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Skin aging is a gradual physiological process influenced by both intrinsic and 
environmental factors and is characterized by the appearance of wrinkles, 
pigmentation, reduced elasticity, dryness, and vascular changes. In recent years, 
interest in the use of natural bioactive compounds to mitigate skin aging has 
increased, reflecting the global shift toward safer, sustainable, and health-conscious 
skincare solutions. Proanthocyanidins (PCs), a class of polyphenolic compounds 
derived from plant sources, exhibit strong antioxidant, anti-inflammatory, and 
antipigmentation properties. These compounds have considerable potential 
for enhancing the structure and function of aged skin by reducing oxidative 
stress, promoting collagen and elastin synthesis, alleviating the skin inflammatory 
response, and inhibiting pigmentation. Despite their promising therapeutic value, 
the efficacy of PCs can be compromised by their environmental instability and low 
bioavailability. Advances in encapsulation techniques and combination formulations 
have shown promise in enhancing the stability and delivery efficiency of PCs, 
thereby improving their performance in antiaging applications. In conclusion, 
PCs offer a scientifically grounded and sustainable approach for addressing skin 
aging. Their integration into dermatological products represents an innovative 
and eco-conscious strategy for developing next-generation skincare solutions 
with broad health and consumer benefits.
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1 Introduction

Skin aging is a complex phenomenon resulting from the interplay of internal (genetic) and 
external (environmental) factors. It can be categorized into two distinct types: endogenous 
and exogenous skin aging (1, 2). Endogenous skin aging is influenced by genetic factors and 
progresses gradually with advancing age. Its characteristic manifestations include a decline in 
overall skin texture, the appearance of fine and evenly distributed wrinkles, a slightly dull 
complexion, and an absence of prominent pigmentation spots or erythema. In contrast, 
exogenous skin aging, on the other hand, is associated with detrimental external environmental 
factors and poor lifestyle habits, such as ultraviolet (UV) radiation exposure, air pollution, 
sleep deprivation, and smoking. Among these factors, UV radiation stands out as the most 
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significant contributor to this form of aging; it is commonly referred 
to as photoaging of the skin. The typical manifestations of photoaged 
skin include a leather-like appearance in areas exposed to UV light, 
characterized by dense localized wrinkles along with common 
pigmentation spots and erythema (3, 4). UVA (320–400 nm) possesses 
substantial penetration capability, allowing it to directly reach the 
dermis and induce the production of reactive oxygen species (ROS) 
(5). Conversely, UVB (275–320 nm) primarily accumulates in the 
epidermis and is recognized as the principal pathogenic factor 
responsible for sunburn erythema, hence referred to as the “erythema 
effect” of UV radiation (6). In contrast to UVA and UVB rays, most 
UVC (230–275 nm) wavelengths are absorbed by the surface of the 
ozone layer before it reaches the Earth’s surface (7).

Compared with endogenous aging, skin aging induced by UV 
exposure is substantially more severe. Endogenous aging typically 
involves progressive degeneration characterized by gradual 
degradation of the extracellular matrix without causing pronounced 
visible damage. Conversely, photoaging resulting from prolonged 
UV exposure leads to extensive collagen degradation and the 
denaturation of elastin, which promotes acute damage to the 
extracellular matrix and results in substantial harm. Furthermore, 
UV radiation induces excessive ROS within skin tissues, facilitating 
local capillary dilation and triggering an inflammatory response 
that manifests as redness, swelling, and burning sensations on the 
skin (8). Additionally, UV radiation can increase melanocyte 
activity, leading to excessive melanin production and accumulation. 
This process results in pigmentation changes on sun-exposed areas 
of the skin, giving rise to pigmented spots (9, 10). Skin aging 
profoundly impacts individuals’ appearance and causes significant 
physical and psychological distress. Consequently, research focused 

on preventing and treating skin aging has garnered considerable 
attention from scientific researchers (11).

Currently, in addition to maintaining a healthy lifestyle, cultivating 
a positive mindset, and utilizing skincare products tailored to 
individual needs, the prevention and treatment methods for natural 
skin aging primarily encompass medical aesthetic interventions along 
with the administration of metformin (12, 13) and doxycycline (DOX) 
(14). The strategies for preventing and treating skin photoaging 
mainly involve sun protection measures alongside topical medications 
such as retinoic acid (15), chloroacetic acid (16), and 5-fluorouracil 
(17). Moreover, medical aesthetic techniques are employed within 
these treatments. While medical aesthetic approaches yield rapid 
results in the short term, they also carry certain risks. These risks 
include but are not limited to local skin infections at injection sites, 
induration, ecchymosis, vascular embolism, nerve damage, fat 
embolism, allergic reactions, and other complications—potentially 
resulting in unnatural facial expressions. Adverse reactions associated 
with pharmacological treatments for skin aging can be severe and may 
present pronounced side effects. Consequently, it is essential to explore 
new anti-skin aging products.

Compared with traditional pharmaceuticals used to combat skin 
aging, natural bioactive substances have emerged as promising 
alternatives because of their reduced side effects and diverse biological 
activities (18, 19). Natural bioactive compounds such as retinoids, 
peptides and antioxidants (such as vitamin C) and PCs play beneficial 
roles in the prevention and treatment of skin aging. Retinoids promote 
keratin renewal, stimulate collagen production, and inhibit its 
degradation (20, 21). Peptides serve as antiaging agents primarily by 
increasing the levels of collagen, elastin, and hyaluronic acid, thereby 
enhancing the elasticity and firmness of the skin (22). Vitamin C is a 

FIGURE 1

The beneficial effects of PCs on the repair of aging skin. Four main effects include inhibiting oxidative stress, increasing collagen and elastin content, 
alleviating the inflammation, and inhibiting pigmentation. ROS, reactive oxygen species; MAPK, mitogen-activated protein kinase; NF-κB, nuclear 
transcription factor-κB; TGF-β, transforming growth factor-β.

https://doi.org/10.3389/fnut.2025.1650328
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Ye et al.� 10.3389/fnut.2025.1650328

Frontiers in Nutrition 03 frontiersin.org

well-known antioxidant that effectively neutralizes free radicals, 
mitigates oxidative stress damage to cells, and acts as an essential 
cofactor in collagen synthesis. It promotes collagen production while 
inhibiting melanin formation, thus reducing pigmentation and 
increasing the degree of complexion (23). However, all the 
aforementioned drugs or ingredients have varying degrees of side 
effects, which can not only impact therapeutic efficacy but also lead to 
adverse reactions within the human body. Retinoids are known for 
their high irritability to the skin, which may result in adverse reactions 
such as dryness and peeling (20, 24). The effectiveness of peptides 
tends to be  relatively slow; furthermore, they require specific 
concentrations and careful formulation design for optimal results (22). 
Vitamin C is prone to oxidation, which can diminish its efficacy. 
Additionally, high concentrations of vitamin C may cause irritation 
both on the skin surface and in the gastric mucosa (23, 25).

