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Role of lactoferrin in osteopenia
and osteoporosis
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Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute
of Soochow University, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China

Osteopenia and osteoporosis (OP) are serious public health concerns that
impose substantial health and economic burdens on the global population.
Lactoferrin (Lf) is a natural iron-binding glycoprotein that exhibits numerous
biological functions. This review summarized the role of circulating Lf and related
biomarkers in maintaining bone health. Lf may protect against OP through
various mechanismes, including the osteoprotegerin/receptor activator of nuclear
factor kB ligand/receptor activator of nuclear factor kB, bone morphogenetic
protein signaling pathway, liver—bone axis, insulin-like growth factor 1 signaling
pathway, autophagy, and gut microbiota. Moreover, the peptides derived from Lf
and Lf-based nanoformulations or biomaterials show potential in preventing OP.
Overall, this review supports the potential application of Lf for OP.
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Introduction

Osteopenia and osteoporosis (OP) refer to conditions characterized by decreased bone
mineral density (BMD); however, they differ in the severity of bone loss. Osteopenia
represents a milder form of bone loss than OP. The global prevalence of osteopenia and
OP is estimated to reach 40.4% and 19.7%, respectively (1), resulting in a substantial health
and financial burden. OP can lead to fragile fractures, which can lead to disability and even
death in older adults (2, 3).

Lactoferrin (Lf) is primarily found in milk. It is a natural iron-binding glycoprotein
with a molecular weight of approximately 78 kDa and consists of >690 amino acids. Lf
supplementation has been reported to be beneficial against various diseases, including
obesity, type 2 diabetes, atherosclerosis, non-alcoholic liver disease, alcoholic liver disease,
and some cancers (4, 5). Studies have reported the positive effect of Lf on OP. To
obtain a comprehensive understanding of the association between Lf and OP, this review
summarizes the protective effects and underlying mechanisms of Lf treatment in OP.

Association between Lf and bone health

Endogenous Lf is present in serum, neutrophils, and saliva. Although reference values
for serum Lf levels have not been established in the general population, most studies
have indicated circulating Lf concentrations of ~500 ng/ml (6-10); however, some studies
have reported that Lf circulates at concentrations as low as 500 pg/ml or as high as
3,500 ng/ml (11, 12). Lf levels in biological samples are associated with several diseases,
including inflammatory bowel disease (13), Alzheimer’s disease, allergic rhinitis (9), and
rheumatoid arthritis (11). Lfis a potential biomarker for these diseases; however, studies on
the association between serum Lf and bone health are limited, and their interactions remain

01 frontiersin.org


https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2025.1648510
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2025.1648510&domain=pdf&date_stamp=2025-09-03
mailto:suzhouspine@163.com
mailto:shiqin@suda.edu.cn
https://doi.org/10.3389/fnut.2025.1648510
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnut.2025.1648510/full
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Liet al.

unclear. In a cross-sectional study, although there was no
association between serum Lf concentration and BMD or N-
terminal propeptide of type 1 precollagen (PINP), a positive
correlation of Lf with parathyroid hormone and B-crosslaps (-
CTx) was observed in older women (14). Specifically, circulating
Lf was associated with bone resorption markers (14). Hanna et al.
evaluated the saliva Lf levels in patients with OP and in healthy
controls without OP (15). The results indicated that, although not
statistically significant, Lf levels decreased in both unstimulated
and stimulated saliva from OP patients compared with the control
group (15); however, this was a preliminary analysis with no
adjustments performed. The predictive value of Lf in OP still
requires investigation through large-scale studies.

