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Cheese is a widely consumed fermented dairy product with a long history
of human consumption dating back several millennia, which justifies a brief
historical introduction in this review. Beyond its cultural and gastronomic
relevance, cheese presents a complex nutritional and microbial matrix that may
confer neutral or even beneficial effects on cardiometabolic health, despite
concerns related to its saturated fat and sodium content. This review first
explores the key components of the cheese matrix and several mechanisms
potentially involved in its metabolic impact, including the presence of polar
lipids, the production of short-chain fatty acids (SCFAs) and alpha-linolenic
acid (ALA) by the cheese microbiota, and the high calcium content that may
reduce fat absorption, among others. Additional bioactive compounds formed
during fermentation, such as angiotensin-converting enzyme (ACE)-inhibitory
peptides, are also discussed for their potential health effects. We also include
a comprehensive survey of most European Protected Designation of Origin
(PDO) cheeses and their microbiota. Finally, to assess the most recent evidence
in human health, we analyzed a sample of studies published on PubMed in
the last 2.5 years, including observational studies and randomized controlled
trials. This selection highlights the latest research trends and supports a growing
body of evidence suggesting that cheese, particularly in its intact matrix form,
is not associated with adverse cardiometabolic outcomes—and may even exert
protective effects. These findings call for more robust, long-term trials to confirm
causality and support updated dietary guidance.
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cheese matrix, cardiometabolic health, fermented dairy, bioactive compounds, cheese
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1 Introduction

Advances in nutrition science are making clear that the focus on calories and isolated
nutrients, which were the basis for the creation of conventional dietary guidelines during
the 20th century (1, 2), is no longer sufficient to predict the impact of food on health,
especially when it comes to the prevention of chronic and complex cardiometabolic
diseases, such as type 2 diabetes mellitus (T2DM) or obesity (3–6). More in-depth studies of
foods as a whole, i.e. on their complex matrices composed of nutrients, minerals, bioactive
compounds, and other factors, such as prebiotics and probiotics, become inevitable to
understand the real impact of foods on health and disease.

A relevant example of this is cheese, a widely produced and consumed fermented
dairy product, that is a major source of saturated fat and salt, two components that are
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traditionally linked to cardiometabolic diseases (7–9). Due to this,
cheese has been a regular target to cut down from diet, when
considering the traditional guidelines.

However, an increasing body of scientific evidence has been
showing that there may not be a strong correlation between
cheese consumption and disease (10–12). Various studies during
the last decade have shown that high consumption of fermented
dairy products, namely cheese, is not consistently related to
cardiovascular disease (CVD) or even to mortality risk, even
though these foods are high in saturated fat (13–15). In fact,
cheese nutrients may possibly work in concert to lower markers
of cardiovascular risk, compared to other dairy products when
matched for fat content (16, 17), and have other beneficial effects
on human health (18, 19). Nevertheless, a detailed mechanistic
study of how the cheese matrix influences health outcomes is
still needed.

The present review, after a brief historical overview—justified
by the millennia-long presence of cheese in the human diet—
aims to explore the composition of the cheese matrix in detail
and its potential implications for cardiometabolic health. We
examine its key nutritional components, including proteins,
lipids, carbohydrates (oligosaccharides), minerals (macro and
microelements), and bioactive components (peptides, organic
acids, vitamins, and exopolysaccharides). Finally, the diverse cheese
microbiota is also thoroughly explored.

In addition, we address the process of milk pasteurization
and provide a comparison between pasteurized and raw milk
cheeses. As highlighted in multiple studies in recent years, cheese
– despite its high saturated fat and sodium content – is increasingly
reported in observational studies and randomized controlled trials
to have neutral or even beneficial associations with cardiometabolic
outcomes. These findings are often attributed to the “dairy matrix
effect”, in which the interactions between nutrients, minerals
such as calcium, bioactive peptides, and the fermentation-derived
microbiota may modulate lipid digestion, sodium effects, and other
metabolic responses.

As part of this work, a detailed survey of the majority
of European Protected Designation of Origin (PDO) cheeses
is also carried out. Focusing on PDO cheeses allows a more
reliable characterization of their microbiota compared to non-PDO
cheeses, whose production methods and microbial compositions
are often more variable and less well documented. Their
traditional starter cultures and dominant microbial taxa are
rigorously described in the Supplementary material. This
microbial characterization supports a broader understanding of
how traditional cheese-making practices shape both nutritional
properties and health effects.

Finally, to explore these health associations in more detail, we
analyzed the most recent human studies published in PubMed over
the past 2.5 years (starting on January 2023), encompassing both
observational studies and randomized controlled trials. Focusing
on this recent period to update the field without duplicating the
evidence already synthesized in recent high-quality meta-analyses,
as illustrated by Zhang et al. (20), Pradeilles et al. (21) and
Al Slurink et al. (22). This approach provides a comprehensive
perspective on how the cheese matrix functions and how it may
influence cardiometabolic health.

2 Brief historical context

Cheese, either fresh or matured, is an easily digestible product
obtained from the coagulation of milk. In short, raw or pasteurized
milk is heated and a coagulant, usually rennet, is added to the milk,
causing it to curdle and separate between a solid phase, the curds,
and a liquid phase, the whey. The whey is drained off and the curds
are pressed to remove additional whey and to shape the cheese. Salt
is then added by mixing, brining or rubbing. Afterwards, the cheese
is aged for varying periods, depending on cheese type, which allows
it to develop flavor and texture, by the action of bacteria, fungi and
enzymes (23, 24).

Cheeses are differentiated according to milk source (cow, sheep,
goat, buffalo, yak, llama, moose, etc.) and other factors such as
their manufacturing process (use of animal or plant rennet, or sour
milk), consistency (extra-hard, hard, semi-hard, semi-soft, soft,
fresh), fat content (double cream, cream, full fat, three-quarters
fat, half fat, quarter fat), fermentation type (lactic acid, lactic and
propionic acid, butyric acid), microbiota, and physical appearance
(hard, soft, with smear, molds) (10, 25, 26).

Cheese has been produced and consumed throughout the
world since ancient times. The art of cheese-making dates back
to the early Neolithic period during the 6th millennium B.C.,
with the domestication of sheep and goats, and in agreement with
the abundant milk residues in ancient ceramic vessels found in
Poland (27–30). Presumably, the process of cheese-making was
discovered unintentionally by storing milk in containers made
from the stomach of unweaned baby animals, which contained a
coagulation enzyme, rennin (chymosin), turning milk into curd
and whey (31, 32). In fact, this technique was maintained until
the beginning of the 20th century, in some Mediterranean regions
(33, 34). Cheese-making was undoubtedly a major achievement for
ancient farmers, as it allowed the preservation of milk in a non-
perishable and transportable way. Furthermore, the processing of
milk made it more digestible for consumption, especially for people
that are lactose-intolerant (10, 35, 36).

Romans further mastered the art of cheese-making by
developing ripening techniques that would lead to different flavors
and characteristics. This expertise was spread throughout the
Roman Empire and cheese became an everyday foodstuff (33).
During the Middle Ages, European monks improved ripening
and aging techniques and developed several varieties of cheese
that are still marketed at the present time (33). Later, during the
Renaissance period, cheese declined in popularity, most likely due
to the poor hygiene conditions found at the time in traditional
cheese-making farms and during commercialization (29, 37). This
product regained popularity in the 19th century, when cheese
production was introduced in factories (33, 38, 39).

A new era for food manufacturing began in the 1860s, with
the scientific discovery of pasteurization by Louis Pasteur (40). As
milk provides a favorable environment for microbial growth, the
adoption of pasteurization for this product was crucial and widely
spread in developed countries, allowing for a more controlled and
safer cheese production at the industrial scale (41). The World Wars
and the Great Depression have further driven innovation in cheese-
making techniques, in order to make products that were cheaper,
more durable and with longer shelf-life (42).
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Nowadays, there is a large diversity of cheese, with hundreds of
varieties described (25), based on the type of milk, heat treatment,
coagulation method, curd preparation, fat content, moisture, and
ripening time. It can also be further flavored with herbs, spices, and
smoke. Cheese is produced all over the world. For the 2024/2025
marketing year, the European Union has been the largest producer,
with an estimated 10.7 million metric tons (about 47 % of global
output) and also the largest consumer, accounting for roughly
43 % of world cheese consumption, a pattern that parallels its
production. In terms of production, the United States follows with
around 6.46 million metric tons (29 % of global production). Other
significant producers include Russia (≈1.16 million metric tons)
and Brazil (≈0.78 million metric tons) (43).

The impressive variety and prevalent consumption all over the
world demonstrates the importance of studying the cheese matrix
and the effects of this dairy product on health.

3 Cheese matrix: a complex structure
with nutrients, bioactive components
and microbiota

3.1 Nutritional components

Dairy product matrices differ considerably from each other,
which explains why dairy foods vary in the nutrition and health
outcomes they provide, due to the distinct bioavailability of
nutrients and bioactive compounds (44). Nutritional values alone
are insufficient to predict the effects of dairy products on health,
and thus, physical-chemical and biological properties, along with
the possible interactions between all components must be fully
explored (17, 45).

In fact, the unique structure and physical-chemical features
of each food determine how it is digested and, consequently, the
absorption of the nutrients and other components contained in
the food (46, 47). For example, several studies have reported total
and LDL cholesterol to raise significantly after intervention periods
of butter consumption, when compared to the same period of
cheese consumption (44, 48, 49). Regarding the dairy matrix effect
in circulating postprandial amino acid levels, one study revealed
these levels increased more quickly and to higher levels, but also
decreased much more rapidly on consumption of stirred yogurt
compared to cheese, with the latter showing a much more gradual
release (50). The more gradual and sustained release into the
intestine is assumed to be beneficial for a better degradation of the
food matrix, promoting the absorption of matrix components like
calcium (51).

Cheese matrices are formed by complex networks that include
macro and micronutrients, namely hydrated proteins enclosing
scattered fat globules, bioactive peptides, SCFAs, conjugated
linoleic acids (CLAs), and other factors, such as minerals like
calcium, zinc, phosphorus and magnesium, vitamins, antioxidants,
prebiotics, and probiotics (52, 53).

The amount of each major and minor component of these
matrices is variable, according to the type of cheese. For example,
Parmesan and Gruyère are hard cheeses, containing higher levels
of protein, fat, calcium and salt, but lower amount of moisture,
contrasting with Fromage Frais and Cottage, which are soft cheeses

containing higher moisture, but lower amounts of these other
components (17, 54–56).