PCs are internationally recognized as effective natural polyphenolic 
antioxidants with notable properties. In comparison with other 
antioxidants, PCs are widely available from various sources at low cost 
while maintaining a relatively high safety profile—making them suitable 
for long-term consumption or application (26). PCs possess a robust 
capacity to neutralize free radicals effectively while inhibiting ROS 
formation (27). Compared with retinoids, peptides, and vitamin C, PCs 
exhibit unique antiaging potential that manifests not only through the 
enhancement of glycolipid metabolism and microvascular perfusion—
achieved by inhibiting adipogenesis and improving mitochondrial 
function, respectively (28, 29)—but also by mitigating oxidative stress-
induced damage to skin cells via the elimination of free radicals. This 
protective action safeguards both the structure and function of skin cells. 
Furthermore, PCs can inhibit the release of inflammatory factors, thereby 
alleviating the inflammatory response in the skin and consequently 
slowing its aging process (30, 31).

The reparative effects of PCs on aging skin have garnered 
significant attention in recent years. It exerts beneficial effects through 
various mechanisms: inhibiting the oxidative stress associated with 
aging skin; enhancing the collagen and elastin contents; alleviating 
inflammatory responses; and reducing the prevalence of pigmentation 
issues in aged skin (Figure 1). This paper reviews the structure and 
stability of PCs as well as their underlying mechanisms contributing 
to their ability to repair aging skin. Furthermore, strategies aimed at 
enhancing the stability and bioavailability of these products are 
discussed, providing novel insights for research focused on utilizing 
PCs to combat skin aging.

2 Resources, structure and stability of 
PCs

Fruits and seeds containing PCs include berries (e.g., grapes, 
blueberries, blackberries, cranberries), nuts (e.g., almonds, hazelnuts), 
as well as apples, hawthorns, cocoa beans, black beans, red beans, 
black-skinned peanuts, and red-skinned peanuts. Grape seeds are 
indeed one of the richest natural sources of PCs among known plant 
species, with a content exceeding 95% on the basis of dry weight, 
which is significantly greater than that found in other commonly 
known plants. PCs have been isolated and purified from raw materials 
via techniques such as supercritical CO₂ extraction, solvent extraction, 
column chromatography, high-speed countercurrent chromatography, 
membrane separation, and crystallization or recrystallization.

PCs, commonly known as condensed tannins, are polymers 
characterized by both low and high molecular weights. It is formed 
through the linkage of multiple hydroxylated flavane-3-alcohol units 
via carbon–carbon bonds. The monomers that constitute these 
polymers encompass four distinct structural types: (+)-catechin 
(designated C), (−)-epicatechin (designated EC), (+)-catechin gallate 
(designated CG), and (−)-epicatechin gallate (designated ECG) (32), 
as illustrated in Figure 2. The simplest form of PCs consists of catechin 
(C) or epicatechin (EC) monomers, which can undergo polymerization 
to yield dimers, trimers, tetramers, and so forth, extending up to 
decamers. PCs within the range of 2 °C to 4 °C are typically classified 
as oligomeric PCs on the basis of the degree of polymerization; those 
above 4 °C are categorized as polymeric PCs (33). PCs are further 
divided into two categories: Type A and Type B. Type A PCs comprise 
trimers (such as PCs A1--A2) that contain double bonds—specifically, 
a C=C double bond and a C=O double bond—as illustrated in Table 1. 
This type is found in select plants such as peanuts and lychees (34–36). 
Currently, the structures of eight type B dimers have been successfully 
isolated and elucidated; they are designated B1 through B8 (37), as 
presented in Table 1. The primary structural distinction among these 
dimers lies in their varying carbon connection sites. Dimers B1 to B4 
are linked via the C4--C8 site, whereas dimers B5 to B8 connect 
through the C4--C6 site (38).

PCs are recognized for their instability, and environmental factors 
such as pH, temperature, and light play a significant role in influencing 
their stability (39). The stability of cocoa bean PCs is optimal within a 
neutral to weakly acidic environment. In contrast, under alkaline 
conditions, the B-ring hydroxyl group of PCs becomes vulnerable to 
oxidation, resulting in a decrease in their antioxidant activity (40). In 
experiments involving purple sweet potato PCs treated with citric 
acid–phosphate buffer solutions at various pH values (3.0, 5.0, and 
7.0), at pH 3.0, purple sweet potato PCs exhibited relative stability 
characterized by a slow degradation rate. However, at pH 7.0, the 
phenolic hydroxyl group (-OH) within the PCs molecule undergoes 
oxidation to form a quinone structure; this transformation diminishes 
both its thermal stability and reactivity (41). Elevated temperatures 
further exacerbate the degradation of PCs (42). For example, when 
PCs purified from black carrots, elderberries, and strawberries were 
subjected to heating at 95 °C for 6 hours at pH 3.5, there was an 
observable lightening of sample color along with the formation of 
degradation products such as chalketonoside, phenolic acids, and 
maroumarin. Although these newly formed degradation products 
exhibited some antioxidant capacity, they were insufficient to 
compensate for the loss of activity associated with PCs (43).

The drying process of blueberry pulp containing PCs at various 
temperatures (175 °C, 200 °C, and 225 °C) leads to continuous 
degradation of the compound. Notably, the rate of degradation 
increases with increasing temperature, whereas the antioxidant 
activity correspondingly decreases with both elevated temperature 
and prolonged exposure time. These findings indicate that high-
temperature dry heat treatment adversely affects the stability of PCs 
and consequently reduces their bioavailability (44). When the 
storage temperature exceeds 35 °C, the degradation rate of PCs in 
blueberries significantly increases, indicating that elevated 
temperatures can compromise the stability of PCs in these fruits. 
Therefore, low-temperature storage is essential for preserving the 
PCs content (45). Additionally, during storage and transportation, 
PCs are inevitably subjected to degradation caused by light 
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exposure. When the duration of exposure exceeds 96 h, a marked 
increase in the degradation rate of PCs occurs (46). Consequently, 
to maintain the activity of PCs, it is imperative to sustain an acidic 
environment throughout processing, storage, and transportation; 
maintain temperatures below 65 °C; and minimize light 
exposure (47).

In addition, processing technology significantly impacts the 
stability of PCs in food (39). Research has shown that the PCs 
content in processed blackcurrant products, such as juice and jam, 
can decrease by more than 90% compared with that in fresh fruits. 
This finding indicates that traditional processing methods for juice 
and jam may lead to a substantial loss of PCs from blackcurrants 
(48). Cocoa powder is recognized for its high PCs content. During 
the fermentation process of cocoa powder, hydrolases secreted by 
microorganisms—such as lactic acid bacteria and yeast—including 
glycosidases and esterases—can cleave the glycosidic or ester 
bonds within PCs. This degradation results in the formation of 
small-molecule phenolic acids or oligomers. Furthermore, 
oxidases produced by these microorganisms, such as polyphenol 
oxidase, may catalyze the oxidation of PCs into quinone 
compounds. Consequently, this process reduces its antioxidant 
activity and affects its bioaccessibility (49). Extrusion treatment 
has been shown to significantly increase the levels of PCs 
monomers and dimers present in grape seeds and skins. However, 
it simultaneously reduces the total PCs content in grape skins and 

residues by 18 to 53%. These findings demonstrate that while food 
processing can release PCs by disrupting the food matrix, it may 
also induce alterations in their chemical structure, which could 
compromise their stability and subsequently affect their 
bioavailability (50).

