& frontiers

@ Check for updates

OPEN ACCESS

EDITED BY
Karolina Wojtunik-Kulesza,
Medical University of Lublin, Poland

REVIEWED BY

Sara Luz Morales-Lazaro,

National Autonomous University of Mexico,
Mexico

Rogério Saad Vaz,

Federal University of Parana, Brazil

Anna Oniszczuk,

Doctoral School of Medical University of
Lublin, Poland

*CORRESPONDENCE

Linlin He
helinlin312@163.com

Wengang Jin
jinwengang@nwafu.edu.cn

RECEIVED 19 June 2025
ACCEPTED 20 August 2025
PUBLISHED 03 September 2025

CITATION
Ye H, Sun J, He L, Ai C, Jin W and Abd
El-Aty AM (2025) Beneficial effects of
proanthocyanidins on skin aging: a review.
Front. Nutr. 12:1650328.

doi: 10.3389/fnut.2025.1650328

COPYRIGHT

© 2025 Ye, Sun, He, Ai, Jin and Abd El-Aty.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,

distribution or reproduction in other forums is
permitted, provided the original author(s) and

the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Nutrition

Frontiers in Nutrition

TYPE Review
PUBLISHED 03 September 2025
pol 10.3389/fnut.2025.1650328

Beneficial effects of
proanthocyanidins on skin aging:
a review

Hua Ye!?, Jiagiang Sun??, Linlin He!?*%*, Chenyue Ai'?,
Wengang Jin'?34* and A. M. Abd El-Aty>®

!College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, China,
2Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong,
China, *Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive
Development, Shaanxi University of Technology, Hanzhong, China, *Qinba State Key Laboratory of
Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology,
Hanzhong, China, *Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University,
Giza, Egypt, °Department of Medical Pharmacology, Faculty of Medicine, Atatlirk University, Erzurum,
Tarkiye

Skin aging is a gradual physiological process influenced by both intrinsic and
environmental factors and is characterized by the appearance of wrinkles,
pigmentation, reduced elasticity, dryness, and vascular changes. In recent years,
interest in the use of natural bioactive compounds to mitigate skin aging has
increased, reflecting the global shift toward safer, sustainable, and health-conscious
skincare solutions. Proanthocyanidins (PCs), a class of polyphenolic compounds
derived from plant sources, exhibit strong antioxidant, anti-inflammatory, and
antipigmentation properties. These compounds have considerable potential
for enhancing the structure and function of aged skin by reducing oxidative
stress, promoting collagen and elastin synthesis, alleviating the skin inflammatory
response, and inhibiting pigmentation. Despite their promising therapeutic value,
the efficacy of PCs can be compromised by their environmental instability and low
bioavailability. Advances in encapsulation techniques and combination formulations
have shown promise in enhancing the stability and delivery efficiency of PCs,
thereby improving their performance in antiaging applications. In conclusion,
PCs offer a scientifically grounded and sustainable approach for addressing skin
aging. Their integration into dermatological products represents an innovative
and eco-conscious strategy for developing next-generation skincare solutions
with broad health and consumer benefits.

KEYWORDS

proanthocyanidins (PCs), oxidative stress, collagen and elastin, inflammatory
response, skin pigmentation

1 Introduction

Skin aging is a complex phenomenon resulting from the interplay of internal (genetic) and
external (environmental) factors. It can be categorized into two distinct types: endogenous
and exogenous skin aging (1, 2). Endogenous skin aging is influenced by genetic factors and
progresses gradually with advancing age. Its characteristic manifestations include a decline in
overall skin texture, the appearance of fine and evenly distributed wrinkles, a slightly dull
complexion, and an absence of prominent pigmentation spots or erythema. In contrast,
exogenous skin aging, on the other hand, is associated with detrimental external environmental
factors and poor lifestyle habits, such as ultraviolet (UV) radiation exposure, air pollution,
sleep deprivation, and smoking. Among these factors, UV radiation stands out as the most
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significant contributor to this form of aging; it is commonly referred  on preventing and treating skin aging has garnered considerable
to as photoaging of the skin. The typical manifestations of photoaged  attention from scientific researchers (11).
skin include a leather-like appearance in areas exposed to UV light, Currently, in addition to maintaining a healthy lifestyle, cultivating
characterized by dense localized wrinkles along with common a positive mindset, and utilizing skincare products tailored to
pigmentation spots and erythema (3, 4). UVA (320-400 nm) possesses  individual needs, the prevention and treatment methods for natural
substantial penetration capability, allowing it to directly reach the  skin aging primarily encompass medical aesthetic interventions along
dermis and induce the production of reactive oxygen species (ROS)  with the administration of metformin (12, 13) and doxycycline (DOX)
(5). Conversely, UVB (275-320 nm) primarily accumulates in the  (14). The strategies for preventing and treating skin photoaging
epidermis and is recognized as the principal pathogenic factor ~ mainly involve sun protection measures alongside topical medications
responsible for sunburn erythema, hence referred to as the “erythema  such as retinoic acid (15), chloroacetic acid (16), and 5-fluorouracil
effect” of UV radiation (6). In contrast to UVA and UVB rays, most  (17). Moreover, medical aesthetic techniques are employed within
UVC (230-275 nm) wavelengths are absorbed by the surface of the  these treatments. While medical aesthetic approaches yield rapid
ozone layer before it reaches the Earth’s surface (7). results in the short term, they also carry certain risks. These risks
Compared with endogenous aging, skin aging induced by UV include but are not limited to local skin infections at injection sites,
exposure is substantially more severe. Endogenous aging typically  induration, ecchymosis, vascular embolism, nerve damage, fat
involves progressive degeneration characterized by gradual embolism, allergic reactions, and other complications—potentially
degradation of the extracellular matrix without causing pronounced  resulting in unnatural facial expressions. Adverse reactions associated
visible damage. Conversely, photoaging resulting from prolonged  with pharmacological treatments for skin aging can be severe and may
UV exposure leads to extensive collagen degradation and the  present pronounced side effects. Consequently, it is essential to explore
denaturation of elastin, which promotes acute damage to the  new anti-skin aging products.
extracellular matrix and results in substantial harm. Furthermore, Compared with traditional pharmaceuticals used to combat skin
UV radiation induces excessive ROS within skin tissues, facilitating ~ aging, natural bioactive substances have emerged as promising
local capillary dilation and triggering an inflammatory response  alternatives because of their reduced side effects and diverse biological
that manifests as redness, swelling, and burning sensations on the  activities (18, 19). Natural bioactive compounds such as retinoids,
skin (8). Additionally, UV radiation can increase melanocyte  peptides and antioxidants (such as vitamin C) and PCs play beneficial
activity, leading to excessive melanin production and accumulation.  roles in the prevention and treatment of skin aging. Retinoids promote
This process results in pigmentation changes on sun-exposed areas  keratin renewal, stimulate collagen production, and inhibit its
of the skin, giving rise to pigmented spots (9, 10). Skin aging  degradation (20, 21). Peptides serve as antiaging agents primarily by
profoundly impacts individuals’ appearance and causes significant  increasing the levels of collagen, elastin, and hyaluronic acid, thereby
physical and psychological distress. Consequently, research focused ~ enhancing the elasticity and firmness of the skin (22). Vitamin Cis a

¥ Inhibit oxidative stress in aging skin
@ Reduce ROS accumulation

@ Inhibit lipid peroxidation caused by ROS
® Increase antioxidant capacity

i
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¥ Increase the content of collagen
and elastin in aging skin

@ Inhibit the MAPK pathway to
reduce the degradation of collagen and
elastin in aging skin.

