Notable increases in Faecalibacterium, Ruminococcus and 
the genus UCG005 from the Ruminococcaceae family were 
observed in the high-dose spice intervention along with reduction 
in 24-h systolic blood pressure (125, 126).

A secondary analysis found that the medium-dose spice diet 
significantly reduced fasting plasma IL-6 and postprandial IL-1β, 
IL-8 and TNF-α and modulated monocyte function (127). In 
another study in healthy Singaporen males, spice intake was 
associated with higher Bifidobacterium abundances and increased 
levels of the phenolic acids cinnamic acid and phenylacetic acid 
(see section 2.4) (128).
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4.3 Interventions with legumes

4.3.1 Bean-based intervention in high-risk obese 
patients

Colorectal cancer development is strongly influenced by lifestyle 
factors and adiposity (11, 129, 130). In the BEGONE trial, high-risk 
obese patients with a history of precancerous colonic polyps or colon 
cancer participated in a bean-enriched dietary intervention. 
Participants consumed one cup of beans (providing 16 g dietary fiber 
and 14 g of protein) alongside their usual diet. This intervention 
significantly increased the abundances of Faecalibacterium, 
Eubacterium, and Bifidobacterium, diversity, and induced broad 
changes in the host metabolome (131) (Table 3). Metabolic changes 
included reduced indole, increased levels of in pipecolic acid, the 
methyl group donor SAM (S-Adenosylmethionine), and trigonelline 
(131). These metabolites that increased upon the intervention have 
been associated with anti-inflammatory and potentially anti-aging 
effects. Pipecolic acid has been shown to ameliorate LPS-induced 
inflammation in mice and is associated with frequent exercise (132). 
Trigonelline, a microbial-derived catabolite of niacin and NAD+ 
precursor, is reduced in sarcopenia and is considered a potential 
therapeutic for age-related muscle decline (133). Furthermore, a 
reduction in interleukin-10 receptor-α and an increase in fibroblast-
growth factor-19 (FGF19) were observed. FGF19 controls bile acid 
and glucose homeostasis, and is associated with increased glucose 
uptake and energy expenditure (134).

4.3.2 Calorie-restricted, legume-enriched diet in 
prediabetics

A 16-week, calorie-restricted, legume-enriched randomized 
clinical trial was conducted in 127 Chinese prediabetic individuals, 
aged 45 to 75 years (135). Participants in the intervention group 
replaced two daily meals with dishes composed of 100 g of legumes 
(mixed beans, red kidney beans, or chickpeas), a soy-based meat 
alternative, vegetables, and a low glycemic index (GI) carbohydrate 
source (rice or noodles), along with herbs, spices, and vegetable oil. 
The intervention led to a 40% reduction in total and saturated fat 
intake, a 33% reduction in salt intake, and an increase in fiber intake 
of 17 g/day. In addition, participants in the intervention group 
exhibited significantly greater reductions in LDL cholesterol, total 
cholesterol, and HbA1c over time compared to controls, indicating 
improved lipid and glycemic regulation. Each participant provided six 
stool samples (weeks 0, 2, 4, 8, 12, and 16) for metagenomic 
sequencing. Taxonomic responses included increases in Clostridia 
(e.g., Eubacterium rectale, Roseburia faecis, Roseburia hominis) and 
Bifidobacterium, and decreases in Ruminococcus (R. gnavus, R. torques, 
R. lactaris), Bacteroides (B. massiliensis, B. stercoris), and Bilophila 
wadsworthia. About half the taxa were significantly correlated with 
dietary fiber intake. Positive correlations were observed for E. rectale 
and Bifidobacterium, and negative correlations (and decreasing 
abundances) for R. torques, R. lactaris, and R. gnavus. Interestingly, 
microbial species enrichment and depletion peaked by the second 
week and remained stable thereafter. Increased plasma metabolites 
included methylcysteine and pipecolic acid, the organic acid aconitic 
acid, and indolepropionic acid, which might be produced in higher 
amounts due to the increased availability of dietary fiber (see section 
2.3). Numerous fecal metabolites decreased upon the intervention, 
including benzoic acid, 2-furoic acid, various carnitines, amino acids, 

bile acids and fatty acids. Considering SCFAs, only plasma acetic acid 
was significantly increased, and negatively correlated with HbA1c, 
LDL-C, TC and TC/HDL-C ratio (135).

