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Fermented foods are increasingly recognized for their potential benefits in 
supporting bone health, attributed to their rich content of bioactive compounds 
including vitamins K and B, polyphenols, peptides, and fermentation-modified 
phytates. This review examines how these components, enhanced in bioavailability 
through fermentation, may modulate bone metabolism via multiple mechanisms: 
improving mineral absorption, reducing inflammation, regulating oxidative stress, 
and influencing osteoblast and osteoclast activity. Special attention is given to the 
gut-bone axis, where fermented foods interact with gut microbiota to produce 
metabolites such as short-chain fatty acids and immunomodulatory compounds 
that may further support skeletal health. While preclinical and population-level 
studies show promising associations, clinical evidence remains limited and 
heterogeneous. Future research should focus on human trials, strain-specific 
effects, and long-term outcomes to fully establish the role of fermented foods 
in osteoporosis prevention and bone health maintenance.
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Introduction

Fermentation is an ancient method for food preservation and for producing new food 
items. Fermented foods worldwide are grouped according to the local ingredients available 
and the indigenous techniques employed to produce the edible products with desired sensory 
properties, which are named in accordance with local custom. These groups encompass 
fermented dairy, fermented grains, fermented meats, fermented fish, fermented legumes, 
fermented soybeans, fermented vegetables, fermented roots like cassava, and others 
(Table 1) (1).

In regions with widespread pastoral farming, such as the Middle East, Europe, and the 
Indian subcontinent, abundant milk from cows, sheep, and goats led to the development of 
fermented dairy products like fermented milk and cheese (2). In contrast, East Asian countries 
like China, Japan, and Korea, where animal husbandry was less prominent, developed 
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TABLE 1  Native names of some traditional fermented foods of the world (1).

Fermented 
products

Continent-wise

Asia Africa Europe and Australia North America South America

Fermented dairy Airag, Chhu, Chhurpi, Churkam, Dahi, Dadih, 
Kalari, Lassi, Mar, Misti dahi or Lal dahi, Mohi, 
Philu, Shrikhand, Somar, Sua Chua, Tarag

Amabere, Amaruranu, Amasi, Ergo, 
Fènè, Gariss, Kule Naoto, Leben, Lben, 
Mabisi, Mafi, Masai, Mursik, 
Mutandabota, Nunu, Omashikwa, 
Pendidam, Nyarmie, Sethemi, Suusac, 
Zabady

Hundreds of traditional European cheeses as a general term 
with various local names (Camembert, Cheddar, Brunost, 
Dubliner, Kefir, Koumiss, Manchego, Serra da Estrela, Skyr, 
Västerbottensost); Viili, Tarhana, yogurt

Cheese, yogurt Cheese: Coalho, Corrientes, 
Minas, Pategrás, Reggianito 
Argentino Serrano; Yogurt

Fermented cereal Ang-kak, Appam, Dosa, Idli, Jalabi, Khamak (Kao-
mak), Lao-chao, Nan, Puto, Rabadi, Selroti, Tape 
Ketan

Busa, Ben-saalga, Enjera/Injera, Gowé, 
Hussuwa, Kenkey, Kunu-zaki, Kisra, 
koko, Mawè, Mbege, Ogi, Pito, Poto 
poto, Togwa, Uji

Sourdough, loaves Sourdough, loaves, Pozol, Sourdough

Fermented Meat Arjia, Chartayshya, Kargyong, Khyopeh, Nham 
(Musom), Nem-chua, Pastirma, Sai-krok-prieo, 
Sa-um, Satchu, Suka ko masu, Tocin

Basterma, Basturma Gueddid, Khlii, 
Khlia, Msrana, Merguez, Naqaneq, 
Pastirma, Pastrami, Sujuk, Soudjouk

Hundreds of lesser-known and common traditional 
fermented sausages such as Alheira, Androlla, Chorizo, 
Morcilla, Pastirma, Peperoni, Salchichon/saucisson, 
Salsiccia, Soppressata, Sucuk; Hams,

Fermented sausages, 
ham, jerki

Sausages

Fermented Fish Balao-Balao (Burong Hipon Tagbilao), Bordia, 
Belacan (Blacan), Bakasang, Burong Bangus, Budu, 
Gnuchi, Gulbi, Hentak, Hoi-Malaeng, Ika-Shiokara, 
Jeotkal, Karati, Kusaya, Lashim, Myulchijeot, Ngari, 
Narezushi, Nam Pla
(Nampla-Dee, Nampla-Sod), Nuoc Mam, Patis, 
Pla-Paeng-Daeng, Pla-Som (Pla-Khao-Sug), Pu-
Dong, Saeoo Jeot, Sheedal, Sidra, Suka ko Maacha, 
Sukuti, Shottsuru, Sikhae, Surströmming, Tungtap

Feseekh, Momone Surströmming, rakfisk, hákarl Smoked fish Smoked fish

Fermented Legume Bhallae, Dhokla, Maseura, Oncom Hitam (Black 
Oncom), Oncom Merah (Orange Oncom), Papad, 
Wari

Bikalga, Dawadawa, Iru, Kawal, Kinda, 
Ogiri, Ogili, Okpehe, Soumbala, Ugba

Unconsumed Unconsumed Unconsumed

Fermented Soybean Axone/Aakhoni, Bekang, Chongkukjang, Doenjang, 
Douchi, Furu, Grep Chhurpi, Gochujang, Hawaijar, 
Kinema, Kanjang, Kecap, Ketjap, Natto, Meitauza, 
Meju, Miso, Pe poke, Peruyaan, Peron Naming, 
Pheha Shoyu, Sieng, Sufu, Tauco, Thua Nao, Tempe, 
Tungrymbai, Yandou

Not consumed Unconsumed Unconsumed Unconsumed

Fermented vegetable Burong mustala, Dha muoi, Ekung, Eup, Fu-tsai, 
Gundruk, Goyang, Hom-dong, Hiring, khalpi, 
Jiang-gua, Jiang-sun, Kimchi, Naw-mai-dong, 
Mesu, Oiji, Pak-gard-dong, Pak-sian-dong, Pao cai, 
Soidon, Soibum, Sayur asin, Sinki, Sunki, Suan-cai, 
Suan-tsai Takuanzuke, Tuaithur

Fermented olives Sauerkraut; Sapal (fermented Colocasia esculenta and 
coconut) in Papua New Guinea

Sauerkraut Fermented olives

Fermented roots (cassava) Tape Chikwangue, Cingwada, Fufu, Gari, 
Lafun, Konkonte

Unconsumed Unconsumed Beiju, Calugi, Cauim, Caxiri, 
Puba, Tarubá, Tucupi, 
Yakupa, Y Parakari

The authors express regret for any errors in the spelling or phonetics of local names for traditional fermented foods, should they be incorrect.
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fermented fish and soy-based foods instead (3, 4). In Africa, 
fermentation traditions rely on local grains (millet, sorghum, maize, 
wheat) and roots like cassava, alongside naturally fermented dairy 
from cows, buffalo, and camels (5, 6). Similarly, in Europe, the 
Americas, and Australia, livestock farming has supported the 
production of fermented dairy (7) and meat products (8), which are 
an integral part of local diets.