® Activate the TGF-B/Smad signaling
pathway to promote the synthesis of ﬂ

ollagen in aging skin.

3 Alleviate the inflammatory
response in aging skin

® Inhibit the NF-kB signaling pathway
to reduce the secretion of inflammatory
factors

3 Inhibit pigmentation in aging skin

@ Inhibit the activity of tyrosinase to
reduce the production of melanin in aging
skin

FIGURE 1

The beneficial effects of PCs on the repair of aging skin. Four main effects include inhibiting oxidative stress, increasing collagen and elastin content,
alleviating the inflammation, and inhibiting pigmentation. ROS, reactive oxygen species; MAPK, mitogen-activated protein kinase; NF-kB, nuclear
transcription factor-kB; TGF-p, transforming growth factor-.
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well-known antioxidant that effectively neutralizes free radicals,
mitigates oxidative stress damage to cells, and acts as an essential
cofactor in collagen synthesis. It promotes collagen production while
inhibiting melanin formation, thus reducing pigmentation and
increasing the degree of complexion (23). However, all the
aforementioned drugs or ingredients have varying degrees of side
effects, which can not only impact therapeutic efficacy but also lead to
adverse reactions within the human body. Retinoids are known for
their high irritability to the skin, which may result in adverse reactions
such as dryness and peeling (20, 24). The effectiveness of peptides
tends to be relatively slow; furthermore, they require specific
concentrations and careful formulation design for optimal results (22).
Vitamin C is prone to oxidation, which can diminish its efficacy.
Additionally, high concentrations of vitamin C may cause irritation
both on the skin surface and in the gastric mucosa (23, 25).

PCs are internationally recognized as effective natural polyphenolic
antioxidants with notable properties. In comparison with other
antioxidants, PCs are widely available from various sources at low cost
while maintaining a relatively high safety profile—making them suitable
for long-term consumption or application (26). PCs possess a robust
capacity to neutralize free radicals effectively while inhibiting ROS
formation (27). Compared with retinoids, peptides, and vitamin C, PCs
exhibit unique antiaging potential that manifests not only through the
enhancement of glycolipid metabolism and microvascular perfusion—
achieved by inhibiting adipogenesis and improving mitochondrial
function, respectively (28, 29)—but also by mitigating oxidative stress-
induced damage to skin cells via the elimination of free radicals. This
protective action safeguards both the structure and function of skin cells.
Furthermore, PCs can inhibit the release of inflammatory factors, thereby
alleviating the inflammatory response in the skin and consequently
slowing its aging process (30, 31).

The reparative effects of PCs on aging skin have garnered
significant attention in recent years. It exerts beneficial effects through
various mechanisms: inhibiting the oxidative stress associated with
aging skin; enhancing the collagen and elastin contents; alleviating
inflammatory responses; and reducing the prevalence of pigmentation
issues in aged skin (Figure 1). This paper reviews the structure and
stability of PCs as well as their underlying mechanisms contributing
to their ability to repair aging skin. Furthermore, strategies aimed at
enhancing the stability and bioavailability of these products are
discussed, providing novel insights for research focused on utilizing
PCs to combat skin aging.

2 Resources, structure and stability of
PCs

Fruits and seeds containing PCs include berries (e.g., grapes,
blueberries, blackberries, cranberries), nuts (e.g., almonds, hazelnuts),
as well as apples, hawthorns, cocoa beans, black beans, red beans,
black-skinned peanuts, and red-skinned peanuts. Grape seeds are
indeed one of the richest natural sources of PCs among known plant
species, with a content exceeding 95% on the basis of dry weight,
which is significantly greater than that found in other commonly
known plants. PCs have been isolated and purified from raw materials
via techniques such as supercritical CO, extraction, solvent extraction,
column chromatography, high-speed countercurrent chromatography;,
membrane separation, and crystallization or recrystallization.
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PCs, commonly known as condensed tannins, are polymers
characterized by both low and high molecular weights. It is formed
through the linkage of multiple hydroxylated flavane-3-alcohol units
via carbon-carbon bonds. The monomers that constitute these
polymers encompass four distinct structural types: (+)-catechin
(designated C), (—)-epicatechin (designated EC), (+)-catechin gallate
(designated CG), and (—)-epicatechin gallate (designated ECG) (32),
as illustrated in Figure 2. The simplest form of PCs consists of catechin
(C) or epicatechin (EC) monomers, which can undergo polymerization
to yield dimers, trimers, tetramers, and so forth, extending up to
decamers. PCs within the range of 2 °C to 4 °C are typically classified
as oligomeric PCs on the basis of the degree of polymerization; those
above 4 °C are categorized as polymeric PCs (33). PCs are further
divided into two categories: Type A and Type B. Type A PCs comprise
trimers (such as PCs A1--A2) that contain double bonds—specifically,
a C=C double bond and a C=0 double bond—as illustrated in Table 1.
This type is found in select plants such as peanuts and lychees (34-36).
Currently, the structures of eight type B dimers have been successfully
isolated and elucidated; they are designated B1 through B8 (37), as
presented in Table 1. The primary structural distinction among these
dimers lies in their varying carbon connection sites. Dimers B1 to B4
are linked via the C4--C8 site, whereas dimers B5 to B8 connect
through the C4--Cé6 site (38).

PCs are recognized for their instability, and environmental factors
such as pH, temperature, and light play a significant role in influencing
their stability (39). The stability of cocoa bean PCs is optimal within a
neutral to weakly acidic environment. In contrast, under alkaline
conditions, the B-ring hydroxyl group of PCs becomes vulnerable to
oxidation, resulting in a decrease in their antioxidant activity (40). In
experiments involving purple sweet potato PCs treated with citric
acid-phosphate buffer solutions at various pH values (3.0, 5.0, and
7.0), at pH 3.0, purple sweet potato PCs exhibited relative stability
characterized by a slow degradation rate. However, at pH 7.0, the
phenolic hydroxyl group (-OH) within the PCs molecule undergoes
oxidation to form a quinone structure; this transformation diminishes
both its thermal stability and reactivity (41). Elevated temperatures
further exacerbate the degradation of PCs (42). For example, when
PCs purified from black carrots, elderberries, and strawberries were
subjected to heating at 95 °C for 6 hours at pH 3.5, there was an
observable lightening of sample color along with the formation of
degradation products such as chalketonoside, phenolic acids, and
maroumarin. Although these newly formed degradation products
exhibited some antioxidant capacity, they were insufficient to
compensate for the loss of activity associated with PCs (43).