The structure of the cheese matrix is also dependent on the type
of cheese. For example, Cream cheese is formed by compact fat
and protein aggregates with large spaces filled with whey protein
(57, 58), Cheddar cheese is characterized by large irregular fat pools
(57, 59), Mozzarella has a fibrous and highly oriented structure,
capable to stretch, with fat globules and water organized between
protein fibers, preventing their coalescence, and creating columns
in the direction of stretching (60, 61).

The components of the cheese matrix and their structural
organization can significantly impact the matrix’s breakdown
during mastication and digestion and therefore, change the
way nutrients and bioactive components are released and,
ultimately, absorbed. As highlighted by O’Connor et al. (62),
even though intervention diets were matched for fat, protein,
and calcium, the group consuming the melted cheese showed
worse metabolic outcomes compared to those consuming unmelted
cheese. This suggests that the intact cheese matrix may modulate
nutrient release and digestion, possibly affecting lipid metabolism.
For instance, lipids in the unmelted cheese matrix may bind
with calcium and form calcium soaps, therefore lowering fat
absorption (62).

Other biological mechanisms may help explain the association
between fermented dairy products and cardiometabolic health,
such as the microbiota found in fermented milk and cheese.
For instance, cheese bacteria are believed to produce SCFAs and
ferment indigestible carbohydrates, which can inhibit cholesterol
synthesis and lower blood cholesterol levels. Additionally, bacteria
in the large intestine can bind cholesterol to bile acids, forming
cholesterol-bile acid complexes that are excreted in the feces. This
reduces bile acid circulation, which in turn limits cholesterol uptake
into the liver.

3.1.1 Proteins
Milk proteins are an important component of the cheese

matrix, with amounts varying from about 4% in Cream cheese
to around 40% in Parmesan (55, 58). The two proteins in milk
are casein and whey, which are high-quality proteins containing
all essential amino acids (63–65). The relative amount of these
two proteins in milk varies according to species: while there is
an 80:20 casein to whey ratio for cow, sheep, goat and buffalo
milk, this ratio is about 40:60 in human and 50:50 in quine
milk (64).

The manufacture of natural cheese involves the coagulation of
casein micelles, that separate from the whey liquid phase. Whey can
be washed and dried into powder, to be used in the production
of other food products (23). Most cheeses are casein-based, but
some cheeses, such as ricotta and mizithra, are primarily made
with whey (66). Casein-cheeses and whey-cheeses are considered
different food categories in the Codex Alimentarius (CODEX STAN
283-1978 and 284-1971, respectively). Besides natural cheeses,
processed cheeses are also commercialized, and they are made by
blending natural cheeses with emulsifying salts and other dairy and
nondairy ingredients (67).

As mentioned, casein and whey are high-quality proteins that
are also easily digested and absorbed, albeit at a different speed.
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Casein provides an efficient nutrient supply, by promoting a slow
and prolonged postprandial release of amino acids in the blood
stream (68, 69). This slow release of amino acids promotes muscle
growth and reduces protein breakdown, enhancing long-term
muscle mass (68, 70). On the other hand, whey is digested more
quickly than casein, and provides a fast source of available nutrients
and amino acids to the body (68). Both casein and whey are also
sources of leucine, which is an essential amino acid that induces the
synthesis of muscle proteins (71, 72).

Due to these proprieties, casein and whey have been purposely
included in diets or taken as supplements, especially by athletes
and bodybuilders, and also by older people, to maintain or increase
lean body mass, with a growing number of studies supporting
the beneficial effects of these proteins (73–77). For example, one
study observed the superior increase of muscle size in young-adults
after a 10-week resistance training program supplemented with
whey protein, when compared to the same training supplemented
with leucine-matched collagen peptide (78), and another study
showed that the introduction of ricotta cheese in the diet of older
people attenuated the loss of muscle strength (79). Nevertheless,
research has also been cautioning against taking these proteins
as supplements and the risk of excessive intake, especially for
non-athletes. For example, one study showed that milk protein
intake above the recommended dietary allowance did not increase
body mass in functionally limited older men (80), and some
studies have been associating the excessive consumption of these
proteins with kidney and liver damage, acne and modification of
the microbiota (81–84).

It is interesting to note that the digestion of these proteins
can be affected by cheese manufacture. For example, pasteurization
and other heat treatments applied to milk have been suggested
to improve protein digestion rate in the human gastrointestinal
tract (85, 86). Also, allergies to caseins are common, especially
concerning β-caseins: the genetic variant A1, found in milk
from certain breeds like Holstein cows, is associated with the
production of a peptide called beta-casomorphin-7 (BCM-7)
and has been shown to cause slow digestion and inflammation.
A2 variant, from breeds like Guernsey and Jersey cows, seems
to be less likely to cause gastrointestinal issues. More studies
on the differences between β-Casein A1 and A2 are still
necessary before recommendations on consumption are made
(87, 88).

All these studies highlight that a systematic and more
comprehensive research on the effects of casein and whey in human
health is still necessary, especially in the scope of regulation and
education about their safe intake through food and supplements.

3.1.2 Lipids
The lipid fraction of milk is contained in fat globules and mainly

composed of triglycerides (TGs) (∼98% of total lipids), but also
by fatty acids, acylglycerols, phospholipids, cholesterol and other
lipophilic molecules, like vitamins (A, D, E and K) and carotenoids
(β-carotene) (89, 90). These globules are naturally enveloped by
the milk fat globule membrane (MFGM), a complex trilayer with
biologically active functions and composed of ∼ 70% proteins and
milk polar lipids such as phospholipids and sphingolipids (91–93).

Milk polar lipids from the MFGM have been associated
with cardiometabolic benefits, particularly through the reduction
of plasma and hepatic hyperlipidemia. These effects are largely
attributed to their ability to reduce intestinal cholesterol absorption
by multiple mechanisms: they promote intraluminal emulsification,
decrease cholesterol solubility in mixed micelles, and inhibit fat
digestion by binding of sphingomyelin to pancreatic colipase,
thereby reducing pancreatic lipase activity (92, 94, 95). Despite the
great focus on the beneficial effects of polar lipids with several
evidence in the literature, the protein and glycoprotein fractions
of MFGM should not be ignored from a nutritional and bioactive
perspective (96).

Processing milk substantially changes the MFGM structure.
During cheese production, treatments such as homogenization
or pasteurization can disrupt the MFGM and approximately
20% of the phospholipids are retained in the whey (97, 98).
The coagulation of milk forms a semi-solid milk gel with milk
fat globules entrapped within a casein protein network, and
organized as either individual fat globules, aggregated, coalesced or
elongated globules, depending on cheese manufacturing processes
(99, 100).

Homogenized milk, often used in the production of soft
cheeses, contains smaller fat globules that enhance moisture
retention. In contrast, unhomogenized milk is typically associated
with hard and semi-hard cheese varieties (101–104). The digestion
of these fat globules is dependent on both their structural
organization (105) and also on the extent of the cheese matrix
disintegration during digestion, which varies according to cheese
type (106, 107). Fat digestion has also been shown to vary according
to the degree of lipid distribution within cheese matrices: cheese
manufactured with homogenized milk, as the case of cream and
some blue mold cheeses, was shown to have a faster released of
free fatty acid from the cheese matrix (85, 100, 108). Furthermore,
emulsification can also impact fat digestion (109, 110).

In conclusion, the lipid component of cheese plays a
multifaceted role in its structure, sensory characteristics, and
potential health implications. Although traditionally viewed as
a source of saturated fat, emerging research emphasizes the
importance of considering the cheese matrix, the presence of
bioactive lipids, and the complexity of lipid digestion when
evaluating its health impact.

3.1.3 Carbohydrates
Cheese has a relatively low carbohydrate content when

compared to other foods, and is predominantly comprised of
lactose, a disaccharide made up of D-galactose bound to D-glucose
(111, 112).

Lactose is the primary carbohydrate in milk, comprising about
4.8–5.0 mg/100 mL of cow’s milk (113), and plays a significant role
in the initial stages of cheese production (25). However, during this
process, most of the lactose present is removed along with whey,
and the residual lactose in the curds is fermented by lactic acid
bacteria (LAB), further reducing its content (114).

Thus, the amount of lactose in most cheese types is very
small, especially in aged cheeses when compared to fresh cheeses,
due to the longer fermentation period that allows more time
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for lactose to be broken down—for example, Cheddar, Brie, and
Camembert are aged cheeses that contain only trace amounts of
lactose (10). Because of this, individuals with lactose intolerance are
still able to consume most cheeses, without experiencing significant
symptoms (10, 35, 115). Moreover, some studies suggest that cheese
consumption may even have a protective effect on gut microbiota
by providing LAB with probiotic properties, which may further aid
in lactose metabolism (116).

However, fresh and unripened cheeses such as Ricotta, Cottage
cheese, and Cream cheese may retain slightly higher levels of lactose
and could pose a risk for more sensitive individuals when compared
to hard cheeses like cheddar and gruyere or even aged ones like
Parmigiano Reggiano and Grana Padano (117, 118). Therefore, it is
important for lactose-intolerant consumers to distinguish between
cheese types and select those that are naturally low in lactose or
specifically labeled as lactose-free.

3.1.4 Minerals
Cheese is an important source of several essential minerals,

with calcium being the most prominent. The addition of calcium
reduces the rennet coagulation time of milk by neutralizing
the negatively charged residues on casein, which enhances the
aggregation of renneted micelles. Also, the high calcium content of
cheese influences the dairy fat matrix, as the interaction between
milk calcium and caseins affects the formation of the protein
network within which the MFGM is embedded (104). As previously
mentioned, the formation of calcium soaps interferes with lipid
digestion by reducing fat absorption (62). This mineral impacts
cheese texture as low concentrations of calcium contribute to
increased gel firmness (119), and its amount can significantly
vary depending on cheese type: Cheddar, Gruyère, and especially
Parmesan contains some of the highest amount of calcium among
cheeses (about 7 to 12 milligram of calcium per gram of cheese “as
consumed”; “FoodData Central” (120).

Calcium bioavailability in cheese is generally high due to its
integration within the casein matrix, particularly in the form
of caseinophosphopeptides (CPPs), which are generated during
gastrointestinal digestion. These phosphorylated peptides have a
high affinity for minerals such as calcium, helping to maintain
their solubility and promoting passive absorption in the distal
small intestine (121, 122). Dietary calcium is vital for the
development and maintenance of bones and teeth (123). It has
also been associated with muscle function (124, 125), and weight
management (126), as well as playing a role in nerve transmission
(127, 128), blood pressure (129), and the regulation of hormones
and enzymes (130). Phosphorus is another mineral present in
cheese, often in a balanced ratio with calcium (131). It contributes
to skeletal integrity, nucleic acid and protein synthesis, and oxygen
transport (132).