3 Repair mechanism of PCs in skin 
aging

Natural skin aging is a physiological decline characterized by the 
deterioration of bodily functions and metabolism, which is largely 
irreversible. In contrast, photoaging refers to pathological damage 
induced by UV radiation. Certain symptoms associated with 
photoaging can be alleviated through pharmacological interventions 
and stringent sun protection measures aimed at repairing 
photodamage. Currently, pharmacological treatments focus primarily 
on addressing skin photoaging resulting from UV exposure. However, 
relatively few studies have investigated skin aging caused by other 
factors. Research has demonstrated that PCs treatments can inhibit 
oxidative stress in aging skin, increase the collagen and elastin 
contents within aged dermal layers, mitigate inflammatory responses 
related to skin aging, and suppress pigmentation changes in aged skin. 
Collectively, these actions contribute to the reparative effect of PCs in 
aging skin.

FIGURE 2

The structural formulas of different types of monomers that make up PCs. Each structure is a flavonoid compound, with variations in hydroxyl group 
arrangements and benzene rings. The compounds display different stereochemical configurations, indicated by solid and dashed wedges. (A) (+) 
-catechin (C), (B) (−) -epicatechin (EC), (C) (+) -catechin gallic acid (CG), (D) (−) -epicatechin gallic acid (ECG).
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TABLE 1  Different structures of PCs.

Compound Source Structure Ref.

Proanthocyanidin A1

Peanut skin, lychee seeds (124, 125)

Proanthocyanidin A2

Proanthocyanidin B1

Flat peaches, black soybean 

seed coats, strawberries, 

Petiveria alliacea, hazelnut skin, 

soybean seed coats

R1 = OH

R2 = H

(126–131)

Proanthocyanidin B2
R1 = H

R2 = OH

Proanthocyanidin B3
R1 = OH

R2 = H

Proanthocyanidin B4
R1 = H

R2 = OH

Proanthocyanidin B5
R1 = OH

R2 = H

Proanthocyanidin B6
R1 = H

R2 = OH

Proanthocyanidin B7
R1 = OH

R2 = H

Proanthocyanidin B8
R1 = H

R2 = OH
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3.1 PCs inhibit oxidative stress in aging skin

Excessive accumulation of ROS in the body is a primary factor 
contributing to oxidative stress in the skin (51). ROS are a group of 
highly reactive molecules containing oxygen, including superoxide 
radicals (O2-), hydroxyl radicals (OH·), and hydrogen peroxide 
(H₂O₂) (52). In naturally aging skin, ROS predominantly originate 
from mitochondria, while intracellular enzyme systems also generate 
ROS during catalytic reactions (53). In photoaged skin, UV radiation 
interacts with oxygen molecules within the body, leading to the 
generation and accumulation of ROS (54). The presence of ROS can 
initiate lipid peroxidation, which represents one of the critical 
mechanisms underlying cell membrane damage and is closely 
associated with cellular senescence (55).

As bioactive substances, the prominent characteristic of PCs is 
their capacity to neutralize ROS and mitigate the production of 
oxidative stress products, thereby decelerating the process of skin 
aging. In experiments involving H₂O₂-treated human skin fibroblasts, 
treatment with sea buckthorn PCs significantly decreased ROS levels 
and notably restored the morphology of senescent cells while 
enhancing cellular activity. This intervention effectively alleviated 
cellular senescence and delayed the progression of skin aging (56). Li 
et al. (57) induced senescence in rat adrenal pheochromocytoma cell 
lines and mouse embryonic fibroblast lines via the use of rapamycin 
and etoposide, followed by treatment with peanut skin PCs. The 
findings revealed that peanut skin PCs decreased the ROS levels in 
these two cell lines. Furthermore, it diminished the proportion of 
senescent cells while restoring their proliferative capacity, thus 
effectively mitigating cellular senescence. Additionally, PCs have been 
shown to inhibit lipid peroxidation caused by ROS, further 
suppressing skin aging. Anshu Mittal et al. (58) investigated the effects 
of grape seed PCs on photoaging in hairless SKH-1 mice exposed to 
UVB radiation. The results indicated that dietary supplementation 
with 0.2 and 0.5% grape seed PCs significantly inhibited the formation 
of lipid peroxides induced by UVB exposure and reduced ROS levels 
in a dose-dependent manner in these murine models. These findings 
suggest that grape seed PCs may delay the aging process of skin cells 
by decreasing the generation of lipid peroxidation products such as 
malondialdehyde (MDA), which are associated with UVB-induced 
ROS. Li et al. (59) investigated the effects of red millet PCs on aging 
model mice subjected to UVB radiation. The results demonstrated 
that PCs significantly enhanced the activity of antioxidant enzymes in 
these aging model mice while reducing MDA levels, thereby 
highlighting their potential in combating skin photoaging. Sharma 
et al. (60) induced photoaging in SKH-1 hairless mouse skin through 
UVB exposure and subsequently administered diets containing 0.2 
and 0.5% (w/w) grape seed PCs. The results revealed a significant 
reduction in ROS, H₂O₂, and MDA levels within the mouse skin, 
suggesting that grape seed PCs could effectively increase the 
antioxidant capacity of photoaged skin and delay the aging process.

PCs can also stimulate key antioxidant enzymes, including 
superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). 
The synthesis of GSH-Px and glutathione reductase (GSH-Rd), along 
with the increase in their activities, contributes to a reduction in MDA 
levels. This process ultimately increases the antioxidant capacity of the 
skin and plays a significant role in combating skin aging. Experimental 
results from Hwang et al. (61) evaluated the antioxidant effects of 
proanthocyanidin oligomers on human retinal pigment epithelial cells 

and demonstrated that these oligomers significantly increased SOD 
and GSH-Px activities within the cells, indicating their substantial 
antioxidant activity. Li et al. (62) established a natural aging model in 
mice through a high-fat diet and subsequently treated them with PCs 
(200 mg/kg in the diet) extracted from lotus seed skins. Their findings 
revealed that PCs markedly increased both GSH-Px and SOD 
activities in the mouse liver while simultaneously reducing MDA 
levels. These findings suggest that PCs derived from lotus seed skins 
possess strong antioxidant properties that are capable of delaying skin 
aging. Chen et al. (63) investigated the effects of lotus seed PCs on UV 
radiation-induced damage in human skin fibroblast epithelial cells. 
They reported that treatment with lotus seed PCs led to a reduction in 
the amount of ROS generated by UV exposure, an increase in the 
intracellular SOD level, and decreased MDA production, thereby 
mitigating oxidative stress-related damage to the skin. Shi et al. (64) 
investigated the effects of persimmon PCs on in vitro injury to human 
keratinocyte HaCaT cells induced by UVB radiation. These findings 
demonstrated that persimmon PCs significantly elevated the levels of 
antioxidant enzymes, including SOD and GSH-Px, while concurrently 
inhibiting the production of ROS and MDA. Consequently, this 
treatment effectively alleviated the oxidative stress response in these 
cells. Additionally, in SKH hairless mice exhibiting skin photoaging 
due to UVB radiation, dietary inclusion of 0.2 and 0.5% grape seed 
PCs was found to increase the levels of antioxidant enzymes such as 
GSH-Px. These findings suggest that grape seed PCs can substantially 
reduce oxidative stress resulting from UVB exposure while providing 
protective effects against skin damage caused by UVB radiation (58). 
Furthermore, a clinical trial involving 39 healthy adults who consumed 
roselle beverages rich in polyphenols and PCs reported significant 
increases in the serum levels of SOD and GSH-Px and reduced 
GSH-Rd, following the daily intake of 200 mL of the beverages 
(containing 3.92 g of gallic acid and 3.3 g anthocyanins of cyanidin-
3-glucoside) for six months. Concurrently, there was also a significant 
increase in facial skin moisture content among the participants. These 
findings indicate that roselle beverages contribute to increased 
antioxidant capacity and improve the skin condition of the 
participants (65).