4.4 Dietary fiber from grains and food 
reformulation

4.4.1 Corn-based fiber intervention
A 2024 study investigated the effects of different types of corn 

flour: whole-grain, refined-grain, and a mix of refined grain with corn 
bran, on lipid markers in 36 adults with LDL cholesterol above 110 mg/
dL (136). The combination of refined flour and corn bran, which 
contained the highest levels of ferulic acid (see Section 2.6), significantly 
reduced LDL cholesterol over time, with reductions greater than 5% 
observed in approximately 70% of participants. Meanwhile, the whole-
grain flour significantly increased the abundance of butyrate-producing 
Agathobaculum (136), see Section 2.1.

4.4.2 Whole-grain intervention
In contrast, an 8-week whole-grain vs. refined-grain intervention 

in individuals at risk for metabolic syndrome did not alter community 
composition, yet it significantly reduced body weight and levels of the 
inflammatory markers IL-6, CRP and IL-1β (137). In addition, the 
intervention increased plasma butyrate and urinary excretion of 
several metabolites, including the alkylresorcinol DHPPA-
glucuronide, 2-aminophenol-sulfate (a microbial degradation product 
of wheat and rye benzoxazinoids), and the phenol metabolites 
pyrocatechol-sulfate and pyrocatechol-glucuronide (137).

4.4.3 Food reformulation: Fiber-enriched 
products

Fiber enrichment of convenience foods is a promising strategy to 
increase fiber intake (138). In a two-week trial, a sourdough-croissant 
enriched with a diverse fiber blend (from wheat, rye, poppy seeds, 
walnuts, flax seeds, and others, totaling 4.8 g fiber per 100 g) was 
compared to a conventional croissant (1.3 g dietary fiber per 100 g) 
for effects on metabolic variables, the gut microbiome and appetite 
(139). Exclusion criteria included high physical activity and the 
habitual intake of fruit and vegetables.

The fiber-enriched croissant increased urinary levels of urolithin 
A sulfate (see section 2.5), likely due to the addition of walnuts. The 
intervention also led to reduced levels of dipeptidyl peptidase-4 
(DPPIV) and a slight decrease in fasting blood glucose (139). Urolithin 
A is known to inhibit DPPIV (140), which degrades incretins  - 
hormones that provoke insulin secretion. Inhibition of DPPIV can 
therefore improve insulin sensitivity (141).

4.5 Interventions with nuts

In a recent study involving healthy individuals, the consumption of 
23 g of walnuts twice daily increased alpha diversity, and the abundances 
of 13 genera (Table 3): Roseburia, Rothia, Parasutterella, Lachnospiraceae 
UCG-004, Butyricicoccus, Bilophila, Eubacterium eligens, 
Lachnospiraceae UCG-001, Gordonibacter, Paraprevotella, Lachnospira, 
Ruminococcus torques, and Sutterella (142). Notably, the intervention 
significantly increased urolithin A and iso-urolithin A, which were 
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TABLE 3  Intervention effects in the microbiome and the host from trials reviewed in section 4.

