

OPEN ACCESS

EDITED BY
Patrick Veiga,
Institut National de recherche pour
l'agriculture, l'alimentation et l'environnement
(INRAE), France

REVIEWED BY Emmanouella Magriplis, Agricultural University of Athens, Greece Theofilos Massouras, Agricultural University of Athens, Greece

*CORRESPONDENCE Inês Brandão ⊠ inesbrandao@cataa.pt;

inesm.brandao@gmail.com

RECEIVED 18 June 2025 ACCEPTED 22 August 2025 PUBLISHED 03 October 2025

CITATION

Eugénio A, Ramos R, Barreto IR, Carriço R, Marcos J, Camelo A, Espírito Santo C and Brandão I (2025) Cheese: mere indulgence or part of a healthy diet? *Front. Nutr.* 12:1649432. doi: 10.3389/fnut.2025.1649432

COPYRIGHT

© 2025 Eugénio, Ramos, Barreto, Carriço, Marcos, Camelo, Espírito Santo and Brandão. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Cheese: mere indulgence or part of a healthy diet?

Ana Eugénio^{1,2}, Rita Ramos^{1,3,4}, Inês R. Barreto^{1,2}, Raquel Carriço^{1,5}, Joana Marcos^{1,5}, Alexandra Camelo^{1,2}, Christophe Espírito Santo^{1,2} and Inês Brandão^{1,2}*

¹Centro de Apoio Tecnológico Agro Alimentar (CATAA), Castelo Branco, Portugal, ²Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal, ³FitoLab, Laboratory for Phytopathology, Instituto Pedro Nunes, Coimbra, Portugal, ⁴Universidade da Beira Interior, Faculdade de Ciências, Covilhã, Portugal, ⁵Universidade Lusófona, Lisboa, Portugal

Cheese is a widely consumed fermented dairy product with a long history of human consumption dating back several millennia, which justifies a brief historical introduction in this review. Beyond its cultural and gastronomic relevance, cheese presents a complex nutritional and microbial matrix that may confer neutral or even beneficial effects on cardiometabolic health, despite concerns related to its saturated fat and sodium content. This review first explores the key components of the cheese matrix and several mechanisms potentially involved in its metabolic impact, including the presence of polar lipids, the production of short-chain fatty acids (SCFAs) and alpha-linolenic acid (ALA) by the cheese microbiota, and the high calcium content that may reduce fat absorption, among others. Additional bioactive compounds formed during fermentation, such as angiotensin-converting enzyme (ACE)-inhibitory peptides, are also discussed for their potential health effects. We also include a comprehensive survey of most European Protected Designation of Origin (PDO) cheeses and their microbiota. Finally, to assess the most recent evidence in human health, we analyzed a sample of studies published on PubMed in the last 2.5 years, including observational studies and randomized controlled trials. This selection highlights the latest research trends and supports a growing body of evidence suggesting that cheese, particularly in its intact matrix form, is not associated with adverse cardiometabolic outcomes—and may even exert protective effects. These findings call for more robust, long-term trials to confirm causality and support updated dietary guidance.

KEYWORDS

cheese matrix, cardiometabolic health, fermented dairy, bioactive compounds, cheese microbiota, saturated fat, Protected Designation of Origin (PDO), randomized controlled

1 Introduction

Advances in nutrition science are making clear that the focus on calories and isolated nutrients, which were the basis for the creation of conventional dietary guidelines during the 20th century (1, 2), is no longer sufficient to predict the impact of food on health, especially when it comes to the prevention of chronic and complex cardiometabolic diseases, such as type 2 diabetes mellitus (T2DM) or obesity (3–6). More in-depth studies of foods as a whole, i.e. on their complex matrices composed of nutrients, minerals, bioactive compounds, and other factors, such as prebiotics and probiotics, become inevitable to understand the real impact of foods on health and disease.

A relevant example of this is cheese, a widely produced and consumed fermented dairy product, that is a major source of saturated fat and salt, two components that are

traditionally linked to cardiometabolic diseases (7–9). Due to this, cheese has been a regular target to cut down from diet, when considering the traditional guidelines.

However, an increasing body of scientific evidence has been showing that there may not be a strong correlation between cheese consumption and disease (10–12). Various studies during the last decade have shown that high consumption of fermented dairy products, namely cheese, is not consistently related to cardiovascular disease (CVD) or even to mortality risk, even though these foods are high in saturated fat (13–15). In fact, cheese nutrients may possibly work in concert to lower markers of cardiovascular risk, compared to other dairy products when matched for fat content (16, 17), and have other beneficial effects on human health (18, 19). Nevertheless, a detailed mechanistic study of how the cheese matrix influences health outcomes is still needed.

The present review, after a brief historical overview—justified by the millennia-long presence of cheese in the human diet—aims to explore the composition of the cheese matrix in detail and its potential implications for cardiometabolic health. We examine its key nutritional components, including proteins, lipids, carbohydrates (oligosaccharides), minerals (macro and microelements), and bioactive components (peptides, organic acids, vitamins, and exopolysaccharides). Finally, the diverse cheese microbiota is also thoroughly explored.

In addition, we address the process of milk pasteurization and provide a comparison between pasteurized and raw milk cheeses. As highlighted in multiple studies in recent years, cheese – despite its high saturated fat and sodium content – is increasingly reported in observational studies and randomized controlled trials to have neutral or even beneficial associations with cardiometabolic outcomes. These findings are often attributed to the "dairy matrix effect", in which the interactions between nutrients, minerals such as calcium, bioactive peptides, and the fermentation-derived microbiota may modulate lipid digestion, sodium effects, and other metabolic responses.

As part of this work, a detailed survey of the majority of European Protected Designation of Origin (PDO) cheeses is also carried out. Focusing on PDO cheeses allows a more reliable characterization of their microbiota compared to non-PDO cheeses, whose production methods and microbial compositions are often more variable and less well documented. Their traditional starter cultures and dominant microbial taxa are rigorously described in the **Supplementary material**. This microbial characterization supports a broader understanding of how traditional cheese-making practices shape both nutritional properties and health effects.

Finally, to explore these health associations in more detail, we analyzed the most recent human studies published in PubMed over the past 2.5 years (starting on January 2023), encompassing both observational studies and randomized controlled trials. Focusing on this recent period to update the field without duplicating the evidence already synthesized in recent high-quality meta-analyses, as illustrated by Zhang et al. (20), Pradeilles et al. (21) and Al Slurink et al. (22). This approach provides a comprehensive perspective on how the cheese matrix functions and how it may influence cardiometabolic health.

2 Brief historical context

Cheese, either fresh or matured, is an easily digestible product obtained from the coagulation of milk. In short, raw or pasteurized milk is heated and a coagulant, usually rennet, is added to the milk, causing it to curdle and separate between a solid phase, the curds, and a liquid phase, the whey. The whey is drained off and the curds are pressed to remove additional whey and to shape the cheese. Salt is then added by mixing, brining or rubbing. Afterwards, the cheese is aged for varying periods, depending on cheese type, which allows it to develop flavor and texture, by the action of bacteria, fungi and enzymes (23, 24).

Cheeses are differentiated according to milk source (cow, sheep, goat, buffalo, yak, llama, moose, etc.) and other factors such as their manufacturing process (use of animal or plant rennet, or sour milk), consistency (extra-hard, hard, semi-hard, semi-soft, soft, fresh), fat content (double cream, cream, full fat, three-quarters fat, half fat, quarter fat), fermentation type (lactic acid, lactic and propionic acid, butyric acid), microbiota, and physical appearance (hard, soft, with smear, molds) (10, 25, 26).

Cheese has been produced and consumed throughout the world since ancient times. The art of cheese-making dates back to the early Neolithic period during the 6th millennium B.C., with the domestication of sheep and goats, and in agreement with the abundant milk residues in ancient ceramic vessels found in Poland (27-30). Presumably, the process of cheese-making was discovered unintentionally by storing milk in containers made from the stomach of unweaned baby animals, which contained a coagulation enzyme, rennin (chymosin), turning milk into curd and whey (31, 32). In fact, this technique was maintained until the beginning of the 20th century, in some Mediterranean regions (33, 34). Cheese-making was undoubtedly a major achievement for ancient farmers, as it allowed the preservation of milk in a nonperishable and transportable way. Furthermore, the processing of milk made it more digestible for consumption, especially for people that are lactose-intolerant (10, 35, 36).

Romans further mastered the art of cheese-making by developing ripening techniques that would lead to different flavors and characteristics. This expertise was spread throughout the Roman Empire and cheese became an everyday foodstuff (33). During the Middle Ages, European monks improved ripening and aging techniques and developed several varieties of cheese that are still marketed at the present time (33). Later, during the Renaissance period, cheese declined in popularity, most likely due to the poor hygiene conditions found at the time in traditional cheese-making farms and during commercialization (29, 37). This product regained popularity in the 19th century, when cheese production was introduced in factories (33, 38, 39).

A new era for food manufacturing began in the 1860s, with the scientific discovery of pasteurization by Louis Pasteur (40). As milk provides a favorable environment for microbial growth, the adoption of pasteurization for this product was crucial and widely spread in developed countries, allowing for a more controlled and safer cheese production at the industrial scale (41). The World Wars and the Great Depression have further driven innovation in cheesemaking techniques, in order to make products that were cheaper, more durable and with longer shelf-life (42).

Nowadays, there is a large diversity of cheese, with hundreds of varieties described (25), based on the type of milk, heat treatment, coagulation method, curd preparation, fat content, moisture, and ripening time. It can also be further flavored with herbs, spices, and smoke. Cheese is produced all over the world. For the 2024/2025 marketing year, the European Union has been the largest producer, with an estimated 10.7 million metric tons (about 47 % of global output) and also the largest consumer, accounting for roughly 43 % of world cheese consumption, a pattern that parallels its production. In terms of production, the United States follows with around 6.46 million metric tons (29 % of global production). Other significant producers include Russia (\approx 1.16 million metric tons) and Brazil (\approx 0.78 million metric tons) (43).

The impressive variety and prevalent consumption all over the world demonstrates the importance of studying the cheese matrix and the effects of this dairy product on health.

3 Cheese matrix: a complex structure with nutrients, bioactive components and microbiota

3.1 Nutritional components

Dairy product matrices differ considerably from each other, which explains why dairy foods vary in the nutrition and health outcomes they provide, due to the distinct bioavailability of nutrients and bioactive compounds (44). Nutritional values alone are insufficient to predict the effects of dairy products on health, and thus, physical-chemical and biological properties, along with the possible interactions between all components must be fully explored (17, 45).

In fact, the unique structure and physical-chemical features of each food determine how it is digested and, consequently, the absorption of the nutrients and other components contained in the food (46, 47). For example, several studies have reported total and LDL cholesterol to raise significantly after intervention periods of butter consumption, when compared to the same period of cheese consumption (44, 48, 49). Regarding the dairy matrix effect in circulating postprandial amino acid levels, one study revealed these levels increased more quickly and to higher levels, but also decreased much more rapidly on consumption of stirred yogurt compared to cheese, with the latter showing a much more gradual release (50). The more gradual and sustained release into the intestine is assumed to be beneficial for a better degradation of the food matrix, promoting the absorption of matrix components like calcium (51).

Cheese matrices are formed by complex networks that include macro and micronutrients, namely hydrated proteins enclosing scattered fat globules, bioactive peptides, SCFAs, conjugated linoleic acids (CLAs), and other factors, such as minerals like calcium, zinc, phosphorus and magnesium, vitamins, antioxidants, prebiotics, and probiotics (52, 53).

The amount of each major and minor component of these matrices is variable, according to the type of cheese. For example, Parmesan and Gruyère are hard cheeses, containing higher levels of protein, fat, calcium and salt, but lower amount of moisture, contrasting with Fromage Frais and Cottage, which are soft cheeses

containing higher moisture, but lower amounts of these other components (17, 54–56).

The structure of the cheese matrix is also dependent on the type of cheese. For example, Cream cheese is formed by compact fat and protein aggregates with large spaces filled with whey protein (57, 58), Cheddar cheese is characterized by large irregular fat pools (57, 59), Mozzarella has a fibrous and highly oriented structure, capable to stretch, with fat globules and water organized between protein fibers, preventing their coalescence, and creating columns in the direction of stretching (60, 61).

The components of the cheese matrix and their structural organization can significantly impact the matrix's breakdown during mastication and digestion and therefore, change the way nutrients and bioactive components are released and, ultimately, absorbed. As highlighted by O'Connor et al. (62), even though intervention diets were matched for fat, protein, and calcium, the group consuming the melted cheese showed worse metabolic outcomes compared to those consuming unmelted cheese. This suggests that the intact cheese matrix may modulate nutrient release and digestion, possibly affecting lipid metabolism. For instance, lipids in the unmelted cheese matrix may bind with calcium and form calcium soaps, therefore lowering fat absorption (62).

Other biological mechanisms may help explain the association between fermented dairy products and cardiometabolic health, such as the microbiota found in fermented milk and cheese. For instance, cheese bacteria are believed to produce SCFAs and ferment indigestible carbohydrates, which can inhibit cholesterol synthesis and lower blood cholesterol levels. Additionally, bacteria in the large intestine can bind cholesterol to bile acids, forming cholesterol-bile acid complexes that are excreted in the feces. This reduces bile acid circulation, which in turn limits cholesterol uptake into the liver.

3.1.1 Proteins

Milk proteins are an important component of the cheese matrix, with amounts varying from about 4% in Cream cheese to around 40% in Parmesan (55, 58). The two proteins in milk are casein and whey, which are high-quality proteins containing all essential amino acids (63–65). The relative amount of these two proteins in milk varies according to species: while there is an 80:20 casein to whey ratio for cow, sheep, goat and buffalo milk, this ratio is about 40:60 in human and 50:50 in quine milk (64).

The manufacture of natural cheese involves the coagulation of casein micelles, that separate from the whey liquid phase. Whey can be washed and dried into powder, to be used in the production of other food products (23). Most cheeses are casein-based, but some cheeses, such as ricotta and mizithra, are primarily made with whey (66). Casein-cheeses and whey-cheeses are considered different food categories in the *Codex Alimentarius* (CODEX STAN 283-1978 and 284-1971, respectively). Besides natural cheeses, processed cheeses are also commercialized, and they are made by blending natural cheeses with emulsifying salts and other dairy and nondairy ingredients (67).

As mentioned, casein and whey are high-quality proteins that are also easily digested and absorbed, albeit at a different speed.

Casein provides an efficient nutrient supply, by promoting a slow and prolonged postprandial release of amino acids in the blood stream (68, 69). This slow release of amino acids promotes muscle growth and reduces protein breakdown, enhancing long-term muscle mass (68, 70). On the other hand, whey is digested more quickly than casein, and provides a fast source of available nutrients and amino acids to the body (68). Both casein and whey are also sources of leucine, which is an essential amino acid that induces the synthesis of muscle proteins (71, 72).

Due to these proprieties, casein and whey have been purposely included in diets or taken as supplements, especially by athletes and bodybuilders, and also by older people, to maintain or increase lean body mass, with a growing number of studies supporting the beneficial effects of these proteins (73-77). For example, one study observed the superior increase of muscle size in young-adults after a 10-week resistance training program supplemented with whey protein, when compared to the same training supplemented with leucine-matched collagen peptide (78), and another study showed that the introduction of ricotta cheese in the diet of older people attenuated the loss of muscle strength (79). Nevertheless, research has also been cautioning against taking these proteins as supplements and the risk of excessive intake, especially for non-athletes. For example, one study showed that milk protein intake above the recommended dietary allowance did not increase body mass in functionally limited older men (80), and some studies have been associating the excessive consumption of these proteins with kidney and liver damage, acne and modification of the microbiota (81-84).

It is interesting to note that the digestion of these proteins can be affected by cheese manufacture. For example, pasteurization and other heat treatments applied to milk have been suggested to improve protein digestion rate in the human gastrointestinal tract (85, 86). Also, allergies to caseins are common, especially concerning β -caseins: the genetic variant A1, found in milk from certain breeds like Holstein cows, is associated with the production of a peptide called beta-casomorphin-7 (BCM-7) and has been shown to cause slow digestion and inflammation. A2 variant, from breeds like Guernsey and Jersey cows, seems to be less likely to cause gastrointestinal issues. More studies on the differences between β -Casein A1 and A2 are still necessary before recommendations on consumption are made (87, 88).

All these studies highlight that a systematic and more comprehensive research on the effects of casein and whey in human health is still necessary, especially in the scope of regulation and education about their safe intake through food and supplements.

3.1.2 Lipids

The lipid fraction of milk is contained in fat globules and mainly composed of triglycerides (TGs) (\sim 98% of total lipids), but also by fatty acids, acylglycerols, phospholipids, cholesterol and other lipophilic molecules, like vitamins (A, D, E and K) and carotenoids (β -carotene) (89, 90). These globules are naturally enveloped by the milk fat globule membrane (MFGM), a complex trilayer with biologically active functions and composed of \sim 70% proteins and milk polar lipids such as phospholipids and sphingolipids (91–93).

Milk polar lipids from the MFGM have been associated with cardiometabolic benefits, particularly through the reduction of plasma and hepatic hyperlipidemia. These effects are largely attributed to their ability to reduce intestinal cholesterol absorption by multiple mechanisms: they promote intraluminal emulsification, decrease cholesterol solubility in mixed micelles, and inhibit fat digestion by binding of sphingomyelin to pancreatic colipase, thereby reducing pancreatic lipase activity (92, 94, 95). Despite the great focus on the beneficial effects of polar lipids with several evidence in the literature, the protein and glycoprotein fractions of MFGM should not be ignored from a nutritional and bioactive perspective (96).

Processing milk substantially changes the MFGM structure. During cheese production, treatments such as homogenization or pasteurization can disrupt the MFGM and approximately 20% of the phospholipids are retained in the whey (97, 98). The coagulation of milk forms a semi-solid milk gel with milk fat globules entrapped within a casein protein network, and organized as either individual fat globules, aggregated, coalesced or elongated globules, depending on cheese manufacturing processes (99, 100).

Homogenized milk, often used in the production of soft cheeses, contains smaller fat globules that enhance moisture retention. In contrast, unhomogenized milk is typically associated with hard and semi-hard cheese varieties (101–104). The digestion of these fat globules is dependent on both their structural organization (105) and also on the extent of the cheese matrix disintegration during digestion, which varies according to cheese type (106, 107). Fat digestion has also been shown to vary according to the degree of lipid distribution within cheese matrices: cheese manufactured with homogenized milk, as the case of cream and some blue mold cheeses, was shown to have a faster released of free fatty acid from the cheese matrix (85, 100, 108). Furthermore, emulsification can also impact fat digestion (109, 110).

In conclusion, the lipid component of cheese plays a multifaceted role in its structure, sensory characteristics, and potential health implications. Although traditionally viewed as a source of saturated fat, emerging research emphasizes the importance of considering the cheese matrix, the presence of bioactive lipids, and the complexity of lipid digestion when evaluating its health impact.

3.1.3 Carbohydrates

Cheese has a relatively low carbohydrate content when compared to other foods, and is predominantly comprised of lactose, a disaccharide made up of D-galactose bound to D-glucose (111, 112).

Lactose is the primary carbohydrate in milk, comprising about 4.8-5.0 mg/100 mL of cow's milk (113), and plays a significant role in the initial stages of cheese production (25). However, during this process, most of the lactose present is removed along with whey, and the residual lactose in the curds is fermented by lactic acid bacteria (LAB), further reducing its content (114).

Thus, the amount of lactose in most cheese types is very small, especially in aged cheeses when compared to fresh cheeses, due to the longer fermentation period that allows more time

for lactose to be broken down—for example, Cheddar, Brie, and Camembert are aged cheeses that contain only trace amounts of lactose (10). Because of this, individuals with lactose intolerance are still able to consume most cheeses, without experiencing significant symptoms (10, 35, 115). Moreover, some studies suggest that cheese consumption may even have a protective effect on gut microbiota by providing LAB with probiotic properties, which may further aid in lactose metabolism (116).

However, fresh and unripened cheeses such as Ricotta, Cottage cheese, and Cream cheese may retain slightly higher levels of lactose and could pose a risk for more sensitive individuals when compared to hard cheeses like cheddar and gruyere or even aged ones like Parmigiano Reggiano and Grana Padano (117, 118). Therefore, it is important for lactose-intolerant consumers to distinguish between cheese types and select those that are naturally low in lactose or specifically labeled as lactose-free.

3.1.4 Minerals

Cheese is an important source of several essential minerals, with calcium being the most prominent. The addition of calcium reduces the rennet coagulation time of milk by neutralizing the negatively charged residues on casein, which enhances the aggregation of renneted micelles. Also, the high calcium content of cheese influences the dairy fat matrix, as the interaction between milk calcium and caseins affects the formation of the protein network within which the MFGM is embedded (104). As previously mentioned, the formation of calcium soaps interferes with lipid digestion by reducing fat absorption (62). This mineral impacts cheese texture as low concentrations of calcium contribute to increased gel firmness (119), and its amount can significantly vary depending on cheese type: Cheddar, Gruyère, and especially Parmesan contains some of the highest amount of calcium among cheeses (about 7 to 12 milligram of calcium per gram of cheese "as consumed"; "FoodData Central" (120).

Calcium bioavailability in cheese is generally high due to its integration within the casein matrix, particularly in the form of caseinophosphopeptides (CPPs), which are generated during gastrointestinal digestion. These phosphorylated peptides have a high affinity for minerals such as calcium, helping to maintain their solubility and promoting passive absorption in the distal small intestine (121, 122). Dietary calcium is vital for the development and maintenance of bones and teeth (123). It has also been associated with muscle function (124, 125), and weight management (126), as well as playing a role in nerve transmission (127, 128), blood pressure (129), and the regulation of hormones and enzymes (130). Phosphorus is another mineral present in cheese, often in a balanced ratio with calcium (131). It contributes to skeletal integrity, nucleic acid and protein synthesis, and oxygen transport (132).

Although calcium and phosphorus are crucial for skeletal health, excessive intake of these minerals, especially when taken as supplements, has raised concerns about their potential negative effects on health. Research has suggested that dietary calcium and phosphorus intake should primarily come from food sources, such as cheese, to avoid the risks associated with oversupplementation (133–137).