Traditionally, foods that undergo natural or spontaneous 
fermentation are produced from either plant or animal origins that do 
not require starter cultures. Numerous fermented foods are still 
produced via natural or spontaneous fermentation (9) or by employing 
back-slopping methods (10, 11). Many traditional fermented foods 
continue to be made at home, on a small scale, and with traditional 
practices. Nevertheless, the 20th century witnessed a substantial rise 
in the availability of starter cultures, which are now commonly used 
in commercial fermentation processes for products such as wine, 
dairy, and meat, particularly in Western nations. The application of 
starter cultures, utilizing the functional strains of food-grade bacteria, 
yeasts, or molds, represents a major transformation in the fermented 
foods and beverages market (12).

Historically, the main role of fermented foods was for preservation, 
but their extra advantages became noticeable as time passed. Prior to 
the establishment of nutrition science, fermented foods were made to 
ensure a consistent supply of vitamins, minerals, calories, and other 
vital nutrients required for survival. Progress in food microbiology 
and nutrition has indicated that specific beneficial microorganisms are 
essential in converting raw materials into fermented food products. 
These microorganisms aid in producing bioactive substances, 
vitamins, immune system enhancers, short-chain fatty acids (SCFAs), 
and secondary metabolites, which all contribute to consumer health 
and well-being (13–15). Genomic techniques supported by multi-
omics approaches are increasingly being employed to investigate 
diverse microbial communities and their bio-functionalities present 
in fermented foods (16, 17), as well as to detect unidentified 
biomarkers or genetic signatures for various health and therapeutic 
purposes (18).

Fermented foods present numerous health benefits, which include 
improved digestion and regulation of the gut microbiome (19–21), 
prevention of type 2 diabetes and metabolic syndrome (22, 23), 
decreased risk of cardiovascular diseases (24), relief from lactose 
intolerance (25), reduction of inflammation (26), combating obesity 
(27–29), aiding bone healing (30, 31), exhibiting anti-cancer 
properties (32, 33), and preventing neurodegenerative diseases (34). 
Fermented foods are also positioned as key dietary ingredients to 
promote bone health. Since bone-related diseases represent a wide 
burden worldwide, it is of great importance to investigate the ability 
of fermented food to preserve bone health. Indeed, for instance, 
osteoporosis has a significant impact on individuals’ quality of life and 
morbidity worldwide, particularly among the elderly and 
postmenopausal women. Given the increase of the number of bone 
fractures during the last decades as well as the associated burden to 
individuals, families, societies, and health-care systems (35, 36), the 
prevention of bone diseases is a public health priority. Thus, a 
thorough investigation of the links between fermented foods and bone 
health is essential. Among these emerging benefits, bone health has 
gained attention as a novel and promising target for dietary 
modulation through fermented foods. This interest arises from several 
factors. First, osteoporosis and low bone mineral density (BMD) are 

major global public health concerns, particularly affecting aging 
populations and postmenopausal women (36–38). Second, diet plays 
a pivotal role in modulating bone metabolism, and the gut–bone axis 
has emerged as a key mediator linking dietary habits to skeletal 
outcomes (39). Recent evidence suggests that fermented foods 
through their unique matrix of nutrients, microbial metabolites, and 
live microorganisms may influence bone health beyond their basic 
nutritional content (40–42). This influence is hypothesized to occur 
through various mechanisms including modulation of gut microbiota, 
reduction of systemic inflammation, and enhancement of mineral 
bioavailability (43, 44).

Bone is a dense and structured tissue made up of cells surrounded 
by a plentiful hard intercellular substance that consists of collagen 
fibers and calcium phosphate (45). The growth, preservation, and 
renewal of bone tissues within the human body involve a series of 
co5rdinated mechanisms that result in tissue development, 
maintenance, and healing after injury (46). Bone metabolism 
necessitates essential dietary micronutrients like calcium (47), 
phosphorus (48), magnesium (49), and vitamin D (50). Minerals are 
taken up in the upper section of the gastrointestinal tract in an ionized 
form, which is the typical state under the stomach’s low pH. The 
uptake of calcium is significantly enhanced by vitamin D, making this 
vitamin essential for its availability in the body (51). Research has also 
linked vitamins B complex and K as important factors in maintaining 
bone health (52). The way B vitamins influence bone physiology seems 
to be related to their impact on homocysteine metabolism (53), while 
the action of vitamin K appears to occur through the steroid 
xenobiotic receptor and/or through the γ-carboxylation of osteocalcin 
(OC), which is the most prevalent vitamin K-dependent protein 
specific to bone (54).

In recent years, fermented foods have attracted attention as 
possible dietary interventions for bone health because of their rich 
content of bioactive compounds (40–42, 55, 56). Fermentation is a 
microbial biochemical process that produces numerous metabolites 
(organic acids, peptides, vitamins, etc.) from the macromolecules of 
raw materials, some of which may influence bone health (57–59). 
Certain fermented foods are particularly rich in group B vitamins 
(riboflavin and folates) and vitamin K (menaquinones) (60, 61), as 
they are predominantly produced by fermentative microorganisms, 
especially those belonging to lactic acid bacteria (LAB). In plant-based 
foods, the absorption of minerals is negatively impacted by the 
presence of anti-nutritional factors, such as oxalates and phytates (62); 
these are diminished during fermentation due to the action of 
microbial enzymes, simultaneously aiding in the release (and 
availability) of phosphorus (63). Additionally, the low pH of most 
fermented foods may delay the neutralization of the chyme, thereby 
prolonging ionization and enhancing absorption (64). Hence, the 
intake of fermented foods could assist the body in absorbing a greater 
amount of minerals and improving the intake of vitamins that 
promote bone health. Preclinical and population studies have 
suggested potential associations between fermented food consumption 
and improved bone density or reduced fracture risk (65–67), however, 
the multiple underlying mechanisms ranging from enhanced nutrient 
bioavailability and microbiota modulation to anti-inflammatory 
effects, have not been comprehensively investigated within a 
single framework.

Phytic acid, vitamins B complex and K, polyphenols, and bioactive 
peptides are essential biological compounds affecting bone health in 
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humans (68–71). These compounds whether naturally present, 
enriched, or modified through fermentation, are central to 
understanding how fermented foods may influence bone metabolism. 
Recently, it has been reported that fermented foods may enhance bone 
health via the gut microbiota by stimulating the osteoimmune system, 
producing SCFAs, and facilitating the absorption of nutrients such as 
calcium (72).

While most of these compounds are generated or enriched during 
fermentation, in some cases like phytic acid, fermentation contributes 
by reducing their levels, thereby indirectly supporting mineral 
bioavailability and bone health. Despite this reduction, phytic acid 
itself has been reported to exert context-dependent effects on bone 
metabolism, and is therefore discussed as a relevant compound within 
the scope of this review.

However, despite increasing interest, the body of evidence remains 
fragmented across food types, health claims, and mechanisms. A 
comprehensive review is thus warranted to systematically explore and 
consolidate current knowledge on the potential of fermented foods in 
maintaining or improving bone health, their mechanisms of action, 
and their relevance in dietary strategies for osteoporosis prevention 
and bone metabolism modulation. Hence, we attempt to review the 
various beneficial effects of consuming fermented foods on bone 
health and the molecular underpinnings of the various mechanisms 
by which these benefits are conferred. The proposed mechanisms by 
which fermented foods and their bioactive compounds may support 
bone health, primarily through modulation of gut microbiota and 
enhancement of nutrient bioavailability, are illustrated in Figure 1.