Although calcium and phosphorus are crucial for skeletal
health, excessive intake of these minerals, especially when
taken as supplements, has raised concerns about their potential
negative effects on health. Research has suggested that dietary
calcium and phosphorus intake should primarily come from food
sources, such as cheese, to avoid the risks associated with over-
supplementation (133–137).

Furthermore, cheese also presents smaller amounts of
magnesium, potassium, zinc, cooper, and selenium (138).
These trace elements play important roles in various metabolic
processes, such as enzyme function, immune response, and
antioxidant activity.

And finally, cheese contains a relatively high sodium (salt)
content, which is an important consideration for those monitoring
its intake for health reasons (139).

Aged cheeses, such as Parmesan, Cheddar, and Roquefort,
contain especially high sodium concentrations due to the aging
process and the salt used in brining: it is added to enhance flavor,
acts as a preservative by inhibiting the growth of undesirable
bacteria and mold, and plays a key role in the overall texture and
maturation of cheeses (23, 140).

Sodium is essential for maintaining fluid balance, nerve
function, and muscle contraction (141). However, high sodium
intake is mostly associated with increased risk of hypertension and
CVD (142). The World Health Organization recommends limiting
sodium intake to <2 grams per day to reduce health risks [“Sodium
reduction” (143)]. Given that cheese can be a significant source of
dietary sodium, those with hypertension or other cardiovascular
conditions should be mindful of their cheese consumption: some
strategies can include controlling portion size or choosing reduced-
sodium versions of some cheeses (139, 144–146).

Curiously, despite its sodium content, some studies have
reported an antihypertensive effect of cheese (147, 148). For
instance, a randomized, double-blind, placebo-controlled pilot
study by Crippa et al. found that daily consumption of 30 g of Grana
Padano P.D.O cheese significantly reduced blood pressure in mild
to moderate hypertensive subjects. This antihypertensive effect may
be partly explained by the presence of angiotensin-I-converting
enzyme (ACE)-inhibiting peptides naturally released during the
cheese’s long ripening process, which can help counteract the
hypertensive impact of sodium. These findings suggest that certain
aged cheeses like Grana Padano might offer cardiovascular benefits
beyond their mineral composition, although moderation remains
important for individuals sensitive to sodium (148).

3.2 Bioactive components

3.2.1 Peptides
Bioactive peptides are biological molecules, with fewer than

50 amino acids linked together by peptide bonds, that are derived
from food proteins and become activated when these proteins are
cleaved either by enzymes or by microbial fermentation (149–
151). They have high tissue affinity, do not accumulate inside
organisms, and have important beneficial effects in human health,
for which they have been a target of an increasing number of studies
(152–154). For example, these physiologically active peptides have
been shown to possess anti-inflammatory (155–158), antioxidant
(159–161), anticancer (162–164), and immunomodulating (165,
166) proprieties.

In cheese, bioactive peptides are derived from casein and
whey proteins, and their concentration is dependent on cheese
manufacture, including the starter bacterial culture, processing
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conditions (namely, milk heat treatment), and ripening stage (167,
168).

The beneficial effects of consuming cheese for their bioactive
peptides have been under study, with research showing that
some cheeses contain peptides with functional antihypertensive,
antimicrobial, antioxidant, anticarcinogenic, opioid, and zinc-
binding properties (169). For example, it was shown that the
consumption of Domiati, Edam, and especially Gouda cheeses
could exert antihypertensive effects, due to the presence of the
ACE-inhibiting peptides, namely the tripeptides IPP (Ile-Pro-Pro)
and VPP (Val-Pro-Pro), in their matrices (170, 171). It was also
observed antibacterial proprieties derived from bioactive peptides,
against both gram-positive and gram-negative bacterial species,
in the Italian cheeses Pecorino Romano, Canestrato Pugliese,
Crescenza, and Caprino del Piemonte (172). Although peptides
present in cheese exhibit significant bioactive potential, their
clinical efficacy depends on the ability to survive within the
gastrointestinal tract, the systemic bioavailability, and interactions
with the gut microbiota (173).

3.2.2 Organic acids
Dairy fat is composed of nearly 400 different fatty acids,

including saturated, monounsaturated (MUFAs), polyunsaturated
(PUFAs), trans-fatty acids, and branched-chain fatty acids, each
with biological significance (174). Among these, saturated fatty
acids are the most abundant, accounting for ∼60–70% of the total
fatty acid content (10, 89).

Cheeses have a variable amount of fat content, varying from
<8% (∼4 g of fat in Cottage and ∼7 g of fat in Fromage frais, per
100 g of dry matter, for example) to around 35% (∼34 g of fat in
Cheddar and ∼36 g of fat in Roquefort, per 100 g of dry matter, for
example). It is an important component of cheese matrices, largely
contributing to flavor and texture (175).

Beyond their structural and sensory roles, certain unsaturated
fatty acids present in cheese fat have garnered attention for their
potential health benefits. Oleic acid, the predominant MUFA
in cheese, has been linked to cardioprotective effects, including
improved lipid metabolism, enhanced endothelial function, and
anti-inflammatory properties (176, 177).

CLAs, a group of linoleic acid isomers naturally found
in ruminant-derived dairy fat, has been particularly noted
for its anticarcinogenic, antiadipogenic, antiatherogenic, and
immunomodulatory activities (178, 179). The CLAs content
in cheese is highly influenced by dairy animal diet, with
pasture-based feeding systems significantly increasing CLAs
levels (179, 180). Other factors, such as the composition
of the cheese microbiota, also influence CLA levels. Certain
probiotic bacteria—Lactiplantibacillus plantarum, Lactobacillus
acidophilus, Lacticaseibacillus casei, and Bifidobacterium lactis—
can increase CLA content by converting linoleic acid during
the ripening process. Regarding milk fat sources, CLA levels
tend to follow this ascending order: caprine < bovine < ovine
milk (181).

Additionally, PUFAs such as ALA and vaccenic acid also
contribute to the potential cardiometabolic benefits of dairy
fat (182).

3.2.3 Vitamins
There are several vitamins present in cheese matrices, namely

vitamins A, B2, B12, D, E, and K2.
Vitamin A is important for vision, skin health, and immune

function. It is present in cheese in the form of retinol and beta-
carotene, and hard cheeses, such as Cheddar and Parmesan, are
particularly good sources of this vitamin (183, 184).

Cheese is also rich in different B vitamins. B2 (riboflavin)
plays a role in mitochondrial function and the metabolism of fats,
drugs, and steroids. It is also important for healthy skin, eyes,
and nerve functions (185, 186). B12 (cobalamin) is important for
the formation of red blood cells, DNA synthesis, and neurological
function. Cheese is one of the few non-meat sources of vitamin B12
(187, 188).

Though not a major source, cheese can also contain smaller
amounts of vitamin E, an important antioxidant that inhibits the
process of lipid peroxidation (189), and vitamin D, significant for
calcium absorption and bone health (190, 191).

Vitamin K2 (menaquinone) is present in particularly high
amounts in hard and aged cheeses, such as Gouda and Edam. This
vitamin contributes to cardiovascular health by preventing and
potentially reversing vascular calcification, supports bone integrity
by enhancing the γ-carboxylation of osteocalcin and increasing
osteoprotegerin levels, and helps preserve cognitive function by
activating proteins such as Gas6 and protein S, as well as promoting
the synthesis of sphingolipids (192–196).

While cheese is naturally rich in vitamins, there has been
a growing trend in fortifying cheese with additional vitamins,
particularly A and D, to further enhance its nutritional value.
This fortification process aims to address common nutritional
deficiencies and improve public health by making these vitamins
more accessible through a product that is widely consumed (197).

3.2.4 Exopolysaccharides
Exopolysaccharides (EPS) are produced by microorganisms,

including bacteria, fungi and algae, and are involved in the
formation of extracellular biofilms that provide protection against
potential environmental stressors, such as temperature and
antibiotics (198–201). In cheese, EPS can play roles in shaping
the microstructure, texture, and functionality of the cheese matrix
(202, 203).

EPS-producing strains of lactic acid bacteria (LAB) commonly
found in cheese, such as Lactococcus, Lactiplantibacillus,
Leuconostoc, and Streptococcus, have been shown to interact
with casein micelles and fat globules, increasing moisture retention
(204, 205) and reducing syneresis (206, 207) within the matrix,
contributing to maintain or improve cheese texture and cooking
properties (206–208). For example, the presence of EPS-producing
Streptococcus thermophilus has been shown to make the Karish
cheese more deformable and softer (209) a EPS-producing
Lactococcus lactis ssp. cremoris strain has increased yield by around
8% and moisture content by around 9.5% in a half-fat cheddar
(208), and a mixed starter culture containing EPS-producing
Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus
thermophilus has resulted in a higher moisture content and
meltability of low-fat Mozzarella cheese (210).
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Furthermore, EPS can also impact biochemical processes
during cheese ripening, including influencing proteolytic activity,
thereby affecting flavors and maturation rates. For instance, the
proteolysis in reduced-fat Cheddar cheese was shown to increase
in the presence of a EPS-producing Lactococcus lactis ssp. cremoris
(JFR1) strain (203).

Due to these effects, EPS-producing bacteria can serve as
natural additives to improve moisture, texture, melting, and
sensory properties of low and reduced-fat cheeses, promoting the
consumption of healthier cheese variants (200, 207, 208, 211).
These benefits add to the health-promoting potential that EPS
are being shown to exhibit, which include wound healing (212,
213), drug delivery (214, 215), immunomodulation (216–218),
antimicrobial (219, 220), and anticancer (220, 221) properties.

4 Cheese microbiota

Cheese contains a diverse microbial community that is
significantly influenced by manufacturing, particularly ripening
conditions, and hence contributes importantly to quality, safety,
and physical-chemical properties (24, 222).

The cheese microbiome varies greatly depending on the type of
cheese, the environment and processing conditions, pasteurization
methods and respective temperature, and ripening conditions (see
Table 1, Supplementary Table S1). Microorganisms play an active
role in determining cheese composition and influence the flavor
profile through the production of volatile compounds (26, 222,
223). Microbial diversity is influenced by the origin of the milk,
with cow’s milk appearing to be more diverse than milk from
goats and sheep and can range within the cheese from the core
to the surface (222, 223). Different microbiological compositions
can be found in the rind and core of cheese. This is partly due
to variations in oxygen supply throughout the cheese (223). The
cheese rind is an aerobic environment and is constantly exposed
to possible contamination by external sources, so the presence
of oxygen on the surface of the cheese permits the growth of
aerobic organisms, which are unable to grow more profoundly,
as there is less oxygen availability (26, 223). During ripening, the
core becomes an anaerobic environment, making it less susceptible
to external contamination (26). These microorganisms can play
important roles in fermentation, aging, texture and flavor of cheese,
as well as acting as probiotics, providing health benefits.