In conclusion, the aforementioned research indicates that PCs can 
mitigate oxidative stress associated with aging skin by neutralizing 
ROS accumulation, suppressing lipid peroxidation caused by ROS, 
and enhancing overall antioxidant capacity, as shown in Table 2.

3.2 PCs increase the content of collagen 
and elastin in aging skin

ROS generated by skin aging can facilitate the degradation of 
collagen and elastin through the activation of the mitogen-activated 
protein kinase (MAPK) signaling pathway, thereby contributing to 
the process of skin aging. ROS activate receptor tyrosine kinases 
(RTKs) via oxidative modification, which in turn leads to the 
activation of MAPKs (66). The MAPK family comprises 
extracellular signal-regulated kinase (ERK), p38, and c-Jun 
N-terminal kinase (JNK). ERK promotes the expression of the 
oncogenic factor c-Fos, whereas both p38 and JNK are involved in 
activating the transcription factor c-Jun (67, 68). C-Jun dimerizes 
with c-Fos to form activator protein-1 (AP-1) (69). AP-1 
subsequently enhances the upregulation of MMPs such as MMP-1, 
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MMP-3, and MMP-8 (70). The expression of matrix 
metalloproteinases (MMPs) can be inhibited by tissue inhibitors of 
metalloproteinase-1 (TIMP-1) but activated by epidermal growth 
factor receptors (EGFRs) and cytokine receptors. These enzymes 
play crucial roles in degrading collagen within the extracellular 
matrix, ultimately leading to structural damage in the skin (71–73).

PCs inhibit the MAPK signaling pathway, thereby suppressing the 
expression of MMPs and increasing the levels of tissue inhibitors of 
TIMP-1. This mechanism ultimately prevents collagen and elastin 

degradation in the skin, promoting the repair of aging skin. Liu et al. 
(74) investigated the ability of sea buckthorn PCs to repair 
D-galactose-induced skin aging in mice and reported that they slowed 
collagen and elastin degradation by increasing TIMP-1 levels in skin 
tissue while simultaneously inhibiting MMP-1, MMP-3, and MMP-9 
expression, thereby improving the conditions associated with skin 
aging. Michael et  al. (75) examined the effects of various 
concentrations of low-bush blueberry proanthocyanidin enrichment 
on DU145 human prostate cancer cells. The results demonstrated that 

TABLE 2  Antioxidant stress repair effects of PCs on aging skin in different models.

Model Induction/
irradiation dose

PCs intervention Effects Mechanism of action Ref.

Human skin 

fibroblasts (HSFs) 

treated with H₂O₂

300 μM H₂O₂, 24 h
25, 50, 100 μg/mL sea 

buckthorn PCs, 24 h

Cell viability has been 

significantly enhanced.

PCs significantly enhanced the 

activities of SOD and GSH 

antioxidant enzymes, and 

significantly reduced the levels of 

ROS and the content of MDA.

(56)

NIH/3 T3 cells 

treated with etoposide
0.3 μM etoposide, 48 h

1, 3, 10, 30 μM peanut skin 

PCs, 18 h

The activity of antioxidant 

enzymes is enhanced, lipid 

peroxides are reduced, and 

the number of senescent 

cells is decreased.

PCs significantly enhanced the 

activity of SOD antioxidant enzymes, 

significantly reduced the content of 

MDA, and thereby significantly 

lowered the level of ROS.

(57)

Skin of 4-to 6-week-

old Kunming mice 

irradiated with UVB 

in half male and half 

female

2.5, 5.0, 7.5 kJ·m−2·d−1 

gradient irradiation, 7 h a 

day, for 8 weeks

red millet PCs and basal feed 

were fed in a 1:1 mass ratio, 

8 weeks

The activity of antioxidant 

enzymes was significantly 

enhanced, and the markers 

of oxidative stress were 

significantly reduced.

PCs significantly enhanced the 

activities of SOD and CAT, thereby 

significantly reducing the level of 

ROS by more than 73.3%.

(59)

Skin of 6-to 7-week-

old female SKH-1 

hairless mice 

irradiated with UVB

120 mJ/cm2, 3 times a week, 

for 1 month

AIN76A diet supplemented 

with 0.2 and 0.5% (w/w) grape 

seed PCs was added 2 weeks 

before UVB irradiation, and 

continued to be added until 

the end of the experiment

The activity of antioxidant 

enzymes was significantly 

enhanced, and the markers 

of oxidative stress were 

significantly reduced.

PCs significantly enhanced the 

enzymatic activities of GSH, GPx, 

CAT, significantly reduced the 

contents of H₂O₂ and MDA, thereby 

significantly lowering the level of 

ROS by 40 to 65%.

(60)

Skin of female 

BALB/C mice 

(average weight of 

20 ± 1 g) irradiated 

with UVB

240 mJ/cm2 once a day for 

5 days

5 mg/cm2 persimmon PCs, 

apply locally, 30 min before 

each UV-B irradiation, 5 h

The symptoms of skin 

damage such as erythema, 

wrinkles and thickening of 

the epidermis on the dorsal 

skin of the mice were 

significantly alleviated.

PCs significantly increased the GSH 

content by 49.2 mM/mg.pro, 

significantly increased the SOD 

activity by 39.7 U/mg.pro, 

significantly restored the GSH-PX 

activity by 21.7%, significantly 

reduced the MDA level by 68.9%, and 

ultimately significantly reduced the 

accumulation of ROS.

(64)

39 healthy adults aged 

40 to 75

Simulate the naturally aging 

of the skin

Took 200 mL of rose flower 

beverage (containing 3.92 g of 

gallic acid, 3.3 g of cyanidin-

3-glucoside) orally every day 

for 6 months

The facial moisture and 

microcirculation of the 

subjects’ skin were 

significantly improved.

The total antioxidant capacity 

(TEAC) of serum in the extract 

group was significantly increased by 

1.08%, the activities of antioxidant 

enzymes GSH, SOD and GSH-PX 

were significantly increased by 40.7, 

14.9 and 17.4%, respectively, and the 

level of thiobarbituric acid reactive 

substances (TBAR) was significantly 

decreased by approximately 21.6%. 

Ultimately, the skin moisture was 

significantly enhanced by 

approximately 18.9%.

(65)
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this enrichment induced TIMP-1 activity in a dose-dependent 
manner, leading to reduced MMP expression.