Furthermore, cheese also presents smaller amounts of magnesium, potassium, zinc, cooper, and selenium (138). These trace elements play important roles in various metabolic processes, such as enzyme function, immune response, and antioxidant activity.

And finally, cheese contains a relatively high sodium (salt) content, which is an important consideration for those monitoring its intake for health reasons (139).

Aged cheeses, such as Parmesan, Cheddar, and Roquefort, contain especially high sodium concentrations due to the aging process and the salt used in brining: it is added to enhance flavor, acts as a preservative by inhibiting the growth of undesirable bacteria and mold, and plays a key role in the overall texture and maturation of cheeses (23, 140).

Sodium is essential for maintaining fluid balance, nerve function, and muscle contraction (141). However, high sodium intake is mostly associated with increased risk of hypertension and CVD (142). The World Health Organization recommends limiting sodium intake to <2 grams per day to reduce health risks ["Sodium reduction" (143)]. Given that cheese can be a significant source of dietary sodium, those with hypertension or other cardiovascular conditions should be mindful of their cheese consumption: some strategies can include controlling portion size or choosing reduced-sodium versions of some cheeses (139, 144–146).

Curiously, despite its sodium content, some studies have reported an antihypertensive effect of cheese (147, 148). For instance, a randomized, double-blind, placebo-controlled pilot study by Crippa et al. found that daily consumption of 30 g of Grana Padano P.D.O cheese significantly reduced blood pressure in mild to moderate hypertensive subjects. This antihypertensive effect may be partly explained by the presence of angiotensin-I-converting enzyme (ACE)-inhibiting peptides naturally released during the cheese's long ripening process, which can help counteract the hypertensive impact of sodium. These findings suggest that certain aged cheeses like Grana Padano might offer cardiovascular benefits beyond their mineral composition, although moderation remains important for individuals sensitive to sodium (148).

3.2 Bioactive components

3.2.1 Peptides

Bioactive peptides are biological molecules, with fewer than 50 amino acids linked together by peptide bonds, that are derived from food proteins and become activated when these proteins are cleaved either by enzymes or by microbial fermentation (149–151). They have high tissue affinity, do not accumulate inside organisms, and have important beneficial effects in human health, for which they have been a target of an increasing number of studies (152–154). For example, these physiologically active peptides have been shown to possess anti-inflammatory (155–158), antioxidant (159–161), anticancer (162–164), and immunomodulating (165, 166) proprieties.

In cheese, bioactive peptides are derived from casein and whey proteins, and their concentration is dependent on cheese manufacture, including the starter bacterial culture, processing

conditions (namely, milk heat treatment), and ripening stage (167, 168).

The beneficial effects of consuming cheese for their bioactive peptides have been under study, with research showing that some cheeses contain peptides with functional antihypertensive, antimicrobial, antioxidant, anticarcinogenic, opioid, and zincbinding properties (169). For example, it was shown that the consumption of Domiati, Edam, and especially Gouda cheeses could exert antihypertensive effects, due to the presence of the ACE-inhibiting peptides, namely the tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro), in their matrices (170, 171). It was also observed antibacterial proprieties derived from bioactive peptides, against both gram-positive and gram-negative bacterial species, in the Italian cheeses Pecorino Romano, Canestrato Pugliese, Crescenza, and Caprino del Piemonte (172). Although peptides present in cheese exhibit significant bioactive potential, their clinical efficacy depends on the ability to survive within the gastrointestinal tract, the systemic bioavailability, and interactions with the gut microbiota (173).

3.2.2 Organic acids

Dairy fat is composed of nearly 400 different fatty acids, including saturated, monounsaturated (MUFAs), polyunsaturated (PUFAs), trans-fatty acids, and branched-chain fatty acids, each with biological significance (174). Among these, saturated fatty acids are the most abundant, accounting for \sim 60–70% of the total fatty acid content (10, 89).

Cheeses have a variable amount of fat content, varying from <8% (\sim 4 g of fat in Cottage and \sim 7 g of fat in Fromage frais, per 100 g of dry matter, for example) to around 35% (\sim 34 g of fat in Cheddar and \sim 36 g of fat in Roquefort, per 100 g of dry matter, for example). It is an important component of cheese matrices, largely contributing to flavor and texture (175).

Beyond their structural and sensory roles, certain unsaturated fatty acids present in cheese fat have garnered attention for their potential health benefits. Oleic acid, the predominant MUFA in cheese, has been linked to cardioprotective effects, including improved lipid metabolism, enhanced endothelial function, and anti-inflammatory properties (176, 177).

CLAs, a group of linoleic acid isomers naturally found in ruminant-derived dairy fat, has been particularly noted for its anticarcinogenic, antiadipogenic, antiatherogenic, and immunomodulatory activities (178, 179). The CLAs content in cheese is highly influenced by dairy animal diet, with pasture-based feeding systems significantly increasing CLAs levels (179, 180). Other factors, such as the composition of the cheese microbiota, also influence CLA levels. Certain probiotic bacteria—Lactiplantibacillus plantarum, Lactobacillus acidophilus, Lacticaseibacillus casei, and Bifidobacterium lactis—can increase CLA content by converting linoleic acid during the ripening process. Regarding milk fat sources, CLA levels tend to follow this ascending order: caprine < bovine < ovine milk (181).

Additionally, PUFAs such as ALA and vaccenic acid also contribute to the potential cardiometabolic benefits of dairy fat (182).

3.2.3 Vitamins

There are several vitamins present in cheese matrices, namely vitamins A, B2, B12, D, E, and K2.

Vitamin A is important for vision, skin health, and immune function. It is present in cheese in the form of retinol and beta-carotene, and hard cheeses, such as Cheddar and Parmesan, are particularly good sources of this vitamin (183, 184).

Cheese is also rich in different B vitamins. B2 (riboflavin) plays a role in mitochondrial function and the metabolism of fats, drugs, and steroids. It is also important for healthy skin, eyes, and nerve functions (185, 186). B12 (cobalamin) is important for the formation of red blood cells, DNA synthesis, and neurological function. Cheese is one of the few non-meat sources of vitamin B12 (187, 188).

Though not a major source, cheese can also contain smaller amounts of vitamin E, an important antioxidant that inhibits the process of lipid peroxidation (189), and vitamin D, significant for calcium absorption and bone health (190, 191).

Vitamin K2 (menaquinone) is present in particularly high amounts in hard and aged cheeses, such as Gouda and Edam. This vitamin contributes to cardiovascular health by preventing and potentially reversing vascular calcification, supports bone integrity by enhancing the γ -carboxylation of osteocalcin and increasing osteoprotegerin levels, and helps preserve cognitive function by activating proteins such as Gas6 and protein S, as well as promoting the synthesis of sphingolipids (192–196).

While cheese is naturally rich in vitamins, there has been a growing trend in fortifying cheese with additional vitamins, particularly A and D, to further enhance its nutritional value. This fortification process aims to address common nutritional deficiencies and improve public health by making these vitamins more accessible through a product that is widely consumed (197).

3.2.4 Exopolysaccharides

Exopolysaccharides (EPS) are produced by microorganisms, including bacteria, fungi and algae, and are involved in the formation of extracellular biofilms that provide protection against potential environmental stressors, such as temperature and antibiotics (198–201). In cheese, EPS can play roles in shaping the microstructure, texture, and functionality of the cheese matrix (202, 203).

EPS-producing strains of lactic acid bacteria (LAB) commonly found in cheese, such as *Lactococcus*, *Lactiplantibacillus*, *Leuconostoc*, and *Streptococcus*, have been shown to interact with casein micelles and fat globules, increasing moisture retention (204, 205) and reducing syneresis (206, 207) within the matrix, contributing to maintain or improve cheese texture and cooking properties (206–208). For example, the presence of EPS-producing *Streptococcus thermophilus* has been shown to make the Karish cheese more deformable and softer (209) a EPS-producing *Lactococcus lactis* ssp. *cremoris* strain has increased yield by around 8% and moisture content by around 9.5% in a half-fat cheddar (208), and a mixed starter culture containing EPS-producing *Lactobacillus delbrueckii* subsp. *bulgaricus* and *Streptococcus thermophilus* has resulted in a higher moisture content and meltability of low-fat Mozzarella cheese (210).

Furthermore, EPS can also impact biochemical processes during cheese ripening, including influencing proteolytic activity, thereby affecting flavors and maturation rates. For instance, the proteolysis in reduced-fat Cheddar cheese was shown to increase in the presence of a EPS-producing *Lactococcus lactis* ssp. *cremoris* (JFR1) strain (203).

Due to these effects, EPS-producing bacteria can serve as natural additives to improve moisture, texture, melting, and sensory properties of low and reduced-fat cheeses, promoting the consumption of healthier cheese variants (200, 207, 208, 211). These benefits add to the health-promoting potential that EPS are being shown to exhibit, which include wound healing (212, 213), drug delivery (214, 215), immunomodulation (216–218), antimicrobial (219, 220), and anticancer (220, 221) properties.

4 Cheese microbiota

Cheese contains a diverse microbial community that is significantly influenced by manufacturing, particularly ripening conditions, and hence contributes importantly to quality, safety, and physical-chemical properties (24, 222).

The cheese microbiome varies greatly depending on the type of cheese, the environment and processing conditions, pasteurization methods and respective temperature, and ripening conditions (see Table 1, Supplementary Table S1). Microorganisms play an active role in determining cheese composition and influence the flavor profile through the production of volatile compounds (26, 222, 223). Microbial diversity is influenced by the origin of the milk, with cow's milk appearing to be more diverse than milk from goats and sheep and can range within the cheese from the core to the surface (222, 223). Different microbiological compositions can be found in the rind and core of cheese. This is partly due to variations in oxygen supply throughout the cheese (223). The cheese rind is an aerobic environment and is constantly exposed to possible contamination by external sources, so the presence of oxygen on the surface of the cheese permits the growth of aerobic organisms, which are unable to grow more profoundly, as there is less oxygen availability (26, 223). During ripening, the core becomes an anaerobic environment, making it less susceptible to external contamination (26). These microorganisms can play important roles in fermentation, aging, texture and flavor of cheese, as well as acting as probiotics, providing health benefits.

LAB, including Lactobacillus, Lactococcus, Pediococcus, Enterococcus, and Streptococcus species, are integral to cheese fermentation (Table 1, Supplementary Table S1). They convert lactose into lactic acid, which lowers the pH, leading to coagulation of casein proteins, and contributing to the cheese's texture and flavor (114, 224). LAB contributes to gut health, providing anti-inflammatory effects and modulation of the gut microbiota, and has also been associated to hypocholesterolemic and anti-cancer properties (225–228).

Propionibacterium freudenreichii is a bacterium used as a ripening starter in the production of Swiss-type cheeses, such as Emmental and Gruyère (Table 1, Supplementary Table S1). It is responsible for the characteristic holes in these cheeses and contributes to their nutty flavor, by producing carbon dioxide and

propionic acid (229). Some studies have found evidence that this bacterium can have anti-inflammatory effects in the gut as well as anticancer and immunomodulatory proprieties (229, 230).

Although Bifidobacterium species are less common in cheese manufacture, they are being incorporated into certain types of probiotic cheeses to enhance their health claim benefits. They produce SCFAs, such as acetate and butyrate, which help to lower the pH in the colon, creating an environment less favorable for pathogenic and more favorable to the growth of beneficial bacteria (231).

Besides bacteria, there are also fungi that can be present in cheese, namely molds and yeasts (Table 1, Supplementary Table S1).

Penicillium species, such as *Penicillium roqueforti* and *Penicillium glaucum*, are molds used in blue cheese manufacture, such as Roquefort and Gorgonzola, to develop their characteristic blue veins and flavors (232). Another mold, *Penicillium camemberti*, is used in soft cheeses, like Camembert and Brie, to develop their white rinds and creamy texture (233).

Yeasts are particularly important in cheeses where maturation is a key component of the cheese-making process (234). For example, *Saccharomyces cerevisiae* and other species are involved in the production of rinds in Camembert, Brie, and Reblochon cheeses. They also aid in the deacidification process of Munster and Limburger cheeses, preparing their surfaces for colonization by ripening bacteria (235).

While beneficial microorganisms in cheese can provide significant health benefits, there is also a risk of contamination by harmful bacteria and fungi, such as *Listeria monocytogenes*, *Salmonella*, and *Escherichia coli*, particularly in cheeses made from raw milk (236, 237). Milk is a nutrient-rich matrix, characterized by its neutral pH, high water activity, and abundant availability of macronutrients and micronutrients. These properties, however, also render it an ideal environment for the proliferation of microorganisms, including pathogens capable of significantly compromising milk quality and shelf life (238, 239). Contamination of raw milk can occur through various mechanisms, including endogenous transmission from infected animals (such as in cases of systemic infection or mastitis), fecal contamination during or after milking, and improper hygiene practices involving human handling (237, 238, 240).

Thus, it is important to ensure rigorous hygiene standards during cheese manufacture to prevent contamination, which should involve thorough sanitation practices, and strict monitoring of the microbial cultures used in fermentation, as well as careful transportation and retail conditions (241, 242).

A promising strategy, recently explored to control Salmonella enterica spp. enterica in milk and raw milk cheese, involves the use of commercial bacteriophage preparations (243). The traditional way to reduce the risk of contamination by pathogens is the pasteurization of the milk utilized in cheese-making. Despite the established public health benefits of pasteurization, growing consumer demand for minimally processed and "natural" products has led to a renewed interest in raw milk and its derivatives. Advocates of raw milk argue that pasteurization may compromise the nutritional integrity of milk, with particular concern over the degradation of heat-sensitive vitamins and the destruction of

TABLE 1 Short-version of the PDO cheeses microbiota.

PDO cheese	Country of origin	Milk treatment	Starter culture	Dominant taxa	References
West country farmhouse cheddar	United Kingdom	Raw or Pasteurized	Lactococcus (Lc.) lactis subsp cremosis Lc. lactis subsp lactis	Streptococcus (Str.) Lactococcus Lactobacillus (Lb.)	(266–269)
Blue Stilton cheese	United Kingdom	Pasteurized	Lc. lactis Penicillium (P.) roqueforti spores	Lb. plantarum Levilactobacillus (Lv.) brevis Debaryomyces (D.) hansenii Kluyveromyces (K.) lactis Yarrowia (Y.) lipolytica Trichosporon (T.) ovoides Lc. lactis, Enterococcus (E.) faecalis, Lb. curvatus, Leuconostoc (Leuc.) mesenteroides Staphylococcus spp. Staphylococcus (S.) equorum P. roqueforti Candida (C.) catenulata	(232, 270–273)
Noord-Hollandse Gouda	Netherlands	Pasteurized	Lc. lactis subsp cremosis Lc. lactis subsp lactis	Lc. lactis subsp. cremoris Lc. lactis Tetragenococcus (Tet.) halophilus, Loigolactobacillus (Lgb.) rennini Lc. laudensis Leuc. pseudomesenteroides Lc. cremoris Lacticaseibacillus (Lcb.) paracasei Leuc. mesenteroides S. equorum Tet. halophilus	(274–277)
Halloumi	Eastern Mediterranean (Cyprus)	Raw or Pasteurized	No	Lb. manihotivorans Lb. alimentarius Lv. brevis Lb. parakefiri Marinilactibacillus psychrotolerans Lb. cypricasei	(278–281)
Mozzarella di Bufala Campana PDO	Italy	Raw, thermalised or Pasteurized	Natural whey starter culture: Str. thermophilus Lb. delbrueckii Lb. helveticus Lc. lactis	Str. thermophilus Lb. helveticus Lb. delbrueckii subsp. delbrueckii Lb. delbrueckii subsp. bulgaricus Str. salivarius Lb. delbrueckii	(282–285)
Parmigiano Reggiano	Italy	Raw	Natural whey starter: Lb. helveticus Lb. delbrueckii ssp. lactis Lb. delbrueckii ssp. bulgaricus Lb. rhamnosus	Lb. helveticus Lb. delbrueckii Lacticaseibacillus group Lb. fermentum Str. thermophilus Lb. crispatus Lcb. casei Lcb. paracasei ssp. paracasei Lcb. paracasei ssp. tolerans Lv. brevis Lb. rhamnosus Lb. curvatus Pediococcus (Ped). acidilactici Lb. delbrueckii subsp. lactis Lb. delbrueckii subsp. bulgaricus	(286, 287)
Gorgonzola (Blue cheese)	Italy	Raw or Pasteurized	St. thermophilus, Lb. delbrueckii, Lactococcus sp. P. glaucum, P. Roqueforti	P. roqueforti, S. equorum, Brevibacterium (B.) linens Corynebacterium flavescens E. faecium Carnobacterium S. saprophyticus (surface) Aspergillus flavus Cladosporium (Cla.) cladosporioides Cordycepts farinosa D. hansenii	(232, 288–290)

TABLE 1 (Continued)

PDO cheese	Country of origin	Milk treatment	Starter culture	Dominant taxa	References
				Fusicolla aquaeductuum Mucor (Mu.) circinelloides Mu. fuscus Mu. lanceolatus Mucor sp. P. atrosanguineum P. camemberti P. commune Penicillium sp. Sporobolomyces deformans Y. lipolytica Saccharomyces (Sch) cerevisiae var. boulardii Arthrobacter sp. Carnobacterium sp. Staphylococcus sp. B. linens Phychrobacterium sp. Cobetia sp. S. lentus	
Pecorino Romano	Italy	Raw	Natural whey starter culture: Str. thermophilus Lb. delbrueckii subsp. lactis, Lb. helveticus	D. hansenii K. marxianus Rhodotorula spp. Sch. cerevisiae	(234, 291, 292)
Asiago	Italy	Raw	Thermophilic starter culture	Lc. lactis subsp. lactis Lcb. paracasei/rhamnosus Enterococcus sp. Lactiplantibacillus (Lpb.) plantarum Lb. gallinarum Lb. delbrueckii Limosilactobacillus (Lim.) fermentum Str. thermophilus	(293)
Grana Padano	Italy	Raw	Natural whey starter culture: Lb. delbrueckii subsp lactis Lim. fermentum Lactobacilllus helveticus Str. thermophilus	Lb. delbrueckii Lcb. rhamnosus Lcb. casei Lim. fermentum Lc. raffinolactis, Lb. helveticus Str. thermophilus Lc. lactis	(294–297)
Provolone del Monaco	Italy	Raw	No	Lcb. casei Lcb. paracasei Str. macedonicus E. faecalis	(298)
Feta	Greece	Raw or Pasteurized	Str. thermophilus Lb. delbrueckii subsp. bulgaricus	Lb. plantarum Lv. brevis Lcb. paracasei Lb. rhamnosus Lb. paraplantarum Lb. curvatus E. faecalis E. faecium E. durans E. malodoratus Str. salivarius subsp. thermophilus Lb. coryniformis Lb. fermentum K. lactis Pichia (Pich.) membranifaciens C. krisii/zeylanoides Pich. fermentans Lc. piscium Lc. raffinolactis Lcb. zeae Str. uberis	(299–302)

TABLE 1 (Continued)

PDO cheese	Country of origin	Milk treatment	Starter culture	Dominant taxa	References
Brie (de Meaux and de Melun)	France	Raw	Lc. lactis subsp. lactis Lc. lactis subsp. cremoris Leuc. mesenteroides subsp. cremoris	P. candidum? Brachybacterium Micrococcaceae Carnobacterium Staphylococcus Enterococcus Hafnia-Obesumbacterium Psychrobacter Brevibacterium Glutamicibacter Leucobacter (Brie de Meaux) Pediococcus (Brie de Melun) Dipodascus textitPenicillium Scopulariopsis	(303–305)
Camembert de Normandie	France	Raw	Lc. lactis subsp. Lactis Lc. lactis subsp. cremoris	Lc. lactis Str. thermophilus Leuc. mesenteroides Lb. fermentum Lb. plantarum Lcb. paracasei	(306–308)
Roquefort (Blue cheese)	France	Raw	Leuconostoc spp. Lc. lactis subsp cremosis Lc. lactis subsp lactis Lc. lactis subsp lactis biovar diacetylactis Leuc. mesenteroides subsp mesenteroides P. roqueforti	P. roqueforti Candida Debaryomyces Galactomyces Yarrowia D. hansenii (C. famata) K. lactis (C. sphaerica) Candida spp. (Surface)	(232, 309, 310)
Comté	France	Raw	Str. thermophilus Lb. helveticus	Lb. delbrueckii subsp. Lactis Lb. fermentum Lcb. paracasei subsp. paracasei Lb. rhamnosus	(311, 312)
Reblochon de Savoie	France	Raw	Lactic starter culture	Geotrichum (Geo.) candidum C. famata D. hansenii Lb. delbrueckii ssp. bulgaricus Str. thermophilus	(313–315)
Gruyère	Switzerland	Raw	Lb. helveticus Str. thermophilus Lb. delbrueckii subsp. lactis	Brachybacterium alimentarium Brachybacterium tyrofermentans Lb. helveticus	(316–318)
Raclette du Valais	Switzerland	Raw or Pasteurized	Lc. lactis subsp. lactis, Lc. lactis subsp. cremoris, Leuc. mesenteroides	Lc. lactis Lb. plantarum Weisella paramesenteroides Str. thermophilus Lcb. paracasei Lpb. pentosus Lpb. plantarum Lentilactobacillus (Le.) parabuchneri Le. sunkii Lb. helveticus Lb. delbrueckii	(319–321)
Cabrales	Spain	Raw	No	P. roqueforti Lc. lactis Lb. plantarum Leuc. mesenteroides Leuc. citreum Lcb. paracasei Leuc. pseudomesenteroides E. durans E. faecium T. koreensis T. halophilus S. equorum Brevibacterium	(232, 322–324)

TABLE 1 (Continued)