LAB, including Lactobacillus, Lactococcus, Pediococcus,
Enterococcus, and Streptococcus species, are integral to cheese
fermentation (Table 1, Supplementary Table S1). They convert
lactose into lactic acid, which lowers the pH, leading to coagulation
of casein proteins, and contributing to the cheese’s texture and
flavor (114, 224). LAB contributes to gut health, providing anti-
inflammatory effects and modulation of the gut microbiota, and
has also been associated to hypocholesterolemic and anti-cancer
properties (225–228).

Propionibacterium freudenreichii is a bacterium used as a
ripening starter in the production of Swiss-type cheeses, such
as Emmental and Gruyère (Table 1, Supplementary Table S1). It
is responsible for the characteristic holes in these cheeses and
contributes to their nutty flavor, by producing carbon dioxide and

propionic acid (229). Some studies have found evidence that this
bacterium can have anti-inflammatory effects in the gut as well as
anticancer and immunomodulatory proprieties (229, 230).

Although Bifidobacterium species are less common in cheese
manufacture, they are being incorporated into certain types of
probiotic cheeses to enhance their health claim benefits. They
produce SCFAs, such as acetate and butyrate, which help to
lower the pH in the colon, creating an environment less favorable
for pathogenic and more favorable to the growth of beneficial
bacteria (231).

Besides bacteria, there are also fungi that can be
present in cheese, namely molds and yeasts (Table 1,
Supplementary Table S1).

Penicillium species, such as Penicillium roqueforti and
Penicillium glaucum, are molds used in blue cheese manufacture,
such as Roquefort and Gorgonzola, to develop their characteristic
blue veins and flavors (232). Another mold, Penicillium
camemberti, is used in soft cheeses, like Camembert and Brie, to
develop their white rinds and creamy texture (233).

Yeasts are particularly important in cheeses where maturation
is a key component of the cheese-making process (234). For
example, Saccharomyces cerevisiae and other species are involved
in the production of rinds in Camembert, Brie, and Reblochon
cheeses. They also aid in the deacidification process of Munster
and Limburger cheeses, preparing their surfaces for colonization by
ripening bacteria (235).

While beneficial microorganisms in cheese can provide
significant health benefits, there is also a risk of contamination
by harmful bacteria and fungi, such as Listeria monocytogenes,
Salmonella, and Escherichia coli, particularly in cheeses made from
raw milk (236, 237). Milk is a nutrient-rich matrix, characterized
by its neutral pH, high water activity, and abundant availability
of macronutrients and micronutrients. These properties, however,
also render it an ideal environment for the proliferation of
microorganisms, including pathogens capable of significantly
compromising milk quality and shelf life (238, 239). Contamination
of raw milk can occur through various mechanisms, including
endogenous transmission from infected animals (such as in cases
of systemic infection or mastitis), fecal contamination during or
after milking, and improper hygiene practices involving human
handling (237, 238, 240).

Thus, it is important to ensure rigorous hygiene standards
during cheese manufacture to prevent contamination, which
should involve thorough sanitation practices, and strict monitoring
of the microbial cultures used in fermentation, as well as careful
transportation and retail conditions (241, 242).

A promising strategy, recently explored to control Salmonella
enterica spp. enterica in milk and raw milk cheese, involves the use
of commercial bacteriophage preparations (243). The traditional
way to reduce the risk of contamination by pathogens is the
pasteurization of the milk utilized in cheese-making. Despite
the established public health benefits of pasteurization, growing
consumer demand for minimally processed and “natural” products
has led to a renewed interest in raw milk and its derivatives.
Advocates of raw milk argue that pasteurization may compromise
the nutritional integrity of milk, with particular concern over
the degradation of heat-sensitive vitamins and the destruction of
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TABLE 1 Short-version of the PDO cheeses microbiota.

PDO cheese Country of
origin

Milk
treatment

Starter culture Dominant taxa References

West country
farmhouse cheddar

United Kingdom Raw or
Pasteurized

Lactococcus (Lc.) lactis
subsp cremosis
Lc. lactis subsp lactis

Streptococcus (Str.)
Lactococcus
Lactobacillus (Lb.)

(266–269)

Blue Stilton cheese United Kingdom Pasteurized Lc. lactis
Penicillium (P.)
roqueforti spores

Lb. plantarum
Levilactobacillus (Lv.) brevis
Debaryomyces (D.) hansenii
Kluyveromyces (K.) lactis
Yarrowia (Y.) lipolytica
Trichosporon (T.) ovoides
Lc. lactis,
Enterococcus (E.) faecalis,
Lb. curvatus,
Leuconostoc (Leuc.) mesenteroides
Staphylococcus spp.
Staphylococcus (S.) equorum
P. roqueforti
Candida (C.) catenulata

(232, 270–273)

Noord-Hollandse
Gouda

Netherlands Pasteurized Lc. lactis subsp cremosis
Lc. lactis subsp lactis

Lc. lactis subsp. cremoris
Lc. lactis
Tetragenococcus (Tet.) halophilus,
Loigolactobacillus (Lgb.) rennini
Lc. laudensis
Leuc. pseudomesenteroides
Lc. cremoris
Lacticaseibacillus (Lcb.) paracasei
Leuc. mesenteroides
S. equorum
Tet. halophilus

(274–277)

Halloumi Eastern
Mediterranean
(Cyprus)

Raw or Pasteurized No Lb. manihotivorans
Lb. alimentarius
Lv. brevis
Lb. parakefiri
Marinilactibacillus psychrotolerans
Lb. cypricasei

(278–281)

Mozzarella di
Bufala Campana
PDO

Italy Raw, thermalised or
Pasteurized

Natural whey starter culture:
Str. thermophilus
Lb. delbrueckii
Lb. helveticus
Lc. lactis

Str. thermophilus
Lb. helveticus
Lb. delbrueckii subsp. delbrueckii
Lb. delbrueckii subsp. bulgaricus
Str. salivarius
Lb. delbrueckii

(282–285)

Parmigiano
Reggiano

Italy Raw Natural whey starter: Lb.
helveticus Lb. delbrueckii
ssp. lactis
Lb. delbrueckii ssp. bulgaricus
Lb. rhamnosus

Lb. helveticus
Lb. delbrueckii
Lacticaseibacillus group
Lb. fermentum
Str. thermophilus
Lb. crispatus
Lcb. casei
Lcb. paracasei ssp. paracasei
Lcb. paracasei ssp. tolerans
Lv. brevis
Lb. rhamnosus
Lb. curvatus
Pediococcus (Ped). acidilactici
Lb. delbrueckii subsp. lactis
Lb. delbrueckii subsp. bulgaricus

(286, 287)

Gorgonzola (Blue
cheese)

Italy Raw or Pasteurized St. thermophilus,
Lb. delbrueckii,
Lactococcus sp.
P. glaucum,
P. Roqueforti

P. roqueforti,
S. equorum,
Brevibacterium (B.) linens
Corynebacterium flavescens
E. faecium
Carnobacterium
S. saprophyticus (surface)
Aspergillus flavus
Cladosporium (Cla.) cladosporioides
Cordycepts farinosa
D. hansenii

(232, 288–290)

(Continued)
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TABLE 1 (Continued)

PDO cheese Country of
origin

Milk
treatment

Starter culture Dominant taxa References

Fusicolla aquaeductuum
Mucor (Mu.) circinelloides
Mu. fuscus
Mu. lanceolatus
Mucor sp.
P. atrosanguineum
P. camemberti
P. commune
Penicillium sp.
Sporobolomyces deformans
Y. lipolytica
Saccharomyces (Sch) cerevisiae var.
boulardii
Arthrobacter sp.
Carnobacterium sp.
Staphylococcus sp.
B. linens
Phychrobacterium sp.
Cobetia sp.
S. lentus

Pecorino Romano Italy Raw Natural whey starter culture:
Str. thermophilus
Lb. delbrueckii subsp. lactis,
Lb. helveticus

D. hansenii
K. marxianus
Rhodotorula spp.
Sch. cerevisiae

(234, 291, 292)

Asiago Italy Raw Thermophilic starter culture Lc. lactis subsp. lactis
Lcb. paracasei/rhamnosus
Enterococcus sp.
Lactiplantibacillus (Lpb.) plantarum
Lb. gallinarum
Lb. delbrueckii
Limosilactobacillus (Lim.) fermentum
Str. thermophilus

(293)

Grana Padano Italy Raw Natural whey starter culture:
Lb. delbrueckii subsp lactis
Lim. fermentum
Lactobacilllus helveticus
Str. thermophilus

Lb. delbrueckii
Lcb. rhamnosus
Lcb. casei
Lim. fermentum
Lc. raffinolactis,
Lb. helveticus
Str. thermophilus
Lc. lactis

(294–297)

Provolone del
Monaco

Italy Raw No Lcb. casei
Lcb. paracasei
Str. macedonicus
E. faecalis

(298)

Feta Greece Raw or Pasteurized Str. thermophilus
Lb. delbrueckii
subsp. bulgaricus

Lb. plantarum
Lv. brevis
Lcb. paracasei
Lb. rhamnosus
Lb. paraplantarum
Lb. curvatus
E. faecalis
E. faecium
E. durans
E. malodoratus
Str. salivarius subsp. thermophilus
Lb. coryniformis
Lb. fermentum
K. lactis
Pichia (Pich.) membranifaciens
C. krisii/zeylanoides
Pich. fermentans
Lc. piscium
Lc. raffinolactis
Lcb. zeae
Str. uberis

(299–302)

(Continued)
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TABLE 1 (Continued)

PDO cheese Country of
origin

Milk
treatment

Starter culture Dominant taxa References

Brie (de Meaux and
de Melun)

France Raw Lc. lactis subsp. lactis
Lc. lactis subsp. cremoris
Leuc. mesenteroides
subsp. cremoris

P. candidum?
Brachybacterium
Micrococcaceae
Carnobacterium
Staphylococcus
Enterococcus
Hafnia-Obesumbacterium
Psychrobacter
Brevibacterium
Glutamicibacter
Leucobacter (Brie de Meaux)
Pediococcus (Brie de Melun)
Dipodascus
textitPenicillium
Scopulariopsis

(303–305)

Camembert de
Normandie

France Raw Lc. lactis subsp. Lactis
Lc. lactis subsp. cremoris

Lc. lactis
Str. thermophilus
Leuc. mesenteroides
Lb. fermentum
Lb. plantarum
Lcb. paracasei