The drying process of blueberry pulp containing PCs at various
temperatures (175 °C, 200 °C, and 225 °C) leads to continuous
degradation of the compound. Notably, the rate of degradation
increases with increasing temperature, whereas the antioxidant
activity correspondingly decreases with both elevated temperature
and prolonged exposure time. These findings indicate that high-
temperature dry heat treatment adversely affects the stability of PCs
and consequently reduces their bioavailability (44). When the
storage temperature exceeds 35 °C, the degradation rate of PCs in
blueberries significantly increases, indicating that elevated
temperatures can compromise the stability of PCs in these fruits.
Therefore, low-temperature storage is essential for preserving the
PCs content (45). Additionally, during storage and transportation,
PCs are inevitably subjected to degradation caused by light

frontiersin.org


https://doi.org/10.3389/fnut.2025.1650328
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Yeetal. 10.3389/fnut.2025.1650328
OH OH
\\\\\\OH OH
OH HO (o} \\\\\
HO O
“IoH
o OH
C D
OH OH
OH OH
HO (0] O HO RN
.,,//o "///O
OH
OH o OH OH 0
OH OH
OH OH
FIGURE 2

The structural formulas of different types of monomers that make up PCs. Each structure is a flavonoid compound, with variations in hydroxyl group
arrangements and benzene rings. The compounds display different stereochemical configurations, indicated by solid and dashed wedges. (A) (+)
-catechin (C), (B) (=) -epicatechin (EC), (C) (+) -catechin gallic acid (CG), (D) (-) -epicatechin gallic acid (ECG).

exposure. When the duration of exposure exceeds 96 h, a marked
increase in the degradation rate of PCs occurs (46). Consequently,
to maintain the activity of PCs, it is imperative to sustain an acidic
environment throughout processing, storage, and transportation;
maintain temperatures below 65 °C; and minimize light
exposure (47).

In addition, processing technology significantly impacts the
stability of PCs in food (39). Research has shown that the PCs
content in processed blackcurrant products, such as juice and jam,
can decrease by more than 90% compared with that in fresh fruits.
This finding indicates that traditional processing methods for juice
and jam may lead to a substantial loss of PCs from blackcurrants
(48). Cocoa powder is recognized for its high PCs content. During
the fermentation process of cocoa powder, hydrolases secreted by
microorganisms—such as lactic acid bacteria and yeast—including
glycosidases and esterases—can cleave the glycosidic or ester
bonds within PCs. This degradation results in the formation of
small-molecule phenolic acids or oligomers. Furthermore,
oxidases produced by these microorganisms, such as polyphenol
oxidase, may catalyze the oxidation of PCs into quinone
compounds. Consequently, this process reduces its antioxidant
activity and affects its bioaccessibility (49). Extrusion treatment
has been shown to significantly increase the levels of PCs
monomers and dimers present in grape seeds and skins. However,
it simultaneously reduces the total PCs content in grape skins and
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residues by 18 to 53%. These findings demonstrate that while food
processing can release PCs by disrupting the food matrix, it may
also induce alterations in their chemical structure, which could
compromise their stability and subsequently affect their
bioavailability (50).

3 Repair mechanism of PCs in skin
aging

Natural skin aging is a physiological decline characterized by the
deterioration of bodily functions and metabolism, which is largely
irreversible. In contrast, photoaging refers to pathological damage
induced by UV radiation. Certain symptoms associated with
photoaging can be alleviated through pharmacological interventions
and stringent sun protection measures aimed at repairing
photodamage. Currently, pharmacological treatments focus primarily
on addressing skin photoaging resulting from UV exposure. However,
relatively few studies have investigated skin aging caused by other
factors. Research has demonstrated that PCs treatments can inhibit
oxidative stress in aging skin, increase the collagen and elastin
contents within aged dermal layers, mitigate inflammatory responses
related to skin aging, and suppress pigmentation changes in aged skin.
Collectively, these actions contribute to the reparative effect of PCs in
aging skin.
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TABLE 1 Different structures of PCs.
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Compound Source Structure Ref.
Proanthocyanidin A1
Peanut skin, lychee seeds (124, 125)
Proanthocyanidin A2
R,=0OH
Proanthocyanidin B1
R,=H
Rl1=H
Proanthocyanidin B2
R2=0H
R,=OH
Proanthocyanidin B3
R,=H
R1=H
Proanthocyanidin B4
R2=0H
Flat peaches, black soybean R, = OH
Proanthocyanidin B5 :
seed coats, strawberries, R =H
2 (126-131)
Petiveria alliacea, hazelnut skin,
soybean seed coats
R,=H
Proanthocyanidin B6
R,=0OH
" R,=0OH
Proanthocyanidin B7 on
R,=H
HO. 0.
o
9 R =H
Proanthocyanidin B8
N R,=OH
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3.1 PCs inhibit oxidative stress in aging skin

Excessive accumulation of ROS in the body is a primary factor
contributing to oxidative stress in the skin (51). ROS are a group of
highly reactive molecules containing oxygen, including superoxide
radicals (O2-), hydroxyl radicals (OH-), and hydrogen peroxide
(H;0>) (52). In naturally aging skin, ROS predominantly originate
from mitochondria, while intracellular enzyme systems also generate
ROS during catalytic reactions (53). In photoaged skin, UV radiation
interacts with oxygen molecules within the body, leading to the
generation and accumulation of ROS (54). The presence of ROS can
initiate lipid peroxidation, which represents one of the critical
mechanisms underlying cell membrane damage and is closely
associated with cellular senescence (55).

As bioactive substances, the prominent characteristic of PCs is
their capacity to neutralize ROS and mitigate the production of
oxidative stress products, thereby decelerating the process of skin
aging. In experiments involving H,O,-treated human skin fibroblasts,
treatment with sea buckthorn PCs significantly decreased ROS levels
and notably restored the morphology of senescent cells while
enhancing cellular activity. This intervention effectively alleviated
cellular senescence and delayed the progression of skin aging (56). Li
etal. (57) induced senescence in rat adrenal pheochromocytoma cell
lines and mouse embryonic fibroblast lines via the use of rapamycin
and etoposide, followed by treatment with peanut skin PCs. The
findings revealed that peanut skin PCs decreased the ROS levels in
these two cell lines. Furthermore, it diminished the proportion of
senescent cells while restoring their proliferative capacity, thus
effectively mitigating cellular senescence. Additionally, PCs have been
shown to inhibit lipid peroxidation caused by ROS, further
suppressing skin aging. Anshu Mittal et al. (58) investigated the effects
of grape seed PCs on photoaging in hairless SKH-1 mice exposed to
UVB radiation. The results indicated that dietary supplementation
with 0.2 and 0.5% grape seed PCs significantly inhibited the formation
of lipid peroxides induced by UVB exposure and reduced ROS levels
in a dose-dependent manner in these murine models. These findings
suggest that grape seed PCs may delay the aging process of skin cells
by decreasing the generation of lipid peroxidation products such as
malondialdehyde (MDA), which are associated with UVB-induced
ROS. Li et al. (59) investigated the effects of red millet PCs on aging
model mice subjected to UVB radiation. The results demonstrated
that PCs significantly enhanced the activity of antioxidant enzymes in
these aging model mice while reducing MDA levels, thereby
highlighting their potential in combating skin photoaging. Sharma
etal. (60) induced photoaging in SKH-1 hairless mouse skin through
UVB exposure and subsequently administered diets containing 0.2
and 0.5% (w/w) grape seed PCs. The results revealed a significant
reduction in ROS, H,0,, and MDA levels within the mouse skin,
suggesting that grape seed PCs could effectively increase the
antioxidant capacity of photoaged skin and delay the aging process.