PDO cheese	Country of origin	Milk treatment	Starter culture	Dominant taxa	References
				Corynebacterium P. commune P. chrysogenum D. hansenii K. lactis Pich. fermentans Pich. membranaefaciens R. mucilaginosa G. candidum Lc. raffinolactis Lc. garvieae Lcb. casei Lb. kefiri Lb. buchneri P. griseofulvum C. zeylanoides C. sylvae Corynebacterium Yaniella Staphylococcus Lc. lactis subsp. lactis Lb. paraplantarum Enterococcus spp. Lactobacillus spp. Zygosaccharomyces spp. Pichia spp. Penicillium spp.	
Torta del Casar	Spain	Raw	No	Lb. curvatus Lb. diolivorans Lcb. paracasei Lcb. paracasei Lb. plantarum Lb. plantarum Lb. plantarum subsp. plantarum Lb. rhamnosus Lc. lactis Leuc. mesenteroides Leuc. carnosum Lb. sakei Lc. raffinolactis Lc. lactis subsp. cremoris Lcb. casei E. devriesei E. durans Lb. helveticus S. saprophyticus S. epidermidis Macrococcus caseolyticus S. xylosus E. faecalis S. condimenti S. aureus E. faecium	(325–327)
Queso Tetilla	Spain	Pasteurized	Lc. lactis subsp. lactis	Lc. lactis subsp. lactis Lcb. casei subsp. casei Lb. plantarum Leuc. mesenteroides subsp. Leuc. spp. E. faecalis E. faecium Enterococcus spp. Micrococcus (Mi.) varians Mi. sedentarius Micrococcus spp.	(328, 329)
Manchego	Spain	Raw	Not mandatory: Lc. lactis subsp. lactis Leuc. mesenteroides	Lc. lactis subsp. lactis Lc. lactis subsp. cremoris E. faecalis E. faecium E. hirae E. avium	(330, 331)

TABLE 1 (Continued)

PDO cheese	Country of origin	Milk treatment	Starter culture	Dominant taxa	References
Serra da Estrela	Portugal	Raw	No	Lc. lactis Lc. piscium Lcb. casei Serratia Latilactobacillus (Lat.) sakei Lpb. plantarum Leuc. mesenteroides Kurtzmaniella (Ku.) zeylanoides Vishniacozyma victoriae Cla. variabile Starmerella Clavispora lusitaniae D. hansenii Metschnikowia fructicola Lcb. paracasei E. durans E. faecium Lat. curvatus Lcb. rhamnosus Lb. corynformis	(332–335)
Pico	Portugal	Raw	No	Leuc. mesenteroides Leuc. citreum Lc. lactis Lc. garvieae Lb. plantarum Lb. paraplantarum Le. otakiensis Lcb. paracasei E. faecalis E. pseudoavium Lcb. casei Lb. otakiensis Leuc. pseudomesenteroides Str. vestibularis Str. salivarius E. casseliflavus	(336–338)
São Jorge	Portugal	Raw	Natural whey starter culture: Lcb. paracasei Lb. rhamnosus	Lcb. paracasei Lb. rhamnosus Lb. coryniformis Lb. plantarum E. faecalis E. faecium Lc. lactis Lactobacillus sp. Streptococcus. sp. Leuconostoc sp. Enterococcus sp.	(339–341)
Beira Baixa Castelo Branco	Portugal	Raw	No	Lc. lactis Lpb. plantarum Lgb. coryniformis Lcb. zeae C. sake Geotrichum Cla. variabile Pich. kluyveri Protomyces inouyei D. hansenii Ogataea boidinii Ustilago Starmerella Penicillium	(342, 343)
Nisa	Portugal	Raw	No	Lc. lactis Leuc. mesenteroides Lpb. plantarum Lc. piscium Lcb. zeae Serratia	(344, 345)

TABLE 1 (Continued)

PDO cheese	Country of origin	Milk treatment	Starter culture	Dominant taxa	References
Azeitão	Portugal	Raw	No	Leuc. mesenteroides Lc. lactis Lcb. zeae Lc. kefiri Serratia spp. Lpb. plantarum Lat. sakei Y. lipolytica Ku. zeylanoides K. lactis Geo. silvicola Galactomyces geotrichum Geo. candidum C. ehtanolica	(346, 347)

For the long version please see Supplementary Table S1.

beneficial microbiota (237, 244, 245). However, scientific evidence on this matter suggests that the nutritional losses induced by pasteurization are, in most cases, negligible. A systematic review assessing the impact of heat treatment on milk vitamins indicated only minor reductions in certain nutrients, such as vitamins B2 and B12, and no significant loss of key minerals such as calcium (244–246). Furthermore, fat-soluble vitamins (A, D, E) remain largely unaffected, and even when reductions occur, the absolute contribution of milk to the daily intake of these vitamins is relatively modest (244, 245).

Epidemiological data from the United States between 1993 and 2006 show that more foodborne outbreaks were attributed to cheeses made from pasteurized milk than from raw milk (239). Moreover, data from the European Union also report a small proportion of dairy-associated outbreaks, highlighting improvements in hygiene and safety measures across the sector (247).

Although pasteurization significantly reduces microbial load, it does not eliminate the possibility of contamination post-processing. Factors such as hygienic conditions during milking, cheese production practices, and the potential for post-pasteurization contamination play critical roles in the safety of both raw and pasteurized milk cheeses (239, 245). Notably, several studies have demonstrated a low incidence of pathogenic bacteria in raw milk cheeses when produced under controlled conditions, with some research suggesting that the native microbial communities in raw milk may contribute to the inhibition of pathogens such as *Listeria innocua* and *Staphylococcus aureus* during ripening (239, 248, 249).

Finally, while pasteurization remains a key public health tool, raw milk cheeses embody a unique microbial and sensory richness that deserves further scientific attention.

5 Cheese and cardiometabolic health

The relationship between cheese consumption and health has been widely debated due to its high saturated fat and sodium content. While diets high in saturated fat have been linked to increased risk of CVD, higher cholesterol levels, obesity, and certain cancers (250–253), a growing body of research suggests that this

association may be weak, nonexistent, or even inverse in the case of cheese consumption (11, 12, 20, 254–256).

In this review, we specifically focused on studies published from January 1, 2023, to June 6, 2025, in order to provide an updated synthesis of the most recent observational and interventional evidence, complementing rather than duplicating prior high-quality meta-analyses—such as Zhang et al. (20), which covered studies up to August 31, 2022, Pradeilles et al. (21), which included studies up to mid-June 2022 and Al Slurink et al. (22), which extended the evidence to September 2023 (while acknowledging that our starting point partially overlaps with the latter).

To assess the current state of evidence, a search was conducted in PubMed on June 6, 2025, to identify observational studies investigating the association between cheese intake and cardiometabolic health in humans (Table 2). The search string used was: ("cheese" [MeSH Terms] OR cheese[tiab]) AND ("cardiovascular diseases" [MeSH Terms] OR "cardiometabolic" [tiab] OR "metabolic syndrome" [MeSH Terms] OR "diabetes mellitus, type 2" [MeSH Terms] OR "lipid metabolism" [MeSH Terms] OR "blood pressure" [MeSH Terms] OR "hypertension" [MeSH Terms] OR "cholesterol" [MeSH Terms] OR cardiovascular[tiab] OR cardiometabolic[tiab] OR diabetes[tiab] OR hypertension[tiab] OR "lipid profile"[tiab]) AND ("observational study" [Publication Type] OR "cohort studies" [MeSH Terms] OR "case-control studies" [MeSH Terms] OR "cross-sectional studies" [MeSH Terms]) AND humans[MeSH Terms].

This search yielded 22 results. Of these, eleven articles were excluded for one or more of the following reasons: (1) cheese intake was assessed as part of mixed dietary patterns that included non-dairy components, potentially confounding the results; (2) the article focused on cardiology interventions and included terminology such as "cheese-wire septotomy" or "Swiss-cheese muscular ventricular septal defects (MVSDs)", which are unrelated to dietary cheese consumption; (3) the article reported results from intervention studies or Mendelian Randomization studies rather than observational designs; (4) systematic review or and meta-analysis that could over-estimate findings.

Furthermore, to assess the current state of evidence for randomized clinical trials, a search was conducted in PubMed on June 6, 2025, to investigate the association between cheese

TABLE 2 Observational studies on the association between cheese intake and cardiometabolic health in humans.

Title and references Methods Main findings Dairy intake, plasma metabolome, and risk of -A total of 26,461 Swedish participants from the Malmö 1. Increased risk of T2DM was observed with*: -High nonfermented milk intake (>1,000 g/d vs. <200 g/d; type 2 diabetes in a population-based cohort Diet and Cancer Study (1991-1996) with baseline dairy intake data were followed until 31 December 2020 HR: 1.40; 95% CI: 1.12, 1.74) -High cheese intake (>100 g/d vs. <20 g/d; HR: 1.23; 95% using linked health registers. -Every second participant recruited between November 1991 and February 1994 CI: 1.07, 1.41) was invited to the Malmö Diet and Cancer-Cardiovascular Cohort (MDC-CC), where High fermented milk intake (>300 g/d vs. 0 g/d; HR: 0.88; fasting plasma samples were collected. -Metabolomic 95% CI: 0.74, 1.03) profiling was performed in a subsample of 893 High cream intake (>50 g/d vs. <10 g/d; HR: 0.77; 95% CI: participants using mass spectrometry. -Dietary intake 0.64, 0.92at baseline was assessed by a combined approach: 7-day High butter intake (>50 g/d vs. 0 g/d; HR: 0.82; 95% CI: food diary, 168-item food frequency questionnaire (FFQ), and a 45-60-min dietary interview *Associations were slightly weaker after adjusting for Body for verification. -Dairy intake was classified into Mass Index (BMI). 3. Metabolomic profiles identified distinct sets of metabolites nonfermented milk, fermented milk (yogurt, sour milk), cheese, cream, and butter, analyzed both associated with each dairy type. For cheese, the strongest categorically and continuously. -Associations between positive associations were observed for N-methylpipecolate, 3,5-dichloro-2,6-dihydroxybenzoic acid, and dairy intake and type 2 diabetes risk were estimated using Cox proportional hazards models, reporting N-palmitoyl-heptadecasphingosine (d17:1/16:0), and the hazard ratios (HRs) with 95% confidence intervals. strongest inverse associations were dimethylglycine. The prolonged impact of swapping - 1988 participants, middle-aged adults (healthy, no 1. Higher consumption of fermented dairy (>2 servings/day) non-fermented with fermented dairy was associated with a 1.5 times lower risk of CVD, compared CVD at baseline), from Attica, Greece, - Dietary products on cardiovascular disease: the assessment was based on a validated semi-quantitative with lower level of consumption (<1 serving/day). ATTICA cohort study (2002-2022) food frequency questionnaire. - CVD evaluation was 2. Individuals who consumed fermented dairy products at a performed in three follow-up time points at 5, 10 and rate equivalent to or exceeding 76% of their total daily dairy intake experienced a 32% lower incidence of CVD*. 20 years after baseline. 3. When the ratio of fermented to non-fermented dairy product consumption exceeded 2.5, there was a 20% lower risk of developing CVD. 4. The protective effect of fermented dairy is enhanced in participants with higher CRP levels. 5. Replacing low-fat with whole-fat yogurt was related to 35% higher CVD risk while in the case of various types of cheese no significance was observed. *The associations were retained even after multiple adjustments including sociodemographic, lifestyle, anthropometric, clinical and biochemical factors. Dairy products and hypertension: - Four studies were conducted in Lausanne, 1. No link was found between dairy consumption and cross-sectional and prospective associations Switzerland: three cross-sectional studies (2009-12, hypertension prevalence or incidence. 2014-17, and 2018-21) and one prospective study 2. Cross-sectional analyses revealed no consistent differences (2009-12 to 2018-21). - Dietary intake was assessed in dairy intake (total dairy, milk, yogurt, cheese, low-fat dairy, and full-fat dairy) between participants with and using a validated food frequency questionnaire. Dairy consumption was compared between participants with without hypertension, though those with hypertension and without prevalent or incident hypertension. - For tended to consume less cheese (e.g., 51 \pm 1 vs. 55 \pm 1 g/day, the cross-sectional analyses, data from 4,437 (2009-12, p = 0.014 for 2009–12). 54.0% women, 57.7 ± 10.5 years), 2,925 (2014–17, 3. In the prospective study, irrespective of the dairy product 53.4% women, 62.5 ± 10.0 years), and 2,144 (2018–21; considered, no association was observed between dairy 53.3% women, 65.5 \pm 9.6 years) participants were used. consumption quartiles and hypertension development, even For the prospective study, data from 2,303 participants when stratified by dietary quality. (60.8% women, 53.9 \pm 9.0 years) were used. Replacement of saturated fatty acids from 1. No link was found between dairy consumption and - 21,841 participants of the European Prospective meat by dairy sources in relation to incident Investigation into Cancer and Nutrition-Norfolk study hypertension prevalence or incidence. cardiovascular disease: the European (56.4% female; age, 40-79 years), without a prevalent 2. Cross-sectional analyses revealed no consistent differences CVD, with plausible energy intakes and with complete Prospective Investigation into Cancer and in dairy intake (total dairy, milk, yogurt, cheese, low-fat Nutrition (EPIC)-norfolk study (351) data at baseline were prospectively analyzed in dairy, and full-fat dairy) between participants with and this study. - Dietary data were collected via food without hypertension, though those with hypertension frequency questionnaires at baseline (1993-1997). tended to consume less cheese (e.g., 51 ± 1 vs. 55 ± 1 g/day, Incident fatal or nonfatal CVD (n = 5,902), coronary p = 0.014 for 2009–12). artery disease (CAD) (n = 4,215), stroke (total: n =3. Irrespective of the dairy product considered, no association was observed between dairy consumption 2.544; ischaemic: n = 1.113; hemorrhagic: n = 449) were identified up to 2018. - Hazard ratios (HR) and quartiles and hypertension development, even when 95% confidence intervals were estimated using Cox stratified by dietary quality. 4. Main findings suggest that replacing SFA from meat, regression to assess the risk of replacing 2.5% of energy from saturated fat (SFA) from meat with dairy, especially processed meat, with dairy could reduce CVD and adjusting for sociodemographic, lifestyle, energy, CAD risk. 5. Replacing SFA from total meat with total dairy was linked dietary, and cardiometabolic factors. to an 11% lower risk of CVD and a 12% lower risk of CAD. 6. Substituting SFA from processed meat with cheese was associated with a 23% lower risk of both CVD and CAD.

TABLE 2 (Continued)

Title and references	Methods	Main findings
		7. Replacing SFA from red meat with cheese was linked to a lower risk of CVD (HR: 0.86). 8. However, replacing SFA from poultry with dairy products (milk, yogurt, or cheese) was associated with a higher risk of stroke, though this result had large confidence intervals due to low SFA intake from poultry.
Usual intake of dairy products and the chance of pre-diabetes regression to normal glycemia or progression to type 2 diabetes: a 9-year follow-up (352)	- This longitudinal analysis was part of the Tehran Lipid and Glucose Study (TLGS), a large, ongoing community-based cohort initiated in 1999 to investigate and prevent non-communicable diseases among 15,005 Tehran residents aged ≥3 years For this study, 334 adults aged ≥21 years with prediabetes (Pre-DM), who had complete dietary, demographic, anthropometric, and biochemical data from the third TLGS phase (2006–2008), were followed for a median of 9 years The mean age of the study participants was 49.4 ± 12.8 years, and 51.5% were men Biochemical markers were measured at baseline every 3 years Multinomial regression, adjusted for confounders, was used to estimate odds ratios (ORs) for developing T2DM or achieving NG per additional daily serving of dairy.	1. Higher intake of high-fat dairy was significantly associated with an increased chance of regression to normal glycemia. Specifically, each additional 200 g/day of high-fat dairy increased the odds of returning to normal glycemia by 69% (OR = 1.69, 95% CI = 1.00–2.86, $P=0.05$), while the amount of total dairy or low-fat dairy was not related to the outcomes. 2. Yogurt consumption showed a strong positive association with prediabetes remission (OR = 1.82, 95% CI = 1.20–2.74, $P=0.01$). 3. Usual intakes of milk, cheese, or cream-butter were not associated with Pre-DM remission or progression to T2DM.
High consumption of dairy products and risk of major adverse coronary events and stroke in a Swedish population (353)	- This study used data from the Malmö Diet and Cancer (MDC) cohort, which included 74,138 men and women born between 1923 and 1950 Participants underwent baseline examinations in 1991–1996, completing anthropometric measurements and detailed self-administered questionnaires on lifestyle factors, smoking, physical activity, and diet. After excluding individuals with prevalent CVD, diabetes, and incomplete data, 26,190 participants (9,947 men, 16,243 women) were included Dietary intake was assessed using 7-day food records, questionnaire and interview, and Cox proportional hazards models estimated hazard ratios for cardiovascular outcomes, adjusting for confounders.	1. Very high consumption of non-fermented milk (>1,000 g/d) compared with low intakes (<200 g/d) was associated with a 35% higher risk of major adverse coronary events (MACE) and a 30% higher risk of CAD. 2. Moderate intake of fermented milk (100–300 g/d) was inversely associated with the risk of MACE. 3. Cheese intake was linked to a lower risk of MACE and CHD, particularly in women. 4. No significant link was found between dairy consumption and stroke risk, though high non-fermented milk intake was associated with a decreased risk of ischaemic stroke and increased risk of hemorrhagic stroke.
Cheese consumption and multiple health outcomes: an umbrella review and updated meta-analysis of prospective studies (20)	- This umbrella review followed PRISMA guidelines. The authors systematically searched PubMed, Embase, and the Cochrane Library up to August 31, 2022, for meta-analyses and pooled analyses of prospective observational studies evaluating the association between cheese consumption and any health outcome A total of 124 articles of original studies were extracted from previous meta-analyses, which combined with 63 newly added primary articles, resulting in 187 original articles. After excluding 25 articles with overlapping study populations or without absolute intake as exposures, 162 original articles were included. Most of the included studies did not stratify results by cheese type, and intake was generally reported in grams/day of "cheese" as a single category Methodological quality of included meta-analyses was assessed using AMSTAR-2 Credibility of evidence was evaluated using the NutriGrade scoring system, considering factors like risk of bias, heterogeneity, publication bias, and dose-response relationship.	1. Cheese consumption was inversely associated with: All-cause mortality (Relative Risk (RR) = 0.95); • Cardiovascular mortality (RR = 0.93); • Incident CVD (RR = 0.92); • CAD (RR = 0.92); • Stroke (RR = 0.93); • Estrogen receptor-negative (ER) breast cancer (RR = 0.89); • T2DM (RR = 0.93); • Total fractures (RR = 0.90); • Dementia (RR = 0.81). 2. No significant associations were observed for certain outcomes like cancer mortality, hypertension, and prostate cancer. 3. The quality of evidence for inverse associations (e.g., with mortality and CVD) was moderate according to the NutriGrade scoring system. 4. Overall, cheese consumption was linked to moderate health benefits, despite concerns about its high saturated fat and sodium content in some types of cheese.
Association between dairy products consumption and the prevalences of combined prediabetes and type 2 diabetes mellitus in Brazilian adolescents: a cross-sectional study (354)	- Cross-sectional analysis using data from the Brazilian Study of Cardiovascular Risk in Adolescents (ERICA, 2013–2014), including 35,737 adolescents aged 12–17 years. The final sample analyzed consisted of 35 614 adolescents Dairy consumption was assessed through a 24-h dietary recall and categorized into tertiles (low, medium, high intake). The types of dairy considered included milk, yogurt, and cheese Outcomes evaluated were fasting plasma glucose, HbA1c, HOMA-IR (insulin resistance), prediabetes, and T2DM. Associations were estimated using Poisson regression and adjusted for sociodemographic, behavioral, and nutritional covariates Analyses were stratified by nutritional status (normal weight vs. overweight/obesity).	1. The total consumption of dairy products and full-fat dairy products was associated with a lower combined prevalence of prediabetes and T2DM. 2. Total intake of dairy products was inversely associated with fasting blood glucose levels after adjusting for all covariates ($\beta = -0.452, 95 \% \text{ CI} - 0.899, -0.005$). The associations were stronger for overweight and obese adolescents. Findings were similar for full-fat dairy products and yogurt. 3. In the total sample and among adolescents with normal BMI, a higher consumption of low-fat dairy products and cheese were associated with a 46 % (prevalence ratio, PR 1.46, 95 % CI 1.18, 1.80) and 33 % (PR 1.33, 95 % CI 1.14, 1.57) higher combined prevalence of prediabetes and T2DM, respectively.

TABLE 2 (Continued)

Title and references	Methods	Main findings
Dairy product consumption and incident prediabetes in the australian diabetes, obesity, and lifestyle study with 12 years of follow-up (355)	- The study included 4,891 participants with normal glucose tolerance at baseline (mean age 49.0 ± 12.3 years; 57% female) from the Australian Diabetes, Obesity and Lifestyle (AusDiab) study, a longitudinal, population-based cohort Dairy intake was assessed at baseline using a validated food frequency questionnaire. Prediabetes at the 5-year and 12-year follow-ups was defined according to World Health Organization (WHO) criteria as fasting plasma glucose levels between 110–125 mg/dL or 2-h plasma glucose levels between 140–199 mg/dL Associations were examined using Poisson regression models, adjusted for sociodemographic factors, lifestyle behaviors, family history of diabetes, and intake of other food groups.	1. A higher intake of high-fat dairy (RR servings/d: 0.92; 95% CI: 0.85, 1.00), high-fat milk (0.89; 95% CI: 0.80, 0.99), and total cheese (0.74; 95% CI: 0.56, 0.96) was associated with a lower risk of prediabetes. 2. Low-fat milk intake was associated nonlinearly with prediabetes risk. 3. Low-fat dairy foods, total milk, yogurt, low-fat cheese, and ice cream were not associated with prediabetes risk.
Associations between dairy intake and mortality due to all-cause and cardiovascular disease: the Japan Public Health Center-based prospective study (356)	- In the Japan Public Health Center-based Prospective (JPHC) study, 43,117 males and 50,193 females without a history of cancer or CVD completed a food frequency questionnaire (FFQ) and were included in the analysis Participants were followed until the date of death, emigration from Japan, or the end of the study, whichever occurred first (average follow-up of 19.3 years). Dairy product intake was assessed using the FFQ and adjusted for total energy intake through the residual method Multivariate Cox proportional hazards models were applied to estimate hazard ratios (HRs) and 95% confidence intervals for mortality risk in males and females.	1. For males, total dairy consumption was nonlinearly and significantly associated with lower risk of mortality from all causes. 2. Milk, cheese, and fermented milk intake were associated with a 19% lower risk [highest vs. lowest: HR = 0.81 (0.73, 0.89); P for trend < 0.001; P for nonlinearity = 0.03], a 13% lower risk [highest vs. lowest: HR = 0.87 (0.78, 0.97); P for trend = 0.04], and a 10% lower risk [highest vs. lowest: HR = 0.90 (0.81, 0.996); P for trend = 0.02] of CVD-related mortality in males, respectively. 3. Fermented milk intake was inversely associated with risk of all-cause mortality among women [highest vs. lowest: HR = 0.93 (0.88, 0.99); P for trend = 0.15]. 4. There was no association between total dairy intake and mortality risk among females.