Intervention Inclusion criteria Microbiome Changes Host/Metabolite Effects References

Low-fiber diet shake Overweight, obesity, menopause ↑ Akkermansia, ↓ Roseburia,

↓ Ruminococcus, ↓ Eubacterium

↓ acetate, butyrate and valerate (121)

Spices Obesity and CVD risk ↑ Faecalibacterium, ↑ Ruminococcus,

↑ Ruminococcaceae_UCG005,

↑ beta-diversity, ↑ alpha-diversity 

(medium dose)

↓ IL-6, IL-1β, IL-8, TNF-α (125–127)

Spices Healthy ↑ Bifidobacterium ↑ cinnamic acid,

↑ phenylacetic acid

(128)

Polyphenol-rich foods Elderly with increased intestinal 

permeability

↑ Faecalibacterium, ↑ Roseburia,

↑ Butyricicoccus,

↑ Ruminococcaceae, ↑ Lactonifactor,

↓ Methanobrevibacter, ↓ Desulfovibrio

↓ Zonulin, ↓ calprotectin,

↓ blood pressure

↑ catechol sulfate,

↑ Hippuric acid

(123, 124)

Beans Risk for colorectal cancer, obesity ↑ Faecalibacterium, ↑ Eubacterium,

↑ Bifidobacterium

↑ Pipecolic acid, ↑ SAM,

↑ Trigonelline

↑ FGF19

(131)

Legumes Prediabetes (45–75y) ↑ E. rectale, ↑ Roseburia hominis,

↑ Bifidobacterium, ↓ Ruminococcus 

spp., ↓ Bacteroides

↑ indolepropionate, ↑ aconitic acid, 

↑ methylcysteine,

↑ plasma acetate

↓ LDL, ↓ total cholesterol,

↓ HbA1c

(135)

Corn bran or whole grain Dyslipidemia

LDL > 110 mg/dL

↑ Agathobaculum (whole grain) ↓ LDL (bran) (136)

Whole grain risk for metabolic syndrome No significant microbiome shift ↑ plasma butyrate

↑ DHPPA-glucuronide,

↑ 2-aminophenol-sulfat

↑ pyrocatechol-sulfate

↑ pyrocatechol-glucuronide

↓ CRP, ↓ IL-6, ↓ IL-1β

(137)

Food reformulation, croissant with 

seeds and nut-blend

Low habitual intake of fruit and 

vegetables

No significant microbiome shift ↑ Urolithin A

↓ dipeptidyl peptidase-4

(139)

Nuts, walnuts Healthy ↑ Roseburia, ↑ Butyricicoccus,

↑ Parasutterella,

↑ Eubacterium eligens,

↑ Lachnospiraceae, ↑ Paraprevotella,

↑ Lachnospira

↑ diversity

↑ Urolithin A, ↑ Iso-urolithin A (142)

Nuts, almonds Healthy ↑ alpha-diversity

↓ Bacteroides fragilis

↓ Ghrelin (143, 144)

Caloric restriction and nuts Obese women, cardiometabolic 

risk

↑ Ruminococcus, ↑ UCG-002,

↑ Ruminococcaceae UCG-005,

↑ Blautia

↑ Propionic acid, ↓ acetate,

↓ CRP, ↓ TNF, ↓ IL-1β, ↓ IL-8

(145, 146)

Med diet – NU-AGE Elderly across five EU countries ↑ Faecalibacterium prausnitzii,

↑ Roseburia hominis,

↑ Eubacterium spp., ↑ Anaerostipes,

↑ Prevotella copri,

↑ B. thetaiotaomicron

↓ CRP, ↓ IL-17,

↓ secondary bile acids,

↓ p-cresol,

↓ frailty

(147)

Med diet – CORDIOPREV Coronary heart disease ↑ diversity (MetS only),

↓ Streptococcus, ↓ Clostridia,

↑ Bacteroidetes

↓ TG

↓ CVD risk (26–33%)

(8, 148)

Green-Med Obesity, dyslipidemia ↑ Lachnospira, ↑ Eggerthellaceae,

↑ Prevotella, ↓ Bifidobacterium

↑ Hippuric acid, ↑ Urolithin A,

↓ intrahepatic fat, ↓ CHD risk,

↓ methylation age

(17, 86, 149)

(Continued)
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significantly associated with several taxa including Gordonibacter, 
Angelakisella, Defluviitaleaceae UCG-011, and Anaerovoracaceae Family 
XIII (142). These findings suggest that polyphenols in walnuts likely 
contributed to the observed rise in urolithins (see Section 2.5).