(306–308)

Roquefort (Blue
cheese)

France Raw Leuconostoc spp. Lc. lactis
subsp cremosis Lc. lactis
subsp lactis Lc. lactis subsp
lactis biovar diacetylactis Leuc.
mesenteroides
subsp mesenteroides P.
roqueforti

P. roqueforti
Candida
Debaryomyces
Galactomyces
Yarrowia
D. hansenii (C. famata)
K. lactis (C. sphaerica)
Candida spp. (Surface)

(232, 309, 310)

Comté France Raw Str. thermophilus
Lb. helveticus

Lb. delbrueckii subsp. Lactis
Lb. fermentum
Lcb. paracasei subsp. paracasei
Lb. rhamnosus

(311, 312)

Reblochon de
Savoie

France Raw Lactic starter culture Geotrichum (Geo.) candidum
C. famata
D. hansenii
Lb. delbrueckii ssp. bulgaricus
Str. thermophilus

(313–315)

Gruyère Switzerland Raw Lb. helveticus
Str. thermophilus
Lb. delbrueckii subsp. lactis

Brachybacterium alimentarium
Brachybacterium tyrofermentans
Lb. helveticus

(316–318)

Raclette du Valais Switzerland Raw or Pasteurized Lc. lactis subsp. lactis, Lc. lactis
subsp. cremoris,
Leuc. mesenteroides

Lc. lactis
Lb. plantarum
Weisella paramesenteroides
Str. thermophilus
Lcb. paracasei
Lpb. pentosus
Lpb. plantarum
Lentilactobacillus (Le.) parabuchneri
Le. sunkii
Lb. helveticus
Lb. delbrueckii

(319–321)

Cabrales Spain Raw No P. roqueforti
Lc. lactis
Lb. plantarum
Leuc. mesenteroides
Leuc. citreum
Lcb. paracasei
Leuc. pseudomesenteroides
E. durans
E. faecium
T. koreensis
T. halophilus
S. equorum
Brevibacterium

(232, 322–324)

(Continued)
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TABLE 1 (Continued)

PDO cheese Country of
origin

Milk
treatment

Starter culture Dominant taxa References

Corynebacterium
P. commune
P. chrysogenum
D. hansenii
K. lactis
Pich. fermentans
Pich. membranaefaciens
R. mucilaginosa
G. candidum
Lc. raffinolactis
Lc. garvieae
Lcb. casei
Lb. kefiri
Lb. buchneri
P. griseofulvum
C. zeylanoides
C. sylvae
Corynebacterium
Yaniella
Staphylococcus
Lc. lactis subsp. lactis
Lb. paraplantarum
Enterococcus spp.
Lactobacillus spp.
Zygosaccharomyces spp.
Pichia spp.
Penicillium spp.

Torta del Casar Spain Raw No Lb. curvatus
Lb. diolivorans
Lcb. paracasei
Lcb. paracasei subsp. paracasei
Lb. plantarum
Lb. plantarum subsp. plantarum
Lb. rhamnosus
Lc. lactis
Leuc. mesenteroides
Leuc. carnosum
Lb. sakei
Lc. raffinolactis
Lc. lactis subsp. cremoris
Lcb. casei
E. devriesei
E. durans
Lb. helveticus
S. saprophyticus
S. epidermidis
Macrococcus caseolyticus
S. xylosus
E. faecalis
S. condimenti
S. aureus
E. faecium

(325–327)

Queso Tetilla Spain Pasteurized Lc. lactis subsp. lactis Lc. lactis subsp. lactis
Lcb. casei subsp. casei
Lb. plantarum
Leuc. mesenteroides subsp.
Leuc. mesenteroides subsp. dextranicum
Leuc. spp.
E. faecalis
E. faecium
Enterococcus spp.
Micrococcus (Mi.) varians
Mi. sedentarius
Micrococcus spp.

(328, 329)

Manchego Spain Raw Not mandatory:
Lc. lactis subsp. lactis
Leuc. mesenteroides

Lc. lactis subsp. lactis
Lc. lactis subsp. cremoris
E. faecalis
E. faecium
E. hirae
E. avium

(330, 331)

(Continued)
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TABLE 1 (Continued)

PDO cheese Country of
origin

Milk
treatment

Starter culture Dominant taxa References

Serra da Estrela Portugal Raw No Lc. lactis
Lc. piscium
Lcb. casei
Serratia
Latilactobacillus (Lat.) sakei
Lpb. plantarum
Leuc. mesenteroides
Kurtzmaniella (Ku.) zeylanoides
Vishniacozyma victoriae
Cla. variabile
Starmerella
Clavispora lusitaniae
D. hansenii
Metschnikowia fructicola
Lcb. paracasei
E. durans
E. faecium
Lat. curvatus
Lcb. rhamnosus
Lb. corynformis

(332–335)

Pico Portugal Raw No Leuc. mesenteroides
Leuc. citreum
Lc. lactis
Lc. garvieae
Lb. plantarum
Lb. paraplantarum
Le. otakiensis
Lcb. paracasei
E. faecalis
E. pseudoavium
Lcb. casei
Lb. otakiensis
Leuc. pseudomesenteroides
Str. vestibularis
Str. salivarius
E. casseliflavus

(336–338)

São Jorge Portugal Raw Natural whey starter culture:
Lcb. paracasei
Lb. rhamnosus

Lcb. paracasei
Lb. rhamnosus
Lb. coryniformis
Lb. plantarum
E. faecalis
E. faecium
Lc. lactis
Lactobacillus sp.
Streptococcus. sp.
Leuconostoc sp.
Enterococcus sp.

(339–341)

Beira Baixa Castelo
Branco

Portugal Raw No Lc. lactis
Lpb. plantarum
Lgb. coryniformis
Lcb. zeae
C. sake
Geotrichum
Cla. variabile
Pich. kluyveri
Protomyces inouyei
D. hansenii
Ogataea boidinii
Ustilago
Starmerella
Penicillium

(342, 343)

Nisa Portugal Raw No Lc. lactis
Leuc. mesenteroides
Lpb. plantarum
Lc. piscium
Lcb. zeae
Serratia

(344, 345)

(Continued)
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TABLE 1 (Continued)

PDO cheese Country of
origin

Milk
treatment

Starter culture Dominant taxa References

Azeitão Portugal Raw No Leuc. mesenteroides
Lc. lactis
Lcb. zeae
Lc. kefiri
Serratia spp.
Lpb. plantarum
Lat. sakei
Y. lipolytica
Ku. zeylanoides
K. lactis
Geo. silvicola
Galactomyces geotrichum
Geo. candidum
C. ehtanolica

(346, 347)

For the long version please see Supplementary Table S1.

beneficial microbiota (237, 244, 245). However, scientific evidence
on this matter suggests that the nutritional losses induced by
pasteurization are, in most cases, negligible. A systematic review
assessing the impact of heat treatment on milk vitamins indicated
only minor reductions in certain nutrients, such as vitamins B2
and B12, and no significant loss of key minerals such as calcium
(244–246). Furthermore, fat-soluble vitamins (A, D, E) remain
largely unaffected, and even when reductions occur, the absolute
contribution of milk to the daily intake of these vitamins is
relatively modest (244, 245).

Epidemiological data from the United States between 1993
and 2006 show that more foodborne outbreaks were attributed
to cheeses made from pasteurized milk than from raw milk
(239). Moreover, data from the European Union also report
a small proportion of dairy-associated outbreaks, highlighting
improvements in hygiene and safety measures across the
sector (247).

Although pasteurization significantly reduces microbial
load, it does not eliminate the possibility of contamination
post-processing. Factors such as hygienic conditions during
milking, cheese production practices, and the potential for
post-pasteurization contamination play critical roles in the safety
of both raw and pasteurized milk cheeses (239, 245). Notably,
several studies have demonstrated a low incidence of pathogenic
bacteria in raw milk cheeses when produced under controlled
conditions, with some research suggesting that the native microbial
communities in raw milk may contribute to the inhibition of
pathogens such as Listeria innocua and Staphylococcus aureus
during ripening (239, 248, 249).

Finally, while pasteurization remains a key public health tool,
raw milk cheeses embody a unique microbial and sensory richness
that deserves further scientific attention.

5 Cheese and cardiometabolic health

The relationship between cheese consumption and health has
been widely debated due to its high saturated fat and sodium
content. While diets high in saturated fat have been linked to
increased risk of CVD, higher cholesterol levels, obesity, and certain
cancers (250–253), a growing body of research suggests that this

association may be weak, nonexistent, or even inverse in the case of
cheese consumption (11, 12, 20, 254–256).

In this review, we specifically focused on studies published from
January 1, 2023, to June 6, 2025, in order to provide an updated
synthesis of the most recent observational and interventional
evidence, complementing rather than duplicating prior high-
quality meta-analyses—such as Zhang et al. (20), which covered
studies up to August 31, 2022, Pradeilles et al. (21), which included
studies up to mid-June 2022 and Al Slurink et al. (22), which
extended the evidence to September 2023 (while acknowledging
that our starting point partially overlaps with the latter).

To assess the current state of evidence, a search
was conducted in PubMed on June 6, 2025, to identify
observational studies investigating the association between
cheese intake and cardiometabolic health in humans (Table 2).
The search string used was: (“cheese”[MeSH Terms] OR
cheese[tiab]) AND (“cardiovascular diseases”[MeSH Terms]
OR “cardiometabolic”[tiab] OR “metabolic syndrome”[MeSH
Terms] OR “diabetes mellitus, type 2”[MeSH Terms] OR “lipid
metabolism”[MeSH Terms] OR “blood pressure”[MeSH Terms]
OR “hypertension”[MeSH Terms] OR “cholesterol”[MeSH
Terms] OR cardiovascular[tiab] OR cardiometabolic[tiab] OR
diabetes[tiab] OR hypertension[tiab] OR “lipid profile”[tiab])
AND (“observational study”[Publication Type] OR “cohort
studies”[MeSH Terms] OR “case-control studies”[MeSH
Terms] OR “cross-sectional studies”[MeSH Terms]) AND
humans[MeSH Terms].

This search yielded 22 results. Of these, eleven articles were
excluded for one or more of the following reasons: (1) cheese
intake was assessed as part of mixed dietary patterns that included
non-dairy components, potentially confounding the results; (2)
the article focused on cardiology interventions and included
terminology such as “cheese-wire septotomy” or “Swiss-cheese
muscular ventricular septal defects (MVSDs)”, which are unrelated
to dietary cheese consumption; (3) the article reported results
from intervention studies or Mendelian Randomization studies
rather than observational designs; (4) systematic review or and
meta-analysis that could over-estimate findings.