^{*}Associations were slightly weaker after adjusting for Body Mass Index (BMI).

intake and cardiometabolic health in humans (Table 3). The search string used was: ("cheese" [MeSH Terms] OR cheese [tiab]) AND ("cardiovascular diseases" [MeSH Terms] OR "cardiometabolic" [tiab] OR "metabolic syndrome" [MeSH Terms] OR "diabetes mellitus, type 2" [MeSH Terms] OR "lipid metabolism" [MeSH Terms] OR "blood pressure" [MeSH Terms] OR "hypertension" [MeSH Terms] OR "cholesterol" [MeSH Terms] OR cardiovascular [tiab] OR cardiometabolic [tiab] OR diabetes [tiab] OR hypertension [tiab] OR "lipid profile" [tiab]) AND ("randomized controlled trial" [Publication Type] OR "randomized" [tiab] OR "randomized" [tiab]) AND (humans [MeSH Terms]). Filters were applied for "Clinical Trial", "Randomized Controlled Trial" and "Systematic Review".

This search yielded seven results. Of these, three articles were excluded for one of the following reasons: (1) the article did not focus on cheese intake or even fermented dairy products, focusing instead on other non-dairy components; (2) systematic review or and meta-analysis that could over-estimate findings.

In this section, both beneficial/neutral and harmful associations were eligible for inclusion, provided they met our predefined criteria. Within the January 2023–June 2025 search window, the majority of eligible studies reported neutral or beneficial effects, but we also identified examples of less favorable associations. For instance, the cohort study by Zhang et al. (2025) reporting increased T2DM risk for high cheese intake (>100 g/day vs. <20 g/day) compared with low intake (<20 g/day), and the RCT by O'Connor et al. (62) showing less favorable lipid outcomes with melted cheese compared to.

While traditional concerns about saturated fat and sodium persist, the unique nutritional matrix of cheese, along with specific

bioactive compounds, may confer protective effects. Some studies propose that this could be due to the complex matrix of cheese and its manufacturing processes, which may alter fat metabolism or mitigate some of its potential adverse effects (17, 257). For example, vitamin K plays a role in cardiovascular health by inhibiting vascular calcification (196, 258), while calcium may reduce fat absorption in the digestive system (259).

Still, much of the available evidence originates from observational studies, with few long-term randomized controlled trials available to date.

6 Discussion

The advances in nutrition science have been moving away from focusing solely on calories and individual nutrients, to also include a more comprehensive understanding of the complex interactions that occur within food matrices, and their potential effects on health. This perspective is particularly relevant when considering products like cheese, widely consumed for its flavor and nutritional value, but that has often been associated with health concerns due to its high content of saturated fat and salt.

Recent studies have proposed that cheese fat, when delivered within the intact dairy matrix, may have a different metabolic impact compared to isolated saturated fats. The so-called "dairy matrix effect" suggests that the interaction between lipids, proteins, minerals (especially calcium), and the fermentation process can modulate lipid digestion and absorption, potentially mitigating the atherogenic effects of saturated fats (17, 260, 261). A similar phenomenon appears to occur with sodium with

TABLE 3 Randomized clinical trials (RCTs).

Title and references	Methods	Main findings
The impact of sex and the cheese matrix on cholesterol metabolism in middle-aged adults (357)	- Two parallel-arm RCTs with comparable protocols. Volunteers were recruited from Dublin, Ireland, and the surrounding areas. The inclusion criteria for both studies were for participants to be healthy, aged ≥50 years, and with a BMI ≥25 kg/m². Exclusion criteria included being prescribed medication for cholesterol or blood pressure lowering, following a prescribed diet or actively trying to lose weight A total of 197 participants (41.6% male) were assigned to receive either 120 g of Irish cheddar cheese (n = 104) or a deconstructed cheese intervention, comprising 49 g of butter, 30 g of calcium caseinate, and a calcium supplement (n = 93), for a duration of six weeks. Both interventions provided approximately 40 g of fat per day.	1. Cheese consumption led to a reduction in total and LDL cholesterol compared to deconstructed cheese (butter, calcium caseinate, and a calcium supplement) in the overall study population. 2. Although no significant sex × treatment interaction was observed, sex-specific analyses revealed differential responses: in males, both cheese and deconstructed cheese reduced cholesterol levels, while in females, only cheese lowered total and LDL cholesterol, whereas deconstructed cheese increased these lipid markers. These results suggest that the cheese matrix may exert more favorable effects in females, highlighting potential implications for personalized nutrition strategies.
An examination of the impact of unmelted, melted, and deconstructed cheese on lipid metabolism: a 6-week randomized trial (62)	- 6-week randomized parallel intervention. Participants were recruited from Dublin, Ireland, and the surrounding areas between January 2020 and December 2022 Inclusion criteria included participants aged ≥50 years, with BMI ≥25 kg m ⁻² , no chronic co-morbidities, free from dairy intolerance/allergy and consumed an omnivorous diet. An overweight population was chosen as this is similar to other studies in the area, and this is a group that is often advised to avoid consuming cheese owing to the SFA content Exclusion criteria were being prescribed medications for cholesterol or blood pressure reduction purposes, prescribed or therapeutic diets, or actively trying to lose weight. 162 participants (43.3% male) received ~40 g of dairy fat per day, in 1 of 3 treatments: (A) 120 g full-fat Irish grass-fed cheddar cheese, eaten in unmelted form ($n = 58$); (B) 120 g full-fat Irish grass-fed cheddar cheese eaten in melted form ($n = 53$); or (C) the equivalent components; butter (49 g), calcium caseinate powder (30 g), and Ca supplement (CaCO3; 500 mg) ($n = 51$) All intervention diets were matched for energy, fat, casein, and calcium content.	1. Melted cheese, compared to unmelted cheese and to individual cheese components, increased total cholesterol and triglyceride concentrations. Melted cheese increased total cholesterol concentrations by $0.20\pm0.15~\mathrm{mmol}~\mathrm{L}{-1}$ and triglyceride concentrations by $0.17\pm0.08~\mathrm{mmol}~\mathrm{L}{-1}$ compared to unmelted cheese. No significant differences were observed between the cheese forms for a change in HDL, LDL, or VLDL cholesterol. 2. There was no difference in weight, fasting glucose, or insulin between the post-intervention groups.
Consumption of dairy foods to achieve recommended levels for older adults has no deleterious effects on serum lipids (358)	- Sub-group analysis of a 2-year cluster-randomized trial involving 60 aged care homes in Australia. Thirty intervention homes provided additional milk, yogurt, and cheese on menus while 30 control homes continued with their usual menus A sample of 159 intervention and 86 controls residents (69% female, median age 87.8 years) had dietary intakes recorded using plate waste analysis and fasting serum lipids measured at baseline and 12 months The inclusion criteria were permanent residents in participating aged care homes (e.g., not respite residents) and were not bed-bound. As the main objective of the project was fracture risk reduction, cardio-vascular disease status and related medications were not an exclusion criterion. Diagnosis of CVD and use of relevant medications were determined from medical records.	1. Among older adults in aged care homes, correcting insufficiency in intakes of calcium and protein using milk, yogurt and cheese does not alter serum lipid levels, suggesting that this is a suitable intervention for reducing the risk of falls and fractures. 2. Intervention increased daily dairy servings from 1.9 \pm 1.0 to 3.5 \pm 1.4 (p < 0.001) while controls continued daily intakes of ≤2 servings daily (1.7 \pm 1.0 to 2.0 \pm 1.0) (p = 0.028). 3. No group differences were observed for serum total cholesterol/high-density lipoprotein-C (TC/HDL-C) ratio, Apoprotein B/Apoprotein A-1 (ApoB/ApoA-1) ratio, low-density lipoprotein-C (LDL-C), non-HDL-C, or TGs at 12 months.
Effect of isoenergetic substitution of cheese with other dairy products on blood lipid markers in the fasted and postprandial state: an updated and extended systematic review and meta-analysis of randomized controlled trials in adults (21)	- Systematic Review and Meta-Analysis of RCTs in Adults. Searches of PubMed (Medline), Cochrane Central and Embase databases were conducted up to mid-June 2022 Eligible human RCTs investigated the effect of isoenergetic substitution of hard or semi-hard cheese with other dairy products on blood lipid markers Risk of bias (RoB) was assessed using the Cochrane RoB 2.0 tool. Random-effects meta-analyses assessed the effect of ≥2 similar dietary replacements on the same blood lipid marker. Of 1,491 citations identified, 10 articles were included.	1. Pooled analyses of 7 RCTs in this meta-analysis found that short-term (14–42 d) consumption of hardor semi-hard cheese (mean daily intake: 135 g) lowered fasting circulating total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C), and to a lesser extent high-density lipoprotein cholesterol (HDL-C), relative to butter intake (~52 g/d), even with evidence of statistical heterogeneity. 2. No evidence of a benefit from replacing cheese for ≥14 d with milk on fasting blood lipid markers (n = 2) was found.

TABLE 3 (Continued)

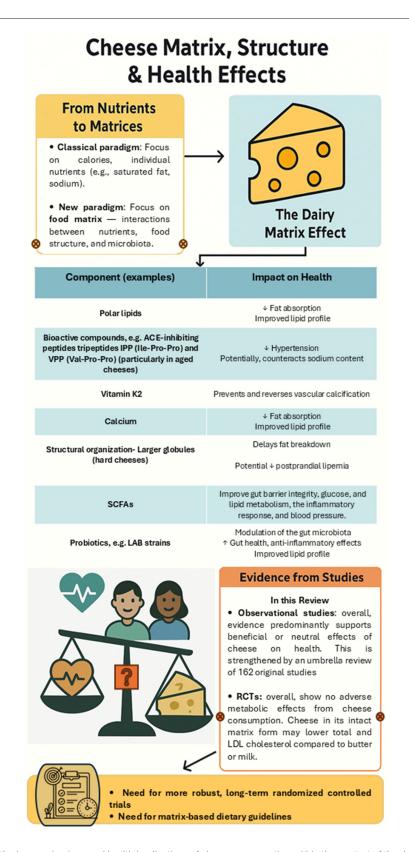
Title and references	Methods	Main findings
Effect of reduced-calcium and high-calcium cheddar cheese consumption on the excretion of fecal fat: a 2-week cross-over dietary intervention study (359)	- Seven healthy males (BMI 18–25) participated in this randomized, cross-over control design study, consisting of 3 \times 2-week periods with a 2-week washout period, in a free-living cohort, designed to test the effect of varying the intake of calcium within cheese during each intervention period Diets included 240 g/day of cheese, with the following variations: a High Calcium Cheese, with the following variations: a High Calcium Cheese (HCC) diet, and a control arm, which consisted of a Reduced Calcium Cheese + CaCO3 Supplement (RCC + Supp) diet. The control arm with the CaCO3 supplement matched the levels of Calcium present in the HCC. The diets differed in calcium content and form but were otherwise controlled for energy intake and key macronutrients Blood and 5-day fecal samples were collected during the study.	1. Varying the calcium content within a cheese matrix significantly affected fasting LDL-c values. 2. Fasting LDL-c was significantly lower following the HCC diet vs. the other arms ($P=0.002$).

studies suggesting that ACE-inhibiting peptides, naturally present in cheeses with extended ripening, may help counterbalance the harmful effects of sodium on health, particularly on hypertension. Noteworthy, hard cheeses tend to elicit a slower release of lipids during digestion compared to soft varieties. This difference is thought to arise from fat globule size and matrix entrapment—smaller globules in soft cheeses are more easily liberated, while the larger globules characteristic of hard cheeses remain more tightly embedded in the protein network, delaying lipolysis (17, 262). This structural difference may help explain the attenuated postprandial lipemic with hard cheese consumption that have been reported in some studies (262).

Fermented dairy products like cheese are being recognized not only as nutritious foods but also as complex ecological systems. They host a rich and diverse microbiota composed of bacteria, yeasts, and molds that contribute not only to flavor development but also to potential health benefits through the production of bioactive compounds. The microbial diversity and metabolic activity in cheese are influenced by factors such as the use of raw or pasteurized milk, ripening conditions, and the composition of microbial consortia. Raw milk cheeses often harbor a more complex microbiota, which may enhance the formation of bioactive peptides, antimicrobials, and other health-promoting compounds like SCFAs. However, this microbial richness also requires careful safety management, highlighting the importance of controlled production and regulatory oversight.

A growing body of studies have been showing that the different components of cheese matrices, including macro and micronutrients, microorganisms and even manufacturing techniques, can interact in ways that may mitigate potential negative effects of individual elements, while conferring neutral to moderate health benefits. Beyond the components found in cheese itself, the observed protective association might also be explained by the fact that eating more cheese could replace the intake of other foods linked to a higher risk of chronic disease incidence or mortality (e.g., processed or red meat and refined carbohydrates) as discussed elsewhere (20).

To assess the current state of evidence, this review includes all observational studies (Table 2) and RCTs published on PubMed


in the past 2.5 years (Table 3) examining the association between cheese consumption and cardiometabolic health in humans.

Regarding the sample of observational studies, the overall evidence tends to support beneficial or neutral effects of cheese on health, with adverse effects being limited and isolated. However, comparisons across studies are challenging because reported cheese consumption lacks differentiation or specification of cheese types, populations vary, and comparison groups differ, sometimes comparing cheese intake with other dairy products (fermented or not) or even with other food groups such as meat. Nonetheless, this body of evidence is strengthened by an umbrella review and updated meta-analysis of prospective studies, including 162 original studies, that is also consistent with the beneficial impact of cheese on various outcomes, such as inverse associations with cardiovascular mortality and CVD (20).

As for the RCTs, collectively these trials indicate that cheese consumption may not be associated with adverse metabolic effects. In fact, intake of cheese, particularly in its intact matrix form, has been associated with to lower total and LDL cholesterol levels compared to other dairy products such as butter and milk, or shows a neutral impact, with one study suggesting potential sexspecific benefits.

These findings from the last 2.5 years are in accordance with those of a systematic review and meta-analysis of RCTs (21) which reported that pooled data from seven trials showed that replacing butter with an isoenergetic amount of hard or semi-hard cheese (mean 135 g/day for \geq 14 days) significantly reduced fasting total cholesterol (-0.24 mmol/L), LDL cholesterol (-0.19 mmol/L), and HDL cholesterol (-0.04 mmol/L), whereas replacing cheese with milk did not yield significant differences. This reinforces the concept that the cheese matrix modulates lipid metabolism differently from other dairy products. Additionally, cheese structure and processing appear to modulate lipid responses: increasing calcium content enhances lipid profiles, whereas melting cheese may lead to less favorable outcomes.

The few RCTs, most of which are short-term, are marked by considerable heterogeneity in terms of cheese types, study designs, and populations. For instance, in our sample of studies from the last 2.5 years, three of the four trials specified the cheese type used, Cheddar, while one study did not provide this detail.

FIGURE 1

Infographic summarizing the key mechanisms and health implications of cheese consumption within the context of the dairy matrix. A part of this figure has been designed using resources from Flaticon.com.

Most available data, as illustrated by Tables 1, 2, come from observational or short-duration studies, limiting causal inference. To consolidate current knowledge and strengthen the evidence base, more robust, long-term randomized controlled trials are urgently needed. Future studies should also aim to include diverse populations across different ethnicities and age groups to enhance the generalizability of findings to the broader population.

Continued research into food matrices is therefore essential, not only to better understand their role in health, but also to help inform and refine dietary guidelines with stronger evidence (see summary in Figure 1). Interestingly, recent studies have sought to enhance the health-promoting properties of cheese, increasing their functional potential (263–265). For instance, these efforts include enriching its matrix with bioactive components such as MFGM and omega-3 fatty acids, both of which have been briefly discussed here for their potential physiological benefits (265).

Author contributions

AE: Formal analysis, Methodology, Writing – original draft, Visualization, Resources, Investigation, Writing – review & editing. RR: Methodology, Writing – original draft, Investigation. IRB: Formal analysis, Resources, Writing – review & editing, Visualization. RC: Investigation, Methodology, Writing – original draft. JM: Methodology, Investigation, Writing – original draft. AC: Investigation, Methodology, Writing – original draft. CE: Project administration, Writing – original draft, Resources, Visualization, Supervision, Funding acquisition, Writing – review & editing, Formal analysis, Methodology, Investigation. IB: Visualization, Conceptualization, Resources, Writing – original draft, Investigation, Project administration, Formal analysis, Methodology, Validation, Supervision, Funding acquisition, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This work was supported by FCT - Fundação para a Ciência e Tecnologia, I.P., in the framework of the Project UIDP/04004/2025—Centre for Functional Ecology—Science for the People & the Planet. This work was also supported by the project FUSILLI (Fostering the Urban Food System transformation through Innovative Living Labs Implementation). FUSILLI has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 101000717. AE was funded by Beeland project, co-financed by the Portuguese Recovery and Resilience Plan (PRR-C05-i03-I-000081) and the European Union, through the Next Generation EU.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnut.2025. 1649432/full#supplementary-material

References

- 1. Schneeman BO. Evolution of dietary guidelines. *J Am Diet Assoc.* (2003) 103:5–9. doi: 10.1016/j.jada.2003.09.030
- 2. Jahns L, Davis-Shaw W, Lichtenstein AH, Murphy SP, Conrad Z, Nielsen F. The history and future of dietary guidance in America. *Advances in Nutrition*. (2018) 9:136–47. doi: 10.1093/advances/nmx025
- 3. Gibson S, Ashwell M. Dietary patterns among British adults: compatibility with dietary guidelines for salt/sodium, fat, saturated fat and sugars. *Public Health Nutr.* (2011) 14:1323–36. doi: 10.1017/S13689800110 00875
- 4. Micha R, Mozaffarian D. Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: a fresh look at the evidence. *Lipids*. (2010) 45:893–905. doi: 10.1007/s11745-010-3393-4
- 5. Marklund M, Wu JHY, Imamura F, Del Gobbo LC, Fretts A, de Goede J, et al. Biomarkers of dietary omega-6 fatty acids and incident cardiovascular disease and mortality. *Circulation*. (2019) 139:2422–36. doi: 10.1161/CIRCULATIONAHA.118.038908
- 6. Viola L, Marchiori GN, Defagó MD, De. nutrientes a patrones alimentarios: cambio de paradigma en el abordaje nutricional de las enfermedades cardiovasculares. *Perspectivas en Nutrición Humana*. (2020) 22:101–11. doi: 10.17533/udea.penh.v22n1a08
- 7. Cappuccio FP. Salt and cardiovascular disease. *BMJ.* (2007) 334:859–60. doi: 10.1136/bmj.39175.364954.BE
- 8. He FJ, MacGregor GA. Salt, blood pressure and cardiovascular disease. *Curr Opin Cardiol.* (2007) 22:298. doi: 10.1097/HCO.0b013e32814f1d8c