In another study with nuts, 57 g almonds consumed daily for 
8 weeks increased alpha-diversity and reduced Bacteroides fragilis 
compared to an isocaloric cracker snack (143). A separate energy-
restricted study found that a nut-enriched breakfast, compared to a 
nut-free breakfast, significantly reduced ghrelin levels, suggesting a 
role in appetite regulation among individuals at risk for 
cardiometabolic disease (144).

4.6 Caloric restriction combined with nuts 
in overweight women

Two 8-week randomized controlled trials tested the effects of 
caloric restriction (CR) with or without the addition of nuts in women 
with high BMI and increased waist circumference and at least one 
other cardiometabolic risk factor.

In the first trial, participants consumed 30 g cashews and 15 g 
Brazil nuts daily. Both CR groups (with and without nuts) showed 
significant changes in beta-diversity, indicating a shift in community 
composition. However, only the CR-only group exhibited a reduction 
in alpha-diversity and a significant increase in the Firmicutes-to-
Bacteroidetes ratio, changes that were not observed when nuts were 
added to the diet (145). A reduction in alpha-diversity points to a less 
stable microbial community.

Fecal SCFA analysis showed that CR and nuts significantly 
increased fecal propionic acid, and reduced acetate (145). 
Lactulose-secretion was used to measure intestinal permeability, 
which did not differ due to treatment, but lactulose secretion was 
significantly lower in the CR-nut-group compared to CR at the 
end of the intervention (145). Abundances that differed after the 
intervention versus baseline included increased Ruminococcus and 
UCG-002 in the CR-nut group and increased abundances of 
Blautia, and Ruminococcaceae genera UCG-005 and UCG-002, and 
a reduction in Ruminococcus in the CR group. Intestinal 
permeability correlated with fat-loss, IL-8 and Ruminococcus 
abundances (145). These findings suggest that the addition of nuts 
to caloric restriction may preserve community stability and 
support beneficial microbial taxa.

A second trial tested the effect of 8 g of Brazil nuts daily combined 
with CR to CR alone. The CR-nut group showed significantly 
decreased levels of CRP, TNF, IL-1β and IL-8 indicating an anti-
inflammatory effect of the nut-enriched intervention (146).

4.7 Mediterranean diet interventions

The NU-AGE randomized controlled trial examined the effects of 
a one-year Mediterranean (Med) diet intervention in elderly subjects 
from five countries (Italy, United  Kingdom, France, Netherlands, 
Poland) (147). Increased intake of fibers from vegetables, fruits and 
whole grains, plant proteins from legumes, polyunsaturated fatty acids 
from fish and vitamins and reduced fat, alcohol, salt and sugar intake 
consistently modulated microbiome composition across countries.

Greater adherence to the Med diet was associated with 
improved cognitive function, reduced frailty and lower 
inflammation. Key microbial responders included SCFA-producing 
taxa (see section 2.1) such as Faecalibacterium prausnitzii, Roseburia 
hominis, Eubacterium species (E. rectale, E. eligens, E. xylanophilum), 
as well as Bacteroides thetaiotaomicron, Prevotella copri and 
Anaerostipes hadrus. These taxa were negatively associated with 
inflammatory markers hsCRP and IL-17 and measures associated 
with increased frailty; and were further negatively associated with 
lower production of secondary bile acids and the uremic toxin 
p-cresol (147). Prior studies have similarly shown reductions in 
p-cresol following increased fiber intake (55).