Studies on the effects of exogenous Lf supplementation for
OP have been conducted primarily in cells or animals. Although
Bharadwaj et al. found that a milk ribonuclease-enriched Lf
supplement could restore the balance of bone turnover within a
short period in postmenopausal women (16), the study failed to
isolate Lf and report BMD. Therefore, direct evidence from clinical
trials remains lacking. Low research priority and limited market
attention might be two important reasons. On the one hand, more
studies on OP mostly focused on bisphosphonates, denosumab, and
hormonal therapy (17), and Lf was regarded as a relatively low
priority in scientific resource allocation. On the other hand, Lf had
a smaller market scale than medicines or other classical nutrients
(e.g., 247 million for Lf in 2025 vs. 1.3 billion for vitamin D in
2022), resulting in insufficient support for clinical trials (18, 19).
Moreover, cohort studies on the associations between Lf intake and
BMD were also hard to conduct. Since almost all Lf intake was from
milk, Lf intake inevitably coincided with increased calcium intake.
Consequently, even though calcium intake could be adjusted to
some extent by statistical methods, the confounding factor cannot
be entirely eliminated.

Endogenous Lf is also present in breast milk, saliva, and
neutrophils (4, 20). Immunohistochemical analyses have indicated
that fetal osteoblasts (OBs) exhibit Lf immunoreactivity, whereas
adult OBs do not (21, 22). In the fetus, Lf was detected up to
the 18th week of gestation and disappeared after the 30th week
(22,23). Thus, Lf may be involved in bone growth regulation during
the early phases (23) but not as an optional biomarker for OP
in adults. In addition, Lf may be expressed in osteocartilagineous
tumors, chondroblastomas, chondromyxoid fibromas, and osteoid
osteomas but not in osteosarcomas, chondrosarcomas, ossifying
fibromas, osteochondroma, and enchondromas, which may reflect
a mature phenotype of these tumors (21, 23, 24).

Effects of Lf on osteoblasts and
osteoclasts

Bone remodeling is tightly regulated through crosstalk between
bone-forming OBs and bone-resorbing osteoclasts (OCs) (25).
Compared with OCs, more in vitro studies have focused on
the effects of Lf on OBs. Nagashima et al. found that human
recombinant Lf promotes MC3T3-El cell differentiation and
calcification (26). Another study indicated that Lf mediates
the enhanced osteogenesis of adipose-derived stem cells (27).
Mechanistically, the mitogen-activated protein kinase (MAPK)
signaling pathway (28) and BCL2-Beclinl signaling-mediated
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autophagy (29) participate in OB formation. In contrast, Owen
et al. compared the anabolic effects of five compounds on OBs. No
effect on osteogenic differentiation was observed, and even a high
dose of Lf (1 mg/ml) produced an adverse effect (30). Furthermore,
certain Lf-derived peptide fractions (fragment residues 624 to
632, also called LPF-C, and amino acids 97-122 from the N-
terminus) also induce OB proliferation (31, 32), which warrants
further investigation.

Some studies have indicated that Lf not only promotes OBs but
also inhibits OC development (33-35). However, Lf does not alter
bone resorption in calvarial organ culture, which suggests that Lf
does not affect mature OC function (34). In other words, Lf is able
to affect immature OCs but not mature ones. Lorget et al. found
that Lf inhibited osteoclastogenesis and bone resorption through a
mechanism independent of the osteoprotegerin/receptor activator
of nuclear factor kB ligand/receptor activator of nuclear factor kB
(OPG/RANKL/RANK) (36).

Many factors might lead to discrepancies in the effects of
Lf on OBs or OCs, including dose, source, and intervention
time. Additionally, cell type might also be an important reason.
For example, Lf at the same dose could promote differentiation
and calcification in MC3T3-E1 cells (26) but not in human
mesenchymal progenitor-derived OBs (30). Iron saturation might
further play a role, since some researchers observed that the
biological effects of Lf varied with iron saturation levels in other
diseases (37). Meanwhile, we should hold a cautious attitude
toward the results from the cell-based studies due to the inherent
limitations in their evidence hierarchy.

Effects of the Lf forms on bone

Most studies on Lf have primarily focused on the bovine or
human form. Generally, they appear to exhibit comparable activity
(38); however, it should be emphasized that the activities are not
always interchangeable, because their modes of intestinal receptor
recognition is inconsistent (39).