- 9. Hruby A, Hu FB. Saturated fat and heart disease: the latest evidence. *Lipid Technol.* (2016) 28:7–12. doi: 10.1002/lite.201600001
- 10. Walther B, Schmid A, Sieber R, Wehrmüller K. Cheese in nutrition and health. *Dairy Sci Technol.* (2008) 88:389–405. doi: 10.1051/dst:2008012
- 11. Chen G-C, Wang Y, Tong X, Szeto IMY, Smit G, Li Z-N, et al. Cheese consumption and risk of cardiovascular disease: a meta-analysis of prospective studies. *Eur J Nutr.* (2017) 56:2565–75. doi: 10.1007/s00394-016-1292-z
- 12. Soedamah-Muthu SS, de Goede J. Dairy consumption and cardiometabolic diseases: systematic review and updated meta-analyses of prospective cohort studies. *Curr Nutr Rep.* (2018) 7:171–82. doi: 10.1007/s13668-018-0253-y
- 13. Tognon G, Nilsson LM, Shungin D, Lissner L, Jansson J-H, Renström F, et al. Nonfermented milk and other dairy products: associations with all-cause mortality. *Am J Clin Nutr.* (2017) 105:1502–11. doi: 10.3945/ajcn.116.140798
- Cavero-Redondo I, Alvarez-Bueno C, Sotos-Prieto M, Gil A, Martinez-Vizcaino V, Ruiz JR. Milk and dairy product consumption and risk of mortality: an overview of systematic reviews and meta-analyses. Adv Nutr. (2019) 10:S97–S104. doi: 10.1093/advances/nmy128
- 15. Sonestedt E, Borné Y, Wirfält E, Ericson U. Dairy consumption, lactase persistence, and mortality risk in a cohort from Southern Sweden. *Front Nutr.* (2021) 8:779034. doi: 10.3389/fnut.2021.779034
- 16. de Goede J, Geleijnse JM, Ding EL, Soedamah-Muthu SS. Effect of cheese consumption on blood lipids: a systematic review and meta-analysis of randomized controlled trials. *Nutr Rev.* (2015) 73:259–75. doi: 10.1093/nutrit/nuu060
- 17. Feeney EL, Lamichhane P, Sheehan JJ. The cheese matrix: Understanding the impact of cheese structure on aspects of cardiovascular health A food science and a human nutrition perspective. *Int J Dairy Technol.* (2021) 74:656–70. doi: 10.1111/1471-0307.12755
- 18. Plante AM, McCarthy AL, O'Halloran F. Cheese as a functional food for older adults: comparing the bioactive properties of different cheese matrices following simulated gastrointestinal *in vitro* digestion. *Int J Food Sci Nutr.* (2021) 72:456–69. doi: 10.1080/09637486.2020.1825644
- 19. Sohail Z, Khan N, Moazzam M, Mujahid S, Sindhu AT, Khan H, et al. *Perspective Chapter: Beyond Delicious The Hidden Functional Benefits of Cheese.* London: IntechOpen. (2023).
- 20. Zhang M, Dong X, Huang Z, Li X, Zhao Y, Wang Y, et al. Cheese consumption and multiple health outcomes: an umbrella review and updated meta-analysis of prospective studies. *Adv Nutr.* (2023) 14:1170–86. doi: 10.1016/j.advnut.2023.06.007
- 21. Pradeilles R, Norris T, Sellem L, Markey O. Effect of isoenergetic substitution of cheese with other dairy products on blood lipid markers in the fasted and postprandial state: an updated and extended systematic review and meta-analysis of randomized controlled trials in adults. *Adv Nutr.* (2023) 14:1579–95. doi: 10.1016/j.advnut.2023.09.003
- 22. Slurink IA, Vogtschmidt YD, Brummel B, Smeets T, Kupper N, Soedamah-Muthu SS. Dairy intake in relation to prediabetes and continuous glycemic outcomes: a systematic review and dose-response meta-analysis of prospective cohort studies. *Curr Dev Nutr.* (2024) 8:104470. doi: 10.1016/j.cdnut.2024.104470
- 23. Fox PF, Guinee TP, Cogan TM, McSweeney PLH. Fundamentals of Cheese Science. Boston, MA: Springer US. (2017).
- 24. Mayo B, Rodríguez J, Vázquez L, Flórez AB. Microbial interactions within the cheese ecosystem and their application to improve quality and safety. *Foods.* (2021) 10:602. doi: 10.3390/foods10030602
- 25. Fox PF, McSweeney PLH. Chapter 1 Cheese: An Overview. In: McSweeney PLH, Fox PF, Cotter PD, Everett DW, editors. *Cheese (Fourth Edition)*. San Diego: Academic Press (2017). p. 5–21.
- 26. Tilocca B, Costanzo N, Morittu VM, Spina AA, Soggiu A, Britti D, et al. Milk microbiota: characterization methods and role in cheese production. *J Proteomics*. (2020) 210:103534. doi: 10.1016/j.jprot.2019.103534
- 27. Kim E. the amazing multimillion-year history of processed food. Sci~Am.~(2013)~309:50-5.~doi:~10.1038/scientificamerican0913-50
- 28. Salque M, Bogucki PI, Pyzel J, Sobkowiak-Tabaka I, Grygiel R, Szmyt M, et al. Earliest evidence for cheese making in the sixth millennium BC in northern Europe. *Nature.* (2013) 493:522–5. doi: 10.1038/nature11698
- 29. Kindstedt PS. The History of Cheese. In: Global Cheesemaking Technology. Hoboken, NJ: John Wiley & Sons, Ltd (2017). p. 1–19.
- 30. McClure SB, Magill C, Podrug E, Moore AMT, Harper TK, Culleton BJ, et al. Fatty acid specific δ13C values reveal earliest Mediterranean cheese production 7,200 years ago. *PLoS ONE.* (2018) 13:e0202807. doi: 10.1371/journal.pone.0202807
- 31. McSweeney PLH, Fox PF. Chemical methods for the characterization of proteolysis in cheese during ripening. *Lait.* (1997) 77:41–76. doi: 10.1051/lait:199713
- 32. Moschopoulou E. Characteristics of rennet and other enzymes from small ruminants used in cheese production. *Small Ruminant Res.* (2011) 101:188–95. doi:10.1016/j.smallrumres.2011.09.039
- 33. Kindstedt P. Cheese and Culture: A History of Cheese and Its Place in Western Civilization. White River Junction, VT: Chelsea Green Publishing. (2012). 274 p.

- 34. Pais MSS. The Cheese Those Romans Already Used to Eat. From Tradition to Molecular Biology and Plant Biotechnology. António Santos Teixeira, Susana Patrício Marques Lisboa: Academia das Ciências de Lisboa. (2015).
- 35. Walker C, Thomas MG. Chapter 1 The evolution of lactose digestion. In: Paques M, Lindner C, editors. *Lactose*. Cambridge MA: Academic Press (2019). p. 1–48 doi: 10.1016/B978-0-12-811720-0.00001-5
- 36. Dong L, Wu K, Cui W, Fu D, Han J, Liu W. Tracking the digestive performance of different forms of dairy products using a dynamic artificial gastric digestive system. *Food Structure*. (2021) 29:100194. doi: 10.1016/j.foostr.2021.100194
 - 37. Widcombe R. The Cheese Book. New York: Chartwell Books (1978). p. 164.
- 38. Cheke V. *The Story of Cheesemaking in Britain*. London, UK: Routledge & Kegan Paul. (1959). 347 p. Available online at: https://www.abebooks.com/first-edition/Story-Cheesemaking-Britain-Cheke-Val-Routledge/31406025623/bd (Accessed March 12, 2024).
- 39. Gibb JG, Bernstein DJ, Cassedy DF. Making cheese: archaeology of a 19th century rural industry. *Hist Arch.* (1990) 24:18–33. doi: 10.1007/BF03374114
- $40.\,$ Brogren C-H. Louis Pasteur—The life of a controversial scientist with a prepared mind, driven by curiosity, motivation, and competition. APMIS. (2024) 132:7–30. doi: 10.1111/apm.13325
- 41. Price WV. Fifty years of progress in the cheese industry, a. review. J Food Prot. (1971) 34:329-46. doi: 10.4315/0022-2747-34.7.329
- 42. The Oxford Companion to Cheese. Oxford: Oxford University Press (2016). p. 894.
- 43. United States Department of Agriculture. Dairy: World Markets and Trade, July 2025. Available online at: https://usda.library.cornell.edu/concern/publications/5t34sj56t (Accessed August 14, 2025).
- 44. Feeney EL, Barron R, Dible V, Hamilton Z, Power Y, Tanner L, et al. Dairy matrix effects: response to consumption of dairy fat differs when eaten within the cheese matrix—a randomized controlled trial. *Am J Clin Nutr.* (2018) 108:667–74. doi: 10.1093/ajcn/nqy146
- 45. Górska-Warsewicz H, Rejman K, Laskowski W, Czeczotko M. Milk and dairy products and their nutritional contribution to the average polish diet. *Nutrients*. (2019) 11:1771. doi: 10.3390/nu11081771
- 46. Capuano E, Janssen AEM. Food matrix and macronutrient digestion. *Annu Rev Food Sci Technol.* (2021) 12:193–212. doi: 10.1146/annurev-food-032519-051646
- 47. Cifelli CJ. Looking beyond traditional nutrients: the role of bioactives and the food matrix on health. *Nutr Rev.* (2021) 79:1–3. doi: 10.1093/nutrit/nuab100
- 48. Tholstrup T, Høy C-E, Andersen LN, Christensen RDK, Sandström B. Does fat in milk, butter and cheese affect blood lipids and cholesterol differently? J Am Coll Nutr. (2004) 23:169–76. doi: 10.1080/07315724.2004.10719358
- 49. Nestel PJ, Chronopulos A, Cehun M. Dairy fat in cheese raises LDL cholesterol less than that in butter in mildly hypercholesterolaemic subjects. *Eur J Clin Nutr.* (2005) 59:1059–63. doi: 10.1038/sj.ejcn.1602211
- 50. Horstman AMH, Ganzevles RA, Kudla U, Kardinaal AFM, van den Borne JJGC, Huppertz T. Postprandial blood amino acid concentrations in older adults after consumption of dairy products: the role of the dairy matrix. *Int Dairy J.* (2021) 113:104890. doi: 10.1016/j.idairyj.2020.104890
- 51. Shkembi B, Huppertz T. Calcium absorption from food products: food matrix effects. *Nutrients.* (2022) 14:180. doi: 10.3390/nu14010180
- 52. Dekker LH, Vinke PC, Riphagen IJ, Minović I, Eggersdorfer ML, van den Heuvel EGHM, et al. Cheese and healthy diet: associations with incident cardiometabolic diseases and all-cause mortality in the general population. *Front Nutr.* (2019) 6:185. doi: 10.3389/fnut.2019.00185
- 53. López-Expósito I, Miralles B, Amigo L, Hernández-Ledesma B. Chapter 11 Health Effects of Cheese Components with a Focus on Bioactive Peptides. In: Frias J, Martinez-Villaluenga C, Peñas E, editors. Fermented Foods in Health and Disease Prevention. Boston: Academic Press (2017). p. 239–273.
- 54. Zerfiridis GK, Vafopoulou-Mastrogiannaki A, Litopoulou-Tzanetaki E. Changes during ripening of commercial gruyère cheese. *J Dairy Sci.* (1984) 67:1397–405. doi: 10.3168/jds.S0022-0302(84)81454-X
- 55. Govindasamy-Lucey S, Jaeggi JJ, Bostley AL, Johnson ME, Lucey JA. Standardization of milk using cold ultrafiltration retentates for the manufacture of Parmesan cheese. *J Dairy Sci.* (2004) 87:2789–99. doi: 10.3168/jds.S0022-0302(04)73406-2
- 56. Domagała J, Pluta-Kubica A, Sady M, Bonczar G, Duda I, Pustkowiak H. Comparison of the composition and quality properties of Fromage Frais-type cheese manufactured from the milk of selected cow breeds. *Annals of Animal Science*. (2020) 20:661–76. doi: 10.2478/aoas-2019-0083
- 57. Mehta BM. Microstructure of cheese products. In: *Microstructure of Dairy Products*. Hoboken NJ: John Wiley & Sons, Ltd (2018). p. 145–179.
- 58. Ong L, Pax AP, Ong A, Vongsvivut J, Tobin MJ, Kentish SE, et al. The effect of pH on the fat and protein within cream cheese and their influence on textural and rheological properties. *Food Chem.* (2020) 332:127327. doi: 10.1016/j.foodchem.2020.127327

- 59. Ong L, Lawrence RC, Gilles J, Creamer LK, Crow VL, Heap HA, et al. Chapter 33 cheddar cheese and related dry-salted cheese varieties. In: McSweeney PLH, Fox PF, Cotter PD, Everett DW, editors. *Cheese (Fourth Edition)*. San Diego: Academic Press (2017). p. 829–863.
- 60. Oberg C, McManus W, McMahon D. Microstructure of Mozzarella cheese during manufacture. Food Struct. (1993) 12:2.
- 61. Jana A, Tagalpallewar GP. Functional properties of Mozzarella cheese for its end use application. *J Food Sci Technol.* (2017) 54:3766–78. doi: 10.1007/s13197-017-2886-z
- 62. O'Connor A, Rooney M, Dunne S, Bhargava N, Matthews C, Yang S, et al. An examination of the impact of unmelted, melted, and deconstructed cheese on lipid metabolism: a 6-week randomised trial. *Food Funct.* (2024) 15:8345–55. doi: 10.1039/D4FO02708F
- 63. Pellegrino L, Masotti F, Cattaneo S, Hogenboom JA, de Noni I. Nutritional quality of milk proteins. In: McSweeney PLH, Fox PF, editors. Advanced Dairy Chemistry: Volume 1A: Proteins: Basic Aspects, 4th Edition. Boston, MA: Springer US (2013), p. 515–538.
- 64. Rafiq S, Huma N, Pasha I, Sameen A, Mukhtar O, Khan MI. Chemical composition, nitrogen fractions and amino acids profile of milk from different animal species. *Asian-Australas J Anim Sci.* (2016) 29:1022–8. doi: 10.5713/ajas.15.0452
- 65. Goulding DA, Fox PF, O'Mahony JA. Chapter 2 Milk proteins: An overview. In: Boland M, Singh H, editors. *Milk Proteins (Third Edition)*. Cambridge, MA: Academic Press (2020). p. 21–98 doi: 10.1016/B978-0-12-815251-5.00002-5
- 66. Lucey JA. Acid- and acid/heat coagulated cheese. In: McSweeney PLH, McNamara JP, editors. *Encyclopedia of Dairy Sciences (Third Edition)*. Oxford: Academic Press (2022). p. 6–14.
- 67. Kapoor R, Metzger LE. Process cheese: scientific and technological aspects—a review. Compreh Rev Food Sci Food Safety. (2008) 7:194–214. doi: 10.1111/j.1541-4337.2008.00040.x
- 68. Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P, Fauquant J, Callier P, et al. The digestion rate of protein is an independent regulating factor of postprandial protein retention. *Am J Physiol Endocrinol Metab.* (2001) 280:E340–348. doi: 10.1152/ajpendo.2001.280.2.E340
- 69. Dupont D, Tomé D. Chapter 20 Milk proteins: Digestion and absorption in the gastrointestinal tract. In: Boland M, Singh H, editors. *Milk Proteins (Third Edition)*. Cambridge, MA: Academic Press (2020). p. 701–714.
- 70. Joy JM, Vogel RM, Shane Broughton K, Kudla U, Kerr NY, Davison JM, et al. Daytime and nighttime casein supplements similarly increase muscle size and strength in response to resistance training earlier in the day: a preliminary investigation. *J Int Soc Sports Nutr.* (2018) 15:24. doi: 10.1186/s12970-018-0228-9
- 71. Vianna D, Teodoro GFR, Torres-Leal FL, Tirapegui J. Protein synthesis regulation by leucine. Braz J Pharm Sci. (2010) 46:29–36. doi: 10.1590/S1984-82502010000100004
- 72. Zhao Y, Cholewa J, Shang H, Yang Y, Ding X, Wang Q, et al. Advances in the role of leucine-sensing in the regulation of protein synthesis in aging skeletal muscle. *Front Cell Dev Biol.* (2021) 9:646482. doi: 10.3389/fcell.2021.646482
- 73. Dawson B, Taylor J, Favaloro EJ. Potential benefits of improved protein intake in older people. $Nutr\,Dietet.\,(2008)\,65:151-6.\,$ doi: 10.1111/j.1747-0080.2008.00250.x
- 74. Oosthuyse T, Carstens M, Millen AME. Whey or casein hydrolysate with carbohydrate for metabolism and performance in cycling. *Int J Sports Med.* (2015) 36:636–46. doi: 10.1055/s-0034-1398647
- 75. Walrand S, Gryson C, Salles J, Giraudet C, Migné C, Bonhomme C, et al. Fast-digestive protein supplement for ten days overcomes muscle anabolic resistance in healthy elderly men. *Clin Nutr.* (2016) 35:660–8. doi: 10.1016/j.clnu.2015.04.020
- 76. Lam F-C, Khan TM, Faidah H, Haseeb A, Khan AH. Effectiveness of whey protein supplements on the serum levels of amino acid, creatinine kinase and myoglobin of athletes: a systematic review and meta-analysis. *Syst Rev.* (2019) 8:130. doi: 10.1186/s13643-019-1039-z
- 77. Zanini B, Simonetto A, Zubani M, Castellano M, Gilioli G. The effects of cowmilk protein supplementation in elderly population: systematic review and narrative synthesis. *Nutrients*. (2020) 12:2548. doi: 10.3390/nu12092548
- 78. Jacinto JL, Nunes JP, Gorissen SHM, Capel DMG, Bernardes AG, Ribeiro AS, et al. Whey protein supplementation is superior to leucine-matched collagen peptides to increase muscle thickness during a 10-week resistance training program in untrained young adults. *Int J Sport Nutr Exerc Metab.* (2022) 32:133–43. doi: 10.1123/ijsnem.2021-0265
- 79. Alemán-Mateo H, Carreón VR, Macías L, Astiazaran-García H, Gallegos-Aguilar AC, Ramos Enríquez JR. Nutrient-rich dairy proteins improve appendicular skeletal muscle mass and physical performance, and attenuate the loss of muscle strength in older men and women subjects: a single-blind randomized clinical trial. Clin Interv Aging. (2014) 9:1517–25. doi: 10.2147/CIA.S67449
- 80. Bhasin S, Apovian CM, Travison TG, Pencina K, Moore LL, Huang G, et al. Effect of protein intake on lean body mass in functionally limited older men: a randomized clinical trial. *JAMA Intern Med.* (2018) 178:530–41. doi:10.1001/jamainternmed.2018.0008

- 81. Cengiz FP, Cevirgen Cemil B, Emiroglu N, Gulsel Bahali A, Onsun N. Acne located on the trunk, whey protein supplementation: Is there any association? *Health Promot Perspect.* (2017) 7:106–8. doi: 10.15171/hpp.2017.19
- 82. Bowen A, Denny VC, Iman Z, Satesh B, Keku E. The whey and casein protein powder consumption: the implications for public health. *Int Public Health J.* (2018) 2018:131–136.
- 83. Zhao J, Zhang X, Liu H, Brown MA, Qiao S. Dietary protein and gut microbiota composition and function. *Curr Protein Peptide Sci.* (2019) 20:145–54. doi: 10.2174/1389203719666180514145437
- 84. Vasconcelos QDJS, Bachur TPR, Aragão GF. Whey protein supplementation and its potentially adverse effects on health: a systematic review. *Appl Physiol Nutr Metab.* (2021) 46:27–33. doi: 10.1139/apnm-2020-0370
- 85. Lamothe S, Rémillard N, Tremblay J, Britten M. Influence of dairy matrices on nutrient release in a simulated gastrointestinal environment. *Food Res Int.* (2017) 92:138–46. doi: 10.1016/j.foodres.2016.12.026
- 86. Daniloski D, McCarthy NA, Vasiljevic T. Impact of heating on the properties of A1/A1, A1/A2, and A2/A2 β -casein milk phenotypes. Food Hydrocoll. (2022) 128:107604. doi: 10.1016/j.foodhyd.2022.107604
- 87. Cieślińska A, Fiedorowicz E, Rozmus D, Sienkiewicz-Szłapka E, Jarmołowska B, Kamiński S. Does a little difference make a big difference? Bovine β -casein A1 and A2 variants and human health—an update. *Int J Mol Sci.* (2022) 23:15637. doi: 10.3390/ijms232415637
- 88. Vigolo V, Visentin E, Ballancin E, Lopez-Villalobos N, Penasa M, De Marchi M. β -Casein A1 and A2: Effects of polymorphism on the cheese-making process. *J Dairy Sci.* (2023) 106:5276–87. doi: 10.3168/jds.2022-23072
- 89. Gómez-Cortés P, Juárez M, de la Fuente MA. Milk fatty acids and potential health benefits: An updated vision. *Trends Food Sci Technol.* (2018) 81:1–9. doi: 10.1016/j.tifs.2018.08.014
- 90. Alothman M, Hogan SA, Hennessy D, Dillon P, Kilcawley KN, O'Donovan M, et al. The "Grass-Fed" milk story: understanding the impact of pasture feeding on the composition and quality of bovine milk. *Foods.* (2019) 8:350. doi: 10.3390/foods8080350
- 91. Månsson HL. Fatty acids in bovine milk fat. Food Nutr Res. (2008) 52:1821. doi: 10.3402/fnr.v52i0.1821
- 92. Torres-Gonzalez M, Rice Bradley BH. Whole-milk dairy foods: biological mechanisms underlying beneficial effects on risk markers for cardiometabolic health. *Adv Nutr.* (2023) 14:1523–37. doi: 10.1016/j.advnut.2023.09.001
- 93. Pan J, Chen M, Li N, Han R, Yang Y, Zheng N, et al. Bioactive functions of lipids in the milk fat globule membrane: a comprehensive review. *Foods.* (2023) 12:3755. doi: 10.3390/foods12203755
- 94. Anto L, Warykas SW, Torres-Gonzalez M, Blesso CN. Milk polar lipids: underappreciated lipids with emerging health benefits. *Nutrients*. (2020) 12:1001. doi: 10.3390/nu12041001
- 95. Vors C, Joumard-Cubizolles L, Lecomte M, Combe E, Ouchchane L, Drai J, et al. Milk polar lipids reduce lipid cardiovascular risk factors in overweight postmenopausal women: towards a gut sphingomyelin-cholesterol interplay. *Gut.* (2020) 69:487–501. doi: 10.1136/gutjnl-2018-318155
- 96. Wilmot L, Miller C, Patil I, Kelly AL, Jimenez-Flores R. Dairy foods: a matrix for human health and precision nutrition—the relevance of a potential bioactive ingredient; the milk fat globule membrane. *J Dairy Sci.* (2025) 108:3109–34. doi: 10.3168/jds.2024-25412
- 97. Ferreiro T, Rodríguez-Otero JL. Evolution and distribution of phospholipids in cheese and whey during the manufacturing of fresh cheese from cows' milk. *Int J Dairy Technol.* (2018) 71:820–3. doi: 10.1111/1471-0307.12499
- 98. Venkat M, Chia, Loo W, Lambers TT. Milk polar lipids composition and functionality: a systematic review. *Criti Rev Food Sci Nutr.* (2024) 64:31–75. doi: 10.1080/10408398.2022.2104211
- 99. Lenze S, Wolfschoon-Pombo A, Schrader K, Kulozik U. Effect of the compositional factors and processing conditions on the creaming reaction during process cheese manufacturing. *Food Bioprocess Technol.* (2019) 12:575–86. doi: 10.1007/s11947-019-2234-6
- 100. Ong L, Li X, Ong A, Gras SL. New insights into cheese microstructure. *Annu Rev Food Sci Technol.* (2022) 13:89–115. doi: 10.1146/annurev-food-032519-051812
- 101. Guinee TP, McSweeney PLH. Significance of milk fat in cheese. In: Fox PF, McSweeney PLH, editors. *Advanced Dairy Chemistry Volume 2 Lipids*. Boston, MA: Springer US (2006). p. 377–440.
- 102. Huppertz T, Uniacke-Lowe T, Kelly AI. Physical chemistry of milk fat globules. *Advanced Dairy Chemistry, Volume 2: Lipids* Cham: Springer (2020). p. 133–167.
- 103. Truong T, Bhandari B. Role of Differentiated-Size Milk Fat Globules on the Physical Functionality of Dairy-Fat Structured Products. In: Truong T, Lopez C, Bhandari B, Prakash S, editors. *Dairy Fat Products and Functionality: Fundamental Science and Technology.* Cham: Springer International Publishing (2020). p. 327–354.