Additionally, findings revealed that grape seed extract inhibited 
the phosphorylation of proteins such as ERK, JNK, and P38  in 
human epidermal keratinocytes subjected to UVB irradiation, 
suggesting its ability to suppress the MAPK signaling pathway and 
consequently reduce UVB-induced collagen degradation (60, 76). 
Weng et  al. (77) reported a decrease in the gene expression of 
MMP-2 and MMP-9 alongside an increase in TIMP1 expression in 
murine skin exposed to UVB radiation when 20 mg/kg areca nut 
PCs were orally administered to mice, indicating their ability to 
mitigate collagen degradation and slow photoaging effects on the 
skin through the inhibition of the MAPK signaling pathway. Shi 
et  al. (64) investigated the effects of persimmon PCs on the 
photoaging of mouse skin exposed to UVB radiation. Research has 
shown that external application of 5 mg/cm2 can reduce the gene 
expression of MMP-1 and MMP-8, indicating that persimmon PCs 
may alleviate the expression of the MMP by inhibiting the MAPK 
signaling pathway, thereby potentially reducing collagen degradation 
and slowing the photoaging process in the skin. Moreover, UV 
radiation and ROS can inhibit collagen synthesis by suppressing the 
TGF-β/Smad signaling pathway (78). In fibroblasts, TGF-β1 binds 
to its specific receptor complexes—TβR I (the receptor for TGF-β 
type I) and TβR II (the receptor for TGF-β type II). Activation 
occurs when TβR II phosphorylates TβR I, which subsequently 
rephosphorylates Smad2/3. Phosphorylated Smad2/3 forms 
complexes with Smad4, a transcription factor that regulates type 
I collagen synthesis. Upon entering the nucleus, Smad4 promotes 
collagen synthesis through transcriptional regulation (79, 80). 
However, exposure to excessive UVA irradiation results in the 
upregulation of Smad7  in fibroblasts. This protein subsequently 
interacts with TβR I to prevent the activation of Smad2/3, thereby 
inhibiting collagen synthesis (81).

PCs can also promote collagen synthesis by activating the TGF-β/
Smad signaling pathway, thereby mitigating skin aging. Liu et al. (56) 
established a natural aging model by treating human skin fibroblasts 
with varying concentrations of H₂O₂. Following treatment with sea 
buckthorn PCs, they observed an increase in collagen synthesis 
through the activation of the TGF-β1/Smad pathway, resulting in 
notable antiaging effects on the skin. In experiments involving a 
mouse model of skin aging induced by D-galactose, treatment with 
higher concentrations of sea buckthorn PCs (50 and 100 mg/kg) led 
to an increase in TGF-β1 levels within the skin tissue and the 
upregulation of Smad3 expression. This process promotes collagen 
and elastin synthesis, augments the content of collagen fibers and 
elastic fibers in the dermis, and improves signs associated with skin 
aging (74). Sang et al. (82) investigated the protective effects of PCs 
extracted from black soybean seed coats on skin fibroblasts and 
reported that this extract significantly reduced UV radiation-induced 
apoptosis and intracellular ROS generation while decreasing Smad3 
mRNA expression. Additionally, it increased Smad7 mRNA 
expression to inhibit UV-induced collagen degradation, confirming 
that PCs enhance skin conditions via activation of the TGF-β/Smad 
signaling pathway, thus indicating its potential for delaying skin aging. 
Lu et al. (83) treated human skin fibroblasts exposed to UVB radiation 
with blackcurrant PCs and reported that this treatment elevated 
TGF-β expression in cells post-UVB exposure. Concurrently, it 
facilitated the phosphorylation of Smad2/3 downstream from TGF-β, 

enhancing transduction within the TGF-β signaling pathway, which 
subsequently promoted increased collagen content in these cells, 
thereby achieving significant antiphotoaging effects on the skin.

In conclusion, the findings of the present study indicate that PCs 
can alleviate the degradation of collagen and elastin by inhibiting the 
MAPK signaling pathway. Additionally, it promotes collagen synthesis 
through the activation of the TGF-β/Smad signaling pathway. As a 
result, this leads to an increase in the collagen and elastin contents in 
aging skin, thereby slowing the process of skin aging, as shown in 
Table 3.

3.3 PCs alleviate the inflammatory 
response in aging skin

The transcription factor nuclear factor-κB (NF-κB) plays a crucial 
role in regulating a significant number of genes associated with 
inflammation and immune responses. It exists as a trimer composed 
of IκB-α, P50, and P65. ROS can phosphorylate and activate IκB 
kinase (IKK), thereby initiating the NF-κB signaling pathway (84). 
This activation facilitates the synthesis and secretion of various 
inflammatory factors by epidermal and dermal cells, including 
interleukin-1 (IL-1), interleukin-6 (IL-6), cyclooxygenase-2, and 
tumor necrosis factor-alpha (TNF-α), which collectively induce 
inflammatory responses (85, 86). Additionally, NF-κB serves as a 
downstream target within the MAPK pathway. The expression of ERK, 
p38 MAPK, and AP-1 can increase transcriptional activity within the 
NF-kB pathway, consequently triggering skin inflammation and 
accelerating the process of skin aging (87).

PCs have been demonstrated to inhibit the NF-kB signaling 
pathway, thereby suppressing the production of inflammatory factors 
associated with this pathway and alleviating the inflammatory 
response observed in aging skin, as shown in Table 4.

In vitro cell experiments have demonstrated that PCs can alleviate 
the inflammatory response associated with aging skin. Treatment of 
H₂O₂-stimulated primary rat skin fibroblasts with PCs extracted from 
rice inhibited the nuclear translocation of the NF-kBp50/p65 
heterodimer within these cells. This inhibition results in reduced 
inflammatory responses while promoting collagen formation and 
inhibiting collagen degradation at the cellular level, ultimately 
contributing to a deceleration of the skin aging process (88). Sudheer 
et al. (76) reported that grape seed PCs could inhibit phosphorylation 
events involving ERK, JNK, and p38 in human epidermal keratinocytes 
following UVB irradiation; they also inhibited both the activation 
effects and the nuclear translocation of NF-kBp50/p65. These findings 
suggest that grape seed PCs may effectively reduce UVB-induced skin 
inflammation through the suppression of NF-kB pathway 
transcription. Xin et  al. (64) demonstrated that persimmon 
oligoproanthocyanidins mitigate skin inflammatory responses by 
inhibiting the activation of the NF-kB signaling pathway in 
UVB-damaged human keratinocyte HaCaT cells and reducing the 
expression of inflammatory cytokines, including TNF-α and IL-6.

Additionally, in  vivo animal experiments and a clinical trial 
confirmed that PCs can alleviate the inflammatory response associated 
with aging skin. Sharma et al. (89) administered grape seed PCs of 0.2 
and 0.5% (w/w) in the diet to hairless SKH-1 mice exposed to UVB 
radiation. The experimental findings demonstrated that grape seed 
PCs inhibited the activation and nuclear translocation of NF-kB while 
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downregulating the expression of proinflammatory cytokines such as 
TNF-α, IL-1, and IL-6, as well as cyclooxygenase-2. These findings 
suggest that grape seed PCs exert an antiskin aging effect by inhibiting 
the NF-kB signaling pathway, thereby mitigating inflammatory 
responses and reducing skin collagen degradation. Similar outcomes 
were reported in a study conducted by Anshu et al. (58) where SKH-1 

hairless mice were irradiated with UVB and subsequently 
administered grape seed PCs. The results indicated that grape seed 
PCs significantly reduced the levels of inflammatory factors such as 
TNF-α and IL-6 within the skin of these mice. In a clinical trial 
investigating the antiaging, brightening, and antioxidant effects of 
fermented bilberry extract (FBE) containing PCs, 66 female 

TABLE 3  Repair effects of PCs on collagen and elastin in the aging skin of different models.

Model Induction/
irradiation dose

PCs intervention Effects Mechanism of action Ref.