PCs can also stimulate key antioxidant enzymes, including
superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px).
The synthesis of GSH-Px and glutathione reductase (GSH-Rd), along
with the increase in their activities, contributes to a reduction in MDA
levels. This process ultimately increases the antioxidant capacity of the
skin and plays a significant role in combating skin aging. Experimental
results from Hwang et al. (61) evaluated the antioxidant effects of
proanthocyanidin oligomers on human retinal pigment epithelial cells
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and demonstrated that these oligomers significantly increased SOD
and GSH-Px activities within the cells, indicating their substantial
antioxidant activity. Li et al. (62) established a natural aging model in
mice through a high-fat diet and subsequently treated them with PCs
(200 mg/kg in the diet) extracted from lotus seed skins. Their findings
revealed that PCs markedly increased both GSH-Px and SOD
activities in the mouse liver while simultaneously reducing MDA
levels. These findings suggest that PCs derived from lotus seed skins
possess strong antioxidant properties that are capable of delaying skin
aging. Chen et al. (63) investigated the effects of lotus seed PCs on UV
radiation-induced damage in human skin fibroblast epithelial cells.
They reported that treatment with lotus seed PCs led to a reduction in
the amount of ROS generated by UV exposure, an increase in the
intracellular SOD level, and decreased MDA production, thereby
mitigating oxidative stress-related damage to the skin. Shi et al. (64)
investigated the effects of persimmon PCs on in vitro injury to human
keratinocyte HaCaT cells induced by UVB radiation. These findings
demonstrated that persimmon PCs significantly elevated the levels of
antioxidant enzymes, including SOD and GSH-Px, while concurrently
inhibiting the production of ROS and MDA. Consequently, this
treatment effectively alleviated the oxidative stress response in these
cells. Additionally, in SKH hairless mice exhibiting skin photoaging
due to UVB radiation, dietary inclusion of 0.2 and 0.5% grape seed
PCs was found to increase the levels of antioxidant enzymes such as
GSH-Px. These findings suggest that grape seed PCs can substantially
reduce oxidative stress resulting from UVB exposure while providing
protective effects against skin damage caused by UVB radiation (58).
Furthermore, a clinical trial involving 39 healthy adults who consumed
roselle beverages rich in polyphenols and PCs reported significant
increases in the serum levels of SOD and GSH-Px and reduced
GSH-Rd, following the daily intake of 200 mL of the beverages
(containing 3.92 g of gallic acid and 3.3 g anthocyanins of cyanidin-
3-glucoside) for six months. Concurrently, there was also a significant
increase in facial skin moisture content among the participants. These
findings indicate that roselle beverages contribute to increased
antioxidant capacity and improve the skin condition of the
participants (65).

In conclusion, the aforementioned research indicates that PCs can
mitigate oxidative stress associated with aging skin by neutralizing
ROS accumulation, suppressing lipid peroxidation caused by ROS,
and enhancing overall antioxidant capacity, as shown in Table 2.

3.2 PCs increase the content of collagen
and elastin in aging skin

ROS generated by skin aging can facilitate the degradation of
collagen and elastin through the activation of the mitogen-activated
protein kinase (MAPK) signaling pathway, thereby contributing to
the process of skin aging. ROS activate receptor tyrosine kinases
(RTKs) via oxidative modification, which in turn leads to the
activation of MAPKs (66). The MAPK family comprises
extracellular signal-regulated kinase (ERK), p38, and c-Jun
N-terminal kinase (JNK). ERK promotes the expression of the
oncogenic factor c-Fos, whereas both p38 and JNK are involved in
activating the transcription factor c-Jun (67, 68). C-Jun dimerizes
with c-Fos to form activator protein-1 (AP-1) (69). AP-1
subsequently enhances the upregulation of MMPs such as MMP-1,
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TABLE 2 Antioxidant stress repair effects of PCs on aging skin in different models.

Human skin
fibroblasts (HSFs)
treated with H,O,

Induction/

irradiation dose

300 pM H,0,,24 h

PCs intervention

25, 50, 100 pug/mL sea
buckthorn PCs, 24 h

Effects

Cell viability has been

significantly enhanced.

10.3389/fnut.2025.1650328

Mechanism of action

PCs significantly enhanced the
activities of SOD and GSH
antioxidant enzymes, and
significantly reduced the levels of

ROS and the content of MDA.

The activity of antioxidant

enzymes is enhanced, lipid

PCs significantly enhanced the

activity of SOD antioxidant enzymes,

NIH/3 T3 cells 1, 3, 10, 30 pM peanut skin
0.3 pM etoposide, 48 h peroxides are reduced, and significantly reduced the content of (57)
treated with etoposide PCs, 18 h
the number of senescent MDA, and thereby significantly
cells is decreased. lowered the level of ROS.
Skin of 4-to 6-week- The activity of antioxidant
PCs significantly enhanced the
old Kunming mice 2.5,5.0,7.5k]-m=2.d! red millet PCs and basal feed enzymes was significantly
activities of SOD and CAT, thereby
irradiated with UVB gradient irradiation, 7 h a were fed in a 1:1 mass ratio, enhanced, and the markers (59)
significantly reducing the level of
in half male and half day, for 8 weeks 8 weeks of oxidative stress were
ROS by more than 73.3%.
female significantly reduced.

Skin of 6-to 7-week-
old female SKH-1

hairless mice

120 mJ/cm?, 3 times a week,

for 1 month

AIN76A diet supplemented

with 0.2 and 0.5% (w/w) grape

seed PCs was added 2 weeks
before UVB irradiation, and

The activity of antioxidant
enzymes was significantly
enhanced, and the markers

of oxidative stress were

PCs significantly enhanced the
enzymatic activities of GSH, GPx,
CAT, significantly reduced the
contents of H,O, and MDA, thereby

(60)

(average weight of
20 + 1 g) irradiated
with UVB

240 mJ/cm? once a day for

5 days

apply locally, 30 min before
each UV-B irradiation, 5 h

wrinkles and thickening of
the epidermis on the dorsal
skin of the mice were

significantly alleviated.

irradiated with UVB continued to be added until significantly lowering the level of
significantly reduced.
the end of the experiment ROS by 40 to 65%.
PCs significantly increased the GSH
content by 49.2 mM/mg.pro,
The symptoms of skin
Skin of female significantly increased the SOD
damage such as erythema,
BALB/C mice 5 mg/cm? persimmon PCs, activity by 39.7 U/mg.pro,

significantly restored the GSH-PX
activity by 21.7%, significantly
reduced the MDA level by 68.9%, and
ultimately significantly reduced the

accumulation of ROS.

(64)

39 healthy adults aged
40 to 75

Simulate the naturally aging

of the skin

Took 200 mL of rose flower

beverage (containing 3.92 g of

gallic acid, 3.3 g of cyanidin-
3-glucoside) orally every day

for 6 months

The facial moisture and
microcirculation of the
subjects’ skin were

significantly improved.

The total antioxidant capacity
(TEAC) of serum in the extract
group was significantly increased by
1.08%, the activities of antioxidant
enzymes GSH, SOD and GSH-PX
were significantly increased by 40.7,
14.9 and 17.4%, respectively, and the
level of thiobarbituric acid reactive
substances (TBAR) was significantly
decreased by approximately 21.6%.
Ultimately, the skin moisture was
significantly enhanced by
approximately 18.9%.

MMP-3,

and MMP-8 (70).

The

expression of matrix

degradation in the skin, promoting the repair of aging skin. Liu et al.

metalloproteinases (MMPs) can be inhibited by tissue inhibitors of
metalloproteinase-1 (TIMP-1) but activated by epidermal growth
factor receptors (EGFRs) and cytokine receptors. These enzymes
play crucial roles in degrading collagen within the extracellular
matrix, ultimately leading to structural damage in the skin (71-73).

