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Oxidative stress plays a central role in reproductive disorders, with food
bioactive compounds offering therapeutic potential through their antioxidant
properties. This review examines antioxidant active ingredients from plant-
based foods and their protective mechanisms in reproductive system oxidative
stress management. Key phytochemicals including polyphenols (flavonoids,
phenolic acids such as curcumin, resveratrol, and EGCG), carotenoids
(lycopene, lutein), and organosulfur compounds demonstrate potent free radical
scavenging capacity, regulate antioxidant enzyme activity, and inhibit lipid
peroxidation through Nrf2 pathway activation and NF-κB inhibition. These
natural food ingredients provide anti-inflammatory effects and metabolic
benefits including improved insulin sensitivity and mitochondrial protection.
Clinical evidence shows lycopene supplementation (4–8 mg/day) improves
sperm motility and reduces DNA fragmentation in male infertility, resveratrol
(150 mg/day) enhances ovarian reserve markers in female fertility, and
curcumin reduces inflammatory markers (IL-8, TNF-α) in endometriosis while
improving assisted reproductive outcomes. However, poor bioavailability
limits therapeutic efficacy, with most compounds showing <10% absorption.
Advanced delivery technologies, including nanoencapsulation (5–30 fold
enhancement), phospholipid complexation, and formulation with absorption
enhancers (e.g., piperine), can substantially improve the bioavailability of these
compounds for functional foods and dietary supplements. Emerging single-cell
and multi-omics approaches provide powerful tools to unravel tissue-specific
mechanisms, while future progress also depends on establishing uniform dosage
standards and conducting rigorous safety assessments to address potential pro-
oxidant effects and long-term interactions. Given that infertility affects 17.5%
of adults globally, food-derived antioxidant interventions represent accessible
strategies for managing reproductive disorders, supporting the development of
nutraceuticals and novel foods for reproductive health protection.
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1 Introduction

Global reproductive health has emerged as a pressing concern,
posing multifaceted challenges not only to individual wellbeing but
also to public health systems and demographic stability. According
to the World Health Organization, approximately 8%−12% of
reproductive-age couples experience fertility issues, with recent
data indicating that infertility affects nearly 17.5% of adults
globally—an alarming and escalating global health challenge (1, 2).

The implications of fertility problems extend far beyond
clinical diagnoses. Affected individuals frequently experience
psychological distress, such as anxiety, depression, and
diminished self-esteem (3, 4). Families may endure prolonged
infertility treatments that are emotionally taxing and financially
burdensome, especially in healthcare systems with limited
insurance coverage (4, 5). On a societal level, declining fertility
contributes to demographic challenges including accelerated
population aging, workforce shortages, and intergenerational
imbalance (6, 7). These overlapping burdens highlight
an urgent need for accessible and effective reproductive
health interventions.

Emerging evidence increasingly implicates environmental
deterioration, lifestyle modifications, unbalanced diets, and
chronic psychological stress as contributing factors to fertility
impairments (8–10). Redox imbalance has been recognized as
a central pathological nexus linking these diverse risk factors
to reproductive impairments (9, 11). This state arises when
the cellular balance between reactive oxygen/nitrogen species
production and antioxidant defense is disrupted, leading to
cumulative molecular damage (12).

The reproductive system is particularly vulnerable to reactive
oxygen species (ROS)-induced stress due to its unique structural
and metabolic characteristics. Sperm membranes are rich in
polyunsaturated fatty acids that are readily oxidized, while oocyte
maturation and fertilization demand high mitochondrial activity,
increasing sensitivity to oxidative imbalance (13, 14). Substantial
research has demonstrated that oxidative stress contributes to the
pathogenesis of a wide array of reproductive disorders, including
oligoasthenozoospermia, ovarian insufficiency, endometriosis,
polycystic ovary syndrome, and prostatitis, as well as reproductive
impairments associated with systemic metabolic conditions such
as diabetes (13, 15, 16).

Conventional therapeutic approaches, including hormonal
treatments and assisted reproductive technologies, remain the
primary strategies for infertility management (17–19). However,
these interventions are often limited by side effects, variable success
rates, and accessibility challenges, particularly in resource-limited
settings, highlighting the need for alternative or complementary
approaches (20–22).

Plant-derived foods contain a variety of bioactive compounds
with strong antioxidant capacities (23). These natural agents
confer protection via multiple mechanisms: directly scavenging free
radicals, enhancing endogenous antioxidant systems, modulating
redox-sensitive signaling pathways, and preserving mitochondrial
integrity (24–26). Compared to synthetic antioxidants, their
multifunctional nature, better safety profile, and broader cellular
targets offer distinct therapeutic advantages (24, 25).