Phytic acid and bone health

Phytic acid (C₆H₁₈O₂₄P₆), also known as inositol hexaphosphate, 
inositol hexakisphosphate, or inositol polyphosphate, is a naturally 
occurring compound consisting of six dihydrogen phosphate 
groups linked to inositol (73). At physiological pH levels commonly 
found in plants, phytic acid exists predominantly as phytate anions, 
specifically myo-inositol-1,2,3,4,5,6-hexakisphosphates (74). These 
compounds serve as major phosphorus storage molecules in plant 
seeds, accounting for approximately 10% of total plant weight and 
over 60% of total phosphorus content, particularly in cereals, 
legumes, oilseeds, and nuts (75–77). The structural characteristics 
of phytates—featuring negatively charged phosphate groups 
arranged around inositol rings—enable them to form strong 
chelation complexes with divalent cations, including zinc, iron, 
calcium, magnesium, manganese, and copper (78, 79). This 
mineral-binding capacity has traditionally classified phytates as 
antinutrients, as consumption of raw phytate-rich plant materials 
can significantly reduce the bioavailability and absorption of 
essential minerals (80).

However, recent research has fundamentally challenged the 
traditional view of phytic acid as solely an antinutrient, revealing 
complex beneficial effects on bone metabolism. Studies have 
demonstrated that phytic acid contributes to bone development and 
helps mitigate age-related deterioration of bone marrow mesenchymal 
stem cells (BMSCs), particularly under hyperglycemic conditions. In 
diabetic environments, phytic acid enhances osteogenic differentiation 
and suppresses oxidative stress-induced cellular senescence, primarily 

through activation of the extracellular signal-regulated kinase 
signaling pathway (70).

The molecular mechanisms underlying these beneficial effects 
have been further elucidated through investigations of phytic acid’s 
role in bone regeneration under diabetic conditions. Phytic acid 
supplementation restores the osteogenic capacity of BMSCs by 
modulating the expression of circular RNA (circRNA) circEIF4B (a 
non-coding RNA that regulates gene expression by acting as a 
microRNA sponge). This regulatory mechanism promotes 
osteogenesis by sequestering miR-186-5p and upregulating forkhead 
box protein O1, while simultaneously stabilizing integrin subunit 
alpha 5 (ITGA5) mRNA through inhibition of insulin-like growth 
factor 2 mRNA-binding protein 3 (IGF2BP3) degradation. Notably, 
the inhibition of circEIF4B impairs the bone-regenerative effects of 
phytic acid in  vivo, confirming the functional importance of this 
molecular axis in diabetes-related bone disorders (81). Clinical 
evidence supports these mechanistic findings. In a Mediterranean 
cohort of postmenopausal women, dietary phytate intake showed 
positive associations with bone mineral density at multiple skeletal 
sites, including the femoral neck, total femur, and lumbar spine. This 
protective effect was most pronounced in women under 66 years of 
age without type 2 diabetes, with the proposed mechanism involving 
phytate adsorption onto hydroxyapatite surfaces, thereby inhibiting 
bone resorption (82).

Additional studies have demonstrated that phytate functions as 
both a crystallization and dissolution inhibitor by adsorbing onto 
hydroxyapatite crystal surfaces. In vitro experiments revealed that the 
anti-resorptive effects of phytate were comparable to alendronate and 
superior to etidronate. Cross-sectional analyses further showed that 
phytate intake above 307 mg/day was associated with normal bone 
mineral density levels in the lumbar spine of postmenopausal 
women (83).

Clinical interventions have provided additional support for 
phytate’s bone-protective properties. Oral supplementation with 
calcium–magnesium phytate (InsP6) significantly reduced urinary 
calcium excretion and serum β-CrossLaps levels—a marker of bone 
resorption—in hypercalciuric patients with osteopenia or 
osteoporosis, suggesting that phytate may help prevent bone 
demineralization in individuals with excessive bone turnover (84).

Long-term fracture risk assessment has provided compelling 
evidence for phytate’s protective role. A clinical study evaluating the 
relationship between urinary phytate concentrations and 10-year 
fracture risk in recently postmenopausal women demonstrated that 
those with higher urinary phytate levels (≥1.0 mg/L) had significantly 
lower FRAX-predicted risks of major osteoporotic and hip fractures 
compared to women with low phytate levels (≤0.50 mg/L). This 
protective effect was particularly pronounced in women with 
established osteoporosis risk factors, such as tobacco or alcohol use, 
suggesting that higher intake of phytate-rich foods may reduce long-
term fracture risk in at-risk populations (85).

While accumulating evidence supports the beneficial effects of 
phytic acid on bone health, its dual nature requires careful 
consideration. Recent comprehensive reviews have summarized both 
the beneficial and potentially adverse effects of phytic acid (IP6) on 
bone metabolism (86). Although traditionally considered an 
antinutrient due to its mineral-chelating capacity, IP6 has been shown 
to bind to hydroxyapatite crystal growth sites, inhibiting pathological 
calcification. However, this same mechanism raises legitimate 
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concerns about possible interference with physiological bone 
mineralization processes. Current evidence predominantly supports 
a protective role of IP6 in bone health through modulation of both 
extracellular crystallization and intracellular signaling pathways, but 
the balance between beneficial and potentially harmful effects may 
depend on dosage, timing, and individual physiological 
conditions (86).

Understanding this complexity becomes particularly important 
when considering food processing methods that can modify phytate 
levels. The breakdown of phytate is mediated by phytase enzymes, 
which are absent in humans and non-ruminant animals (87). These 
enzymes occur naturally in plants and microorganisms and exhibit 
optimal activity at pH levels near 5, though they remain active across 
pH ranges of 2 to 8 (88). The effectiveness of phytases in degrading 
phytate can be enhanced through various food processing methods, 
including cooking, soaking (89), germination (90), and fermentation 
(91, 92).

Among these methods, fermentation offers particular advantages 
for promoting bone health by simultaneously reducing pH and 
enhancing phytase activity (93, 94). The acidic environment created 
during fermentation not only activates phytases more effectively but 
also improves calcium absorption—a critical factor for maintaining 
skeletal integrity (95). For example, sourdough bread made from 
specific vegetable flours exhibits lower pH compared to original 
ingredients (96), resulting in up to 45% reduction in phytate content 
after baking (97). Similarly, vegetable fermentation processes, such as 
those used to produce kimchi or sauerkraut, reduce pH from 
approximately 3.9 to 4.4 (98).

The reduced phytate levels in fermented foods compared to raw 
components (73, 79) can significantly improve mineral bioavailability 
(Table 2). Studies have demonstrated increased calcium bioavailability 
in yogurt made from soy milk, with potential benefits for bone health 
(99). Animal studies have provided additional support, showing that 
ovariectomized rats fed fermented soybeans with Bacillus subtilis 
exhibited enhanced bone mineral density after 12 weeks (100). These 

findings suggest that dietary intake of appropriately fermented foods 
can help maintain bone health by optimizing the balance between 
phytate’s beneficial effects and mineral availability.