Furthermore, to assess the current state of evidence for
randomized clinical trials, a search was conducted in PubMed on
June 6, 2025, to investigate the association between cheese
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TABLE 2 Observational studies on the association between cheese intake and cardiometabolic health in humans.

Title and references Methods Main findings

Dairy intake, plasma metabolome, and risk of
type 2 diabetes in a population-based cohort
(348)

-A total of 26,461 Swedish participants from the Malmö
Diet and Cancer Study (1991–1996) with baseline dairy
intake data were followed until 31 December 2020
using linked health registers. -Every second participant
recruited between November 1991 and February 1994
was invited to the Malmö Diet and
Cancer-Cardiovascular Cohort (MDC-CC), where
fasting plasma samples were collected. -Metabolomic
profiling was performed in a subsample of 893
participants using mass spectrometry. -Dietary intake
at baseline was assessed by a combined approach: 7-day
food diary, 168-item food frequency questionnaire
(FFQ), and a 45–60-min dietary interview
for verification. -Dairy intake was classified into
nonfermented milk, fermented milk (yogurt, sour
milk), cheese, cream, and butter, analyzed both
categorically and continuously. -Associations between
dairy intake and type 2 diabetes risk were estimated
using Cox proportional hazards models, reporting
hazard ratios (HRs) with 95% confidence intervals.

1. Increased risk of T2DM was observed with∗ :
-High nonfermented milk intake (>1,000 g/d vs. <200 g/d;
HR: 1.40; 95% CI: 1.12, 1.74)
-High cheese intake (>100 g/d vs. <20 g/d; HR: 1.23; 95%
CI: 1.07, 1.41)
2. Decreased risk of T2DM was observed with∗ :
High fermented milk intake (>300 g/d vs. 0 g/d; HR: 0.88;
95% CI: 0.74, 1.03)
High cream intake (>50 g/d vs. <10 g/d; HR: 0.77; 95% CI:
0.64, 0.92)
High butter intake (>50 g/d vs. 0 g/d; HR: 0.82; 95% CI:
0.71, 0.94)
∗Associations were slightly weaker after adjusting for Body
Mass Index (BMI).
3. Metabolomic profiles identified distinct sets of metabolites
associated with each dairy type. For cheese, the strongest
positive associations were observed for N-methylpipecolate,
3,5-dichloro-2,6-dihydroxybenzoic acid, and
N-palmitoyl-heptadecasphingosine (d17:1/16:0), and the
strongest inverse associations were dimethylglycine.

The prolonged impact of swapping
non-fermented with fermented dairy
products on cardiovascular disease: the
ATTICA cohort study (2002–2022)
(349)

- 1988 participants, middle-aged adults (healthy, no
CVD at baseline), from Attica, Greece. - Dietary
assessment was based on a validated semi-quantitative
food frequency questionnaire. - CVD evaluation was
performed in three follow-up time points at 5, 10 and
20 years after baseline.

1. Higher consumption of fermented dairy (>2 servings/day)
was associated with a 1.5 times lower risk of CVD, compared
with lower level of consumption (<1 serving/day).
2. Individuals who consumed fermented dairy products at a
rate equivalent to or exceeding 76% of their total daily dairy
intake experienced a 32% lower incidence of CVD∗ .
3. When the ratio of fermented to non-fermented dairy
product consumption exceeded 2.5, there was a 20% lower
risk of developing CVD.
4. The protective effect of fermented dairy is enhanced in
participants with higher CRP levels.
5. Replacing low-fat with whole-fat yogurt was related to
35% higher CVD risk while in the case of various types of
cheese no significance was observed.
∗The associations were retained even after multiple
adjustments including sociodemographic, lifestyle,
anthropometric, clinical and biochemical factors.

Dairy products and hypertension:
cross-sectional and prospective associations
(350)

- Four studies were conducted in Lausanne,
Switzerland: three cross-sectional studies (2009–12,
2014–17, and 2018–21) and one prospective study
(2009–12 to 2018–21). - Dietary intake was assessed
using a validated food frequency questionnaire. Dairy
consumption was compared between participants with
and without prevalent or incident hypertension. - For
the cross-sectional analyses, data from 4,437 (2009–12,
54.0% women, 57.7 ± 10.5 years), 2,925 (2014–17,
53.4% women, 62.5 ± 10.0 years), and 2,144 (2018–21;
53.3% women, 65.5 ± 9.6 years) participants were used.
For the prospective study, data from 2,303 participants
(60.8% women, 53.9 ± 9.0 years) were used.

1. No link was found between dairy consumption and
hypertension prevalence or incidence.
2. Cross-sectional analyses revealed no consistent differences
in dairy intake (total dairy, milk, yogurt, cheese, low-fat
dairy, and full-fat dairy) between participants with and
without hypertension, though those with hypertension
tended to consume less cheese (e.g., 51 ± 1 vs. 55 ± 1 g/day,
p = 0.014 for 2009–12).
3. In the prospective study, irrespective of the dairy product
considered, no association was observed between dairy
consumption quartiles and hypertension development, even
when stratified by dietary quality.

Replacement of saturated fatty acids from
meat by dairy sources in relation to incident
cardiovascular disease: the European
Prospective Investigation into Cancer and
Nutrition (EPIC)-norfolk study (351)

- 21,841 participants of the European Prospective
Investigation into Cancer and Nutrition-Norfolk study
(56.4% female; age, 40–79 years), without a prevalent
CVD, with plausible energy intakes and with complete
data at baseline were prospectively analyzed in
this study. - Dietary data were collected via food
frequency questionnaires at baseline (1993–1997).
Incident fatal or nonfatal CVD (n = 5,902), coronary
artery disease (CAD) (n = 4,215), stroke (total: n =
2,544; ischaemic: n = 1,113; hemorrhagic: n = 449)
were identified up to 2018. - Hazard ratios (HR) and
95% confidence intervals were estimated using Cox
regression to assess the risk of replacing 2.5% of energy
from saturated fat (SFA) from meat with dairy,
adjusting for sociodemographic, lifestyle, energy,
dietary, and cardiometabolic factors.

1. No link was found between dairy consumption and
hypertension prevalence or incidence.
2. Cross-sectional analyses revealed no consistent differences
in dairy intake (total dairy, milk, yogurt, cheese, low-fat
dairy, and full-fat dairy) between participants with and
without hypertension, though those with hypertension
tended to consume less cheese (e.g., 51 ± 1 vs. 55 ± 1 g/day,
p = 0.014 for 2009–12).
3. Irrespective of the dairy product considered, no
association was observed between dairy consumption
quartiles and hypertension development, even when
stratified by dietary quality.
4. Main findings suggest that replacing SFA from meat,
especially processed meat, with dairy could reduce CVD and
CAD risk.
5. Replacing SFA from total meat with total dairy was linked
to an 11% lower risk of CVD and a 12% lower risk of CAD.
6. Substituting SFA from processed meat with cheese was
associated with a 23% lower risk of both CVD and CAD.

(Continued)
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TABLE 2 (Continued)

Title and references Methods Main findings

7. Replacing SFA from red meat with cheese was linked to a
lower risk of CVD (HR: 0.86).
8. However, replacing SFA from poultry with dairy products
(milk, yogurt, or cheese) was associated with a higher risk of
stroke, though this result had large confidence intervals due
to low SFA intake from poultry.

Usual intake of dairy products and the chance
of pre-diabetes regression to normal glycemia
or progression to type 2 diabetes: a 9-year
follow-up (352)

- This longitudinal analysis was part of the Tehran
Lipid and Glucose Study (TLGS), a large, ongoing
community-based cohort initiated in 1999 to
investigate and prevent non-communicable diseases
among 15,005 Tehran residents aged ≥3 years. - For
this study, 334 adults aged ≥21 years with prediabetes
(Pre-DM), who had complete dietary, demographic,
anthropometric, and biochemical data from the third
TLGS phase (2006–2008), were followed for a median
of 9 years. - The mean age of the study participants was
49.4 ± 12.8 years, and 51.5% were men. - Biochemical
markers were measured at baseline every 3 years. -
Multinomial regression, adjusted for confounders, was
used to estimate odds ratios (ORs) for developing
T2DM or achieving NG per additional daily serving
of dairy.

1. Higher intake of high-fat dairy was significantly associated
with an increased chance of regression to normal glycemia.
Specifically, each additional 200 g/day of high-fat dairy
increased the odds of returning to normal glycemia by 69%
(OR = 1.69, 95% CI = 1.00–2.86, P = 0.05), while the
amount of total dairy or low-fat dairy was not related to the
outcomes.
2. Yogurt consumption showed a strong positive association
with prediabetes remission (OR = 1.82, 95% CI = 1.20–2.74,
P = 0.01).
3. Usual intakes of milk, cheese, or cream-butter were not
associated with Pre-DM remission or progression to T2DM.

High consumption of dairy products and risk
of major adverse coronary events and stroke
in a Swedish population (353)

- This study used data from the Malmö Diet and
Cancer (MDC) cohort, which included 74,138 men and
women born between 1923 and 1950. - Participants
underwent baseline examinations in 1991–1996,
completing anthropometric measurements and detailed
self-administered questionnaires on lifestyle factors,
smoking, physical activity, and diet. After excluding
individuals with prevalent CVD, diabetes, and
incomplete data, 26,190 participants (9,947 men, 16,243
women) were included. - Dietary intake was assessed
using 7-day food records, questionnaire and interview,
and Cox proportional hazards models estimated hazard
ratios for cardiovascular outcomes, adjusting
for confounders.

1. Very high consumption of non-fermented milk (>1,000
g/d) compared with low intakes (<200 g/d) was associated
with a 35% higher risk of major adverse coronary events
(MACE) and a 30% higher risk of CAD.
2. Moderate intake of fermented milk (100–300 g/d) was
inversely associated with the risk of MACE.
3. Cheese intake was linked to a lower risk of MACE and
CHD, particularly in women.
4. No significant link was found between dairy consumption
and stroke risk, though high non-fermented milk intake was
associated with a decreased risk of ischaemic stroke and
increased risk of hemorrhagic stroke.