Structure-function relationship studies suggest that the
differences are minimal for the effects of the various Lf forms on
osteogenic activity (40). The iron saturation level of Lf is not a key
factor affecting OB function or mitogenic activity in MC3T3-E1
cells (41). In addition, the glycosylated forms and source of Lf do
not alter its mitogenic activity (42). Although Wang et al. found
that the osteogenic activity of Lf decreased with increasing iron
saturation (43), and Zhang et al. found that bovine Lf appears to
have more proliferative capacity compared with human Lf (44),
the differences may be minor. Studies on Lf in OCs are relatively
insufficient, whereas its osteoclastogenic activity appears to be
located in the N-lobe of recombinant Lf (38).

Potential mechanisms underlying the
effects of Lf on OP

Numerous studies have examined the underlying mechanisms

of Lf in OP as summarized in Table |. However, many
conclusions remain speculative, and the exact mechanisms are
poorly understood. A lack of high-quality studies also is an issue.

A comprehensive exploration on the mechanisms is necessary
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TABLE 1 Potential mechanisms of Lf on OP.

10.3389/fnut.2025.1648510

Type Subject Model Intervention Effects and/or mechanisms
In vitro (34, 42) Bone-forming cells 0.1 pg/ml Proliferation increase
Osteoblasts
Cartilage cells
Murine bone marrow > 1pg/ml Decrease osteoclast development, but does not influence mature
culture system osteoclast function
Calvarial organ culture
In vivo (34, 42) Adult male mice local injection Increase calvarial bone growth
(0.04, 0.4, and 4 mg)
In vivo (124) Female SD rats OvVX oral administration Protect against BMD loss
(0.85, 8.5, 85 mg/kgbw) Improve bone microarchitecture
Reduce TNF-a and IL-6
Elevate calcitonin
In vivo (46) Female SD rats OvVX 10-2,000 mg/(kg-d) Preserve bone mass and improve bone microarchitecture
Enhance bone formation, reduce bone resorption, and decrease
bone mass loss
Suppress RANKL/OPG mRNA ratio
In vivo (45) Female BALB/c mice OovVX 2,20, and 100 mg/(kg-d) Improve BMD
Suppress RANKL/OPG ratio
Regulate osteoimmunology pathway
In vitro (28) ME3T3-E1 20-500 pug/ml Promote dose-dependently cell proliferation
Stimulate MAPK signaling pathways
In vivo (48) Male SAMP6 mice Oral administration Improve bone mass and microstructure
2 g/(kg-d) Increase Igfl mRNA expression and activate AKT
Decrease Rankl/Opg mRNA
Decrease the expression levels of p16 and p21
In vivo (47) Female SD rats OVXand Oral Not only accelerate bone growth at an early stage of OPF healing,
fracture 85 mg/(kg-d) but also shortens the remolding process
Increase BALP in serum
Decrease TRAP5b and TNF-a in serum
Lower RANKL/OPG mRNA ratio in callus
In vitro (30) hES-MP cells 0.01-1 mg/ml Reduce metabolic activity and cell number
Decrease ALP activity and mineral deposition
In vitro (31) MC3T3-El Lf-derived peptide promote ALP activity and calcium deposition
bind to EGFR to activate the MAPK pathway
In vitro (32) MC3T3-E1 Lf-derived peptide Promote osteoblast proliferation and ALP activity
1-1,000 pug/ml
In vitro (29) Primary osteoblasts 1, 10, and 100 pg/ml Inhibit BCL2 expression and further enhance Beclinl-dependent
autophagy activation
In vitro (54) Primary rat osteoblasts 10 and 100 jLg/ml Inhibit apoptosis
In vitro (53) Primary rat osteoblasts 1-1,000 pug/ml Promote osteoblast proliferation and inhibit apoptosis through
IGF-1R
In vitro (53) MC3T3-El 100 pug/ml Stimulate osteoblast differentiation mainly through
LRP-1-independent PKA and p38 signaling pathways

for the applications of Lf. Emerging technologies such as spatial
metabolomics and single-cell sequencing offer new opportunities
for mechanism exploration. Meanwhile, although many pathways
are involved in the protective effects of Lf in OP, regulation
of the balance between osteoblasts and osteoclasts remains a
fundamental mechanism.