The CORDIOPREV trial evaluated the long-term effects of a 
Med diet versus a low-fat diet in patients with established 
coronary heart disease over a seven-year follow-up (8, 148). The 
Med diet was superior in reducing the risk of major cardiovascular 
events (148). The analysis of fecal samples from a subgroup of 
106 male participants revealed distinct baseline microbial 
compositions among individuals with and without metabolic 
syndrome. Those with metabolic syndrome had lower abundances 
of Bacteroides, Prevotella, Roseburia, Ruminococcus, and 
Faecalibacterium, and higher abundances of Streptococcus and 
Clostridia (8). Interestingly, the intervention only altered 
microbial composition in those with metabolic syndrome, and 
not in individuals without metabolic syndrome independent of 
obesity (8). Most of the compositional differences in participants 
with metabolic syndrome were reversed after follow-up 2 years 
later in addition to significantly decreased TG levels in both 
dietary intervention groups (8). Nutritional intake patterns 
shifted during the trial: the Med diet group increased their intake 
of olive oil, nuts and oily fish, and reduced consumption of 
carbohydrates and saturated fatty acids. The low-fat group 
increased carbohydrate consumption and reduced fat-intake; 
both groups reduced their intake of red and processed meats and 
carbonated drinks. Both groups increased dietary fiber 
consumption by 2.3 g (Med) and 3.2 g (low-fat) per 1,000 kcal 
(8, 148).

TABLE 3  (Continued)

Intervention Inclusion criteria Microbiome Changes Host/Metabolite Effects References

Personalized nutrition – PPT Prediabetes ↑ Faecalibacterium prausnitzii,

↑ Roseburia hominis,

↑ Ruthenibacterium lactatiformans,

↑ Flavonifractor plautii

↑ alpha diversity

↓ human cell shedding (151)

Focus was on SCFA-producing bacteria, diversity, and host effects (specifically, changes in metabolite concentrations). The up and down arrows signify an increase or decrease in the 
abundance of microbes, or in the concentration of metabolites or cytokines.
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4.8 Calorie-restricted, high-polyphenol 
Mediterranean diet intervention

The DIRECT-PLUS randomized controlled trial integrated 
multiple anti-aging strategies and included 294 participants with 
abdominal obesity and dyslipidemia. Participants were randomized 
into three groups: healthy dietary guidelines, a Med diet, and a 
polyphenol-rich, low-red/processed meat Green-Med diet. 
Green-Med and Med diets were calorie-restricted and included 
daily consumption of 28 g walnuts. Green-Med participants were 
guided to consume 3–4 cups of green tea and a 500 mL shake 
composed of Mankai, an aquatic plant rich in protein and 
polyphenols, which increased the polyphenol content of the 
intervention by 800 mg gallic acid equivalents (17). Both 
interventions led to weight loss, improved cardiometabolic markers, 
body weight, blood pressure and fasting plasma leptin. Further, the 
interventions resulted in significant compositional changes: 
Green-Med increased abundances of Prevotella, Bacteroides, 
Lachnospira and genus DNF00809 from the Eggerthellaceae family 
and decreased abundances of Dorea, Collinsella and Bifidobacterium 
(Table  3). Green-Med intervention compositional changes were 
largely driven by non-core members (17). Interestingly, reduced 
Bifidobacterium abundances were significantly associated with 
greater weight loss. In the Med-diet group, Lachnospira, DNF00809 
(Eggerthellaceae), Enterorhabdus, Intestimonas and genus UCG-003 
from the Erysipelotrichaceae family significantly increased. Changes 
in metabolic pathways included a stepwise increase in BCAA 
(branched-chain amino acid) degrading pathways and a decrease in 
BCAA biosynthesis pathways, and an association analysis revealed 
that reduced cysteine biosynthesis was linked to, and mediated, 
weight loss and reduction in CHD risk (17). Positive effects were 
specifically attributed to the increased polyphenol content in the 
Green-med group, including the significantly higher reduction in 
intrahepatic fat compared to the Med diet (149) and higher 
circulating levels of hippuric acid, as well as Urolithin A (see 
sections 2.4 and 2.5) that related to greater visceral-adipose tissue 
reduction, mediated by increased consumption of walnuts and 
Mankai (86).