- 104. Taormina VM, Unger AL, Kraft J. Full-fat dairy products and cardiometabolic health outcomes: Does the dairy-fat matrix matter? *Front Nutr.* (2024) 11:1386257. doi: 10.3389/fnut.2024.1386257
- 105. Schmidt JM, Kjølbæk L, Jensen KJ, Rouy E, Bertram HC, Larsen T, et al. Influence of type of dairy matrix micro- and macrostructure on in vitro lipid digestion. *Food Funct.* (2020) 11:4960–72. doi: 10.1039/D0FO00785D
- 106. Guinot L, Rioux L-E, Labrie S, Britten M, Turgeon SL. Identification of texture parameters influencing commercial cheese matrix disintegration and lipid digestion using an *in vitro* static digestion model. *Food Res Int.* (2019) 121:269–77. doi:10.1016/j.foodres.2019.03.022
- 107. Calvo-Lerma J, Asensio-Grau A, Heredia A, Andrés A. Lessons learnt from MyCyFAPP Project: effect of cystic fibrosis factors and inherent-to-food properties on lipid digestion in foods. *Food Res Int.* (2020) 133:109198. doi: 10.1016/j.foodres.2020.109198
- 108. Lepesioti S, Zoidou E, Lioliou D, Moschopoulou E, Moatsou G. Quark-type cheese: effect of fat content, homogenization, and heat treatment of cheese milk. *Foods*. (2021) 10:184. doi: 10.3390/foods10010184
- 109. Golding M, Wooster TJ. The influence of emulsion structure and stability on lipid digestion. *Curr Opin Colloid Interface Sci.* (2010) 15:90–101. doi: 10.1016/j.cocis.2009.11.006
- 110. Guo Q, Ye A, Bellissimo N, Singh H, Rousseau D. Modulating fat digestion through food structure design. *Prog Lipid Res.* (2017) 68:109–18. doi: 10.1016/j.plipres.2017.10.001
- 111. Costa A, Lopez-Villalobos N, Sneddon NW, Shalloo L, Franzoi M, De Marchi M, et al. Invited review: milk lactose-Current status and future challenges in dairy cattle. *J Dairy Sci.* (2019) 102:5883–98. doi: 10.3168/jds.2018-15955
- 112. Fox PF, Uniacke-Lowe T, McSweeney PLH, O'Mahony JA. Lactose. In: Fox PF, Uniacke-Lowe T, McSweeney PLH, O'Mahony JA, editors. *Dairy Chemistry and Biochemistry*. Cham: Springer International Publishing (2015). p. 21–68.
- 113. Catanzaro R, Sciuto M, Marotta F. Lactose intolerance: An update on its pathogenesis, diagnosis, and treatment. *Nutr Res.* (2021) 89:23–34. doi: 10.1016/j.nutres.2021.02.003
- 114. Vinderola G, Ouwehand A, Salminen S, Wright A von. *Lactic Acid Bacteria: Microbiological and Functional Aspects*. Boca Raton, FL: CRC Press (2019). p. 738.
- 115. Silanikove N, Leitner G, Merin U. The interrelationships between lactose intolerance and the modern dairy industry: global perspectives in evolutional and historical backgrounds. *Nutrients*. (2015) 7:7312–31. doi: 10.3390/nu7095340
- 116. Castellone V, Bancalari E, Rubert J, Gatti M, Neviani E, Bottari B. Eating fermented: health benefits of LAB-fermented foods. *Foods.* (2021) 10:2639. doi: 10.3390/foods10112639
- 117. Misselwitz B, Butter M, Verbeke K, Fox MR. Update on lactose malabsorption and intolerance: pathogenesis, diagnosis and clinical management. *Gut.* (2019) 68:2080–91. doi: 10.1136/gutjnl-2019-318404
- 118. Facioni MS, Raspini B, Pivari F, Dogliotti E, Cena H. Nutritional management of lactose intolerance: the importance of diet and food labelling. *J Transl Med.* (2020) 18:260. doi: 10.1186/s12967-020-02429-2
- 119. Lucey JA, Fox PF. Importance of calcium and phosphate in cheese manufacture: a review. *J Dairy Sci.* (1993) 76:1714–24. doi: 10.3168/jds.S0022-0302(93)77504-9
- 120. FoodData Central. Available online at: https://fdc.nal.usda.gov/food-details/325036/nutrients (Accessed August 16, 2024).
- 121. Tenenbaum M, Deracinois B, Dugardin C, Matéos A, Romelard A, Auger J, et al. Identification, production and bioactivity of casein phosphopeptides a review. *Food Res Int.* (2022) 157:111360. doi: 10.1016/j.foodres.2022.111360
- 122. Martelli C, Ottobrini L, Ferraretto A, Bendinelli P, Cattaneo S, Masotti F, et al. Dall'Asta M, Del Sole A, De Noni I, et al. *Ex vivo, in vitro* and *in vivo* bone health properties of Grana Padano cheese. *Foods.* (2025) 14:273. doi: 10.3390/foods14020273
- 123. Cashman KD. Calcium intake, calcium bioavailability and bone health. Br J Nutr. (2002) 87:S169–77. doi: 10.1079/BJN/2002534
- 124. Berchtold MW, Brinkmeier H, Müntener M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. *Physiol Rev.* (2000) 80:1215–65. doi: 10.1152/physrev.2000.80.3.1215
- 125. Rathmacher JA, Pitchford LM, Khoo P, Angus H, Lang J, Lowry K, et al. Long-term effects of calcium β -hydroxy- β -methylbutyrate and vitamin D3 supplementation on muscular function in older adults with and without resistance training: a randomized, double-blind, controlled study. *J Gerontol.* (2020) 75:2089–97. doi: 10.1093/gerona/glaa218
- 126. Van Loan M. The role of dairy foods and dietary calcium in weight management. *J Am Coll Nutr.* (2009) 28:1208—9S. doi: 10.1080/07315724.2009.10719805
- 127. Brini M, Ottolini D, Calì T, Carafoli E. Calcium in health and disease. In: Sigel A, Sigel H, Sigel RKO, editors. *Interrelations between Essential Metal Ions and Human Diseases*. Dordrecht: Springer Netherlands (2013). p. 81–137.

128. Baksheeva VE, Zamyatnin AA, Zernii EYu. Neuronal calcium sensor-1: a zinc/redox-dependent protein of nervous system signaling pathways. *Mol Biol.* (2023) 57:1097–124. doi: 10.1134/S002689332306002X

- 129. Cormick G, Belizán JM. Calcium intake and health. *Nutrients*. (2019) 11:1606. doi: 10.3390/nu11071606
- 130. Das S, Choudhuri D. Role of dietary calcium and its possible mechanism against metabolic disorders: a concise review. *J Food Biochem.* (2021) 45:e13697. doi: 10.1111/jfbc.13697
- 131. Ravishankar TL, Yadav V, Tangade PS, Tirth A, Chaitra TR. Effect of consuming different dairy products on calcium, phosphorus and pH levels of human dental plaque: a comparative study. *Eur Arch Paediatr Dent.* (2012) 13:144–8. doi: 10.1007/BF03262861
- 132. Bird RP, Eskin NAM. Chapter Two The emerging role of phosphorus in human health. In: Eskin NAM, editor. Advances in Food and Nutrition Research. The Latest Research and Development of Minerals in Human Nutrition. Cambridge, MA: Academic Press (2021). p. 27–88 doi: 10.1016/bs.afnr.2021.02.001
- 133. Chang AR, Lazo M, Appel LJ, Gutiérrez OM, Grams ME. High dietary phosphorus intake is associated with all-cause mortality: results from NHANES III123. *Am J Clin Nutr.* (2014) 99:320–7. doi: 10.3945/ajcn.113.073148
- 134. Takeda E, Yamamoto H, Yamanaka-Okumura H, Taketani Y. Increasing dietary phosphorus intake from food additives: potential for negative impact on bone health. *Advances in Nutrition.* (2014) 5:92–7. doi: 10.3945/an.113.004002
- 135. Vorland CJ, Stremke ER, Moorthi RN, Hill Gallant KM. Effects of excessive dietary phosphorus intake on bone health. *Curr Osteoporos Rep.* (2017) 15:473–82. doi: 10.1007/s11914-017-0398-4
- 136. Li K, Wang X-F, Li D-Y, Chen Y-C, Zhao L-J, Liu X-G, et al. The good, the bad, and the ugly of calcium supplementation: a review of calcium intake on human health. Clin Interv Aging. (2018) 13:2443–52. doi: 10.2147/CIA.S157523
- 137. Michos ED, Cainzos -Achirica Miguel, Heravi AS, Appel LJ. Vitamin D, calcium supplements, and implications for cardiovascular health. *J Am College Cardiol.* (2021) 77:437–49. doi: 10.1016/j.jacc.2020.09.617
- 138. Deshwal GK, Gómez-Mascaraque LG, Fenelon M, Huppertz T. Determination of minerals in soft and hard cheese varieties by ICP-OES: a comparison of digestion methods. *Molecules*. (2023) 28:3988. doi: 10.3390/molecules28103988
- 139. Bansal V, Mishra SK. Reduced-sodium cheeses: implications of reducing sodium chloride on cheese quality and safety. *Compreh Rev Food Sci Food Safety.* (2020) 19:733–58. doi: 10.1111/1541-4337.12524
- 140. Guinee TP, Fox PF. Chapter 13 salt in cheese: physical, chemical and biological aspects. In: McSweeney PLH, Fox PF, Cotter PD, Everett DW, editors. *Cheese (Fourth Edition)*. Cambridge, MA: Academic Press (2017). p. 317–375.
- 141. Pohl HR, Wheeler JS, Murray HE. Sodium and potassium in health and disease. In: Sigel A, Sigel H, Sigel RKO, editors. *Interrelations between Essential Metal Ions and Human Diseases*. Dordrecht: Springer Netherlands (2013). p. 29–47.
- 142. Wong MMY, Arcand J, Leung AA, Thout SR, Campbell NRC, Webster J. The science of salt: a regularly updated systematic review of salt and health outcomes (December 2015–March 2016). *J Clini Hypertens*. (2017) 19:322–32. doi: 10.1111/jch.12970
- $143. \ Sodium \ Reduction. \ Available \ on line \ at: https://www.who.int/news-room/fact-sheets/detail/salt-reduction (Accessed August 16, 2024).$
- 144. Silva HLA, Balthazar CF, Esmerino EA, Vieira AH, Cappato LP, Neto RPC, et al. Effect of sodium reduction and flavor enhancer addition on probiotic Prato cheese processing. *Food Res Int.* (2017) 99:247–55. doi: 10.1016/j.foodres.2017.05.018
- 145. Miocinovic J, Miloradovic Z, Radovanovic M, Sredovic Ignjatovic I, Radulovic A, Nastaj M, et al. Sodium reduction by partial and total replacement of NaCl with KCl in Serbian White Brined cheese. *Foods.* (2022) 11:374. doi: 10.3390/foods11030374
- 146. Lima RC, Carvalho APA, Lelis CA, Faria DJ, da Silva BD, da Silva de Figueiredo MR, et al. An innovative alternative to reduce sodium in cheese: Babassu coconnul byproduct improving quality and shelf-life of reduced-sodium Minas fresh cheese. *Innovat Food Sci Emerg Technol.* (2024) 92:103601. doi: 10.1016/j.ifset.2024.103601
- 147. Yang Y, Wang X, Yang W. Exploring the influence of cheese consumption on blood metabolites: implications for disease pathogenesis, with a focus on essential hypertension. *J Dairy Sci.* (2025) 108:119–35. doi: 10.3168/jds.2024-25585
- 148. Crippa G, Zabzuni D, Bravi E, Piva G, De Noni I, Bighi E. Rossi F. Randomized, double blind placebo-controlled pilot study of the antihypertensive effects of Grana Padano DOP cheese consumption in mild moderate hypertensive subjects. *Eur Rev Med Pharmacol Sci.* (2018) 22:7573–81. doi: 10.26355/eurrev_201811_16299
- 149. Daliri EB-M, Oh DH, Lee BH. Bioactive peptides. Foods. (2017) 6:32. doi: 10.3390/foods6050032
- 150. Sánchez A, Vázquez A. Bioactive peptides: a review. Food Qual Safety. (2017) 1:29–46. doi: 10.1093/fqs/fyx006
- 151. Akbarian M, Khani A, Eghbalpour S, Uversky VN. Bioactive peptides: synthesis, sources, applications, and proposed mechanisms of action. *Int J Mol Sci.* (2022) 23:1445. doi: 10.3390/ijms23031445

- 152. Bersi G, Barberis SE, Origone AL, Adaro MO. Chapter 5 Bioactive peptides as functional food ingredients. In: Grumezescu AM, Holban AM, editors. *Role of Materials Science in Food Bioengineering. Handbook of Food Bioengineering.* Cambridge, MA: Academic Press (2018). p. 147–186.
- 153. Jakubczyk A, Karaś M, Rybczyńska-Tkaczyk K, Zielińska E, Zieliński D. Current trends of bioactive peptides—new sources and therapeutic effect. *Foods.* (2020) 9:846. doi: 10.3390/foods9070846
- 154. Jia L, Wang L, Liu C, Liang Y, Lin Q. Bioactive peptides from foods: production, function, and application. *Food Funct.* (2021) 12:7108–25. doi: 10.1039/D1FO01265G
- 155. Chakrabarti S, Jahandideh F, Wu J. Food-derived bioactive peptides on inflammation and oxidative stress. *Biomed Res Int.* (2014) 2014:e608979. doi: 10.1155/2014/608979
- 156. Guha S, Majumder K. Structural-features of food-derived bioactive peptides with anti-inflammatory activity: a brief review. *J Food Biochem.* (2019) 43:e12531. doi: 10.1111/jfbc.12531
- 157. Liu W, Chen X, Li H, Zhang J, An J, Liu X. Anti-inflammatory function of plant-derived bioactive peptides: a review. *Foods.* (2022) 11:2361. doi: 10.3390/foods11152361
- 158. Tonolo F, Folda A, Scalcon V, Marin O, Bindoli A, Rigobello MP. Nrf2-activating bioactive peptides exert anti-inflammatory activity through inhibition of the NF-κB pathway. *Int J Mol Sci.* (2022) 23:4382. doi: 10.3390/ijms23084382
- 159. Tadesse SA, Emire SA. Production and processing of antioxidant bioactive peptides: a driving force for the functional food market. *Heliyon.* (2020) 6:e04765. doi: 10.1016/j.heliyon.2020.e04765
- 160. Tonolo F, Folda A, Cesaro L, Scalcon V, Marin O, Ferro S, et al. Milk-derived bioactive peptides exhibit antioxidant activity through the Keap1-Nrf2 signaling pathway. *J Funct Foods.* (2020) 64:103696. doi: 10.1016/j.jff.2019.103696
- 161. Aguilar-Toalá JE, Liceaga AM. Cellular antioxidant effect of bioactive peptides and molecular mechanisms underlying: beyond chemical properties. *Int J Food Sci Technol.* (2021) 56:2193–204. doi: 10.1111/ijfs.14855
- 162. Soon TN, Chia AYY, Yap WH, Tang Y-Q. Anticancer mechanisms of bioactive peptides. *Protein Pept Lett.* (2020) 27:823–30. doi: 10.2174/0929866527666200409102747
- 163. Yaghoubzadeh Z, Peyravii Ghadikolaii F, Kaboosi H, Safari R, Fattahi E. Antioxidant activity and anticancer effect of bioactive peptides from rainbow trout (*Oncorhynchus mykiss*) skin hydrolysate. *Int J Pept Res Ther.* (2020) 26:625–32. doi: 10.1007/s10989-019-09869-5
- 164. Lath A, Santal AR, Kaur N, Kumari P, Singh NP. Anti-cancer peptides: their current trends in the development of peptide-based therapy and anti-tumor drugs. *Biotechnol Genetic Eng Rev.* (2023) 39:45–84. doi: 10.1080/02648725.2022.2082157
- 165. Skjånes K, Aesoy R, Herfindal L, Skomedal H. Bioactive peptides from microalgae: focus on anti-cancer and immunomodulating activity. *Physiol Plant.* (2021) 173:612–23. doi: 10.1111/ppl.13472
- 166. Wen L, Jiang Y, Zhou X, Bi H, Yang B. Structure identification of soybean peptides and their immunomodulatory activity. *Food Chem.* (2021) 359:129970. doi: 10.1016/j.foodchem.2021.129970
- 167. Pisanu S, Pagnozzi D, Pes M, Pirisi A, Roggio T, Uzzau S, et al. Differences in the peptide profile of raw and pasteurised ovine milk cheese and implications for its bioactive potential. *Int Dairy J.* (2015) 42:26–33. doi: 10.1016/j.idairyj.2014.10.007
- 168. Rafiq S, Gulzar N, Sameen A, Huma N, Hayat I, Ijaz R. Functional role of bioactive peptides with special reference to cheeses. *Int J Dairy Technol.* (2021) 74:1–16. doi: 10.1111/1471-0307.12732
- 169. Rangel AHDN, Bezerra DAFVA, Sales DC, Araújo EOM, Lucena LM, Porto ALF, et al. An overview of the occurrence of bioactive peptides in different types of cheeses. *Foods.* (2023) 12:4261. doi: 10.3390/foods12234261
- 170. Sieber R, Bütikofer U, Egger C, Portmann R, Walther B, Wechsler D. ACE-inhibitory activity and ACE-inhibiting peptides in different cheese varieties. *Dairy Sci Technol.* (2010) 90:47–73. doi: 10.1051/dst/2009049
- 171. Helal A, Tagliazucchi D. Peptidomics profile, bioactive peptides identification and biological activities of six different cheese varieties. *Biology.* (2023) 12:78. doi: 10.3390/biology12010078
- 172. Rizzello CG, Losito I, Gobbetti M, Carbonara T, Bari MDD, Zambonin PG. Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties. *J Dairy Sci.* (2005) 88:2348–60. doi: 10.3168/jds.S0022-0302(05)7 2913-1
- 173. Korhonen H, Pihlanto A. Bioactive peptides: production and functionality. Int Dairy J. (2006) 16:945–60. doi: 10.1016/j.idairyj.2005.10.012
- 174. O'Donnell AM, Spatny KP, Vicini JL, Bauman DE. Survey of the fatty acid composition of retail milk differing in label claims based on production management practices1. *J Dairy Sci.* (2010) 93:1918–25. doi: 10.3168/jds.2009-2799
- 175. O'Brien NM, O'Connor TP. Nutritional Aspects of Cheese. In: Fox PF, McSweeney PLH, Cogan TM, Guinee TP, editors. *Cheese: Chemistry, Physics and Microbiology. General Aspects*. Cambridge, MA: Academic Press (2004). p. 573–581 doi: 10.1016/S1874-558X(04)80083-6

- 176. Schwingshackl L, Hoffmann G. Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies. *Lipids Health Dis.* (2014) 13:154. doi: 10.1186/1476-511X-13-154
- 177. Lopez-Huertas E. Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. *Pharmacol Res.* (2010) 61:200–7. doi: 10.1016/j.phrs.2009.10.007
- 178. Badawy S, Liu Y, Guo M, Liu Z, Xie C, Marawan MA, et al. Conjugated linoleic acid (CLA) as a functional food: Is it beneficial or not? *Food Res Int.* (2023) 172:113158. doi: 10.1016/j.foodres.2023.113158
- 179. Govari M, Vareltzis P. Conjugated linoleic acid in cheese: A review of the factors affecting its presence. J Food Sci. (2025) 90:e70021. doi: 10.1111/1750-3841.70021
- 180. O'Callaghan TF, Mannion DT, Hennessy D, McAuliffe S, O'Sullivan MG, Leeuwendaal N, et al. Effect of pasture versus indoor feeding systems on quality characteristics, nutritional composition, and sensory and volatile properties of full-fat Cheddar cheese. *J Dairy Sci.* (2017) 100:6053–73. doi: 10.3168/jds.2016-12508
- 181. Mollica MP, Trinchese G, Cimmino F, Penna E, Cavaliere G, Tudisco R, et al. Milk fatty acid profiles in different animal species: focus on the potential effect of selected PUFAs on metabolism and brain functions. *Nutrients*. (2021) 13:1111. doi: 10.3390/nu13041111
- 182. Pintus S, Murru E, Carta G, Cordeddu L, Batetta B, Accossu S, et al. Sheep cheese naturally enriched in α -linolenic, conjugated linoleic and vaccenic acids improves the lipid profile and reduces anandamide in the plasma of hypercholesterolaemic subjects. Br J Nutr. (2013) 109:1453–62. doi: 10.1017/S0007114512003224
- 183. O'Callaghan YC, O'Connor TP, O'Brien NM. Nutritional Aspects of Cheese. In: Fox PF, Guinee TP, Cogan TM, McSweeney PLH, editors. *Fundamentals of Cheese Science*. Boston, MA: Springer US (2017). p. 715–730
- 184. Ikram A, Nadeem M, Imran M. Impact of vitamin A supplementation on composition, lipolysis, stability, and sensory of refrigerated stored Cheddar cheese. *J Food Proc Preservat.* (2021) 45:e15651. doi: 10.1111/jfpp.15651
- 185. Powers HJ. Riboflavin (vitamin B-2) and health 12. $Am\ J\ Clin\ Nutr.$ (2003) 77:1352–60. doi: 10.1093/ajcn/77.6.1352
- 186. Merrill AH, McCormick DB. "Chapter 11 Riboflavin. In: Marriott BP, Birt DF, Stallings VA, Yates AA, editors. *Present Knowledge in Nutrition (Eleventh Edition)*. Academic Press (2020). p. 189–207.
- 187. Sobczyńska-Malefora A, Delvin E, McCaddon A, Ahmadi KR, Harrington DJ. Vitamin B12 status in health and disease: a critical review. Diagnosis of deficiency and insufficiency clinical and laboratory pitfalls. *Crit Rev Clini Lab Sci.* (2021) 58:399–429. doi: 10.1080/10408363.2021.1885339
- 188. Kumar R, Singh U, Tiwari A, Tiwari P, Sahu JK, Sharma S. Vitamin B12: Strategies for enhanced production, fortified functional food products and health benefits. *Proc Biochem.* (2023) 127:44–55. doi: 10.1016/j.procbio.2023.02.002
- 189. Batool M, Nadeem M, Imran M, Gulzar N, Shahid MQ, Shahbaz M, et al. Impact of vitamin E and selenium on antioxidant capacity and lipid oxidation of cheddar cheese in accelerated ripening. *Lipids Health Dis.* (2018) 17:79. doi: 10.1186/s12944-018-0735-3
- 190. Banville C, Vuillemard JC, Lacroix C. Comparison of different methods for fortifying Cheddar cheese with vitamin D. *Int Dairy J.* (2000) 10:375–82. doi: 10.1016/S0958-6946(00)00054-6
- 191. Moschonis G, van den Heuvel EG, Mavrogianni C, Manios Y. Effect of vitamin D-enriched gouda-type cheese consumption on biochemical markers of bone metabolism in postmenopausal women in Greece. *Nutrients.* (2021) 13:2985. doi: 10.3390/nu13092985
- 192. Ferland G. Vitamin K and the nervous system: an overview of its actions. Adv Nutr. (2012) 3:204–12. doi: 10.3945/an.111.001784
- 193. Villa JKD, Diaz MAN, Pizziolo VR, Martino HSD. Effect of vitamin K in bone metabolism and vascular calcification: a review of mechanisms of action and evidences. *Crit Rev Food Sci Nutr.* (2017) 57:3959–70. doi: 10.1080/10408398.2016.1211616
- 194. Vermeer C, Raes J. Van't Hoofd C, Knapen MHJ, Xanthoulea S. Menaquinone content of cheese. *Nutrients.* (2018) 10:446. doi: 10.3390/nu10040446
- 195. Hariri E, Kassis N, Iskandar J-P, Schurgers LJ, Saad A, Abdelfattah O, et al. Vitamin K2-a neglected player in cardiovascular health: a narrative review. *Open Heart*. (2021) 8:e001715. doi: 10.1136/openhrt-2021-001715
- 196. Zhou S, Mehta BM, Feeney EL, A. narrative review of vitamin K forms in cheese and their potential role in cardiovascular disease. *Int J Dairy Technol.* (2022) 75:726–37. doi: 10.1111/1471-0307.12901
- 197. Picciotti U, Massaro A, Galiano A, Garganese F. Cheese fortification: review and possible improvements. Food Rev Int. (2022) 38:474–500. doi: 10.1080/87559129.2021.1874411
- 198. Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. *Nat Rev Microbiol.* (2016) 14:563–75. doi: 10.1038/nrmicro.2016.94
- 199. Nguyen P-T, Nguyen T-T, Bui D-C, Hong P-T, Hoang Q-K, Nguyen H-T. Exopolysaccharide production by lactic acid bacteria: the manipulation of

environmental stresses for industrial applications. AIMS Microbiol. (2020) 6:451–69. doi: 10.3934/microbiol.2020027