Despite accumulating evidence on the bone-protective effects 
of phytate, its dual role as both a mineral chelator and functional 
bioactive compound presents important challenges. While 
fermentation has emerged as a promising strategy to reduce phytate 
content and enhance mineral bioavailability, the precise balance 
between retaining phytate’s benefits and mitigating its 
antinutritional effects remains unclear. The long-term impact of 
fermented phytate-rich foods on bone health also requires further 
investigation. Most existing studies are short-term or observational, 
limiting conclusions on causality and durability of effects. 
Additionally, individual differences in phytate metabolism, 
fermentation efficacy, and dietary patterns further complicate 
outcome consistency. Interactions between fermented foods and 
other nutrients, as well as the potential role of gut microbiota in 
modulating phytate activity post-ingestion, are underexplored areas 
warranting deeper investigation.

Given the phytic acid dual role as both a mineral chelator and 
a functional bioactive, it offers a compelling starting point to 
illustrate how fermentation transforms food components in ways 
that directly influence bone health. Its modulation during 
fermentation highlights one of the most fundamental biochemical 
mechanisms, enhanced mineral bioavailability that underpins the 
relevance of fermented foods in skeletal support. Building on this 
foundation, we  next explore the role of other key bioactive 
compounds influenced by fermentation, including vitamins K and 
B complex, polyphenols, and bioactive peptides. Each contributes 
to bone health through distinct but complementary pathways, 
ranging from nutrient signaling and antioxidant activity to 
hormonal modulation and cellular communication. Finally, these 
effects converge through the gut-bone axis, where the gut 
microbiota plays a central role in mediating the systemic impact of 
fermented foods on bone metabolism.

FIGURE 1

Schematic representation of the effects of fermented food-derived bioactive compounds and microbial modulation on bone metabolism.
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Vitamins K and B complex for bone 
health

Vitamin K is essential for maintaining bone health (101), which 
occurs in two varieties: vitamin K1 (phylloquinone) and vitamin K2 
(menaquinones) (102). Vitamin K1 can be  found in green leafy 
vegetables and certain plant oils (103), and vitamin K2 is synthetized 
by bacteria through fermentation or from animal-derived foods (104), 
which is critical for bone health (Table 2). For example, the level of 
vitamin K in natto, the Japanese fermented soybean food, with Bacillus 
subtilis, rises from 0.5 μg/g in soybeans to 10 μg/g in the finished 
product fermented with Bacillus subtilis (19). Vitamin K2 plays a 
crucial role in activating proteins referred to as Gla proteins, which 
encompass OC, one of the 17 Gla proteins found in humans. The 
activated variant of OC is significant for the development and 
preservation of bones (105). There are various forms of vitamin K2; 
for instance, the short-chain type, MK-4, is synthesized from vitamin 
K1 in the body and can be found in animal products. Longer-chain 
variants such as MK-7, MK-8, and MK-9 are synthetized by bacteria 
(106, 107) and are present in fermented milk foods like cheese (108, 
109), as well as in fermented soybean products such as natto from 
Japan (110) and kinema, native fermented food from the 
Himalayas (111).

Many studies have explored the relationship between vitamin K 
intake and bone health. Some research shows inconsistent findings 
about how vitamin K supplements affect bone health markers (112, 
113). Recent research, however, showed a clear link between low 
vitamin K intake and knee cartilage damage in people with severe 
knee pain and osteoarthritis, especially among women (114). 
Additionally, a higher dietary intake of vitamin K was linked to better 
bone quality and greater BMD (115). Recent research has shown that 
vitamin K2 supplements can help postmenopausal status by reducing 
bone loss and enhancing bone quality in Japanese women (116–118).

Numerous studies have investigated the relationship between 
vitamin K2 sourced from natto and bone health. The effects of vitamin 
K1 supplements containing MK-7, which is present in natto extract, 
demonstrated that MK-7 aids in the improved carboxylation of OC 
(110). Habitual intake of natto is linked to a reduced risk of 
osteoporotic fractures in Japanese postmenopausal women, 
independently of bone mineral density (119). Additionally, natto 
consumption is indirectly associated with lower rates of tooth loss—
possibly via improved systemic bone density (120). Collectively, 
current evidence supports recommending natto to help prevent bone 
loss in both premenopausal and postmenopausal Japanese women 
(121, 122). Lundberg et al. (109) examined the influence of Jarlsberg 
and Camembert cheeses on bone health. They discovered that 
Jarlsberg cheese, which contains long-chain vitamin K2, enhances 
total serum OC levels, increases carboxylated OC, and improves the 
OC ratio, thus fostering bone growth. Within every 100 g of Jarlsberg 
cheese, there exists 3.0 μg of vitamin K1, 5.2 μg of MK-4, and 1.5 μg 
of MK (109).

Vitamin K is well-recognized for its role in maintaining bone 
density as individuals age; however, emerging research also 
highlights the importance of B vitamins in relation to osteoporosis 
and fracture risk (123). For instance, one study found that higher 
intake of vitamin B2 is significantly associated with a reduced risk of 
femoral osteoporosis and bone loss (124). In a large cohort of US 
women over the age of 50, elevated levels of homocysteine and 

methylmalonic acid, biomarkers of poor B-vitamin status, were 
linked to lower bone mineral density and an increased risk of lumbar 
spine osteoporosis, despite the widespread fortification of foods with 
B vitamins (125). These findings emphasize the role of adequate 
B-vitamin status in supporting bone health and reducing fracture 
risk. Additionally, a study involving 63,257 adults aged 45 to 74 years 
reported that higher pyridoxine (vitamin B6) intake was associated 
with a lower risk of osteoporosis. While several investigations have 
explored the potential benefits of B-complex vitamins on low bone 
mineral density, some studies suggest that these vitamins may not 
directly improve BMD outcomes (125, 126). A positive correlation 
exists between water-soluble vitamins and BMD, primarily associated 
with vitamins B12, and C. Conversely, a negative association was 
observed with fat-soluble vitamins, especially vitamins E and 
A (126).

Despite the growing body of literature on the role of vitamins K 
and B in bone health, other researchers have not found an association 
of unspecified vitamin K intake and bone fracture risk, e.g., (127) did 
not find any association between K1 or K2 intake and vertebral 
fractures in the Hordaland Health Study of 2,994 Chinese community-
dwelling men and women aged 65 years and over in Hong Kong. 
Moreover, results from other studies showed an insignificant effect of 
vitamin K on lumbar spine and femoral neck BMD (128).

while B-vitamin deficiencies, especially B6, B12, and folate, are 
linked to elevated homocysteine levels and reduced BMD, causal 
evidence from intervention trials remains inconclusive. Results from 
several in  vitro and in  vivo studies were generally consistent and 
showed that, although B vitamin deficiency generated significantly 
higher serum level of homocysteine, there was no significant effect on 
bone strength and bone area, mineral matrix, callus stiffness, size or 
tissue composition or bone turnover (129). Similarly, In the Singapore 
Chinese Health Study, dietary intake of B1 and B3 was not associated 
with risk of hip fracture in either men or women (130).

The results from observational studies are inconsistent in the 
associations between K and B vitamins and bone outcomes, however, 
majority of the randomized clinical trials have not shown protective 
effects of these vitamins in bone turnover or fracture risk reduction. 
Hence, while observational and mechanistic studies suggest a potential 
role for vitamins K and B in bone health, current evidence from 
randomized clinical trials remains insufficient to support strong 
clinical recommendations, highlighting the need for well-designed, 
long-term intervention studies to clarify their therapeutic relevance.