OPG/RANKL/RANK signaling pathway

The imbalance between OBs and OCs is a key factor in OP
pathogenesis. The OPG/RANKL/RANK system plays an important

Frontiersin Nutrition

role in this process. RANKL is expressed by OBs, and it can activate
its receptor (RANK) expressed on OCs to promote OC formation.
Moreover, the secretory glycoprotein OPG inhibits the effects of
RANKL as a decoy receptor. Thus, abnormal alterations in the
RANKL/OPG ratio may increase bone resorption and decrease
bone formation.

There was direct evidence from animal studies to support
that Lf could protect against OP via this signaling pathway.
In an estrogen-dependent bone loss model, Fan et al. reported
that Lf administration increases BMD in ovariectomized (OVX)
female mice, accompanied by a decrease in the RANKL/OPG
ratio (45). Similar results were observed in OVX rat models (46,
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47). Moreover, the lower RANKL/OPG ratio may be a result of
upregulation of IFN-y, IL-5, and IL-10 (45). Chen et al. also
reported that the ameliorative effects of Lf on aging-suppressed
osteogenesis through IGF-I signaling were associated with an
increased OPG/RANKL ratio at the mRNA level in SAMP6
mice (48).

IGF1 signaling pathway

Insulin-like growth factor 1 (IGF1) is a major mediator of
skeletal growth (49). Aging is a major risk factor for OP, and
IGF1 may play a crucial role in the development of aging-
related OP (50). There is also direct evidence to support the
role of IGF1 in the effects of Lf on OP. Chen et al. examined
the effects of Lf in a senile OP model (SAMP6 mice) and in
senescent OBs (48). The results indicated that Lf could improve
bone metabolism and increase Igfl mRNA expression in vivo.
Moreover, Lf improved OB proliferation in an in vitro senescence
model (48). Several studies have demonstrated that aging results
in oxidative stress in the body, which may contribute to senile
OP (51, 52). Lf treatment could inhibit oxidative stress and delay
senescence by decreasing p16 and p21 expression levels. Further,
knockdown of IgfI attenuated the effect of Lf on osteogenesis (48),
which enhanced the causal inference reliability. Lf-mediated IGF1
upregulation may play a more important role in age-related OP
compared with other molecules. Lf may also inhibit apoptosis to
promote osteogenesis by upregulating IGF1/IGF1R in vitro (53, 54).
Furthermore, knockdown of the IGF1 gene or silencing of IGFIR
increases apoptosis in OBs (53, 54). Interestingly, Lf exhibited
higher PI3K and RAS phosphorylation levels in IGF1R-silenced
OBs, suggesting that Lf might activate PI3K and RAS through
an IGF1R-independent pathway (53). Overall, current evidence
suggested that Lf may upregulate IGF1 to influence its downstream
pathway and directly activate IGFI.

Autophagy

Autophagy is an evolutionarily conserved intracellular “self-
eating” process that contributes to the onset and progression of
osteopenia and OP. Aging, estrogen deficiency, and high-fat diets
can trigger the adipogenic differentiation of mesenchymal stem
cells (MSCs) and BMD reduction (55). In addition, the activation
of autophagy is correlated with the osteogenic differentiation of
MSCs (56). Estrogen can inhibit apoptosis induced by serum
deprivation of osteoblasts, which may be partly achieved by
promoting autophagy (57). Autophagy also plays a role in signaling
pathways, which is significant to osteogenesis. For example,
autophagy upregulation is considered one reason for the IGF1-
simulated osteogenic differentiation of osteoblasts (58). Direct
evidence indicates that Lf can inhibit B-cell lymphoma 2 (BCL2)
expression in osteoblasts, further enhancing Beclinl-dependent
autophagy activation, which may positively influence osteoblast
formation (29). To further investigate the role of BLC2 in Lf-
promoted autophagy in OBs, the researchers upregulated BCL2
expression, and it reversed the Lf-induced autophagy promotion.
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A similar phenomenon also occurred after Beclinl silencing
(29). Regrettably, all data were obtained from in vitro studies.
This gap necessitates future validation through well-designed
animal experiments.