Skin of 8-week-old 

female Kunming mice 

induced by D-galactose

Subcutaneous injection of 

D-galactose (500 mg/kg) 

daily, for 7 weeks

25, 50, 100 mg/kg sea 

buckthorn PCs, administered 

by gavage, 4 weeks

The hyaluronic acid and 

water content in the skin 

tissue of mice increased 

significantly, the breakage 

of collagen fibers 

decreased, and the elastic 

fibers were distributed 

intact and orderly.

PCs significantly increased the 

expression levels of TGF-β1 by 60–80% 

and TIMP-1 by 40–50%, while 

significantly reducing the contents of 

MMP-1, MMP-3, and MMP-9 by 

40–60% in 100 mg/kg PCs group, 

thereby significantly reducing the 

degradation of collagen by 40–50% and 

elastin by 50–60%.

(74)

Skin of 6-to 7-week-old 

female SKH-1 hairless 

mice irradiated with 

UVB

120 mJ/cm2, 3 times a week 

for 1 month

Diet supplemented with 0.2 and 

0.5% (w/w) grape seed PCs was 

added 2 weeks before UVB 

irradiation, and continued to 

be added until the end of the 

experiment

The degradation of 

collagen and elastin is 

significantly reduced.

0.5% PCs significantly reduced the 

expression of 67.5% MMPs by 

significantly decreasing ERK1/2 by 1.5 

times and p38 phosphorylation by 0.8 

times.

(60)

in of 8-week-old CD-1 

female mice irradiated 

with UVB

130 mJ/cm2, 3 times a week 

for 3 weeks

10, 20 mg/kg areca nut PCs, 

orally administered by gavage, 

once a day, 10 days before the 

start of UVB irradiation and 

continued until 24 h after the 

last UVB exposure

The epidermal thickness 

was significantly reduced, 

the collagen fiber 

structure was more 

complete, and the density 

was significantly 

increased.

PCs significantly inhibited the MAPK 

signaling pathway, significantly 

downregulated the expression of 

MMP-9 by 60%, significantly reduced 

collagen degradation, and maintained 

the structural integrity of type 

I collagen.

(77)

Human skin fibroblasts 

(HSFs) treated with H₂O₂
300 μmol/L, 24 h

25, 50, 100 μg/mL sea 

buckthorn PCs, 24 h

The synthesis of type 

I collagen and type 

I procollagen was 

significantly upregulated.

100 μg/mL PCs significantly increased 

the expression of TGF-β1 by 2.1 times, 

promoted the phosphorylation of 

Smad2/3, significantly enhanced the 

nuclear transport of Smad4 and 

p-Smad3, and thereby increasing the 

expression of type I collagen and type 

I procollagen by approximately 2.3 

times.

(56)

Skin of 8-week-old 

female Kunming mice 

induced by D-galactose

Subcutaneous injection of 

500 mg/kg D-galactose once 

a day for 7 weeks

25, 50, 100 mg/kg Sea 

buckthorn PCs, once daily for 

4 weeks

The collagen fibers and 

elastic fibers are closely 

arranged and their 

quantities increase, and 

the content of type 

I collagen and tropoelastin 

is significantly 

upregulated.

PCs significantly increased the 

expression levels of TGF-β1 and 

Smad3 by activating the TGF-β1/

Smad3 pathway, thereby promoting the 

synthesis of 70–90% collagen and 

50–60% elastin precursors.

(74)

Human dermal fibroblast 

cell (NHDF) irradiated 

with UVB

Total irradiance dose: 

144 mJ/cm2

1 μg/mL, 10 μg/mL, 100 μg/mL 

blackcurrant PCs, 1.5 h

The synthesis of type 

I procollagen was 

significantly upregulated.

PCs significantly upregulated the 

expression of TGF-β and promoted the 

phosphorylation of Smad2/3, thereby 

promoting the synthesis of type 

I procollagen (increasing by 273.9% at 

10 μg/mL PCs and 340.1% at 100 μg/

mL PCs).

(83)
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participants aged 35 to 65 years who exhibited prominent wrinkles 
along with mild to moderate skin laxity and uneven skin tone were 
enrolled. The participants were randomly assigned to either the FBE 
group receiving 100 mg of fermented bilberry extract daily or the 
placebo group receiving maltodextrin and magnesium stearate devoid 
of PCs. These findings revealed that FBE enhanced the antioxidant 
capacity of the skin while concurrently reducing inflammation (90).

3.4 PCs inhibit pigmentation in aging skin

UV radiation is the primary inducer of melanin production. 
Prolonged exposure to UV radiation can lead to an increase in the 

number of melanocytes within the skin, thereby increasing melanin 
synthesis and resulting in skin pigmentation (9, 91). Specifically, UVA 
radiation activates opsin receptors in melanocytes, which subsequently 
promotes melanin synthesis. Conversely, UVB radiation enhances 
melanin synthesis by facilitating melanocyte differentiation and 
stimulating keratinocytes to release melanocyte-stimulating hormone 
(MSH), along with associated immunomodulatory factors and stem 
cell growth factors (92, 93). Upon exposure to UV radiation, 
endogenous α-melanocyte stimulating hormone (α-MSH) binds to 
the melanocortin 1 receptor (MC1R). This interaction activates 
adenylate cyclase (AC), leading to an increase in intracellular cyclic 
adenosine monophosphate (cAMP) levels. Subsequently, cAMP 
activates protein kinase A (PKA), which ultimately mediates the 

TABLE 4  PCs inhibit inflammatory responses in different models.

Model Induction/
irradiation dose

PCs intervention Effects Mechanism of action Ref.

Primary rat dermal 

fibroblasts (RDF) treated 

with H₂O₂

0.3 mM H₂O₂, 30 min
5, 10, 25 μg/mL black rice seed 

coat PCs, 2.5 h

The cellular inflammatory 

response was significantly 

alleviated.

25 μg/mL PCs significantly inhibited the 

phosphorylation of IκBα and blocked the 

nuclear translocation of NF-κB p50/p65, 

thereby reducing the IL-6 inflammatory 

factor by 1.86 times.

(88)

Normal human 

epidermal keratinocytes 

(NHEK) irradiated with 

UVB

30 mJ/cm2, after a single 

instantaneous irradiation, 

culture for 24 h

10, 20, 30, 40, 50 μg/mL grape 

seed PCs, among which 30 μg/

mL is the main effective 

concentration, pretreat for 

3–6 h before irradiation, and 

wash off after irradiation

The cellular inflammatory 

response was significantly 

alleviated.

30 μg/mL PCs significantly inhibited the 

activation of IKKα and the degradation 

of IκBα, significantly reduced the nuclear 

translocation of NF-κB/p65, thereby 

blocking the transcription of downstream 

inflammatory genes and alleviating the 

inflammatory response.

(76)

Normal human 

epidermal keratinocytes 

(NHEK) irradiated with 

UVB

30 mJ/cm2, after a single 

instantaneous irradiation, 

culture for 24 h

5, 10 μg/mL Persimmon 

Oligomeric Proanthocyanidins, 

24 h

The inflammatory response 

of cells was significantly 

alleviated, and the apoptosis 

rate of cells decreased.