Polyphenols for bone health

In fermented plant-based foods, such as whole-grains, vegetables, 
and fruits, polyphenols are the main bioactive compounds (131). 
Generally categorized as flavonoids or non-flavonoids, polyphenols 
represent a group of secondary metabolites present in plants that 
exhibit various biological activities (132). According to their structural 
features, flavonoids can be divided into flavanols, flavones, flavanones, 
chalcones, and isoflavones (133). Non-flavonoids consist of lignans, 
astragalus, tannins, and phenolic acids, among others (131).

Numerous studies have reported the beneficial influence of 
polyphenols on the prevention and treatment of bone health. Overall, 
the intake of polyphenols may aid in preventing bone loss and 
decrease fracture risk (134), providing a potential strategy for 
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TABLE 2  Key fermented foods, their bioactive compounds, and mechanisms influencing bone health.

Fermented food 
category

Fermented 
food

Key minerals Phytate factor Bioactive compounds Mechanisms of action on bone health References

Fermented dairy

Yogurt Calcium, 
Magnesium, 
Phosphorus

Phytate: Not present Vitamins B2, B12. BAPs (from casein digestion), 
exopolysaccharides, conjugated linoleic acid (if full-fat), 
SCFAs (via gut microbiota).

↑Mineral solubility; ↑Vit B2, B12 (LAB); peptides ↑Ca 
absorption & ↓resorption; EPS ↑mineral bioavailability; 
CLA may ↑bone formation; SCFAs modulate gut–bone 
axis.

(220–223)

Kefir Calcium, 
Magnesium, 
Phosphorus

Phytate: Not present Vitamins B1, B2, B12, Vitamin K2 (MK-7, MK-9). BAPs, 
exopolysaccharides (especially kefiran), conjugated 
linoleic acid (if full-fat), SCFAs (via gut microbiota), 
organic acids, polyamines.

Org. acids & LAB ↑Vit B; K2 activates osteocalcin; 
peptides ↑Ca absorption & ↓resorption; kefiran & 
polyamines ↑gut integrity; SCFAs modulate gut–bone 
axis.

(61, 224, 225)

Fermented vegetables

Kimchi Calcium, Iron, 
Phosphorus

Phytate: 
0.2% → <0.1%

Vitamin C, B vitamins, Vitamin K2
BAPs, SCFAs (via gut microbiota), polyphenols, 
isothiocyanates, organosulfur compounds, conjugated 
linoleic acid (trace), GABA, lactic acid.

↓Phytates, ↑mineral bioavailability; ↑Vit C & K2 (LAB); 
peptides & GABA ↑osteoblasts; polyphenols & sulfur 
comps ↓oxidative stress; SCFAs & lactic acid ↑Ca 
absorption.

(226, 227)

Sauerkraut Potassium, Calcium, 
Magnesium

Phytate: 
0.3% → <0.1%

Vitamin C, vitamin K2. BAPs, SCFAs (via gut 
microbiota), polyphenols, glucosinolates and their 
breakdown products (e.g., isothiocyanates), lactic acid.

Phytate reduction ↑mineral bioavailability; Vit C 
preserved, K2 ↑ (bacteria); peptides aid Ca uptake; 
glucosinolate derivatives & polyphenols ↓inflammation; 
lactic acid & SCFAs boost mineral solubility and gut 
health.

(228, 229)

Fermented grains Sourdough Iron, Zinc, 
Magnesium

Phytate: 
1.2% → 0.5%

Vitamins B1, B6, B9. Organic acids (lactic, acetic), BAPs 
(from gluten and other proteins), phenolic compounds, B 
vitamins (produced by lactic acid bacteria), phytase 
enzyme.

Phytate ↓ (up to 45%) boosts mineral absorption; B 
vitamins ↑ support energy & bone health; phytase breaks 
down phytates; organic acids enhance mineral solubility; 
BAPs aid calcium uptake; phenolics provide antioxidant 
support.

(230–232)

Fermented soya

Miso Sodium, Calcium, 
Potassium

Phytate: 
1.5% → 0.5%

Vitamins B2, B12, Vitamin K2 (MK-7, MK-9). Isoflavones 
(e.g., genistein, daidzein), BAPs, polyamines, SCFAs (via 
gut microbiota), B vitamins, saponins.

Long fermentation ↑Ca & K bioavailability; synthesizes 
Vitamins B & K2, aiding osteocalcin activation. 
Isoflavones mimic estrogen, modulating bone 
metabolism; BAPs ↑Ca absorption; polyamines & 
saponins support gut & mineral uptake; SCFAs ↓ 
inflammation, promote bone remodeling

(233, 234)

Tempe Iron, Zinc, Calcium, 
Magnesium

Phytate: 
2.1% → 0.6%

Vitamins B2, B12, Vitamin K2 (MK-4).
Isoflavones (genistein, daidzein), BAPs, polyphenols, B 
vitamins, SCFAs (via gut microbiota), saponins.

70% phytate ↓ boosts Fe/Zn bioavailability; K2 (mainly 
MK-4) supports bone formation. Isoflavones modulate 
bone via estrogen receptors; BAPs aid Ca absorption; 
polyphenols/saponins ↓oxidative stress; SCFAs ↑ gut 
health and mineral uptake.

(235, 236)

Natto Calcium, Iron Phytate: 
1.8% → 0.5%

Vitamin K2 (MK-7), nattokinase, isoflavones, BAPs, 
polyamines, B vitamins

Phytate ↓ boosts Ca/Fe absorption; high MK-7 
↑osteocalcin carboxylation, strengthening bones and 
reducing fracture risk. Isoflavones regulate bone turnover 
via estrogen receptors; nattokinase supports bone 
perfusion; BAPs and polyamines aid Ca uptake and 
metabolism.

(233, 234)

(Continued)
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preventing and managing osteoporosis by impacting bone 
metabolism, decreasing bone resorption, sustaining bone density, and 
diminishing osteoclast differentiation (3), while also fostering bone 
formation and hindering bone resorption (135).

Li et al. provided a theoretical framework for the mechanisms of 
polyphenol compounds related to bone formation and absorption 
(136). Polyphenols provide advantageous effects on osteoporotic bone 
defects by regulating oxidative stress, reducing inflammation, 
promoting osteogenesis, inhibiting osteoclast differentiation, and 
inducing osteoclast apoptosis (137).

The fermentation of food is crucial for increasing the beneficial 
impacts of polyphenols in food (Table 2), as polyphenols that aren’t 
fermented cannot be absorbed by the intestines, significantly limiting 
their bioavailability (138). Fermentation enhances the bioaccesibility 
and bioavailability of polyphenols by transforming intricate 
polyphenols in food into more straightforward, absorbable forms via 
beneficial microorganisms and enzymes related to polyphenols (131). 
These small-molecule free phenols exhibited greater biological 
activities and bioavailability compared to the macromolecular-bound 
phenols (131).