Cheese consumption and multiple health
outcomes: an umbrella review and updated
meta-analysis of prospective studies (20)

- This umbrella review followed PRISMA guidelines.
The authors systematically searched PubMed, Embase,
and the Cochrane Library up to August 31, 2022, for
meta-analyses and pooled analyses of prospective
observational studies evaluating the association
between cheese consumption and any health outcome. -
A total of 124 articles of original studies were extracted
from previous meta-analyses, which combined with 63
newly added primary articles, resulting in 187 original
articles. After excluding 25 articles with overlapping
study populations or without absolute intake as
exposures, 162 original articles were included. Most of
the included studies did not stratify results by cheese
type, and intake was generally reported in grams/day of
“cheese” as a single category. - Methodological quality
of included meta-analyses was assessed
using AMSTAR-2. - Credibility of evidence was
evaluated using the NutriGrade scoring system,
considering factors like risk of bias, heterogeneity,
publication bias, and dose-response relationship.

1. Cheese consumption was inversely associated with:
All-cause mortality (Relative Risk (RR) = 0.95);
• Cardiovascular mortality (RR = 0.93);
• Incident CVD (RR = 0.92);
• CAD (RR = 0.92);
• Stroke (RR = 0.93);
• Estrogen receptor-negative (ER) breast cancer (RR= 0.89);
• T2DM (RR = 0.93);
• Total fractures (RR = 0.90);
• Dementia (RR = 0.81).

2. No significant associations were observed for certain
outcomes like cancer mortality, hypertension, and
prostate cancer.
3. The quality of evidence for inverse associations (e.g.,
with mortality and CVD) was moderate according to the
NutriGrade scoring system.
4. Overall, cheese consumption was linked to moderate
health benefits, despite concerns about its high saturated
fat and sodium content in some types of cheese.

Association between dairy products
consumption and the prevalences of
combined prediabetes and type 2 diabetes
mellitus in Brazilian adolescents: a
cross-sectional study (354)

- Cross-sectional analysis using data from the Brazilian
Study of Cardiovascular Risk in Adolescents (ERICA,
2013–2014), including 35,737 adolescents aged 12–17
years. The final sample analyzed consisted of 35
614 adolescents. - Dairy consumption was assessed
through a 24-h dietary recall and categorized into
tertiles (low, medium, high intake). The types of dairy
considered included milk, yogurt, and cheese. -
Outcomes evaluated were fasting plasma glucose,
HbA1c, HOMA-IR (insulin resistance), prediabetes,
and T2DM. Associations were estimated using Poisson
regression and adjusted for sociodemographic,
behavioral, and nutritional covariates. - Analyses were
stratified by nutritional status (normal weight
vs. overweight/obesity).

1. The total consumption of dairy products and full-fat dairy
products was associated with a lower combined prevalence
of prediabetes and T2DM.
2. Total intake of dairy products was inversely associated
with fasting blood glucose levels after adjusting for all
covariates (β =−0·452, 95 % CI −0·899, −0·005). The
associations were stronger for overweight and obese
adolescents. Findings were similar for full-fat dairy products
and yogurt.
3. In the total sample and among adolescents with normal
BMI, a higher consumption of low-fat dairy products and
cheese were associated with a 46 % (prevalence ratio, PR
1·46, 95 % CI 1·18, 1·80) and 33 % (PR 1·33, 95 % CI 1·14,
1·57) higher combined prevalence of prediabetes and T2DM,
respectively.
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Title and references Methods Main findings

Dairy product consumption and incident
prediabetes in the australian diabetes, obesity,
and lifestyle study with 12 years of follow-up
(355)

- The study included 4,891 participants with normal
glucose tolerance at baseline (mean age 49.0 ± 12.3
years; 57% female) from the Australian Diabetes,
Obesity and Lifestyle (AusDiab) study, a longitudinal,
population-based cohort. - Dairy intake was assessed at
baseline using a validated food frequency
questionnaire. Prediabetes at the 5-year and 12-year
follow-ups was defined according to World Health
Organization (WHO) criteria as fasting plasma glucose
levels between 110–125 mg/dL or 2-h plasma glucose
levels between 140–199 mg/dL. - Associations were
examined using Poisson regression models, adjusted for
sociodemographic factors, lifestyle behaviors, family
history of diabetes, and intake of other food groups.

1. A higher intake of high-fat dairy (RR servings/d: 0.92; 95%
CI: 0.85, 1.00), high-fat milk (0.89; 95% CI: 0.80, 0.99), and
total cheese (0.74; 95% CI: 0.56, 0.96) was associated with a
lower risk of prediabetes.
2. Low-fat milk intake was associated nonlinearly with
prediabetes risk.
3. Low-fat dairy foods, total milk, yogurt, low-fat cheese, and
ice cream were not associated with prediabetes risk.

Associations between dairy intake and
mortality due to all-cause and cardiovascular
disease: the Japan Public Health Center-based
prospective study (356)

- In the Japan Public Health Center-based Prospective
(JPHC) study, 43,117 males and 50,193 females without
a history of cancer or CVD completed a food frequency
questionnaire (FFQ) and were included in the analysis.
- Participants were followed until the date of death,
emigration from Japan, or the end of the study,
whichever occurred first (average follow-up of 19.3
years). Dairy product intake was assessed using the FFQ
and adjusted for total energy intake through the
residual method. - Multivariate Cox proportional
hazards models were applied to estimate hazard ratios
(HRs) and 95% confidence intervals for mortality risk
in males and females.

1. For males, total dairy consumption was nonlinearly and
significantly associated with lower risk of mortality from all
causes.
2. Milk, cheese, and fermented milk intake were associated
with a 19% lower risk [highest vs. lowest: HR = 0.81 (0.73,
0.89); P for trend < 0.001; P for nonlinearity = 0.03], a 13%
lower risk [highest vs. lowest: HR = 0.87 (0.78, 0.97); P for
trend = 0.04], and a 10% lower risk [highest vs. lowest: HR
= 0.90 (0.81, 0.996); P for trend = 0.02] of CVD-related
mortality in males, respectively.
3. Fermented milk intake was inversely associated with risk
of all-cause mortality among women [highest vs. lowest: HR
= 0.93 (0.88, 0.99); P for trend = 0.15].
4. There was no association between total dairy intake and
mortality risk among females.

∗Associations were slightly weaker after adjusting for Body Mass Index (BMI).

intake and cardiometabolic health in humans (Table 3).
The search string used was: (“cheese”[MeSH Terms] OR
cheese[tiab]) AND (“cardiovascular diseases”[MeSH Terms]
OR “cardiometabolic”[tiab] OR “metabolic syndrome”[MeSH
Terms] OR “diabetes mellitus, type 2”[MeSH Terms] OR “lipid
metabolism”[MeSH Terms] OR “blood pressure”[MeSH Terms]
OR “hypertension”[MeSH Terms] OR “cholesterol”[MeSH
Terms] OR cardiovascular[tiab] OR cardiometabolic[tiab] OR
diabetes[tiab] OR hypertension[tiab] OR “lipid profile”[tiab])
AND (“randomized controlled trial”[Publication Type] OR
“randomized”[tiab] OR “randomized”[tiab]) AND (humans[MeSH
Terms]). Filters were applied for “Clinical Trial”, “Randomized
Controlled Trial” and “Systematic Review”.

This search yielded seven results. Of these, three articles were
excluded for one of the following reasons: (1) the article did not
focus on cheese intake or even fermented dairy products, focusing
instead on other non-dairy components; (2) systematic review or
and meta-analysis that could over-estimate findings.

In this section, both beneficial/neutral and harmful associations
were eligible for inclusion, provided they met our predefined
criteria. Within the January 2023–June 2025 search window, the
majority of eligible studies reported neutral or beneficial effects,
but we also identified examples of less favorable associations.
For instance, the cohort study by Zhang et al. (2025) reporting
increased T2DM risk for high cheese intake (>100 g/day vs. <20
g/day) compared with low intake (<20 g/day), and the RCT by
O’Connor et al. (62) showing less favorable lipid outcomes with
melted cheese compared to.

While traditional concerns about saturated fat and sodium
persist, the unique nutritional matrix of cheese, along with specific

bioactive compounds, may confer protective effects. Some studies
propose that this could be due to the complex matrix of cheese
and its manufacturing processes, which may alter fat metabolism or
mitigate some of its potential adverse effects (17, 257). For example,
vitamin K plays a role in cardiovascular health by inhibiting
vascular calcification (196, 258), while calcium may reduce fat
absorption in the digestive system (259).

Still, much of the available evidence originates from
observational studies, with few long-term randomized controlled
trials available to date.

6 Discussion

The advances in nutrition science have been moving away from
focusing solely on calories and individual nutrients, to also include
a more comprehensive understanding of the complex interactions
that occur within food matrices, and their potential effects on
health. This perspective is particularly relevant when considering
products like cheese, widely consumed for its flavor and nutritional
value, but that has often been associated with health concerns due
to its high content of saturated fat and salt.

Recent studies have proposed that cheese fat, when delivered
within the intact dairy matrix, may have a different metabolic
impact compared to isolated saturated fats. The so-called “dairy
matrix effect” suggests that the interaction between lipids,
proteins, minerals (especially calcium), and the fermentation
process can modulate lipid digestion and absorption, potentially
mitigating the atherogenic effects of saturated fats (17, 260,
261). A similar phenomenon appears to occur with sodium with
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TABLE 3 Randomized clinical trials (RCTs).

Title and references Methods Main findings

The impact of sex and the cheese matrix on
cholesterol metabolism in middle-aged adults
(357)

- Two parallel-arm RCTs with comparable protocols.
Volunteers were recruited from Dublin, Ireland, and
the surrounding areas. The inclusion criteria for both
studies were for participants to be healthy, aged ≥50
years, and with a BMI ≥25 kg/m2. Exclusion criteria
included being prescribed medication for cholesterol or
blood pressure lowering, following a prescribed diet or
actively trying to lose weight. - A total of 197
participants (41.6% male) were assigned to receive
either 120 g of Irish cheddar cheese (n = 104) or a
deconstructed cheese intervention, comprising 49 g of
butter, 30 g of calcium caseinate, and a calcium
supplement (n = 93), for a duration of six weeks. Both
interventions provided approximately 40 g of fat
per day.

1. Cheese consumption led to a reduction in total and
LDL cholesterol compared to deconstructed cheese
(butter, calcium caseinate, and a calcium supplement)
in the overall study population.
2. Although no significant sex × treatment interaction
was observed, sex-specific analyses revealed differential
responses: in males, both cheese and deconstructed
cheese reduced cholesterol levels, while in females, only
cheese lowered total and LDL cholesterol, whereas
deconstructed cheese increased these lipid markers.
These results suggest that the cheese matrix may exert
more favorable effects in females, highlighting potential
implications for personalized nutrition strategies.