- 200. Netrusov AI, Liyaskina EV, Kurgaeva IV, Liyaskina AU, Yang G, Revin VV. Exopolysaccharides producing bacteria: a review. *Microorganisms*. (2023) 11:1541. doi: 10.3390/microorganisms11061541
- 201. Mouro C, Gomes AP, Gouveia IC. Microbial exopolysaccharides: structure, diversity, applications, and future frontiers in sustainable functional materials. *Polysaccharides*. (2024) 5:241–87. doi: 10.3390/polysaccharides50 30018
- 202. Broadbent JR, McMahon DJ, Oberg CJ, Welker DL. Use of exopolysaccharide-producing cultures to improve the functionality of low fat cheese. *Int Dairy J.* (2001) 11:433–9. doi: 10.1016/S0958-6946(01)00084-X
- 203. Awad S, Hassan AN, Muthukumarappan K. Application of exopolysaccharide-producing cultures in reduced-fat cheddar cheese: texture and melting properties*. *J Dairy Sci.* (2005) 88:4204–13. doi: 10.3168/jds.S0022-0302(05)73106-4
- 204. Low D, Ahlgren JA, Horne D, McMahon DJ, Oberg CJ, Broadbent JR. Role of *Streptococcus thermophilus* MR-1C capsular exopolysaccharide in cheese moisture retention. *Appl Environ Microbiol.* (1998) 64:2147–51. doi: 10.1128/AEM.64.6.2147-2151.1998
- 205. Patlan-Velázquez L-F, González-Olivares L-G, García-Garibay M, Alatorre-Santamaría S, Gómez-Ruiz L, Rodríguez-Serrano G, et al. Effect of biogenic exopolysaccharides in characteristics and stability of a novel Requeson-type cheese. *Food Bioscience*. (2024) 59:103896. doi: 10.1016/j.fbio.2024.103896
- 206. Surber G, Spiegel T, Dang BP, Wolfschoon Pombo A, Rohm H, Jaros D. Cream cheese made with exopolysaccharide-producing *Lactococcus lactis*: Impact of strain and curd homogenization pressure on texture and syneresis. *J Food Eng.* (2021) 308:110664. doi: 10.1016/j.jfoodeng.2021.110664
- 207. Jurášková D, Ribeiro SC, Bastos R, Coelho E, Coimbra MA, Silva CCG. Exopolysaccharide (EPS) produced by *Leuconostoc mesenteroides* SJC113: characterization of functional and technological properties and application in fat-free cheese. *Macromol.* (2024) 4:680–96. doi: 10.3390/macromol4030040
- 208. Costa NE, Hannon JA, Guinee TP, Auty ME, McSweeney PLH, Beresford TP. Effect of exopolysaccharide produced by isogenic strains of Lactococcus lactis on half-fat Cheddar cheese. *J Dairy Sci.* (2010) 93:3469–86. doi: 10.3168/jds.20 09-3008
- 209. Hassan AN, Corredig M, Frank JF, Elsoda M. Microstructure and rheology of an acid-coagulated cheese (Karish) made with an exopolysaccharide-producing *Streptococcus thermophilus* strain and its exopolysaccharide non-producing genetic variant. *J Dairy Res.* (2004) 71:116–20. doi: 10.1017/S0022029903006605
- 210. Perry DB, McMahon DJ, Oberg CJ. Manufacture of low fat mozzarella cheese using exopolysaccharide-producing starter cultures1. *J Dairy Sci.* (1998) 81:563–6. doi: 10.3168/jds.S0022-0302(98)75608-5
- 211. Zhang L, Li X, Ren H, Liu L, Ma L, Li M, et al. Impact of using exopolysaccharides (eps)-producing strain on qualities of half-fat cheddar cheese. *Int J Food Prop.* (2015) 18:1546–59. doi: 10.1080/10942912.2014.921198
- 212. Sahana TG, Rekha PD, A. novel exopolysaccharide from marine bacterium Pantoea sp. YU16-S3 accelerates cutaneous wound healing through Wnt/ β -catenin pathway. Carbohydrate Polymers. (2020) 238:116191. doi: 10.1016/j.carbpol.2020.116191
- 213. Xu H, Li Y, Song J, Zhou L, Wu K, Lu X, et al. Highly active probiotic hydrogels matrixed on bacterial EPS accelerate wound healing via maintaining stable skin microbiota and reducing inflammation. *Bioactive Mater.* (2024) 35:31–44. doi: 10.1016/j.bioactmat.2024.01.011
- 214. Adegbolagun TI, Odeniyi OA, Odeniyi MA. Drug delivery applications and future prospects of microbial exopolysaccharides. *Polymers Med.* (2023) 53:117–27. doi: 10.17219/pim/176590
- 215. Kalimuthu AK, Pandian SRK, Pavadai P, Panneerselvam T, Kabilan SJ, Sankaranarayanan M, et al. Drug delivery applications of exopolysaccharides from endophytic bacteria *Pseudomonas otitidis* from *Tribulus terrestris* L. *J Polym Environ*. (2023) 31:3632–49. doi: 10.1007/s10924-023-02848-4
- 216. Hidalgo-Cantabrana C, López P, Gueimonde M, de los Reyes-Gavilán CG, Suárez A, Margolles A, et al. Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and bifidobacteria. *Probiotics Antimicrob Proteins*. (2012) 4:227–37. doi: 10.1007/s12602-012-9110-2
- 217. Chaisuwan W, Jantanasakulwong K, Wangtueai S, Phimolsiripol Y, Chaiyaso T, Techapun C, et al. Microbial exopolysaccharides for immune enhancement: Fermentation, modifications and bioactivities. *Food Biosci.* (2020) 35:100564. doi: 10.1016/j.fbio.2020.100564
- 218. Tarannum N, Hossain TJ, Ali F, Das T, Dhar K, Nafiz IH. Antioxidant, antimicrobial and emulsification properties of exopolysaccharides from lactic acid bacteria of bovine milk: Insights from biochemical and genomic analysis. *LWT*. (2023) 186:115263. doi: 10.1016/j.lwt.2023.115263
- 219. Abdalla AK, Ayyash MM, Olaimat AN, Osaili TM, Al-Nabulsi AA, Shah NP, et al. Exopolysaccharides as antimicrobial agents: mechanism and spectrum of activity. *Front Microbiol.* (2021) 12:664395. doi: 10.3389/fmicb.2021.664395

- 220. Shehata NS, Elwakil BH, Elshewemi SS, Ghareeb DA, Olama ZA. Selenium nanoparticles coated bacterial polysaccharide with potent antimicrobial and anti-lung cancer activities. *Sci Rep.* (2023) 13:21871. doi: 10.1038/s41598-023-48921-9
- 221. Homero U, Tortella G, Sandoval E, Cuozzo SA. Extracellular Polymeric Substances (EPS) produced by *Streptomyces* sp. biofilms: chemical composition and anticancer properties. *Microbiol Res.* (2021) 253:126877. doi: 10.1016/j.micres.2021.126877
- 222. Yeluri Jonnala BR, McSweeney PLH, Sheehan JJ, Cotter PD. Sequencing of the cheese microbiome and its relevance to industry. *Front Microbiol.* (2018) 9:1020. doi: 10.3389/fmicb.2018.01020
- 223. Choi J, Lee SI, Rackerby B, Goddik L, Frojen R, Ha S-D, et al. Microbial communities of a variety of cheeses and comparison between core and rind region of cheeses. *J Dairy Sci.* (2020) 103:4026–42. doi: 10.3168/jds.2019-17455
- 224. Pessione E. Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Front Cell Infect Microbiol. (2012) 2:86. doi: 10.3389/fcimb.2012.00086
- 225. Saez-Lara MJ, Gomez-Llorente C, Plaza-Diaz J, Gil A. The role of probiotic lactic acid bacteria and bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: a systematic review of randomized human clinical trials. *Biomed Res Int.* (2015) 2015:505878. doi: 10.1155/2015/505878
- 226. Mathur H, Beresford TP, Cotter PD. Health benefits of lactic acid bacteria (LAB) fermentates. Nutrients. (2020) 12:1679. doi: 10.3390/nu12061679
- 227. Agagündüz D, Yilmaz B, Sahin TÖ, Güneşliol BE, Ayten S, Russo P, et al. Dairy lactic acid bacteria and their potential function in dietetics: the food–gut-health axis. *Foods.* (2021) 10:3099. doi: 10.3390/foods10123099
- 228. Coelho MC, Malcata FX, Silva CCG. Lactic acid bacteria in raw-milk cheeses: from starter cultures to probiotic functions. *Foods.* (2022) 11:2276. doi: 10.3390/foods11152276
- 229. Franco-Robles E. *Prebiotics and Probiotics: From Food to Health.* Norderstedt: BoD Books on Demand. (2022). p. 255.
- 230. Rabah H, do Carmo FLR, Carvalho RDO, Cordeiro BF, da Silva SH, Oliveira ER, et al. Beneficial propionibacteria within a probiotic emmental cheese: impact on dextran sodium sulphate-induced colitis in mice. *Microorganisms*. (2020) 8:380. doi: 10.3390/microorganisms8030380
- 231. Linares DM, Gómez C, Renes E, Fresno JM, Tornadijo ME, Ross RP, et al. Lactic acid bacteria and bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. *Front Microbiol.* (2017) 8:846. doi: 10.3389/fmicb.2017.00846
- 232. López-Díaz TM, Alegría Á, Rodríguez-Calleja JM, Combarros-Fuertes P, Fresno JM, Santos JA, et al. Blue cheeses: microbiology and its role in the sensory characteristics. *Dairy*. (2023) 4:410–22. doi: 10.3390/dairy4030027
- 233. Ropars J, Didiot E, Vega RCR de la, Bennetot B, Coton M, Poirier E, et al. Domestication of the emblematic white cheese-making fungus *Penicillium camemberti* and its diversification into two varieties. *Curr Biol.* (2020) 30:4441–53. doi: 10.1016/j.cub.2020.08.082
- 234. Bintsis T. Yeasts in different types of cheese. AIMS Microbiol. (2021) 7:447–70. doi: 10.3934/microbiol.2021027
- 235. Deak T. Handbook of Food Spoilage Yeasts. 2nd ed. Boca Raton: CRC Press. (2007). p. 352.
- 236. Griffin S, Falzon O, Camilleri K, Valdramidis VP. Bacterial and fungal contaminants in caprine and ovine cheese: a meta-analysis assessment. *Food Res Int.* (2020) 137:109445. doi: 10.1016/j.foodres.2020.109445
- 237. Verraes C, Vlaemynck G, Van Weyenberg S, De Zutter L, Daube G, Sindic M, et al. review of the microbiological hazards of dairy products made from raw milk. *Int Dairy J.* (2015) 50:32–44. doi: 10.1016/j.idairyj.2015.05.011
- 238. Quigley L, O'Sullivan O, Stanton C, Beresford TP, Ross RP, Fitzgerald GF, et al. The complex microbiota of raw milk. FEMS Microbiol Rev. (2013) 37:664–98. doi: 10.1111/1574-6976.12030
- 239. Yoon Y, Lee S, Choi K-H. Microbial benefits and risks of raw milk cheese. *Food Cont.* (2016) 63:201–15. doi: 10.1016/j.foodcont.2015.11.013
- 240. Lucey JA. Raw milk consumption: risks and benefits. Nutr Today. (2015) $50:189-93.\ doi: 10.1097/NT.000000000000108$
- 241. Berge AC, Baars T. Raw milk producers with high levels of hygiene and safety. *Epidemiol Infect.* (2020) 148:e14. doi: 10.1017/S0950268820000060
- 242. Ramos GLPA, Nascimento JS, Margalho LP, Duarte MCKH, Esmerino EA, Freitas MQ, et al. Quantitative microbiological risk assessment in dairy products: Concepts and applications. *Trends Food Sci Technol.* (2021) 111:610–6. doi: 10.1016/j.tifs.2021.03.017
- 243. Everhart E, Worth A, D'Amico DJ. Control of Salmonella enterica spp. enterica in milk and raw milk cheese using commercial bacteriophage preparations. Food Microbiology. (2025) 128:104725. doi: 10.1016/j.fm.2025.104725
- 244. Claeys WL, Cardoen S, Daube G, De Block J, Dewettinck K, Dierick K, et al. Raw or heated cow milk consumption: review of risks and benefits. *Food Control.* (2013) 31:251–62. doi: 10.1016/j.foodcont.2012.09.035

- 245. Macdonald LE, Brett J, Kelton D, Majowicz SE, Snedeker K, Sargeant JM, et al. systematic review and meta-analysis of the effects of pasteurization on milk vitamins, and evidence for raw milk consumption and other health-related outcomes. *J Food Prot.* (2011) 74:1814–32. doi: 10.4315/0362-028X.JFP-10-269
- 246. Claeys WL, Verraes C, Cardoen S, De Block J, Huyghebaert A, Raes K, et al. Consumption of raw or heated milk from different species: an evaluation of the nutritional and potential health benefits. *Food Control.* (2014) 42:188–201. doi: 10.1016/j.foodcont.2014.01.045
- 247. Choi K-H, Lee H, Lee S, Kim S, Yoon Y. Cheese microbial risk assessments a review. *Asian-Australas J Anim Sci.* (2016) 29:307–14. doi: 10.5713/ajas.15.0332
- 248. Brooks JC, Martinez B, Stratton J, Bianchini A, Krokstrom R, Hutkins R. Survey of raw milk cheeses for microbiological quality and prevalence of foodborne pathogens. *Food Microbiol.* (2012) 31:154–8. doi: 10.1016/j.fm.2012.03.013
- 249. D'amico DJ, Groves E, Donnelly CW. Low incidence of foodborne pathogens of concern in raw milk utilized for farmstead cheese production. *J Food Prot.* (2008) 71:1580–1589. doi: 10.4315/0362-028X-71.8.1580
- 250. Kushi L, Giovannucci E. Dietary fat and cancer. Am J Med. (2002) 113:63-70. doi: 10.1016/S0002-9343(01)00994-9
- 251. Briggs MA, Petersen KS, Kris-Etherton PM. Saturated fatty acids and cardiovascular disease: replacements for saturated fat to reduce cardiovascular risk. *Healthcare*. (2017) 5:29. doi: 10.3390/healthcare5020029
- 252. Kang PS, Neeland IJ. Body fat distribution, diabetes mellitus, and cardiovascular disease: an update. *Curr Cardiol Rep.* (2023) 25:1555–64. doi: 10.1007/s11886-023-01969-5
- 253. Garnås E. Saturated fat in an evolutionary context. Lipids Health Dis. (2025) 24:28. doi: 10.1186/s12944-024-02399-0
- 254. Hjerpsted J, Tholstrup T. Cheese and cardiovascular disease risk: a review of the evidence and discussion of possible mechanisms. *Crit Rev Food Sci Nutr.* (2016) 56:1389–403. doi: 10.1080/10408398.2013.769197
- 255. Poppitt SD. Cow's milk and dairy consumption: is there now consensus for cardiometabolic health? Front Nutr. (2020) 7:574725. doi: 10.3389/fnut.2020.574725
- 256. Hu M-J, Tan J-S, Gao X-J, Yang J-G, Yang Y-J. Effect of cheese intake on cardiovascular diseases and cardiovascular biomarkers. *Nutrients*. (2022) 14:2936. doi: 10.3390/nu14142936
- 257. Weaver CM. Dairy matrix: is the whole greater than the sum of the parts? *Nutr Rev.* (2021) 79:4–15. doi: 10.1093/nutrit/nuab081
- 258. Shioi A, Morioka T, Shoji T, Emoto M. The Inhibitory roles of vitamin K in progression of vascular calcification. *Nutrients*. (2020) 12:583. doi: 10.3390/nu12020583
- 259. Lorenzen JK, Astrup A. Dairy calcium intake modifies responsiveness of fat metabolism and blood lipids to a high-fat diet. Br J Nutr. (2011) 105:1823–31. doi: 10.1017/S0007114510005581
- 260. Thorning TK, Bertram HC, Bonjour J-P, de Groot L, Dupont D, Feeney E, et al. Whole dairy matrix or single nutrients in assessment of health effects: current evidence and knowledge gaps. *Am J Clin Nutr.* (2017) 105:1033–45. doi: 10.3945/ajcn.116.151548
- 261. Astrup A, Geiker NRW, Magkos F. Effects of full-fat and fermented dairy products on cardiometabolic disease: food is more than the sum of its parts. *Adv Nutr.* (2019) 10:924S–30S. doi: 10.1093/advances/nmz069
- 262. Drouin-Chartier J-P, Tremblay AJ, Maltais-Giguère J, Charest A, Guinot L, Rioux L-E, et al. Differential impact of the cheese matrix on the postprandial lipid response: a randomized, crossover, controlled trial. *Am J Clin Nutr.* (2017) 106:1358–65. doi: 10.3945/ajcn.117.165027
- 263. Nzekoue FK, Alesi A, Vittori S, Sagratini G, Caprioli G. Development of functional whey cheese enriched in vitamin D3: nutritional composition, fortification, analysis, and stability study during cheese processing and storage. *Int J Food Sci Nutr.* (2021) 72:746–56. doi: 10.1080/09637486.2020.1857711
- 264. Machado M, Sousa SC, Rodríguez-Alcalá LM, Pintado M, Gomes AM. Functional lipid enriched probiotic cheese: gastrointestinal stability and potential health benefits. *Int Dairy J.* (2023) 144:105700. doi: 10.1016/j.idairyj.2023.105700
- 265. Hueso D, Delgado D, Gómez-Guillén MC, Fontecha J, Gómez-Cortés P. Comprehensive characterization of ultrafiltered fresh cheeses enriched with milk fat globule membrane (MFGM) and $\omega\text{--}3$ fatty acids. $\mathit{LWT}.$ (2025) 216:117319. doi: 10.1016/j.lwt.2025.117319
- 266. Marth EH. Microbiological and chemical aspects of cheddar cheese ripening. A review. *J Dairy Sci.* (1963) 46:869–90. doi: 10.3168/jds.S0022-0302(63) 89174-2
- 267. Open universiteit, Thames Polytechnic. Starter cultures for cheese production. In: *Biotechnological Innovations in Food Processing*. Oxford: Butterworth-Heinemann (1991). p. 77–112.
- 268. Afshari R, Pillidge CJ, Read E, Rochfort S, Dias DA, Osborn AM, et al. New insights into cheddar cheese microbiota-metabolome relationships revealed by integrative analysis of multi-omics data. *Sci Rep.* (2020) 10:3164. doi: 10.1038/s41598-020-59617-9

269. eAmbrosia - West Country Farmhouse Cheddar Cheese. Available online at: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/details/EUGI00000013113 (Accessed June 6, 2025).