The Green-Med diet also impacted biological age, as assessed by 
DNA methylation age clocks. At the end of the intervention, 
a ~ 9-month favorable difference between observed and expected 
methylation age was observed (150). Greater age attenuation was 
linked to higher intake of Mankai and green tea, which correlated with 
elevated urinary metabolite levels of hydroxytyrosol, tyrosol, urolithin 
A, and urolithin C (150).

4.9 Personalized nutrition

A personalized nutrition approach was tested in the post-prandial 
glucose targeting (PPT) trial in prediabetic individuals. The PPT diet 
was based on a machine learning algorithm that integrated multiple 
parameters (meal’s nutrients composition, blood data, 
anthropometrics, lifestyle and gut microbial features), to predict an 
individual’s postprandial glycemic response, and then provided 
recommendations for meals (151). The PPT diet was compared to a 
Mediterranean diet intervention (participants were encouraged to 
include whole-wheat bread and grains, legumes, fruits, vegetables, 

olive oil, fish, poultry and low-fat dairy products in their diet) (151). 
While both dietary interventions enriched Faecalibacterium species, 
the PPT diet had a more pronounced effect on the gut microbiome 
and metabolites than the control diet, including increased richness 
and diversity, and a significant decrease in human cell shedding. 
Further, the PPT diet increased Flavonifractor plautii, Roseburia 
hominis, Ruthenibacterium lactatiformans and three strains of 
Faecalibacterium prausnitzii (151) (Table 3).

5 Discussion

In this review, we summarized clinical dietary intervention 
trials conducted in elderly individuals and those at elevated risk 
for chronic diseases. We focused on fiber- and polyphenol-rich 
dietary strategies that aim to modulate the gut microbiota to 
improve host health. Across diverse interventions, we  found 
consistent evidence that even small dietary changes can 
beneficially shift microbial composition and function, most often 
reflected in increased abundances of SCFA producers and altered 
metabolite profiles.

We chose to focus on clinical trials in high-risk populations, 
where abundances of SCFA producers are generally lower, and 
intervention effects tend to be more pronounced (51, 121). This is 
relevant due to several reasons: Western diets typically fall short of 
recommended fiber intake levels, and our population is aging, 
intensifying the need to adjust dietary intake to match protective 
effects against chronic diseases like heart disease and diabetes. 
Furthermore, reduced microbial resistance to pathogens is often 
linked to increased intestinal permeability and systemic inflammation, 
both of which tend to increase with age. This was reflected in the high-
protein, low-carbohydrate trial in obese women, where reduced fiber 
intake led to a bloom of Akkermansia, a glycan-degrading bacterium, 
reduced levels of SCFAs and the emergence of C. difficile following 
fecal microbiota transfer into mice (121). In contrast, the MaPLE trial 
demonstrated that polyphenol-rich foods can strengthen the intestinal 
barrier in elderly living in a residential care facility, particularly in 
those with elevated permeability at baseline. Zonulin and calprotectin 
levels were reduced, SCFA producers increased, and circulating 
cytokines were modulated (124). These findings align with the 
evidence in mice that polyphenols can help preserve gut barrier 
integrity by suppressing mucus degradation and regulating tight 
junctions (75).

Simple dietary changes like the addition of herbs and spices can 
change microbiome composition, diversity and metabolites 
substantially. Individuals at risk for CVD showed increased 
abundances of SCFA producers like Faecalibacterium and 
Ruminococcus, and reduced blood pressure and inflammatory 
cytokine levels (125, 126). In healthy individuals, spices led to 
increased Bifidobacterium abundances and cinnamic and phenylacetic 
acid levels (128). Spices included cinnamon, black pepper, ginger, 
coriander, parsley and more, suggesting that, besides fibers and 
“whole” polyphenol-rich foods, polyphenol-rich spices can 
meaningfully impact the microbial fermentation products and host 
immune response.