Bone morphogenetic protein signaling
pathway

Bone morphogenetic proteins (BMPs) are cytokines belonging
to the transforming growth factor-p (TGF-B) superfamily (59).
In particular, BMP2 is considered the gold standard for bone
regeneration (60), and it is an osteogenic factor approved by the
FDA for clinical use (61). Mouse models generated by suppressing
BMP signaling in OBs exhibit osteopenia phenotypes (62-64),
further demonstrating the osteogenic role of BMPs in promoting
OB differentiation. However, hyperactivated BMP signaling is a
risk factor for heterotopic ossification, which is a major side
effect of BMP treatment (65). At the molecular level, although
the mechanisms were not fully elucidated, there are several
potential pathways for promoting osteogenesis by BMPs (59):
(1) positively regulating Runx2; (2) crosstalk between BMP and
WNT signaling; (3) inducing the expression of osteogenesis-related
transcription factors; and (4) positively regulating mammalian
target of rapamycin (mTOR) activity. The low-density lipoprotein
receptor-related protein (LRP) may also be a receptor for both
WNT and Lf (66, 67). BMP signaling appears to have dual effects
on bone formation, manifested as antagonizing osteogenesis in
OB progenitors, negatively regulating mineralization, and collagen
maturation (68-70). This may be the result of WNT antagonist
expression induced by the BMP receptor and reduced p-catenin
activation (71, 72). Li et al. hypothesized that BMP antagonizes
bone formation by inhibiting WNT/B-catenin signaling (59).
Alternatively, BMP signaling may promote OC differentiation (59).
Nonetheless, the sophisticated interactions between BMPs and
WNT/B-catenin and the relationships of BMPs to OB-OC coupling
warrant further exploration.

The direct effects of Lf on BMPs were not reported; however,
indirect evidence suggests regulatory effects of Lf on the BMP
signaling pathway. For example, Lf hydrolysate from the N-lobe
promoted OB differentiation in a BMP-dependent manner in vitro,
and it could promote osteogenic effects through increasing BMP2
production in OVX rats (73). However, it has not been confirmed
that the Lf segment can be generated in the digestive tracts and
absorbed into the blood. It remains unknown whether orally
administered Lf can exert its bioactivity in this manner.

Liver—bone axis

The liver is the central metabolic organ of the body, and it
plays an important role in bone homeostasis. Approximately 40%
of individuals with OP have other chronic conditions, including
chronic liver injury. The physical distance between the liver
and bone limits their direct interaction; however, the liver can
communicate the bone by secreting signaling molecules. Lu et al.
reported that dysregulation of the liver-bone axis promoted the
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progression of hepatic osteodystrophy (74). In the liver-bone axis,
hepatokine lecithin-cholesterol acyltransferase (LCAT) promotes
reverse cholesterol transport from the bone to the liver, whereas its
loss may exacerbate the bone loss phenotype. Many studies have
described the protective effects of Lf against liver injury (75), and
our studies have also shown that Lf can prevent ethanol-induced
liver injury in mice (76-78). Although no direct evidence has been
established, the present data suggest that the liver-bone axis may be
a mechanism for the protection of Lf against OP.