10 μg/mL Persimmon Oligomeric 

Proanthocyanidins significantly inhibited 

the phosphorylation of p65 and 

prevented its nuclear translocation, 

thereby downregulating the expression of 

50% TNF-α and 40% IL-6, and thus 

alleviating the inflammatory response.

(64)

Skin of 6-7-week-old 

female SKH-1 hairless 

mice irradiated with 

UVB

180 mJ/cm2, 3 times a week 

for 24 weeks

0.2, 0.5% (w/w) grape seed PCs 

was added to the AIN 76A feed 

for 24 weeks

The degree of white blood 

cell infiltration in the dermis 

of the skin was significantly 

reduced. The expression of 

UVB-induced 

proinflammatory cytokines 

in mouse skin and skin 

tumors was significantly 

inhibited.

0.5% PCs significantly downregulated the 

expression of COX-2. The expressions of 

pro-inflammatory cytokines such as 

TNF-α, IL-1β, and IL-6 were significantly 

reduced by 47, 59, and 58%, respectively, 

blocking the transmission of 

inflammatory signals and reducing the 

stimulation of inflammatory mediators 

on skin cells.

(89)

66 healthy white women 

aged 35 to 65, with 

obvious crow’s feet, mild 

to moderate sagging and 

uneven skin tone

Simulation of natural aging 

skin and photoaging skin 

(without artificial UV 

irradiation)

The treatment group Took 

100 mg of fermented bilberry 

extract rich in PCs orally every 

day, for 28, 56 and 84 days, 

respectively

On the 84th day, the wrinkle 

depth, the skin roughness, 

the skin’s redness component 

on the subjects’ skin 

decreased by 10.6, 7.3, 

16.8%, respectively; the skin 

smoothness, firmness, 

elasticity antioxidant 

capacity increased by 7.9, 

13.3, 12.4, 20.8%, 

respectively

PCs reduced the skin’s redness 

component. It is speculated that this 

might be due to their ability to 

downregulate the expression of pro-

inflammatory factors (such as IL-6), 

thereby alleviating skin inflammatory 

responses.

(90)
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activation of cAMP response element binding protein (CREB) and 
microphthalmia-associated transcription factor (MITF). These 
transcription factors increase the expression of Tyrosinase (TYR), a 
key enzyme involved in melanin synthesis, thereby stimulating 
melanin production (94, 95).

PCs can inhibit the activity of tyrosinase, leading to a reduction 
in tyrosine expression and a decrease in melanin synthesis. This 
process ultimately results in diminished melanin deposition within 
the body and contributes to the slowing of skin aging. Chong et al. 
(96) treated thyroxine-induced senescent mice with grape seed PCs 
and reported that these PCs significantly inhibited tyrosinase 
activity in the skin cells of these aged mice, thereby suppressing 
melanin synthesis and effectively alleviating skin pigmentation 
issues. Matthew et al. (97) demonstrated that tyrosinase activity was 
markedly reduced when PCs extracted from lychee roots were used, 
suggesting that these PCs could achieve skin whitening effects by 
inhibiting tyrosinase activity. Chen et  al. (63) explored the 
inhibitory effect of lotus seed PCs on melanin synthesis in human 
skin fibroblast epithelial cells exposed to UVB radiation. Their 
research revealed that lotus seed PCs effectively suppressed the 
conversion of melanin precursors (such as tyrosine and DOPA) into 
melanin by inhibiting the activity of tyrosinases, including 
monophenolase and diphenolase, thus significantly reducing 
UV-induced pigmentation.

In a clinical trial designed to evaluate the effects of apple extract 
(AP) supplements containing PCs on skin pigmentation issues 
induced by UV exposure in healthy women, participants were 
randomly assigned to three groups: a low-dose AP group (300 mg/
day), a high-dose AP group (600 mg/day), and a placebo group. 
These groups underwent continuous supplementation for 12 weeks. 
The results indicated that AP administration significantly reduced 
the melanin content of the skin following UV exposure, confirming 
its capacity to diminish melanin production through the inhibition 
of tyrosinase activity (98). In another clinical trial investigating the 
impact of red wine beverages containing PCs on sunburn and 
dryness resulting from UV exposure in women, 100 healthy female 
subjects were randomly allocated into two groups: the test group 
receiving 200 mg/day of PCs-containing red wine beverages and the 
control group receiving 200 mg/day of red wine beverages devoid 
of PCs. After 12 weeks of continuous consumption, measurements 
revealed a significant reduction in the melanin index at sunspots 
within the test group, indicating that PCs-containing red wine 
beverages effectively inhibited tyrosinase activity, leading to 
decreased melanin production (99).

In addition to the previously mentioned four beneficial effects 
on aging skin, PCs can also enhance barrier function and hydration. 
They promote the upregulation of filaggrin and keratin expression. 
Filaggrin plays a crucial role in lipid synthesis within the stratum 
corneum of the skin, whereas keratin is essential for the formation 
of the skin barrier. Consequently, PCs contribute to improved 
moisture retention in the skin and strengthen its resistance to 
external stimuli (100, 101). Furthermore, PCs can facilitate cell 
migration, which is a key aspect of tissue repair. In fibroblasts 
subjected to oxidative stress from H₂O₂ exposure, treatment with 
PCs significantly increased cell migration rates. This enhancement 
enables these cells to resynthesize extracellular matrices such as 
collagen, thereby directly supporting skin regeneration and repair 
while delaying collagen imbalance-related skin aging (56, 102).

4 Methods for improving the stability 
and bioavailability of PCs

PCs exhibit poor stability, which significantly diminishes their 
bioavailability. To address this limitation, encapsulation techniques 
can be employed to increase the stability of PCs, thereby improving 
their bioavailability (103, 104). Encapsulation refers to the process 
of embedding bioactive compounds within solid particles or liquid 
vesicles. This technique not only regulates the release of bioactive 
substances but also masks undesirable odors, stabilizes biological 
activity, and protects sensitive compounds from degradation (105, 
106). Currently, encapsulation is a focal point of research with 
extensive application potential. It is widely acknowledged as an 
effective strategy for preserving the stability of bioactive substances 
and extending the shelf-life of materials that are sensitive to light 
and heat (107, 108). The primary forms of encapsulation for PCs 
include microcapsules, liposomes, and nanoparticles, as shown in 
Table 5.

Microcapsule technology represents an innovative packaging 
approach that has emerged in recent years. This technique 
primarily involves the dispersion of small-molecule active 
compounds, sensitive materials, or volatile substances through 
physical or chemical methods, followed by the formation of 
microcapsules encapsulated with protective films (109). First, 
these microcapsules effectively shield bioactive components from 
environmental degradation, prolong their stability, and ensure 
precise delivery to targeted sites. Additionally, they minimize 
interactions between different ingredients, thereby extending the 
shelf-life of the product. Owing to these advantages, microcapsule 
technology has found extensive applications across diverse fields, 
such as food science, biomedicine, sensing technologies, and 
textiles (110–112). Moreover, microencapsulation can enhance 
the light and oxidation resistance of PCs, thereby broadening their 
potential and application range in functional products (113).