PCs inhibit the MAPK signaling pathway, thereby suppressing the
expression of MMPs and increasing the levels of tissue inhibitors of
TIMP-1. This mechanism ultimately prevents collagen and elastin
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(74) investigated the ability of sea buckthorn PCs to repair
D-galactose-induced skin aging in mice and reported that they slowed
collagen and elastin degradation by increasing TIMP-1 levels in skin
tissue while simultaneously inhibiting MMP-1, MMP-3, and MMP-9
expression, thereby improving the conditions associated with skin
aging. Michael et al. (75) examined the effects of various
concentrations of low-bush blueberry proanthocyanidin enrichment
on DU145 human prostate cancer cells. The results demonstrated that
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this enrichment induced TIMP-1 activity in a dose-dependent
manner, leading to reduced MMP expression.

Additionally, findings revealed that grape seed extract inhibited
the phosphorylation of proteins such as ERK, JNK, and P38 in
human epidermal keratinocytes subjected to UVB irradiation,
suggesting its ability to suppress the MAPK signaling pathway and
consequently reduce UVB-induced collagen degradation (60, 76).
Weng et al. (77) reported a decrease in the gene expression of
MMP-2 and MMP-9 alongside an increase in TIMP1 expression in
murine skin exposed to UVB radiation when 20 mg/kg areca nut
PCs were orally administered to mice, indicating their ability to
mitigate collagen degradation and slow photoaging effects on the
skin through the inhibition of the MAPK signaling pathway. Shi
et al. (64) investigated the effects of persimmon PCs on the
photoaging of mouse skin exposed to UVB radiation. Research has
shown that external application of 5 mg/cm? can reduce the gene
expression of MMP-1 and MMP-8, indicating that persimmon PCs
may alleviate the expression of the MMP by inhibiting the MAPK
signaling pathway, thereby potentially reducing collagen degradation
and slowing the photoaging process in the skin. Moreover, UV
radiation and ROS can inhibit collagen synthesis by suppressing the
TGF-p/Smad signaling pathway (78). In fibroblasts, TGF-B1 binds
to its specific receptor complexes—TPR I (the receptor for TGF-f
type I) and TPR II (the receptor for TGF-p type II). Activation
occurs when TPR II phosphorylates TRR I, which subsequently
rephosphorylates Smad2/3. Phosphorylated Smad2/3 forms
complexes with Smad4, a transcription factor that regulates type
I collagen synthesis. Upon entering the nucleus, Smad4 promotes
collagen synthesis through transcriptional regulation (79, 80).
However, exposure to excessive UVA irradiation results in the
upregulation of Smad7 in fibroblasts. This protein subsequently
interacts with TSR I to prevent the activation of Smad2/3, thereby
inhibiting collagen synthesis (81).

PCs can also promote collagen synthesis by activating the TGF-f/
Smad signaling pathway, thereby mitigating skin aging. Liu et al. (56)
established a natural aging model by treating human skin fibroblasts
with varying concentrations of H,O,. Following treatment with sea
buckthorn PCs, they observed an increase in collagen synthesis
through the activation of the TGF-B1/Smad pathway, resulting in
notable antiaging effects on the skin. In experiments involving a
mouse model of skin aging induced by D-galactose, treatment with
higher concentrations of sea buckthorn PCs (50 and 100 mg/kg) led
to an increase in TGF-f1 levels within the skin tissue and the
upregulation of Smad3 expression. This process promotes collagen
and elastin synthesis, augments the content of collagen fibers and
elastic fibers in the dermis, and improves signs associated with skin
aging (74). Sang et al. (82) investigated the protective effects of PCs
extracted from black soybean seed coats on skin fibroblasts and
reported that this extract significantly reduced UV radiation-induced
apoptosis and intracellular ROS generation while decreasing Smad3
mRNA expression. Additionally, it increased Smad7 mRNA
expression to inhibit UV-induced collagen degradation, confirming
that PCs enhance skin conditions via activation of the TGF-f/Smad
signaling pathway, thus indicating its potential for delaying skin aging.
Lu etal. (83) treated human skin fibroblasts exposed to UVB radiation
with blackcurrant PCs and reported that this treatment elevated
TGEF-f expression in cells post-UVB exposure. Concurrently, it
facilitated the phosphorylation of Smad2/3 downstream from TGF-p,

Frontiers in Nutrition

10.3389/fnut.2025.1650328

enhancing transduction within the TGF-f signaling pathway, which
subsequently promoted increased collagen content in these cells,
thereby achieving significant antiphotoaging effects on the skin.

In conclusion, the findings of the present study indicate that PCs
can alleviate the degradation of collagen and elastin by inhibiting the
MAPK signaling pathway. Additionally, it promotes collagen synthesis
through the activation of the TGF-p/Smad signaling pathway. As a
result, this leads to an increase in the collagen and elastin contents in
aging skin, thereby slowing the process of skin aging, as shown in
Table 3.

3.3 PCs alleviate the inflammatory
response in aging skin

The transcription factor nuclear factor-xB (NF-kB) plays a crucial
role in regulating a significant number of genes associated with
inflammation and immune responses. It exists as a trimer composed
of IkB-a, P50, and P65. ROS can phosphorylate and activate IkB
kinase (IKK), thereby initiating the NF-kB signaling pathway (84).
This activation facilitates the synthesis and secretion of various
inflammatory factors by epidermal and dermal cells, including
interleukin-1 (IL-1), interleukin-6 (IL-6), cyclooxygenase-2, and
tumor necrosis factor-alpha (TNF-a), which collectively induce
inflammatory responses (85, 86). Additionally, NF-kB serves as a
downstream target within the MAPK pathway. The expression of ERK,
P38 MAPK, and AP-1 can increase transcriptional activity within the
NE-kB pathway, consequently triggering skin inflammation and
accelerating the process of skin aging (87).

PCs have been demonstrated to inhibit the NF-kB signaling
pathway, thereby suppressing the production of inflammatory factors
associated with this pathway and alleviating the inflammatory
response observed in aging skin, as shown in Table 4.

In vitro cell experiments have demonstrated that PCs can alleviate
the inflammatory response associated with aging skin. Treatment of
H,0,-stimulated primary rat skin fibroblasts with PCs extracted from
rice inhibited the nuclear translocation of the NF-kBp50/p65
heterodimer within these cells. This inhibition results in reduced
inflammatory responses while promoting collagen formation and
inhibiting collagen degradation at the cellular level, ultimately
contributing to a deceleration of the skin aging process (88). Sudheer
etal. (76) reported that grape seed PCs could inhibit phosphorylation
events involving ERK, JNK, and p38 in human epidermal keratinocytes
following UVB irradiation; they also inhibited both the activation
effects and the nuclear translocation of NF-kBp50/p65. These findings
suggest that grape seed PCs may effectively reduce UVB-induced skin
inflammation through the suppression of NF-kB pathway
transcription. Xin et al. (64) demonstrated that persimmon
oligoproanthocyanidins mitigate skin inflammatory responses by
inhibiting the activation of the NF-kB signaling pathway in
UVB-damaged human keratinocyte HaCaT cells and reducing the
expression of inflammatory cytokines, including TNF-a and IL-6.

Additionally, in vivo animal experiments and a clinical trial
confirmed that PCs can alleviate the inflammatory response associated
with aging skin. Sharma et al. (89) administered grape seed PCs of 0.2
and 0.5% (w/w) in the diet to hairless SKH-1 mice exposed to UVB
radiation. The experimental findings demonstrated that grape seed
PCs inhibited the activation and nuclear translocation of NF-kB while
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TABLE 3 Repair effects of PCs on collagen and elastin in the aging skin of different models.