In accordance with the aforementioned the results indicate that 
the total polyphenols amount increases by 30.3% during spontaneous 
fermentation in the production process of cheonggukjang, a fermented 
soybean food of Korea (139), and in vinegar made from black 
wolfberry by 42.9% (140). During the fermentation of cheonggukjang, 
the total content of flavonols and phenolic acids rises due to the 
hydrolysis process that converts isoflavone glycosides into aglycones 
(141). Following a short fermentation period, the levels of aglycone-
type isoflavones (daidzein, glycitein, and genistein) increased, while 
the levels of glycoside-type, malonyl-, and acetyl-type isoflavones 
decreased (142). This evidence verifies that cheonggukjang serves as a 
significant source of isoflavone aglycones like daidzein and genistein, 
even with the brief fermentation duration of soybeans (141). The 
effectiveness of cheonggukjang in preventing bone mass loss due to 
osteoporosis was demonstrated by observing reduced bone length and 
loss in animals fed a diet containing 10% cheonggukjang over a period 
of 15 weeks (143). According to (144), total isoflavone glycosides 
decreased and total isoflavone aglycones increased in 70% methanol 
extracts of three types of standardized chungkookjang inoculated with 
1% (v/w) B. subtilis, B. licheniformis, or B. amyloliquefaciens in 
comparison with unfermented cooked soybeans.

Also, according to the prior research, the bioavailability and 
bioactivity of isoflavonoids are increased with fermentation, since 
in vivo studies have shown that isoflavone aglycones (daidzein and 
genistein) were absorbed more effectively in the human intestine by 
consuming tempe, Indonesian fermented soybean food, as opposed to 
a soybean-pieces diet (145, 146). Recently, soy pulp, which is a 
by-product of black soybean food processing, has been utilized as 
animal feed or discarded as waste. Among fermented black soybean 
products, fermented black soybean pulp supports bone metabolism 
and osteoporosis prevention (147). The research conducted by (147) 
indicated that genistein levels in black soybean pulp after 12 and 24 h 
of fermentation with L. acidophilus were 6.8 and 7.2 times higher, 
respectively, in comparison to controls. One group of ovariectomized 
rats was treated with black soybean pulp, while a second group of 
ovariectomized rats was treated with fermented black soybean pulp, 
indicating that the fermentation of black soy pulp is effective in 
preventing osteoporosis in ovariectomized rats (147). Finally, T
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numerous studies have shown that (−)-epigallocatechin-3-gallate 
(EGCG), (−)-epicatechin gallate (ECG), and epigallocatechin (EGC) 
present in fermented tea are the main compounds that influence bone 
mass and prevent bone loss (148).

Recent intervention studies investigating the effects of 
polyphenols, consumed via food or given as isolated compounds, 
showed inconsistent results regarding bone health (Table 2). While 
some studies suggest that dietary intervention with polyphenol rich 
foods may be  useful to prevent the incidence and progression of 
osteoporosis (149), on the other hand, evidence from human 
intervention studies does not allow a clear conclusion on the effects of 
dietary polyphenols on bone mineral density and bone turnover 
markers (150). Consequently, conclusive determinations cannot 
be reached. The current evidence of polyphenols’ impact on bone 
health prevention and treatment is based on numerous review articles 
that address findings from previous decades. The understanding of 
polyphenols’ effects related to bone health is limited due to the lack of 
evidence in recent research.

Alongside polyphenols, fermentation also generates bioactive 
peptides with demonstrated potential to influence bone remodeling. 
These peptides derived mainly from dairy and soy protein hydrolysis, 
function through additional pathways such as calcium binding, 
hormone modulation, and direct stimulation of osteoblast activity, 
complementing the effects of both polyphenols and vitamins.

Bioactive peptides for bone health

Bioactive peptides (BAPs) are initially encoded within their parent 
proteins and are released through enzymatic hydrolysis during 
fermentation and/or digestion (151). BAPs possess various beneficial 
effects on bone health (71, 152). Fermented foods are recognized for 
containing BAPs that are derived from the fermentation process by 
the actions of bacteria such as LAB, along with some Bacillus species 
(153–155). Nonetheless, there is minimal research regarding how 
these BAPs influence bone health.

In dairy products, the primary proteins acting as sources for 
generating BAPs are caseins and whey proteins (156). These peptides 
typically emerged from the proteolytic activity of LAB (157–160). 
Employing an untargeted peptidomics approach, researchers 
discovered BAPs exhibiting antioxidant, antihypertensive, and 
antidiabetic properties after fermenting whey protein concentrate 
with strains of Lactobacillus helveticus and Streptococcus thermophilus 
(161). Specific peptide sequences such as Ile-Pro-Pro and Val-Pro-Pro, 
which are liberated by the breakdown of milk casein using various 
strains of Lb. helveticus, are recognized to be effective angiotensin-
converting enzyme (ACE) inhibitors and possess antihypertensive 
effects (162). The impact of lowering blood pressure may also have 
repercussions for bone health. Elevated blood pressure has been 
linked to decreased bone density and loss of bone minerals in women 
at risk for osteoporosis (163, 164).

Casein phosphopeptides (CPPs) are distinctive peptides present 
in fermented milk and cheese, which are released through the 
degradation of proteins by enzymes from different types of bacteria 
(165). Studies on the hydrolysis of β-, αs1-, and αs2-caseins by various 
strains of S. thermophilus have demonstrated that numerous CPPs are 
released (166). CPPs may have a significant role in bone health by 

interacting with metal ions such as iron, calcium, and zinc. This 
interaction can improve the absorption and dissolution of these 
minerals (167). Consequently, enhanced calcium absorption from 
CPPs could contribute to better bone health. In research involving 
animals, CPPs have also been shown to affect the activity of bone-
forming cells (152, 168). CPPs can encourage the growth and 
maturation of osteoblasts (169). The casein-derived peptide valyl-
prolyl-proline, produced during fermentation with Lb. helveticus, had 
a beneficial impact on bone turnover in rats (170). Lee et al. (171) 
indicated that milk products fermented with Lactobacillus plantarum 
A41 and Lactobacillus fermentum SRK414 had anti-osteoporotic 
benefits on post-menopausal rats by regulating markers associated 
with bone metabolism. Furthermore, it has been hypothesized that 
milk-derived peptides with antioxidative or anti-inflammatory 
activities might affect the signaling pathways engaged in bone 
remodeling (59).

Kefir is a fermented dairy beverage that includes BAPs generated 
during its fermentation (172). The impact of kefir peptides (KPs) on 
bone health has been investigated in multiple studies (Table 2). Chang 
et al. (173) reported a decrease in pro-inflammatory cytokines present 
in the serum (IL-1β, IL-6, TNF-α), and markers of bone resorption 
(CTX-1, RANKL), while enhanced serum indicators of bone 
formation (P1NP, OPG, OC), effectively averting bone loss in mice 
with osteoporosis. Additionally, Lai et al. (31) demonstrated that KPs 
powder aided in fracture recovery by stimulating the development of 
bone-forming cells in rats. Similarly, Tu et  al. (174) reported an 
increased bone density in mice. A six-month study involving 40 
osteoporotic participants evaluated the effects of kefir-fermented milk 
(1,600 mg) along with calcium bicarbonate (CaCO3, 1,500 mg) on 
bone metabolism. Those who ingested kefir-fermented milk exhibited 
significant enhancements in BMD as determined by dual-energy 
X-ray absorptiometry. Patients whose T-scores were above −1 saw a 
substantial decline in the serum β C-terminal telopeptide of type 
I collagen (β-CTX), and serum OC transitioned from negative to 
positive post-treatment (66). Nonetheless, the specific effects of KPs 
remain ambiguous in this study.