We also reviewed two trials where legumes were the primary 
intervention food: the BEGONE trial (beans) and the study by Wu 
et al. (135). Both included obese participants, either with prediabetes 
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or a history of colorectal cancer or polyps, and showed increases in 
SCFA producers, such as Faecalibacterium, Eubacterium and 
Bifidobacterium, and increased microbial metabolites such as pipecolic 
acid and indolepropionate (131, 135). Both of these metabolites have 
been linked to reduced inflammatory responses and derive from 
microbial amino acid metabolism, potentially with the involvement 
of Bifidobacterium (57).

While the Mediterranean diet is well established for its 
cardiometabolic and cognitive benefits (8, 147), similar shifts in 
microbiome and metabolites can also be achieved with the addition 
of individual foods like nuts, legumes, and spices, which are often 
more accessible and easier to implement. These foods contain 
overlapping classes of fermentable fibers and polyphenols, and 
frequently result in increased SCFA producers such as 
Faecalibacterium, Roseburia, and Ruminococcus. These positive 
microbial responses were seen across multiple trials.

From a public health perspective, food reformulation may be one 
of the most scalable strategies to improve microbiome-related health 
outcomes. Trials using fiber-enriched croissants, bran-enriched flours, 
or whole-grains consistently showed improvements in markers such 
as LDL cholesterol, fasting glucose, SCFA production, and microbial 
metabolites like urolithin A (136, 137, 139). These findings support 
the idea that microbiota-targeted benefits can be achieved through 
modifying familiar foods, without requiring drastic dietary changes.

The Green-Med diet from the DIRECT-PLUS trial provides an 
example of a more complex dietary strategy, combining caloric 
restriction with higher polyphenol intake from walnuts, green tea, and 
Mankai. Compared to a calorie-restricted Med diet with walnuts, the 
Green-Med group showed more pronounced changes in microbial 
composition, SCFA metabolism, and liver fat reduction, as well as a 
measurable reduction in biological age as assessed by methylation age 
(17, 149, 150). This points to the potential of multi-component 
interventions to synergistically target microbiota-mediated 
health pathways.

A limitation in comparing across trials is the variability in study 
design, intervention duration, and lead-in diets. Short-term microbial 
responses are known to be influenced by habitual diet and microbial 
community diversity (52). In addition, differences in sequencing 
methods (16S versus metagenomic sequencing) can limit the 
comparability of microbiota outcomes across studies. Furthermore, in 
our review, there is a lack of direct head-to-head comparisons between 
different populations (e.g., young vs. elderly, metabolically healthy vs. 
compromised) receiving identical interventions. Our conclusion that 
intervention effects are more pronounced in elderly and metabolically 
compromised populations is based on synthesis across studies rather 
than direct comparative trials. These populations typically show lower 
baseline abundances of beneficial bacteria and compromised barrier 
function, which may explain their greater responsiveness to dietary 
interventions. Future studies directly comparing intervention 
responses across different populations would strengthen 
these observations.

Additionally, future studies that directly compare complex, multi-
component interventions like the Green-Med diet to simpler, more 
implementable strategies such as replacing low-polyphenol with high-
polyphenol foods would be interesting. The goal should not only be to 
maximize the intervention effect, but also to evaluate real-world 
applicability. A personalized approach based on baseline microbiota 

composition or host metabolic profiles may further enhance 
intervention effectiveness.

Gut microbial dysbiosis becomes more apparent with 
advancing age and chronic disease. However, the reviewed trials 
show that the microbiome remains responsive to dietary 
modulation. Improving dietary patterns by increasing the intake 
of fiber- and polyphenol-rich foods, such as beans, nuts, legumes, 
spices, berries, and tea, can help rebalance host-microbiota 
interactions and reduce modifiable risk factors. These strategies 
hold promise both for prevention and for targeted metabolic 
support, particularly in high-risk populations.
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