10.3389/fnut.2025.1650328

Induction/ PCs intervention Effects Mechanism of action
irradiation dose
PCs significantly increased the
The hyaluronic acid and
expression levels of TGF-B1 by 60-80%
water content in the skin
and TIMP-1 by 40-50%, while
tissue of mice increased
Skin of 8-week-old Subcutaneous injection of 25, 50, 100 mg/kg sea significantly reducing the contents of
significantly, the breakage
female Kunming mice D-galactose (500 mg/kg) buckthorn PCs, administered £ coll b MMP-1, MMP-3, and MMP-9 by (74)
of collagen fibers
induced by D-galactose | daily, for 7 weeks by gavage, 4 weeks § 40-60% in 100 mg/kg PCs group,
decreased, and the elastic
thereby significantly reducing the
fibers were distributed
degradation of collagen by 40-50% and
intact and orderly.
elastin by 50-60%.
Diet supplemented with 0.2 and
0.5% PCs significantly reduced the
Skin of 6-to 7-week-old 0.5% (w/w) grape seed PCs was
The degradation of expression of 67.5% MMPs by
female SKH-1 hairless 120 mJ/cm?, 3 times a week added 2 weeks before UVB
collagen and elastin is significantly decreasing ERK1/2 by 1.5 (60)
mice irradiated with for 1 month irradiation, and continued to
significantly reduced. times and p38 phosphorylation by 0.8
UVB be added until the end of the
times.
experiment
The epidermal thickness PCs significantly inhibited the MAPK
10, 20 mg/kg areca nut PCs,
was significantly reduced, | signaling pathway, significantly
orally administered by gavage,
in of 8-week-old CD-1 the collagen fiber downregulated the expression of
130 mJ/cm?, 3 times a week | once a day, 10 days before the
female mice irradiated structure was more MMP-9 by 60%, significantly reduced 77)
for 3 weeks start of UVB irradiation and
with UVB complete, and the density | collagen degradation, and maintained
continued until 24 h after the
was significantly the structural integrity of type
last UVB exposure
increased. I collagen.
100 pg/mL PCs significantly increased
the expression of TGF-p1 by 2.1 times,
romoted the phosphorylation of
The synthesis of type P Phosphory
Smad2/3, significantly enhanced the
Human skin fibroblasts 25, 50, 100 pg/mL sea I collagen and type
300 pmol/L, 24 h nuclear transport of Smad4 and (56)
(HSFs) treated with H,O, buckthorn PCs, 24 h I procollagen was
p-Smad3, and thereby increasing the
significantly upregulated.
expression of type I collagen and type
I procollagen by approximately 2.3
times.
The collagen fibers and
elastic fibers are closely PCs significantly increased the
arranged and their expression levels of TGF-p1 and
Skin of 8-week-old Subcutaneous injection of 25, 50, 100 mg/kg Sea
quantities increase, and Smad3 by activating the TGF-p1/
female Kunming mice 500 mg/kg D-galactose once | buckthorn PCs, once daily for (74)
the content of type Smad3 pathway, thereby promoting the
induced by D-galactose | a day for 7 weeks 4 weeks
I collagen and tropoelastin | synthesis of 70-90% collagen and
is significantly 50-60% elastin precursors.
upregulated.
PCs significantly upregulated the
expression of TGF-f and promoted the
Human dermal fibroblast The synthesis of type phosphorylation of Smad2/3, thereby
Total irradiance dose: 1 pg/mL, 10 pg/mL, 100 pg/mL
cell (NHDF) irradiated I procollagen was promoting the synthesis of type (83)
144 mJ/cm? blackcurrant PCs, 1.5 h
with UVB significantly upregulated. | I procollagen (increasing by 273.9% at
10 pg/mL PCs and 340.1% at 100 pg/
mL PCs).

downregulating the expression of proinflammatory cytokines suchas  hairless mice were irradiated with UVB and subsequently

TNF-q, IL-1, and IL-6, as well as cyclooxygenase-2. These findings ~ administered grape seed PCs. The results indicated that grape seed
suggest that grape seed PCs exert an antiskin aging effect by inhibiting ~ PCs significantly reduced the levels of inflammatory factors such as
TNF-a and IL-6 within the skin of these mice. In a clinical trial
investigating the antiaging, brightening, and antioxidant effects of

fermented bilberry extract (FBE) containing PCs, 66 female

the NF-kB signaling pathway, thereby mitigating inflammatory
responses and reducing skin collagen degradation. Similar outcomes
were reported in a study conducted by Anshu et al. (58) where SKH-1
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TABLE 4 PCs inhibit inflammatory responses in different models.

10.3389/fnut.2025.1650328

Induction/ PCs intervention Effects Mechanism of action
irradiation dose
25 pg/mL PCs significantly inhibited the
Primary rat dermal The cellular inflammatory phosphorylation of IkBa and blocked the
5,10, 25 pg/mL black rice seed
fibroblasts (RDF) treated | 0.3 mM H,0,, 30 min PCs 25 h response was significantly nuclear translocation of NF-kB p50/p65, (88)
coat s, 2.5
with H,O, alleviated. thereby reducing the IL-6 inflammatory
factor by 1.86 times.
30 pg/mL PCs significantly inhibited the
10, 20, 30, 40, 50 pg/mL grape
activation of IKKa and the degradation
Normal human seed PCs, among which 30 pg/
30 mJ/cm?, after a single The cellular inflammatory of IkBa, significantly reduced the nuclear
epidermal keratinocytes mL is the main effective
instantaneous irradiation, response was significantly translocation of NF-kB/p65, thereby (76)
(NHEK) irradiated with concentration, pretreat for
culture for 24 h alleviated. blocking the transcription of downstream
UVB 3-6 h before irradiation, and
inflammatory genes and alleviating the
wash off after irradiation
inflammatory response.
10 pg/mL Persimmon Oligomeric
Proanthocyanidins significantly inhibited
Normal human The inflammatory response
30 mJ/cm?, after a single 5, 10 pg/mL Persimmon the phosphorylation of p65 and
epidermal keratinocytes of cells was significantly
instantaneous irradiation, Oligomeric Proanthocyanidins, prevented its nuclear translocation, (64)
(NHEK) irradiated with alleviated, and the apoptosis
culture for 24 h 24h thereby downregulating the expression of
UVB rate of cells decreased.
50% TNF-a and 40% IL-6, and thus
alleviating the inflammatory response.
The degree of white blood 0.5% PCs significantly downregulated the
cell infiltration in the dermis | expression of COX-2. The expressions of
of the skin was significantly | pro-inflammatory cytokines such as
Skin of 6-7-week-old
0.2,0.5% (w/w) grape seed PCs | reduced. The expression of | TNF-a, IL-1f, and IL-6 were significantly
female SKH-1 hairless 180 mJ/cm?, 3 times a week
was added to the AIN 76A feed | UVB-induced reduced by 47, 59, and 58%, respectively, (89)
mice irradiated with for 24 weeks
UVB for 24 weeks proinflammatory cytokines | blocking the transmission of
in mouse skin and skin inflammatory signals and reducing the
tumors was significantly stimulation of inflammatory mediators
inhibited. on skin cells.
On the 84th day, the wrinkle
depth, the skin roughness,
the skin’s redness component | PCs reduced the skin’s redness
66 healthy white women The treatment group Took on the subjects’ skin component. It is speculated that this
Simulation of natural aging
aged 35 to 65, with 100 mg of fermented bilberry | decreased by 10.6, 7.3, might be due to their ability to
skin and photoaging skin
obvious crow’s feet, mild extract rich in PCs orally every | 16.8%, respectively; the skin | downregulate the expression of pro- (90)
(without artificial UV
to moderate sagging and 4 ) day, for 28, 56 and 84 days, smoothness, firmness, inflammatory factors (such as IL-6),
irradiation
uneven skin tone respectively elasticity antioxidant thereby alleviating skin inflammatory
capacity increased by 7.9, responses.
13.3,12.4, 20.8%,
respectively

participants aged 35 to 65 years who exhibited prominent wrinkles
along with mild to moderate skin laxity and uneven skin tone were
enrolled. The participants were randomly assigned to either the FBE
group receiving 100 mg of fermented bilberry extract daily or the
placebo group receiving maltodextrin and magnesium stearate devoid
of PCs. These findings revealed that FBE enhanced the antioxidant
capacity of the skin while concurrently reducing inflammation (90).