- 270. Ercolini D, Hill PJ, Dodd CER. Bacterial community structure and location in stilton cheese. *Appl Environ Microbiol.* (2003) 69:3540–8. doi: 10.1128/AEM.69.6.3540-3548.2003
- 271. Gkatzionis K, Yunita D, Linforth RST, Dickinson M, Dodd CER. Diversity and activities of yeasts from different parts of a Stilton cheese. *Int J Food Microbiol.* (2014) 177:109–16. doi: 10.1016/j.ijfoodmicro.2014.02.016
- 272. Mugampoza D, Gkatzionis K, Swift BMC, Rees CED, Dodd CER. Diversity of *Lactobacillus* species of stilton cheese relates to site of isolation. *Front Microbiol.* (2020) 11:904. doi: 10.3389/fmicb.2020.00904
- 273. eAmbrosia White Stilton cheese/Blue Stilton cheese. Available online at: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/details/EUGI00000013112 (Accessed June 6, 2025).
- 274. Salazar JK, Carstens CK, Ramachandran P, Shazer AG, Narula SS, Reed E, et al. Metagenomics of pasteurized and unpasteurized gouda cheese using targeted 16S rDNA sequencing. *BMC Microbiol.* (2018) 18:189. doi: 10.1186/s12866-018-1323-4
- 275. Decadt H, Weckx S, De Vuyst L. The microbial and metabolite composition of Gouda cheese made from pasteurized milk is determined by the processing chain. *Int J Food Microbiol.* (2024) 412:110557. doi: 10.1016/j.ijfoodmicro.2024.110557
- 276. Decadt H, Díaz-Muñoz C, Vermote L, Pradal I, De Vuyst L, Weckx S. Long-read metagenomics gives a more accurate insight into the microbiota of long-ripened gouda cheeses. *Front Microbiol.* (2025) 16:1543079. doi: 10.3389/fmicb.2025.1543079
- 277. eAmbrosia Noord-Hollandse Gouda. Available online at: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/details/EUGI00000013135 (Accessed June 6, 2025).
- 278. Lawson PA, Papademas P, Wacher C, Falsen E, Robinson R, Collins MD. *Lactobacillus cypricasei* sp. nov, isolated from Halloumi cheese. *Int J System Evolution Microbiol.* (2001) 51:45–9. doi: 10.1099/00207713-51-1-45
- 279. Elgaml N, Moussa MM, Saleh AE. Comparison of the properties of halloumi cheese made from goat milk, cow milk and their mixture. *J Sustain Agricult Sci.* (2017) 43:77–87. doi: 10.21608/jsas.2017.1065.1006
- 280. Kamilari E, Anagnostopoulos DA, Papademas P, Kamilaris A, Tsaltas D. Characterizing Halloumi cheese's bacterial communities through metagenomic analysis. *LWT*. (2020) 126:109298. doi: 10.1016/j.lwt.2020.109298
- 281. eAmbrosia $X\alpha\lambda\lambda o\nu\mu$ //Halloumi/Hellim. Available online at: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/details/EUGI00000015984 (Accessed June 6, 2025).
- 282. Marino M, Dubsky de Wittenau G, Saccà E, Cattonaro F, Spadotto A, Innocente N, et al. Metagenomic profiles of different types of Italian high-moisture Mozzarella cheese. *Food Microbiol.* (2019) 79:123–31. doi: 10.1016/j.fm.2018.12.007
- 283. Levante A, Bertani G, Marrella M, Mucchetti G, Bernini V, Lazzi C, et al. The microbiota of Mozzarella di Bufala Campana PDO cheese: a study across the manufacturing process. *Front Microbiol.* (2023) 14:1196879. doi: 10.3389/fmicb.2023.1196879
- 284. Magliulo R, Valentino V, Balivo A, Esposito A, Genovese A, Ercolini D, et al. Microbiome signatures associated with flavor development differentiate Protected Designation of origin water Buffalo Mozzarella cheese from different production areas. Food Res Int. (2024) 192:114798. doi: 10.1016/j.foodres.2024.114798
- 285. eAmbrosia Mozzarella di Bufala Campana. Available online at: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/details/EUGI00000012996 (Accessed June 6, 2025).
- 286. Coppola R, Nanni M, Iorizzo M, Sorrentino A, Sorrentino E, Chiavari C, et al. Microbiological characteristics of Parmigiano Reggiano cheese during the cheesemaking and the first months of the ripening. *Lait.* (2000) 80:479–90. doi: 10.1051/lait:2000139
- 287. Bottari B, Levante A, Bancalari E, Sforza S, Bottesini C, Prandi B, et al. The interrelationship between microbiota and peptides during ripening as a driver for Parmigiano Reggiano cheese quality. *Front Microbiol.* (2020) 11: doi: 10.3389/fmicb.2020.581658
- 288. Cocolin L, Nucera D, Alessandria V, Rantsiou K, Dolci P, Grassi MA, et al. Microbial ecology of Gorgonzola rinds and occurrence of different biotypes of *Listeria monocytogenes. Int J Food Microbiol.* (2009) 133:200–5. doi: 10.1016/j.ijfoodmicro.2009.05.003
- 289. Voyron S, Bietto F, Fontana M, Martello E, Bruni N, Pessione E. Molecular characterization of the gorgonzola cheese mycobiota and selection of a putative probiotic *Saccharomyces cerevisiae* var. boulardii for evaluation as a veterinary feed additive. *Appl Microbiol.* (2024) 4:650–64. doi: 10.3390/applmicrobiol4020045
- 291. Schirone M, Tofalo R, Visciano P, Corsetti A, Suzzi G. Biogenic amines in Italian Pecorino cheese. *Front Microbiol.* (2012) 3:171. doi: 10.3389/fmicb.2012.00171

- 292. eAmbrosia Pecorino Romano. Available online at: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/details/EUGI00000012999 (Accessed June 6, 2025).
- 293. Galli BD, Nikoloudaki O, Granehäll L, Carafa I, Pozza M, De Marchi M, et al. Comparative analysis of microbial succession and proteolysis focusing on amino acid pathways in Asiago-PDO cheese from two dairies. *Int J Food Microbiol.* (2024) 411:110548. doi: 10.1016/j.ijfoodmicro.2023.110548
- 294. Lazzi C, Rossetti L, Zago M, Neviani E, Giraffa G. Evaluation of bacterial communities belonging to natural whey starters for Grana Padano cheese by length heterogeneity-PCR. *J Appl Microbiol.* (2004) 96:481–90. doi: 10.1111/j.1365-2672.2004.02180.x
- 295. Giraffa G. The microbiota of Grana Padano cheese. A Review Foods. (2021) 10:2632. doi: 10.3390/foods10112632
- 296. Zago M, Bardelli T, Rossetti L, Nazzicari N, Carminati D, Galli A, et al. Evaluation of bacterial communities of Grana Padano cheese by DNA metabarcoding and DNA fingerprinting analysis. *Food Microbiol.* (2021) 93:103613. doi: 10.1016/j.fm.2020.103613
- 297. eAmbrosia Grana Padano. Available online at: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/details/EUGI00000012993 (Accessed June 6, 2025).
- 298. Scarano L, Peruzy MF, Fallico V, Blaiotta G, Aponte M, Anastasio A, et al. Provolone del Monaco PDO cheese: lactic microflora, biogenic amines and volatilome characterization. *Food Res Int.* (2024) 197:115257. doi: 10.1016/j.foodres.2024.115257
- 299. Rantsiou K, Urso R, Dolci P, Comi G, Cocolin L. Microflora of feta cheese from four Greek manufacturers. *Int J Food Microbiol.* (2008) 126:36–42. doi: 10.1016/j.ijfoodmicro.2008.04.031
- 300. Papadakis P, Konteles S, Batrinou A, Ouzounis S, Tsironi T, Halvatsiotis P, et al. et al. Characterization of bacterial microbiota of PDO Feta cheese by 16S metagenomic analysis. *Microorganisms*. (2021) 9:2377. doi: 10.3390/microorganisms9112377
- 301. Tzora A, Nelli A, Voidarou C, Fthenakis G, Rozos G, Theodorides G, et al. Microbiota "fingerprint" of Greek Feta cheese through ripening. *Appl Sci.* (2021) 11:5631. doi: 10.3390/app11125631
- 302. eAmbrosia Φ ? $\tau\alpha$ /Feta. Available online at: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/details/EUGI00000013179 (Accessed June 6, 2025).
- 303. Unno R, Suzuki T, Matsutani M, Ishikawa M. Evaluation of the relationships between microbiota and metabolites in soft-type ripened cheese using an integrated omics approach. *Front Microbiol.* (2021) 12:681185. doi: 10.3389/fmicb.2021.681185
- 304. eAmbrosia Brie de Meaux. Available online at: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/details/EUGI00000012893 (Accessed June 6, 2025).
- 305. eAmbrosia Brie de Melun. Available online at: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/details/EUGI00000012894 (Accessed June 6, 2025).
- 306. Corroler D, Mangin I, Desmasures N, Gueguen M. An ecological study of lactococci isolated from raw milk in the camembert cheese registered designation of origin area. *Appl Environ Microbiol.* (1998) 64:4729–35. doi: 10.1128/AEM.64.12.4729-4735.1998
- 307. Firmesse O, Alvaro E, Mogenet A, Bresson J-L, Lemée R, Le Ruyet P, et al. Fate and effects of Camembert cheese micro-organisms in the human colonic microbiota of healthy volunteers after regular Camembert consumption. *Int J Food Microbiol.* (2008) 125:176–81. doi: 10.1016/j.ijfoodmicro.2008.03.044
- 308. eAmbrosia Camembert de Normandie. Available online at: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/details/EUGI00000012895 (Accessed June 6, 2025).
- 309. Caron T, Piver ML, Péron A-C, Lieben P, Lavigne R, Brunel S, et al. Strong effect of Penicillium roqueforti populations on volatile and metabolic compounds responsible for aromas, flavor and texture in blue cheeses. *Int J Food Microbiol.* (2021) 354:109174. doi: 10.1016/j.ijfoodmicro.2021.109174
- 310. eAmbrosia Roquefort. Available online at: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/details/EUGI00000012914 (Accessed June 6, 2025).
- 311. Bouton, Guyot, Grappin. Preliminary characterization of microflora of Comté cheese. *J Appl Microbiol.* (1998) 85:123–31. doi: 10.1046/j.1365-2672.1998.00476.x
- 313. Bärtschi C, Berthier J, Valla G. Inventaire et évolution des flores fongiques de surface du reblochon de Savoie. *Lait.* (1994) 74:105–14. doi: 10.1051/lait:199429
- 314. Monnet C, Dugat-Bony E, Swennen D, Beckerich J-M, Irlinger F, Fraud S, et al. Investigation of the activity of the microorganisms in a reblochon-style cheese by metatranscriptomic analysis. *Front Microbiol.* (2016) 7:536. doi: 10.3389/fmicb.2016.00536

- 315. eAmbrosia Reblochon/Reblochon de Savoie. Available online at: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/details/EUGI00000012913 (Accessed June 6, 2025).
- 316. Schubert K, Ludwig W, Springer N, Kroppenstedt RM, Accolas JP, Fiedler F. Two coryneform bacteria isolated from the surface of French Gruyère and Beaufort cheeses are new species of the genus Brachybacterium: Brachybacterium alimentarium sp. nov and *Brachybacterium tyrofermentans* sp nov. *Int J Syst Bacteriol.* (1996) 46:81–7. doi: 10.1099/00207713-46-1-81
- 317. Moser A, Schafroth K, Meile L, Egger L, Badertscher R, Irmler S. Population dynamics of *Lactobacillus helveticus* in Swiss Gruyère-type cheese manufactured with natural whey cultures. *Front Microbiol.* (2018) 9:637. doi: 10.3389/fmicb.2018.00637
- 318. Le Gruyère AOP. Available online at: https://www.aop-igp.ch/en/le-gruyere-aop (Accessed June 6, 2025).
- 319. Egger L, Ménard O, Abbühl L, Duerr D, Stoffers H, Berthoud H, et al. Higher microbial diversity in raw than in pasteurized milk Raclette-type cheese enhances peptide and metabolite diversity after *in vitro* digestion. *Food Chem.* (2021) 340:128154. doi: 10.1016/j.foodchem.2020.128154
- 320. Dreier M, Meola M, Berthoud H, Shani N, Wechsler D, Junier P. Highthroughput qPCR and 16S rRNA gene amplicon sequencing as complementary methods for the investigation of the cheese microbiota. *BMC Microbiol.* (2022) 22:48. doi: 10.1186/s12866-022-02451-y
- 321. Walliser Raclette AOP. Available online at: $https://www.aop-igp.ch/en/walliser-raclette-aop\ (Accessed\ June\ 6,\ 2025).$
- 322. Flórez AB, Ruas-Madiedo P, Alonso L, Mayo B. Microbial, chemical and sensorial variables of the Spanish traditional blue-veined Cabrales cheese, as affected by inoculation with commercial Penicillium roqueforti spores. *Eur Food Res Technol.* (2006) 222:250–7. doi: 10.1007/s00217-005-0021-2
- 323. Alexa EA, Cobo-Díaz JF, Renes E, O'Callaghan TF, Kilcawley K, Mannion D, et al. The detailed analysis of the microbiome and resistome of artisanal blueveined cheeses provides evidence on sources and patterns of succession linked with quality and safety traits. *Microbiome*. (2024) 12:78. doi: 10.1186/s40168-024-01790-4
- 324. eAmbrosia Cabrales. Available online at: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/details/EUGI00000012957 (Accessed June 6, 2025).
- 325. Ordiales E, Benito MJ, Martín A, Casquete R, Serradilla MJ, de Guía Córdoba M. Bacterial communities of the traditional raw ewe's milk cheese "Torta del Casar" made without the addition of a starter. *Food Control.* (2013) 33:448–54. doi: 10.1016/j.foodcont.2013.03.027
- 326. Sánchez-Juanes F, Teixeira-Martín V, González-Buitrago JM, Velázquez E, Flores-Félix JD. Identification of species and subspecies of lactic acid bacteria present in spanish cheeses type "Torta" by MALDI-TOF MS and pheS gene analyses. *Microorganisms*. (2020) 8:301. doi: 10.3390/microorganisms80 20301
- 327. eAmbrosia Torta del Casar. Available online at: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/details/EUGI00000013522 (Accessed June 6, 2025).
- 328. Menéndez S, Godinez R, Centeno JA, Rodriguez-Otero JL. Microbiological, chemical and biochemical characteristics of 'Tetilla' raw cows-milk cheese. *Food Microbiol.* (2001) 18:151–8. doi: 10.1006/fmic.2000.0385
- 329. eAmbrosia Queso Tetilla/Queixo Tetilla. Available online at: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/details/EUGI00000012964 (Accessed June 6, 2025).
- 330. Nieto-Arribas P, Seseña S, Poveda JM. Palop Ll, Cabezas L. Genotypic and technological characterization of *Lactococcus lactis* isolates involved in processing of artisanal Manchego cheese. *J Appl Microbiol.* (2009) 107:1505–17. doi:10.1111/j.1365-2672.2009.04334.x
- 331. Nieto-Arribas P, Seseña S, Poveda JM, Chicón R, Cabezas L, Palop L. *Enterococcus* populations in artisanal Manchego cheese: Biodiversity, technological and safety aspects. *Food Microbiol.* (2011) 28:891–9. doi: 10.1016/j.fm.2010.12.005
- 332. Rampanti G, Ferrocino I, Harasym J, Foligni R, Cardinali F, Orkusz A, et al. Queijo Serra da Estrela PDO cheese: investigation into its morpho-textural traits, microbiota, and volatilome. *Foods.* (2023) 12:169. doi: 10.3390/foods12010169
- 333. Rocha R, Couto N, Pinto RP, Vaz-Velho M, Fernandes P, Santos J. Microbiological characterization of protected designation of origin Serra da Estrela cheese. *Foods.* (2023) 12:2008. doi: 10.3390/foods12102008
- 334. Salamandane A, Leech J, Almeida R, Silva C, Crispie F, Cotter PD, et al. Metagenomic analysis of the bacterial microbiome, resistome and virulome distinguishes Portuguese Serra da Estrela PDO cheeses from similar non-PDO cheeses: An exploratory approach. Food Res Int. (2024) 189:114556. doi: 10.1016/j.foodres.2024.114556
- 335. eAmbrosia Queijo Serra da Estrela. Available online at: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/details/EUGI00000013223 (Accessed June 6, 2025).

- 336. Domingos-Lopes MFP, Stanton C, Ross PR, Dapkevicius MLE, Silva CCG. Genetic diversity, safety and technological characterization of lactic acid bacteria isolated from artisanal Pico cheese. *Food Microbiol.* (2017) 63:178–90. doi: 10.1016/j.fm.2016.11.014
- 337. Câmara S, Dapkevicius A, Riquelme C, Elias R, Silva C, Malcata F, et al. Potential of lactic acid bacteria from Pico cheese for starter culture development. *Food sci technol int.* (2019) 25:303–17. doi: 10.1177/1082013218823129
- 338. eAmbrosia Queijo do Pico. Available online at: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/details/EUGI00000013436 (Accessed June 6, 2025).
- 339. Kongo JM, Ho AJ, Malcata FX, Wiedmann M. Characterization of dominant lactic acid bacteria isolated from São Jorge cheese, using biochemical and ribotyping methods. *J Appl Microbiol.* (2007) 103:1838–44. doi: 10.1111/j.1365-2672.2007.
- 340. Coelho MC, Malcata FX, Silva CCG. Distinct bacterial communities in São Jorge cheese with protected designation of origin (PDO). *Foods.* (2023) 12:990. doi: 10.3390/foods12050990
- 341. eAmbrosia Queijo S. Jorge. Available online at: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/details/EUGI00000013102 (Accessed June 6, 2025).
- 342. Cardinali F, Foligni R, Ferrocino I, Harasym J, Orkusz A, Franciosa I, et al. Microbial diversity, morpho-textural characterization, and volatilome profile of the Portuguese thistle-curdled cheese *Queijo da Beira Baixa* PDO. *Food Res Int.* (2022) 157:111481. doi: 10.1016/j.foodres.2022.111481
- 343. e Ambrosia - Queijo da Beira Baixa. Available online at: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/details/EUGI00000013224 (Accessed June 6, 2025).
- 344. Cardinali F, Foligni R, Ferrocino I, Harasym J, Orkusz A, Milanović V, et al. Microbiological, morpho-textural, and volatile characterization of Portuguese *Queijo de Nisa* PDO cheese. *Food Res Int.* (2022) 162:112011. doi: 10.1016/j.foodres.2022.112011
- 345. eAmbrosia Queijo de Nisa. Available online at: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/details/EUGI00000013220 (Accessed June 6, 2025).
- 346. Cardinali F, Ferrocino I, Milanović V, Belleggia L, Corvaglia MR, Garofalo C, et al. Microbial communities and volatile profile of *Queijo de Azeitão* PDO cheese, a traditional Mediterranean thistle-curdled cheese from Portugal. *Food Research International.* (2021) 147:110537. doi: 10.1016/j.foodres.2021.110537
- 347. eAmbrosia Queijo de Azeitão. Available online at: https://ec.europa.eu/agriculture/eambrosia/geographical-indications-register/details/EUGI00000013227 (Accessed June 6, 2025).
- 348. Zhang S, Janzi S, Du Y, Smith JG Qi L, Borné Y, Sonestedt E. Dairy intake, plasma metabolome, and risk of type 2 diabetes in a population-

- based cohort. Am J Clin Nutr. (2025) 121:1137-48. doi: 10.1016/j.ajcnut.2025. 02.023
- 349. Kouvari M, Tsiampalis T, Kosti RI, Damigou E, Chrysohoou C, Anastasiou G, et al. The prolonged impact of swapping non-fermented with fermented dairy products on cardiovascular disease: the ATTICA cohort study (2002–2022). *Eur J Clin Nutr.* (2025) 79:337–44. doi: 10.1038/s41430-024-01543-4
- 350. Farinha VO, Vaucher J, Vidal P-M. Dairy products and hypertension: cross-sectional and prospective associations. *Clini Nutr ESPEN*. (2024) 63:597–603. doi: 10.1016/j.clnesp.2024.07.020
- 351. Vogtschmidt YD, Soedamah-Muthu SS, Imamura F, Givens DI, Lovegrove JA. Replacement of saturated fatty acids from meat by dairy sources in relation to incident cardiovascular disease: the European Prospective Investigation into Cancer and Nutrition (EPIC)-norfolk study. *Am J Clin Nutr.* (2024) 119:1495–503. doi: 10.1016/j.ajcnut.2024.04.007
- 352. Bahadoran Z, Mirmiran P, Azizi F. Usual intake of dairy products and the chance of pre-diabetes regression to normal glycemia or progression to type 2 diabetes: a 9-year follow-up. *Nutr Diabetes*. (2024) 14:1–7. doi: 10.1038/s41387-024-00257-7
- 353. Dukuzimana J, Janzi S, Habberstad C, Zhang S, Borné Y, Sonestedt E. High consumption of dairy products and risk of major adverse coronary events and stroke in a Swedish population. *Br J Nutr.* (2024) 131:500–11. doi: 10.1017/S0007114523001939
- 354. Medina M, Cureau FV, Schaan BD, Leotti VB, Rosa PBZ, Pereira MA, et al. Association between dairy products consumption and the prevalences of combined prediabetes and type 2 diabetes mellitus in Brazilian adolescents: a cross-sectional study. *Br J Nutr.* (2023) 130:2162–73. doi: 10.1017/S0007114523001356
- 355. Slurink IAL, Chen L, Magliano DJ, Kupper N, Smeets T, Soedamah-Muthu SS. Dairy product consumption and incident prediabetes in the Australian diabetes, obesity, and lifestyle study with 12 years of follow-up. *J Nutr.* (2023) 153:1742–52. doi: 10.1016/j.tjnut.2023.032
- 356. Ge S, Zha L, Sobue T, Kitamura T, Iso H, Ishihara J, et al. Associations between dairy intake and mortality due to all-cause and cardiovascular disease: the Japan Public Health Center-based prospective study. *Eur J Nutr.* (2023) 62:2087–104. doi: 10.1007/s00394-023-03116-w
- 357. Rooney M, O'Connor A, Dunne S, Feeney EL, Gibney ER. The impact of sex and the cheese matrix on cholesterol metabolism in middle-aged adults. *Atherosclerosis.* (2025) 402:119112. doi: 10.1016/j.atherosclerosis.2025.119112
- 358. Iuliano S, Hare DL, Vogrin S, Poon S, Robbins J, French C, et al. Consumption of dairy foods to achieve recommended levels for older adults has no deleterious effects on serum lipids. *Nutr Metab Cardiovasc Dis.* (2024) 34:2353–9. doi: 10.1016/j.numecd.2024.06.004
- 359. Feeney EL, Daly A, Dunne S, Dible V, Barron R, Seratlic S, et al. Effect of reduced-calcium and high-calcium cheddar cheese consumption on the excretion of faecal fat: a 2-week cross-over dietary intervention study. *Eur J Nutr.* (2023) 62:1755–65. doi: 10.1007/s00394-023-03118-8