An examination of the impact of unmelted,
melted, and deconstructed cheese on lipid
metabolism: a 6-week randomized trial (62)

- 6-week randomized parallel intervention. Participants
were recruited from Dublin, Ireland, and the
surrounding areas between January 2020 and
December 2022. - Inclusion criteria included
participants aged ≥50 years, with BMI ≥25 kg m−2, no
chronic co-morbidities, free from dairy
intolerance/allergy and consumed an omnivorous diet.
An overweight population was chosen as this is similar
to other studies in the area, and this is a group that is
often advised to avoid consuming cheese owing to the
SFA content. - Exclusion criteria were being prescribed
medications for cholesterol or blood pressure reduction
purposes, prescribed or therapeutic diets, or actively
trying to lose weight. 162 participants (43.3% male)
received ∼40 g of dairy fat per day, in 1 of 3 treatments:
(A) 120 g full-fat Irish grass-fed cheddar cheese, eaten
in unmelted form (n = 58); (B) 120 g full-fat Irish
grass-fed cheddar cheese eaten in melted form (n = 53);
or (C) the equivalent components; butter (49 g),
calcium caseinate powder (30 g), and Ca supplement
(CaCO3; 500 mg) (n = 51). - All intervention diets were
matched for energy, fat, casein, and calcium content.

1. Melted cheese, compared to unmelted cheese and to
individual cheese components, increased total
cholesterol and triglyceride concentrations. Melted
cheese increased total cholesterol concentrations by
0.20 ± 0.15 mmol L−1 and triglyceride concentrations
by 0.17 ± 0.08 mmol L−1 compared to unmelted
cheese. No significant differences were observed
between the cheese forms for a change in HDL, LDL, or
VLDL cholesterol.
2. There was no difference in weight, fasting glucose, or
insulin between the post-intervention groups.

Consumption of dairy foods to achieve
recommended levels for older adults has no
deleterious effects on serum lipids (358)

- Sub-group analysis of a 2-year cluster-randomized
trial involving 60 aged care homes in Australia. Thirty
intervention homes provided additional milk, yogurt,
and cheese on menus while 30 control homes
continued with their usual menus. - A sample of 159
intervention and 86 controls residents (69% female,
median age 87.8 years) had dietary intakes recorded
using plate waste analysis and fasting serum lipids
measured at baseline and 12 months. - The inclusion
criteria were permanent residents in participating aged
care homes (e.g., not respite residents) and were not
bed-bound. As the main objective of the project was
fracture risk reduction, cardio-vascular disease status
and related medications were not an exclusion
criterion. Diagnosis of CVD and use of relevant
medications were determined from medical records.

1. Among older adults in aged care homes, correcting
insufficiency in intakes of calcium and protein using
milk, yogurt and cheese does not alter serum lipid
levels, suggesting that this is a suitable intervention for
reducing the risk of falls and fractures.
2. Intervention increased daily dairy servings from 1.9
± 1.0 to 3.5 ± 1.4 (p < 0.001) while controls continued
daily intakes of ≤2 servings daily (1.7 ± 1.0 to 2.0 ±
1.0) (p = 0.028).
3. No group differences were observed for serum total
cholesterol/high-density lipoprotein-C (TC/HDL-C)
ratio, Apoprotein B/Apoprotein A-1 (ApoB/ApoA-1)
ratio, low-density lipoprotein-C (LDL-C), non-HDL-C,
or TGs at 12 months.

Effect of isoenergetic substitution of cheese with
other dairy products on blood lipid markers in the
fasted and postprandial state: an updated and
extended systematic review and meta-analysis of
randomized controlled trials in adults (21)

- Systematic Review and Meta-Analysis of RCTs in
Adults. Searches of PubMed (Medline), Cochrane
Central and Embase databases were conducted up to
mid-June 2022. - Eligible human RCTs investigated the
effect of isoenergetic substitution of hard or semi-hard
cheese with other dairy products on blood
lipid markers. - Risk of bias (RoB) was assessed using
the Cochrane RoB 2.0 tool. Random-effects
meta-analyses assessed the effect of ≥2 similar dietary
replacements on the same blood lipid marker. Of 1,491
citations identified, 10 articles were included.

1. Pooled analyses of 7 RCTs in this meta-analysis
found that short-term (14–42 d) consumption of hard-
or semi-hard cheese (mean daily intake: 135 g) lowered
fasting circulating total cholesterol (TC) and
low-density lipoprotein cholesterol (LDL-C), and to a
lesser extent high-density lipoprotein cholesterol
(HDL-C), relative to butter intake (∼52 g/d), even with
evidence of statistical heterogeneity.
2. No evidence of a benefit from replacing cheese for
≥14 d with milk on fasting blood lipid markers (n = 2)
was found.
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Effect of reduced-calcium and high-calcium
cheddar cheese consumption on the excretion of
fecal fat: a 2-week cross-over dietary intervention
study (359)

- Seven healthy males (BMI 18–25) participated in this
randomized, cross-over control design study, consisting
of 3 × 2-week periods with a 2-week washout period, in
a free-living cohort, designed to test the effect of
varying the intake of calcium within cheese during each
intervention period. - Diets included 240 g/day of
cheese, with the following variations: a High Calcium
Cheese (HCC) diet, a Reduced Calcium Cheese (RCC)
diet, and a control arm, which consisted of a Reduced
Calcium Cheese + CaCO3 Supplement (RCC + Supp)
diet. The control arm with the CaCO3 supplement
matched the levels of Calcium present in the HCC. The
diets differed in calcium content and form but were
otherwise controlled for energy intake and
key macronutrients. - Blood and 5-day fecal samples
were collected during the study.

1. Varying the calcium content within a cheese matrix
significantly affected fasting LDL-c values.
2. Fasting LDL-c was significantly lower following the
HCC diet vs. the other arms (P = 0.002).

studies suggesting that ACE-inhibiting peptides, naturally present
in cheeses with extended ripening, may help counterbalance
the harmful effects of sodium on health, particularly on
hypertension. Noteworthy, hard cheeses tend to elicit a slower
release of lipids during digestion compared to soft varieties.
This difference is thought to arise from fat globule size
and matrix entrapment—smaller globules in soft cheeses are
more easily liberated, while the larger globules characteristic
of hard cheeses remain more tightly embedded in the protein
network, delaying lipolysis (17, 262). This structural difference
may help explain the attenuated postprandial lipemic with
hard cheese consumption that have been reported in some
studies (262).

Fermented dairy products like cheese are being recognized not
only as nutritious foods but also as complex ecological systems.
They host a rich and diverse microbiota composed of bacteria,
yeasts, and molds that contribute not only to flavor development
but also to potential health benefits through the production
of bioactive compounds. The microbial diversity and metabolic
activity in cheese are influenced by factors such as the use of
raw or pasteurized milk, ripening conditions, and the composition
of microbial consortia. Raw milk cheeses often harbor a more
complex microbiota, which may enhance the formation of bioactive
peptides, antimicrobials, and other health-promoting compounds
like SCFAs. However, this microbial richness also requires careful
safety management, highlighting the importance of controlled
production and regulatory oversight.

A growing body of studies have been showing that the
different components of cheese matrices, including macro
and micronutrients, microorganisms and even manufacturing
techniques, can interact in ways that may mitigate potential
negative effects of individual elements, while conferring neutral to
moderate health benefits. Beyond the components found in cheese
itself, the observed protective association might also be explained
by the fact that eating more cheese could replace the intake of
other foods linked to a higher risk of chronic disease incidence or
mortality (e.g., processed or red meat and refined carbohydrates)
as discussed elsewhere (20).

To assess the current state of evidence, this review includes all
observational studies (Table 2) and RCTs published on PubMed

in the past 2.5 years (Table 3) examining the association between
cheese consumption and cardiometabolic health in humans.

Regarding the sample of observational studies, the overall
evidence tends to support beneficial or neutral effects of cheese on
health, with adverse effects being limited and isolated. However,
comparisons across studies are challenging because reported
cheese consumption lacks differentiation or specification of cheese
types, populations vary, and comparison groups differ, sometimes
comparing cheese intake with other dairy products (fermented or
not) or even with other food groups such as meat. Nonetheless,
this body of evidence is strengthened by an umbrella review
and updated meta-analysis of prospective studies, including 162
original studies, that is also consistent with the beneficial impact
of cheese on various outcomes, such as inverse associations with
cardiovascular mortality and CVD (20).

As for the RCTs, collectively these trials indicate that cheese
consumption may not be associated with adverse metabolic effects.
In fact, intake of cheese, particularly in its intact matrix form,
has been associated with to lower total and LDL cholesterol levels
compared to other dairy products such as butter and milk, or
shows a neutral impact, with one study suggesting potential sex-
specific benefits.

These findings from the last 2.5 years are in accordance
with those of a systematic review and meta-analysis of RCTs
(21) which reported that pooled data from seven trials showed
that replacing butter with an isoenergetic amount of hard or
semi-hard cheese (mean 135 g/day for ≥14 days) significantly
reduced fasting total cholesterol (−0.24 mmol/L), LDL cholesterol
(−0.19 mmol/L), and HDL cholesterol (−0.04 mmol/L), whereas
replacing cheese with milk did not yield significant differences.
This reinforces the concept that the cheese matrix modulates lipid
metabolism differently from other dairy products. Additionally,
cheese structure and processing appear to modulate lipid responses:
increasing calcium content enhances lipid profiles, whereas melting
cheese may lead to less favorable outcomes.

The few RCTs, most of which are short-term, are marked by
considerable heterogeneity in terms of cheese types, study designs,
and populations. For instance, in our sample of studies from the
last 2.5 years, three of the four trials specified the cheese type used,
Cheddar, while one study did not provide this detail.
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FIGURE 1

Infographic summarizing the key mechanisms and health implications of cheese consumption within the context of the dairy matrix. A part of this
figure has been designed using resources from Flaticon.com.
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Most available data, as illustrated by Tables 1, 2, come from
observational or short-duration studies, limiting causal inference.
To consolidate current knowledge and strengthen the evidence
base, more robust, long-term randomized controlled trials are
urgently needed. Future studies should also aim to include diverse
populations across different ethnicities and age groups to enhance
the generalizability of findings to the broader population.

Continued research into food matrices is therefore essential,
not only to better understand their role in health, but also to help
inform and refine dietary guidelines with stronger evidence (see
summary in Figure 1). Interestingly, recent studies have sought to
enhance the health-promoting properties of cheese, increasing their
functional potential (263–265). For instance, these efforts include
enriching its matrix with bioactive components such as MFGM and
omega-3 fatty acids, both of which have been briefly discussed here
for their potential physiological benefits (265).
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87. Cieślińska A, Fiedorowicz E, Rozmus D, Sienkiewicz-Szłapka E, Jarmołowska
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