In light of the growing fertility-related burden and the
limitations of current treatment modalities, plant-based
interventions present a compelling research focus. Herein,
this review synthesizes current knowledge on the regulatory effects
of bioactive components from plant-derived foods on oxidative
imbalance in the reproductive system. We further explore their
potential in mitigating inflammation-related and metabolism-
associated reproductive disorders and examine translational
strategies to enhance bioavailability and promote functional food
development for reproductive health protection.

2 Molecular mechanisms of oxidative
stress in the reproductive system

Oxidative stress constitutes a critical pathological axis
linking environmental exposures, metabolic imbalance, and
reproductive disorders. Clarifying the underlying molecular
mechanisms is essential to understand how redox imbalance alters
gamete integrity, hormonal regulation, and tissue homeostasis.
This framework provides a foundation for interpreting
both physiological processes and pathological outcomes in
reproductive health.

2.1 Generation of ROS and reproductive
vulnerability

Oxidative stress arises in reproductive tissues through
a convergence of mitochondrial dysfunction, inflammatory
activation, and environmental insults, with profound implications
for gamete viability and hormonal regulation (27–29).
Mitochondrial electron leakage during oxidative phosphorylation
and NADPH oxidase activation serve as the primary endogenous
sources of reactive oxygen species (ROS) in both male and female
gonads (30, 31). Inflammatory leukocyte infiltration during
ovulation and in the epididymal or seminal environment adds
further ROS burden, especially under pathologic conditions
(27, 29, 32). Exogenous contributors—including bisphenol A,
heavy metals, ionizing radiation, and high-fat diets—amplify ROS
generation or suppress antioxidant enzyme systems, tipping the
redox balance toward cellular injury (33–36).

Notably, the structural composition of reproductive cells
renders them uniquely vulnerable to oxidative damage: sperm
membranes are rich in polyunsaturated fatty acids (PUFAs),
which undergo rapid lipid peroxidation; spermatozoa also
possess minimal cytoplasm, lacking significant antioxidant defense
reservoirs (32, 37–41). Oocytes, while comparatively robust,
contain a high density of metabolically active mitochondria and
demand high ATP throughput, increasing both ROS production
and mitochondrial stress under suboptimal conditions (31, 42, 43).
Erectile tissues show similar vulnerability due to their dependence
on nitric oxide (NO) signaling and high PUFA content in vascular
smooth muscle membranes (44, 45). The corpus cavernosum
contains high concentrations of polyunsaturated fatty acids in
smooth muscle cell membranes, making them susceptible to lipid
peroxidation. Additionally, the intricate vascular network required
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for erectile function depends on endothelial nitric oxide synthase
(eNOS) activity, which is particularly sensitive to ROS-mediated
inactivation and endothelial dysfunction.

The genomic and epigenomic integrity of gametes further
raises the stakes: even subthreshold ROS-induced lesions may
result in fertilization failure, impaired embryo development, or
transgenerational genomic instability (42, 43, 46–48).

2.2 Physiological roles of ROS in
reproduction

Far from being solely destructive, reactive oxygen species
(ROS) at physiological concentrations are essential modulators
of reproductive processes (49, 50). In males, ROS are involved
in sperm capacitation through cholesterol efflux, membrane
hyperpolarization, and tyrosine phosphorylation—prerequisites for
acrosomal exocytosis and zona pellucida binding (49, 51, 52). In
females, ROS facilitate follicular rupture, corpus luteum formation,
and endometrial remodeling during the periovulatory phase, partly
by enhancing matrix metalloproteinase activity and promoting
local prostaglandin release (29, 53, 54). These coordinated redox
changes act in tandem with inflammation-like signaling required
for ovulation and implantation (53, 55). In erectile tissues,
physiological ROS levels support normal vascular responses, but
excess ROS rapidly inactivate nitric oxide, impairing erectile
function (56).

Intracellularly, ROS serve as secondary messengers activating
the MAPK (mitogen-activated protein kinase), PI3K/Akt
(phosphoinositide 3-kinase/protein kinase B), and JNK (c-Jun N-
terminal kinase) pathways, which regulate cytoskeletal remodeling,
steroid biosynthesis, and controlled apoptosis (55, 57–59). The
Keap1–Nrf2–ARE pathway (Kelch-like ECH-associated protein
1–Nuclear factor erythroid 2–Antioxidant Response Element),
transiently activated during ovulation and implantation, induces
antioxidant enzymes such as HO-1 (heme oxygenase-1) and
NQO1 (NAD(P)H:quinone oxidoreductase 1), thereby providing
cytoprotection without suppressing the physiological ROS
signaling essential for fertilization and embryo development
(60–64). The balance between beneficial and detrimental redox
activity is depicted in Figure 1, which contextualizes ROS as both
drivers and modulators of fertility-related cellular functions.