Gut microbiota

Although there was no direct evidence to support that the
effects of Lf on OP depend on the gut microbiota, interactions
between the gut microbiota and OP have recently been a subject
of interest for researchers (79, 80). Gut microbiota dysbiosis has
been observed in patients with OP (81-83). However, studies using
germ-free or antibiotic-treated mice have produced conflicting
results regarding the effects of gut microbiota on bone (84-87).
The results were questioned by some scholars, who argued that
data from germ-free animals may not be applicable to individuals
with normal gut microbiota, and that the unintended effects of
antibiotics could not be avoided (80). Understanding the complex
association between gut microbiota and OP remains challenging.
Moreover, fecal microbiota transplantation is not considered
an effective option for the treatment of OP because of the
harmful bacteria present in the transplant material (80). Therefore,
supplementation with one or several probiotics may be a feasible
strategy. Lactobacillus and Bifidobacteria are two conventional
probiotics, and several studies have confirmed their beneficial
effects on bone remodeling (88-93). In addition, Akkermansia, as
a representative of “next-generation probiotics,” also exhibited a
positive effect on BMD (94, 95). However, these findings are mainly
derived from preclinical studies. Nilsson et al. conducted a well-
designed trial to assess the effects of Lactobacillus on bone loss
(88). However, this trial included only older women, thus limiting
the generalizability to the general population. Moreover, the small
sample size also limited the reliability of the findings.

“Lf-gut
regulatory axis may exist. The aforementioned three bacteria

Theoretically, a microbiota-metabolites-bone”
are closely associated with Lf supplementation. An increased
abundance of Lactobacillus has been observed in individuals
treated with Lf (96). The growth-promoting effects of Lf on
Bifidobacteria have also been reported (97). Interestingly, the
pepsin hydrolysate of bovine Lf showed stronger bifidogenic effects
than natural bovine Lf on some strains of Bifidobacteria (98).
Thus, Lf peptides may represent the active bifidogenic form of
Lf (97). Furthermore, bifidogenic effects may be achieved by Lf-
binding proteins localized at the poles of bifidobacterial cells (99).
Furthermore, oral Lf may increase Akkermansia abundance in the
gut microbiota (100). This was also confirmed in our experiments
(76, 78). The regulation of gut microbiota on bone was likely
mediated through their metabolites, of which short-chain fatty
acids (SCFAs) were widely recognized as an important candidate
(101). Among SCFAs, propionate can only be generated by a few
specific bacterial strains (102). Coincidentally, Akkermansia can
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generate propionate (103), which might be a mechanistic reason for
the effects of Lf on OP. While germ-free or antibiotic-treated mice
may not represent optimal models, they remain an appropriate
choice to verify the relationship among Lf, OP, and gut microbiota.
Although the crosstalk between gut microbiota and bone has
been reported (80, 101), the influence of Lf on OP through gut
microbiota remains theoretical and requires further evidence.

Lf peptides

Lf is nearly completely degraded in the stomach; however,
some fragments resist further digestion (104, 105). Therefore, the
biological activity of Lf may depend on its peptide fragments.
Lactoferricin (Lfcin) and lactoferrampin (Lfampin) are two Lf
fragments of interest that exhibit antimicrobial effects (106).
Moreover, the anticancer and immunomodulatory effects of
Lfcin have been reported (107, 108). Whether Lfcin or Lfampin
influences bone metabolism has not yet been established.

LFP-C (FKSETKNLL) is a peptide from bovine Lf hydrolysates
generated through pepsin digestion. Its osteogenesis activity
was demonstrated in vitro (31). Molecular docking suggested
that the osteogenesis of LFP-C may result from its binding to
the key domain (Lys13-Thr15-Gln16-Leul7-Gly18-Asp22) of the
epidermal growth factor receptor (EGFR), which activates the
MAPK pathway; however, biological validation has not been
performed (31).

The LP2 peptide (RKVRGPPVSCIKRDSPIQ) from human
Lf has self-assembly properties and skeletal bioavailability.
LP2 stimulates OB differentiation through a BMP-dependent
mechanism and osteoblastic production of OPG. Moreover, the
subcutaneous administration of LP2 accelerates bone healing and
bone formation in vivo (73); however, the underlying molecular
mechanisms were not examined. Because of the low resistance of Lf
to digestion, Lf peptides may exhibit a higher simulation effect than
Lf, particularly in vitro. Additionally, the active form of Lf may be
its digestive hydrolysate rather than the intact molecule. Therefore,
using intact Lf for in vitro experiments may not fully simulate the
real in vivo effects, and the peptides may have higher research value
for exploring the underlying mechanisms of Lf.