Liposomes play a crucial role in colloidal drug delivery systems, 
particularly within the fields of food and nutrition. Primarily 
composed of phospholipids, they can encapsulate water-soluble 
substances in their internal aqueous phase while accommodating 
lipophilic compounds within the lipid bilayer, thereby forming 
liposomes with a well-defined bilayer structure (114, 115). These 
structures exhibit several advantageous properties, including low 
toxicity, high plasticity, complete biodegradability, lack of 
immunogenicity, self-assembly capability, and ease of modification 
(115). Given that PCs are water soluble, they can be  effectively 
incorporated into the aqueous core of liposomes. This incorporation 
protects PCs from degradation caused by environmental factors 
such as light exposure, pH fluctuations, and temperature 
variations (113).

Nanoparticles have been shown to be  an optimal choice for 
encapsulating phenolic compounds and enhancing their 
bioavailability. They significantly improve the uptake efficiency of 
polyphenols by increasing their solubility, facilitating their absorption 
through endocytosis, and promoting the entrapment or surface 
adsorption of biomolecules (116). This encapsulation technology not 
only enhances the solubility and stability of bioactive compounds but 
also plays a pivotal role in drug delivery systems. The carrier materials 
used for nanoparticles are typically biodegradable or ion sensitive and 
exhibit low toxicity, minimal side effects, and controllable release 

https://doi.org/10.3389/fnut.2025.1650328
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Ye et al.� 10.3389/fnut.2025.1650328

Frontiers in Nutrition 12 frontiersin.org

characteristics. Moreover, nanoparticles can traverse intercellular and 
intertissue gaps to reach target sites directly, thereby further improving 
the bioavailability of bioactive substances (117–119).

In addition, the intestinal microbiota, dietary fiber and fat, 
various antioxidants, pH regulation, and low-temperature 
extraction methods can increase the bioavailability of PCs. PCs 
operate synergistically with intestinal microorganisms such as 
Lactobacillus and Bifidobacterium. The metabolism of PCs by these 
intestinal microorganisms results in the generation of short-chain 
fatty acids and other secondary metabolites that further augment 
the antioxidant effects of PCs (120). Moreover, PCs exhibit a 
synergistic relationship with dietary fiber and fat. When combined 
with dietary fiber, PCs are protected from degradation by digestive 
enzymes during digestion; this facilitates their gradual release in the 
intestines, thereby prolonging their antioxidant activity (121). 
Additionally, when PCs are paired with other antioxidants, such as 
vitamin C, they promote preferential oxidation of these 
antioxidants, which enhances the bioavailability of PCs (122). The 
stability and bioavailability of PCs in aqueous solutions can 
be improved by incorporating an acidic buffer to adjust the pH to 
acidic levels or by avoiding mixing the PCs solution with alkaline 
substances (46). Furthermore, employing low-temperature 
extraction techniques for PCs—such as low-temperature 
prefmentation impregnation and dry ice freezing—can minimize 
degradation during extraction processes. These approaches 
collectively improve both the stability and bioavailability of 
polyphenol compounds (123).

5 Summary and outlook

Skin aging is a multifaceted biological process influenced by 
various factors. Currently recognized contributors to this phenomenon 
include increased oxidative stress, elevated expression of MMPs, 
degradation of collagen and elastin, heightened inflammatory 
responses, and melanin deposition, among others. The mechanisms 
through which PCs exert anti-skin aging effects involve multiple 
targets, levels, and pathways, as shown in Figure 3. PCs can alleviate 
oxidative stress in aging skin by neutralizing ROS, inhibiting 
ROS-induced lipid peroxidation, and enhancing the antioxidant 
capacity of the skin. Furthermore, it reduces the degradation of 
collagen and elastin in aged skin while promoting collagen synthesis 
by inhibiting the MAPK pathway and activating the TGF-β/Smad 
signaling pathway. This dual action results in increased levels of 
collagen and elastin within aging skin. Additionally, PCs mitigate the 
inflammatory response associated with skin aging by inhibiting the 
NF-kB signaling pathway, thereby decreasing the secretion of 
proinflammatory cytokines. Moreover, it inhibits tyrosinase activity 
to reduce melanin production in aged skin, effectively 
suppressing pigmentation.

With increasing awareness of public health and ongoing 
in-depth research on PCs, the development and application of PCs 
present significant opportunities. PCs not only delay and repair 
skin aging but also exhibit remarkable efficacy in combating skin 
cancer, alleviating allergic reactions on the skin, protecting 
cardiovascular health and cerebrovascular functions, preventing 

TABLE 5  Packaging types for stabilizing PCs.

Encapsulation 
type

Materials Function Advantage Ref.

Microcapsule

Sodium alginate

Carboxymethyl cellulose

Isolate oxygen, light and damage from gastric 

acid

Effectively delay the release of PCs, stability 

and bioavailability of PCs ↑
(132)

Polylactic acid

Isolate the PCs from direct contact with the 

external environment and control the release 

speed of the PCs

Stability and bioavailabilityof PCs ↑ (133)

Sodium alginate
Isolate the degradation of PCs by light and 

oxygen

Antioxidant activity, stability and 

bioavailability of PCs↑
(134)

Liposomes

Maltodextrin

β-cyclodextrin

Isolate oxygen, light and damage from gastric 

acid

Target the release of PCs into the intestine to 

prevent degradation by gastric acid
(113)

Soy lecithin

Cholesterol

Isolate the PCs from direct contact with the 

external environment and control the release 

rate of the PCs

Solubility, stability and bioavailability of 

PCs↑
(135)

Soy lecithin

Cholesterol

The packaged PCs have better ROS removal 

activity

Water solubility, stability and bioavailability 

of PCs↑
(136)

Nanoparticles

Casein-maltodextrin

Slow down the decomposition of PCs in the 

gastrointestinal tract and enhance its ability to 

resist oxidative stress and heat shock

Antioxidant stability and bioavailability of 

PCs↑
(137)

Lecithin
Improve the packaging efficiency of PCs and 

stabilize their antioxidant capacity
Control PCs release and stability↑ (138)

Soy phosphatidylcholine

Monoglyceride citrate
Improve the packaging efficiency of PCs Stability and bioavailability of PCs ↑ (139)

Low-molecular-weight 

chitosan
Form stable and highly bioactive nanoparticles Biological activity of PCs ↑ (140)
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myopia development, and relieving physical fatigue and mental 
distress, such as depression. However, it is important to 
acknowledge that there are certain limitations and knowledge gaps 
in the current research regarding the anti-skin aging effects of PCs. 
The limitations of existing research are reflected in several key 
aspects: (1) Lack of clinical research: Most studies investigating the 
antiaging effects of PCs rely on in  vitro cell culture or in  vivo 
animal models. While these models provide valuable preliminary 
data, they may not fully capture the complexity of human skin 
physiology and metabolism. Additionally, clinical trials often 
involve relatively small sample sizes, which limits both the 
statistical power and generalizability of their findings. (2) 
Verification is needed for nanoparticles validity: PCs exhibit poor 
stability under various environmental conditions, such as high 
temperature, light exposure, and alkalinity. This instability 
significantly impacts their bioavailability and efficacy. Although 

packaging techniques have been explored to increase stability, their 
effectiveness in improving the bioavailability of PCs within the 
human body remains inadequately understood. (3) Unresolved 
mechanism underlying photoaged skin repair: Although some 
mechanisms by which PCs combat skin aging have been partially 
elucidated, a comprehensive understanding of their molecular and 
cellular interactions is still lacking. In particular, further detailed 
investigations into the signaling pathways and gene networks 
regulated by PCs within human skin are necessary for advancing 
this field.
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