3.4 PCs inhibit pigmentation in aging skin

UV radiation is the primary inducer of melanin production.
Prolonged exposure to UV radiation can lead to an increase in the
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number of melanocytes within the skin, thereby increasing melanin
synthesis and resulting in skin pigmentation (9, 91). Specifically, UVA
radiation activates opsin receptors in melanocytes, which subsequently
promotes melanin synthesis. Conversely, UVB radiation enhances
melanin synthesis by facilitating melanocyte differentiation and
stimulating keratinocytes to release melanocyte-stimulating hormone
(MSH), along with associated immunomodulatory factors and stem
cell growth factors (92, 93). Upon exposure to UV radiation,
endogenous a-melanocyte stimulating hormone (a-MSH) binds to
the melanocortin 1 receptor (MCI1R). This interaction activates
adenylate cyclase (AC), leading to an increase in intracellular cyclic
adenosine monophosphate (cAMP) levels. Subsequently, cAMP
activates protein kinase A (PKA), which ultimately mediates the
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activation of cAMP response element binding protein (CREB) and
microphthalmia-associated transcription factor (MITF). These
transcription factors increase the expression of Tyrosinase (TYR), a
key enzyme involved in melanin synthesis, thereby stimulating
melanin production (94, 95).

PCs can inhibit the activity of tyrosinase, leading to a reduction
in tyrosine expression and a decrease in melanin synthesis. This
process ultimately results in diminished melanin deposition within
the body and contributes to the slowing of skin aging. Chong et al.
(96) treated thyroxine-induced senescent mice with grape seed PCs
and reported that these PCs significantly inhibited tyrosinase
activity in the skin cells of these aged mice, thereby suppressing
melanin synthesis and effectively alleviating skin pigmentation
issues. Matthew et al. (97) demonstrated that tyrosinase activity was
markedly reduced when PCs extracted from lychee roots were used,
suggesting that these PCs could achieve skin whitening effects by
inhibiting tyrosinase activity. Chen et al. (63) explored the
inhibitory effect of lotus seed PCs on melanin synthesis in human
skin fibroblast epithelial cells exposed to UVB radiation. Their
research revealed that lotus seed PCs effectively suppressed the
conversion of melanin precursors (such as tyrosine and DOPA) into
melanin by inhibiting the activity of tyrosinases, including
monophenolase and diphenolase, thus significantly reducing
UV-induced pigmentation.

In a clinical trial designed to evaluate the effects of apple extract
(AP) supplements containing PCs on skin pigmentation issues
induced by UV exposure in healthy women, participants were
randomly assigned to three groups: a low-dose AP group (300 mg/
day), a high-dose AP group (600 mg/day), and a placebo group.
These groups underwent continuous supplementation for 12 weeks.
The results indicated that AP administration significantly reduced
the melanin content of the skin following UV exposure, confirming
its capacity to diminish melanin production through the inhibition
of tyrosinase activity (98). In another clinical trial investigating the
impact of red wine beverages containing PCs on sunburn and
dryness resulting from UV exposure in women, 100 healthy female
subjects were randomly allocated into two groups: the test group
receiving 200 mg/day of PCs-containing red wine beverages and the
control group receiving 200 mg/day of red wine beverages devoid
of PCs. After 12 weeks of continuous consumption, measurements
revealed a significant reduction in the melanin index at sunspots
within the test group, indicating that PCs-containing red wine
beverages effectively inhibited tyrosinase activity, leading to
decreased melanin production (99).

In addition to the previously mentioned four beneficial effects
on aging skin, PCs can also enhance barrier function and hydration.
They promote the upregulation of filaggrin and keratin expression.
Filaggrin plays a crucial role in lipid synthesis within the stratum
corneum of the skin, whereas keratin is essential for the formation
of the skin barrier. Consequently, PCs contribute to improved
moisture retention in the skin and strengthen its resistance to
external stimuli (100, 101). Furthermore, PCs can facilitate cell
migration, which is a key aspect of tissue repair. In fibroblasts
subjected to oxidative stress from H,O, exposure, treatment with
PCs significantly increased cell migration rates. This enhancement
enables these cells to resynthesize extracellular matrices such as
collagen, thereby directly supporting skin regeneration and repair
while delaying collagen imbalance-related skin aging (56, 102).
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4 Methods for improving the stability
and bioavailability of PCs

PCs exhibit poor stability, which significantly diminishes their
bioavailability. To address this limitation, encapsulation techniques
can be employed to increase the stability of PCs, thereby improving
their bioavailability (103, 104). Encapsulation refers to the process
of embedding bioactive compounds within solid particles or liquid
vesicles. This technique not only regulates the release of bioactive
substances but also masks undesirable odors, stabilizes biological
activity, and protects sensitive compounds from degradation (105,
106). Currently, encapsulation is a focal point of research with
extensive application potential. It is widely acknowledged as an
effective strategy for preserving the stability of bioactive substances
and extending the shelf-life of materials that are sensitive to light
and heat (107, 108). The primary forms of encapsulation for PCs
include microcapsules, liposomes, and nanoparticles, as shown in
Table 5.

Microcapsule technology represents an innovative packaging
approach that has emerged in recent years. This technique
primarily involves the dispersion of small-molecule active
compounds, sensitive materials, or volatile substances through
physical or chemical methods, followed by the formation of
microcapsules encapsulated with protective films (109). First,
these microcapsules effectively shield bioactive components from
environmental degradation, prolong their stability, and ensure
precise delivery to targeted sites. Additionally, they minimize
interactions between different ingredients, thereby extending the
shelf-life of the product. Owing to these advantages, microcapsule
technology has found extensive applications across diverse fields,
such as food science, biomedicine, sensing technologies, and
textiles (110-112). Moreover, microencapsulation can enhance
the light and oxidation resistance of PCs, thereby broadening their
potential and application range in functional products (113).

Liposomes play a crucial role in colloidal drug delivery systems,
particularly within the fields of food and nutrition. Primarily
composed of phospholipids, they can encapsulate water-soluble
substances in their internal aqueous phase while accommodating
lipophilic compounds within the lipid bilayer, thereby forming
liposomes with a well-defined bilayer structure (114, 115). These
structures exhibit several advantageous properties, including low
toxicity, high plasticity, complete biodegradability, lack of
immunogenicity, self-assembly capability, and ease of modification
(115). Given that PCs are water soluble, they can be effectively
incorporated into the aqueous core of liposomes. This incorporation
protects PCs from degradation caused by environmental factors
such as light exposure, pH fluctuations, and temperature
variations (113).