Optimal Lf doses for humans

The main source of Lf is milk in the daily diet. In milk, the Lf
contents mainly concentrate on 0.1~0.2 mg/ml (109, 110). Thus,
an adult can ingest 50-100 mg per day through a regular diet. In a
rat study, oral administration of Lf at 2 g/kgBW/d (equivalent to 20
g/d for an adult) for 13 weeks did not produce adverse effects (111).
Another study also found that a daily intake of up to 9 g Lf is safe
for humans (112). Due to its proven safety, Lf has been approved to
be added to infant formula in many countries (113), and FAO and
WHO recommend the level of Lf supplementation is 500 mg/kg
in infant formula (114). Moreover, for adults, an expert consensus
indicated that the recommended daily supplementation of Lf is
200-600 mg (115). It should be noted that these doses are intended
for the general population. To date, there is still no evidence-based
recommended Lf dose for OP prevention and treatment. Although
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FIGURE 1

Potential mechanisms of the OP-protective effect of lactoferrin.
Lactoferrin may regulate the balance between osteoblasts and
osteoclasts via multiple mechanisms, including but not limiting
OPG/RANKL/RANK pathway, IGF1 pathway, autophagy, BMP
pathway, liver-bone axis and gut microbiota.

some studies indicated that excessive doses of Lf may have potential
negative effects (78, 116), this concern is likely of limited practical
relevance. Due to the high cost of Lf supplements, excessive intake
is virtually impossible in the real world.

Clinical applicability of Lf

So far, most evidence for the beneficial effects of Lf on bone
metabolism derives from preclinical studies, and the clinical trials
are markedly lacking. Although no clinical trial has directly focused
on Lf and OP, one randomized controlled trial investigated milk
ribonuclease-enriched Lf on bone turnover markers. In this trial,
milk ribonuclease-enriched Lf supplementation displayed positive
effects on serum bone turnover biomarkers in postmenopausal
women aged 40-60 years (16). However, it cannot be confirmed
that the changes were attributed to Lf; meanwhile, the study was
performed in a special population, and BMD was not determined,
which might limit its generalizability and reliability. Despite
these limitations, Lf is still remains a promising agent for OP
protection due to its broad biological activities and high safety
(5, 117). In the future, large-scale randomized controlled trials
are required to validate the efficacy of Lf in OP. Of course, Lf,
as a natural food component, is not as therapeutically effective as
conventional pharmaceuticals. Lf may serve as a preventive agent
or adjunctive therapy rather than a primary therapeutic agent in
clinical practices.

Lf-based nanoformulations or
biomaterials

Due to the poor oral bioavailability of Lf, some groups have
developed different formulations for bone health. Lf-embedded
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type 1 collagen membranes retain their pro-calcification effects
during osteogenic differentiation in vitro (118). Injectable scaffolds
are also considered efficient Lf delivery systems. Kim et al. reported
that Lf-loaded porous polymicrospheres promote osteogenic
differentiation by controlling Lf release (119). Liposomes are
another important delivery system (120, 121). Recently, these topics
have been thoroughly reviewed by other scholars (122, 123) and are
beyond the scope of this review. Therefore, we have not discussed
them in detail in this review.

Conclusion and future outlook

Several mechanisms have been reported to explain the effects
of Lf on OP (Figure 1); however, these mechanisms are primarily
derived from cell or animal experiments. The lack of clinical
evidence remains the largest pain point for the applications of
Lf. It is valuable to conduct a randomized, placebo-controlled,
double-blinded trial to assess the efficacy of Lf. In this trial, BMD
is a more valuable outcome besides serum biomarkers such as
ALP, B-CTx, and TPINP. Considering that the immediate effects
of Lf (as a natural food component) may be weak, a long-term
intervention is recommended. And other proteins without medical
effects can be selected as a placebo. It should be noted that we need
to maintain a “cautiously” optimistic attitude until the effectiveness
of Lf on OP is confirmed. Moreover, the mechanisms through
which lactoferrin regulates these pathways remain a “black box,”
and deconstructing this box is a research topic that warrants
further exploration.
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