Some fermented soybean products include a peptide that might 
have a beneficial impact on bone health by improving calcium 
absorption (175) (Table 2). Poly-γ-glutamic acid (PGA), a sequence of 
glutamic acids linked by γ-bonds (176), is present in B. subtilis-
fermented items, such as natto (177) and kinema (178). It has been 
shown that PGA enhances calcium absorption in the intestines of rats. 
A single administration of PGA resulted in elevated soluble calcium 
levels in the small intestine (179). These researchers suggested that 
PGA aids in the creation of a soluble calcium-binding complex, which 
boosts calcium solubility in the lower small intestine. In humans, 
Tanimoto et al. (180) examined PGA in a single-blind, randomized, 
crossover trial, assessing calcium absorption using a double stable 
isotope technique. They discovered that ingesting two doses of 
calcium-rich orange juice (200 mg Ca/200 g) and PGA (60 mg/200 g) 
over a period of 3 to 4 weeks enhanced calcium absorption in healthy 
post-menopausal women compared to participants who consumed 
only calcium-fortified orange juice. However, the study had 
drawbacks, such as a lack of comprehensive details regarding the age, 
weight, height, and diet of the participants (181). At present, the 
evidence supporting the function of PGA in enhancing bone health is 
scarce, and additional research is required to comprehend how it 
might increase calcium absorption.
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Various studies utilizing rodent models have investigated how 
peptides derived from fermented foods may support bone health. 
Although peptides were included in these analyses, it is difficult to 
assert that the impacts on bone metabolism are exclusively attributable 
to these compounds. For example, Chiang et al. (182) discovered that 
a 6-week treatment with lactobacilli-fermented soy skim milk aided 
in diminishing bone loss associated with aging in 13-month-old mice. 
They proposed that the beneficial effects may arise from both the 
peptides and other elements such as isoflavones and polysaccharides. 
BAPs found in fermented dairy products can assist in enhancing bone 
health by increasing the expression of genes linked to cell growth and 
the formation of bone cells known as osteoblasts through a specific 
cellular signaling pathway, which elevates the levels of vital markers 
for osteoblast formation, including runt-related transcription factor 2 
(RUNX2), osteocalcin (OCN), alkaline phosphatase (ALP), and 
collagen type I alpha 1 chain (COL1A1) (93). Another investigation 
examined the influence of water-soluble extracts from a long-
fermented soybean product from Korea known as doenjang on bone 
metabolism (183). These extracts comprise small proteins generated 
from the breakdown of larger proteins during fermentation by 
microorganisms. The water-soluble extracts from doenjang facilitated 
the differentiation of osteoblasts by altering gene expression. 
Moreover, they enhanced the mineralization of osteoblasts in 
comparison to the control group. The decrease in tartrate-resistant 
acid phosphatase activity among cells treated with these extracts 
suggested that the process of bone resorption by osteoclasts was 
inhibited. Further studies are required to pinpoint the specific water-
soluble peptides that contribute to these effects. It is important to 
recognize that the biological activity of peptides can be influenced by 
numerous factors, including the kind of protein, the enzymes utilized, 
the preparation of the proteins, the proportion of substrate to enzyme, 
the duration, temperature, pH level, the extent of protein breakdown, 
the peptide structures, the kinds of amino acids, their molecular 
weights, and among others (161).

Many of these bioactive compounds whether vitamins, peptides, 
or polyphenols, interact with the host not only directly but also 
indirectly through the gut microbiota. This emerging axis, linking 
dietary components to bone metabolism via microbial modulation, 
serves as a unifying mechanism that integrates the effects of fermented 
foods across multiple domains of bone health.

Gut microbiota for bone health

The human gut microbiota is a diverse community of a high 
number of microorganisms including bacteria, viruses, fungi, and 
archaea, residing primarily in the gastrointestinal tract. These 
microbes play essential roles in metabolism (aiding digestion, 
extracting nutrients, synthesizing vitamins) such as K and B group, 
and producing SCFAs; barrier function (maintaining the structural 
integrity of the gut lining and protecting against pathogen 
colonization); immune regulation (modulating immune responses, 
promoting immune tolerance, and influencing systemic 
inflammation); and neurological effects (affecting the gut-brain axis, 
impacting cognition, behavior, and neurological health) (72, 184, 185) 
(Table 2). A balanced gut microbiota is fundamental for overall health, 
while disturbances, termed dysbiosis, are linked to metabolic, 
immune, neurodegenerative, and gastrointestinal diseases (72, 184). 

Emerging research has shown a strong connection between gut 
microbiota and bone health. This connection has been explained 
through several mechanisms which have been highlighted in this 
section. Additionally, interventions altering the gut microbiome such 
as through diet, prebiotics, or probiotics may positively influence bone 
density and strength, although findings are still preliminary and 
sometimes inconsistent (186).

The gut microbiota can enhance bone health through various 
mechanisms, such as immune responses, hormone synthesis, 
producing beneficial compounds like SCFAs, aiding in the absorption 
of nutrients like calcium, and communicating with the brain through 
neurotransmitter production (187). The microorganisms present in 
fermented foods can function as probiotics, including Lactobacillus 
and Bifidobacterium, generate beneficial peptides and compounds, 
and convert phenolic compounds into more active forms that may 
support bone health (188). Fermented foods contain specific microbial 
groups, especially LAB, that engage with the gut microbiome and can 
positively influence bone metabolism following consumption (40, 66, 
174, 189, 190). Changes in the types or numbers of microorganisms 
present in the gut can result in dysbiosis, which leads to inflammation 
in the intestines and modifies gut health (191). When inflammation 
occurs in the intestines, Th17 cells become activated, resulting in the 
release of pro-inflammatory substances such as TNF-α, IL-1β, IL-6, 
and IL-17. Marahleh et al. (192) indicated that these pro-inflammatory 
substances elevate the levels of receptor activator of NF-κB (RANK) 
ligand (RANKL). RANKL is crucial for the activation of osteoclasts 
and contributes to bone loss (193, 194). Out of these substances, 
interleukin 1β is among the most potent pro-inflammatory agents, 
greatly enhancing bone loss in both laboratory and living models by 
elevating RANKL levels (195). The activation of TLR5 increases the 
ratio of RANKL to osteoprotegerin (OPG), which is a natural inhibitor 
of RANKL, in cells responsible for bone formation, resulting in the 
production of more osteoclasts and accelerated bone loss (196). 
RANKL promotes osteoclast maturation by binding to RANK on the 
surface of osteoclast precursors and stimulates their conversion into 
osteoclasts that destroy bone (192, 196). It has been demonstrated that 
diets rich in fermented foods have been demonstrated to enhance 
bone health by influencing bone formation, owing to the gut bacteria 
capable of surviving in the digestive tract and interacting with other 
gut bacteria, which may contribute to improved bone health (197). 
Despite substantial evidence linking bone health to gut bacteria, many 
facets of osteoimmunology remain to be thoroughly investigated.