Nanoparticles have been shown to be an optimal choice for
their
bioavailability. They significantly improve the uptake efficiency of

encapsulating phenolic compounds and enhancing
polyphenols by increasing their solubility, facilitating their absorption
through endocytosis, and promoting the entrapment or surface
adsorption of biomolecules (116). This encapsulation technology not
only enhances the solubility and stability of bioactive compounds but
also plays a pivotal role in drug delivery systems. The carrier materials
used for nanoparticles are typically biodegradable or ion sensitive and

exhibit low toxicity, minimal side effects, and controllable release
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TABLE 5 Packaging types for stabilizing PCs.

Encapsulation

type

Materials

Function

10.3389/fnut.2025.1650328

Advantage

Sodium alginate Isolate oxygen, light and damage from gastric Effectively delay the release of PCs, stability (132)
Carboxymethyl cellulose acid and bioavailability of PCs 1 i
Isolate the PCs from direct contact with the
Microcapsule Polylactic acid external environment and control the release Stability and bioavailabilityof PCs 1 (133)
speed of the PCs
Isolate the degradation of PCs by light and Antioxidant activity, stability and
Sodium alginate (134)
oxygen bioavailability of PCst
Maltodextrin Isolate oxygen, light and damage from gastric Target the release of PCs into the intestine to (113)
112
B-cyclodextrin acid prevent degradation by gastric acid
Isolate the PCs from direct contact with the
Soy lecithin Solubility, stability and bioavailability of
Liposomes external environment and control the release (135)
Cholesterol PCs?t
rate of the PCs
Soy lecithin The packaged PCs have better ROS removal Water solubility, stability and bioavailability (136)
20,
Cholesterol activity of PCst
Slow down the decomposition of PCs in the
Antioxidant stability and bioavailability of
Casein-maltodextrin gastrointestinal tract and enhance its ability to PCst (137)
s
resist oxidative stress and heat shock
Improve the packaging efficiency of PCs and
Lecithin Control PCs release and stability (138)
Nanoparticles stabilize their antioxidant capacity
Soy phosphatidylcholine
Improve the packaging efficiency of PCs Stability and bioavailability of PCs 1 (139)
Monoglyceride citrate
Low-molecular-weight
b Form stable and highly bioactive nanoparticles = Biological activity of PCs 1 (140)
chitosan

characteristics. Moreover, nanoparticles can traverse intercellular and
intertissue gaps to reach target sites directly, thereby further improving
the bioavailability of bioactive substances (117-119).

In addition, the intestinal microbiota, dietary fiber and fat,
various antioxidants, pH regulation, and low-temperature
extraction methods can increase the bioavailability of PCs. PCs
operate synergistically with intestinal microorganisms such as
Lactobacillus and Bifidobacterium. The metabolism of PCs by these
intestinal microorganisms results in the generation of short-chain
fatty acids and other secondary metabolites that further augment
the antioxidant effects of PCs (120). Moreover, PCs exhibit a
synergistic relationship with dietary fiber and fat. When combined
with dietary fiber, PCs are protected from degradation by digestive
enzymes during digestion; this facilitates their gradual release in the
intestines, thereby prolonging their antioxidant activity (121).
Additionally, when PCs are paired with other antioxidants, such as
vitamin C, they promote preferential oxidation of these
antioxidants, which enhances the bioavailability of PCs (122). The
stability and bioavailability of PCs in aqueous solutions can
be improved by incorporating an acidic buffer to adjust the pH to
acidic levels or by avoiding mixing the PCs solution with alkaline
Furthermore,

substances (46). employing low-temperature

extraction techniques for PCs—such as low-temperature
prefmentation impregnation and dry ice freezing—can minimize
degradation during extraction processes. These approaches
collectively improve both the stability and bioavailability of

polyphenol compounds (123).
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5 Summary and outlook

Skin aging is a multifaceted biological process influenced by
various factors. Currently recognized contributors to this phenomenon
include increased oxidative stress, elevated expression of MMPs,
degradation of collagen and elastin, heightened inflammatory
responses, and melanin deposition, among others. The mechanisms
through which PCs exert anti-skin aging effects involve multiple
targets, levels, and pathways, as shown in Figure 3. PCs can alleviate
oxidative stress in aging skin by neutralizing ROS, inhibiting
ROS-induced lipid peroxidation, and enhancing the antioxidant
capacity of the skin. Furthermore, it reduces the degradation of
collagen and elastin in aged skin while promoting collagen synthesis
by inhibiting the MAPK pathway and activating the TGF-f/Smad
signaling pathway. This dual action results in increased levels of
collagen and elastin within aging skin. Additionally, PCs mitigate the
inflammatory response associated with skin aging by inhibiting the
NF-kB signaling pathway, thereby decreasing the secretion of
proinflammatory cytokines. Moreover, it inhibits tyrosinase activity
to reduce melanin production in aged skin, -effectively
suppressing pigmentation.

With increasing awareness of public health and ongoing
in-depth research on PCs, the development and application of PCs
present significant opportunities. PCs not only delay and repair
skin aging but also exhibit remarkable efficacy in combating skin
cancer, alleviating allergic reactions on the skin, protecting

cardiovascular health and cerebrovascular functions, preventing
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FIGURE 3
Repair mechanism of PCs in aging skin. ROS, reactive oxygen species; O,

-, superoxide radical; OH-, hydroxyl radical; MAPK, mitogen-activated protein
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kinase; ERK, extracellular signal-regulated kinase; JNK, C-Jun N-terminal kinase; AP-1, activator protein-1; IKK, inhibitor of Kappab kinase; IkB-a, NF-
kappa-B Inhibitor Alpha; TR I, transforming growth factor-f receptor I; TPR Il, transforming growth factor-p receptor Il; Smad, small mothers against
decapentaplegic proteins; MMPs, matrix metalloproteinases; a-MSH, a-melanocyte stimulating hormone; MC1R, melanocortin 1 receptor; AC, activate
adenylate cyclase; cAMP, cyclic adenosine monophosphate; TYR, tyrosinase; MDA, malondialdehyde; TIMP-1, tissue inhibitor of metalloproteinases 1;
SOD, superoxide dismutase; GSH-Px, glutathione peroxidase; GSH-Rd, glutathione reductase.

myopia development, and relieving physical fatigue and mental
distress, such as depression. However, it is important to
acknowledge that there are certain limitations and knowledge gaps
in the current research regarding the anti-skin aging effects of PCs.
The limitations of existing research are reflected in several key
aspects: (1) Lack of clinical research: Most studies investigating the
antiaging effects of PCs rely on in vitro cell culture or in vivo
animal models. While these models provide valuable preliminary
data, they may not fully capture the complexity of human skin
physiology and metabolism. Additionally, clinical trials often
involve relatively small sample sizes, which limits both the
2

Verification is needed for nanoparticles validity: PCs exhibit poor

statistical power and generalizability of their findings.
stability under various environmental conditions, such as high

temperature, light exposure, and alkalinity. This instability
significantly impacts their bioavailability and efficacy. Although

Frontiers in Nutrition

packaging techniques have been explored to increase stability, their
effectiveness in improving the bioavailability of PCs within the
human body remains inadequately understood. (3) Unresolved
mechanism underlying photoaged skin repair: Although some
mechanisms by which PCs combat skin aging have been partially
elucidated, a comprehensive understanding of their molecular and
cellular interactions is still lacking. In particular, further detailed
investigations into the signaling pathways and gene networks
regulated by PCs within human skin are necessary for advancing
this field.
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