Additionally, gut bacteria might be related to bone health via the 
endocrine system (198). The initial substance identified that connects 
the gut and bones was the insulin-like growth factor 1 (IGF-1), 
primarily produced in the liver in response to food intake and 
influenced by gut microbiota and specific microbes, such as Lb. 
plantarum, found in fermented foods (197, 199). The IGF-1 assists in 
bone growth and remodeling (200). There is a possibility that bacteria 
influence bone health through SCFAs, which are generated when 
bacteria metabolize fiber, can also result in increased IGF-1 (201). In 
addition to IGF-1, gut bacteria have been indicated to influence other 
hormones associated with bone health, including serotonin, 
parathyroid hormone, glucagon-like peptide 1, and leptin (202). 
Hydrogen sulfide emerges as another significant factor in microbial 
endocrinology that regulates bone metabolism (203). Specific 
intestinal bacteria, such as Escherichia, Fusobacterium, Desulfovibrio, 
Streptococcus, Klebsiella, Clostridium, Salmonella, and Enterobacter, 
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convert cysteine into hydrogen sulfide, pyruvate, and ammonia (196, 
204, 205). Hydrogen sulfide, a new metabolite generated by gut 
bacteria, originates from cysteine, homocysteine, and sulfate-reducing 
bacteria (206), may involve in bone marrow mesenchymal stem cells 
(207). When there is too little hydrogen sulfide, it disrupts stem cell 
differentiation, causing irregular calcium flow within the cells and 
disrupting signaling pathways that are crucial for bone formation 
(207). Sodium hydrosulfide, a standard source of hydrogen sulfide, 
was found to reduce RANKL/OPG mRNA levels in human 
mesenchymal stem cells, which play a role in supporting 
osteoclasts (208).

Despite the abovementioned findings, it is crucial to note that a 
recent systematic review has shown that targeting the gut microbiota 
did not show consistent improvements in bone health. Some studies 
report positive changes in bone density or strength, while others find 
no significant effect (186). You et al. have studied relationship between 
age-dependent microbial change and age-related bone loss in mice 
and reported that the bone loss associated with age was not dependent 
on the gut microbiome (209). This directly challenges prior models 
suggesting microbiota alterations underlie age-associated skeletal 
deterioration. These findings indicate that there is a need to conduct 
large longitudinal human cohorts with multi omics, standardized 
methods, identification of causal microbial strains/metabolites, and 
assessment of long-term safety and bidirectional signaling.

Conclusion and future research 
prospects

Bone health is a multifactorial condition influenced by a 
combination of dietary components, gut microbiota, and host 
metabolic processes. This review examined how various bioactive 
compounds found in fermented foods such as vitamins (K and B 
groups), polyphenols, bioactive peptides, and fermentation-modified 
phytates may contribute to bone metabolism through multiple 
mechanisms (Table 2). These include enhancement of calcium and 
mineral bioavailability, modulation of oxidative stress and 
inflammation, and regulation of bone cell signalling pathways 
involved in osteoblast and osteoclast activity. Additionally, the 
interplay between fermented foods and gut microbiota particularly 
the production of SCFAs and immunomodulatory metabolites 
suggests a potentially important role of the gut-bone axis in 
skeletal homeostasis.

Despite these findings, the evidence base for fermented foods as 
modulators of bone health remains less developed than that for 
traditional approaches such as calcium and vitamin D supplementation 
or pharmacological interventions. While some preclinical and 
population studies report associations between fermented food intake 
and improved bone mineral density or reduced fracture risk, the 
bioavailability and efficacy of such food-derived compounds are not 
yet well quantified in humans (40, 210, 211). Moreover, the dose 
response relationship and long-term impact of fermented food 
consumption on clinically relevant bone outcomes remain unclear.

A critical gap in the current literature is the limited number of 
well-designed human clinical trials that evaluate fermented foods in 
comparison to, or in combination with, conventional bone health 
interventions. The variability in microbial strains, food matrices, and 
fermentation processes further complicates the interpretation of 

findings and the development of standardized dietary 
recommendations (212–214). Furthermore, while the mechanistic 
roles of isolated nutrients such as vitamin K2 or polyphenols have 
been described, few studies investigate the synergistic or antagonistic 
effects that may occur within complex fermented food systems.

Recent developments in microbiome research and nutritional 
metabolomics highlight the need for a more personalized approach. 
Emerging data suggest that individual responses to fermented foods 
may vary depending on host genetics, baseline nutrient status, and gut 
microbial composition (215). Additionally, microbial-derived 
postbiotics such as SCFAs, indoles, or peptidoglycans have been 
shown to influence bone remodelling pathways, offering a novel 
direction for future investigation (216). The potential application of 
synbiotic formulations (fermented foods combined with prebiotics or 
probiotics) also warrants further study, particularly in populations at 
high risk for osteoporosis, such as postmenopausal women (217, 218).

To advance this field, future research should focus on establishing 
the bioavailability and efficacy of fermented food components 
compared to conventional treatments, identifying strain or product-
specific effects on bone health, and evaluating the long-term impact 
of fermented food consumption on bone quality and fracture 
outcomes through large scale, controlled human studies. Moreover, 
interdisciplinary efforts are needed to integrate insights from nutrition 
science, microbiology, endocrinology, and clinical research to fully 
elucidate the mechanisms by which fermented foods contribute to 
skeletal health. Future research should prioritize several critical areas 
to advance the application of fermented foods in bone health 
management. First, large-scale randomized controlled trials (RCTs) 
are essential to confirm the effects of specific fermented foods or 
bioactives, such as vitamin K2 (MK-7), casein-derived peptides, or 
fermented soy isoflavones on BMD, turnover markers, and fracture 
outcomes in humans. Second, stratified analyses based on age, sex, 
menopausal status, gut microbiota composition, and baseline nutrient 
levels are needed to identify subpopulations that may benefit most 
from targeted interventions. Third, comparative studies are warranted 
to evaluate the synergistic effects of multiple bioactives within 
complex food matrices versus isolated compounds. Additionally, 
future investigations should integrate multi-omics approaches (e.g., 
metagenomics, metabolomics, transcriptomics) to decipher the role 
of the gut microbiota in mediating host responses to fermented food 
intake (18).

Technological advances in fermentation also open opportunities 
for developing functional foods with optimized microbial strains to 
deliver higher concentrations of bone-beneficial metabolites. 
Regulatory challenges around standardization and health claims, 
especially in functional or fortified fermented products, should 
be addressed to facilitate clinical translation and policy guidance. 
Furthermore, traditional fermented food systems from regions like 
India, Japan, Korea, and Africa represent a rich but underexplored 
source of bioactive compounds, deserving deeper study and possible 
integration into global dietary strategies (43, 219). Ultimately, bridging 
preclinical and clinical research through collaborative, 
interdisciplinary, and longitudinal studies will be essential to unlock 
the full therapeutic potential of fermented foods in bone health 
maintenance and osteoporosis prevention.

In conclusion, while fermented foods represent a promising and 
culturally diverse dietary strategy for supporting bone health, their 
clinical utility remains to be  clearly established. This review 
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underscores the need for targeted research to validate their 
effectiveness, explore their interaction with the gut microbiome, and 
position them within the broader context of dietary and therapeutic 
approaches to osteoporosis prevention and management.

The evidence gathered in this review suggests that incorporating 
fermented foods into the diet may be  a beneficial strategy to 
complement bone health through natural food-based approaches. 
However, these effects should be viewed as supportive and not as 
substitutes for clinically established bone health interventions, such as 
calcium and vitamin D supplementation or pharmacological 
treatments when indicated.
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