2.3 Oxidative stress-mediated reproductive
dysfunction

Excessive accumulation of ROS disrupts reproductive function
by impairing gamete integrity, altering hormonal signaling,
and promoting chronic inflammation (65–67). In sperm, ROS-
driven lipid peroxidation compromises membrane fluidity,
reduces mitochondrial membrane potential, and elevates DNA
fragmentation—all of which impair motility and fertilization
capacity (32, 39, 68). Oocytes subjected to oxidative insult
exhibit disrupted spindle microtubule assembly, chromosomal
missegregation, and mitochondrial dysfunction, contributing
to aneuploidy and embryo arrest (66, 69, 70). In parallel, ROS

dysregulate the hypothalamic-pituitary-gonadal axis by inhibiting
GnRH pulsatility, suppressing gonadotropin secretion, and
impairing steroidogenic enzyme function in the gonads. Follicular
atresia and testicular germ cell apoptosis are accelerated, thereby
reducing ovarian reserve and sperm output (32, 39, 65, 68, 71). ROS
also amplify inflammation by activating NF-κB, which induces
cytokines such as IL-6 and TNF-α, creating a self-perpetuating
inflammatory-oxidative feedback loop that degrades reproductive
tissues over time (71–73). The cumulative impact of these
mechanisms is diagrammed in Figure 1, highlighting the systemic
nature of ROS-induced reproductive failure.

2.4 Oxidative damage biomarkers in the
reproductive system

Biochemical markers of oxidative damage provide important
diagnostic and mechanistic insights into redox imbalance in
reproductive biology (29, 74). Among these, lipid peroxidation
indicators, such as malondialdehyde (MDA), 4-hydroxynonenal
(4-HNE), and 8-isoprostane, are frequently used to assess
oxidative damage in sperm and oocyte membranes (75–77).
Protein oxidation products, including protein carbonyls and
nitrated residues like 3-nitrotyrosine, can compromise enzymatic
activity essential for gamete fusion and fertilization (77–82).
The DNA oxidation marker 8-hydroxy-2′ -deoxyguanosine (8-
OHdG) is widely recognized as a surrogate indicator of ROS-
mediated genotoxicity and has been associated with embryo
loss and recurrent miscarriage in both natural conception
and assisted reproductive technology (ART) settings (76, 83,
84). Impaired antioxidant defenses, characterized by reduced
activity of superoxide dismutase (SOD), glutathione peroxidase
(GPx), and catalase (CAT), along with decreased glutathione
levels, are commonly observed in patients with polycystic ovary
syndrome (PCOS), endometriosis, and idiopathic infertility (43,
77, 85–87). Figure 2 classifies these biomarkers based on their
molecular origin and functional relevance, highlighting their
value in assessing oxidative damage and monitoring therapeutic
outcomes. Table 1 provides a comprehensive overview of these
oxidative stress biomarkers, their tissue distribution, associated
reproductive conditions, and clinical significance for diagnostic and
therapeutic monitoring.

3 Major plant-derived food bioactive
substances and their antioxidant
properties

3.1 Polyphenols: chemical structure and
antioxidant mechanisms

Polyphenolic compounds represent nature’s most diverse and
abundant antioxidants, characterized by their multiple phenolic
hydroxyl groups attached to aromatic rings (88, 89). These
plant secondary metabolites comprise several major structural
classes including flavonoids (quercetin, kaempferol, and apigenin),
catechins (epigallocatechin gallate, epicatechin), anthocyanins
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FIGURE 1

Antioxidant mechanisms of polyphenolic compounds (Created with BioRender.com).

(cyanidin, delphinidin), and phenolic acids (caffeic acid, ferulic
acid) (90–92). The antioxidant capacity of polyphenols correlates
directly with their chemical structure, particularly the number and
position of hydroxyl groups, presence of extended conjugation, and
spatial configuration (92, 93).

Polyphenols exert antioxidant effects through multiple
mechanisms beyond simple free radical neutralization. At the
molecular level, their phenolic hydroxyl groups readily donate
hydrogen atoms to neutralize reactive oxygen and nitrogen species,
forming relatively stable phenoxyl radicals through resonance
delocalization across aromatic rings (94–97). Additionally, many
polyphenols effectively chelate transition metals such as iron and
copper, preventing Fenton reactions that generate highly reactive
hydroxyl radicals (94, 98–100).

Beyond direct chemical interactions with ROS, polyphenols
modulate cellular signaling pathways that regulate oxidative

homeostasis. A particularly significant mechanism involves
activation of the Keap1-Nrf2 (Kelch-like ECH-associated protein
1-Nuclear factor erythroid 2) pathway (101, 102). Polyphenols
modify Keap1 through covalent interactions or phosphorylation
events, releasing Nrf2 from cytoplasmic sequestration (101, 102).
Translocated to the nucleus, Nrf2 binds to Antioxidant Response
Element (ARE) sequences in the promoter regions of numerous
antioxidant enzymes, including glutathione S-transferase,
NAD(P)H:quinone oxidoreductase 1, and heme oxygenase-1,
effectively amplifying endogenous antioxidant capacity (103, 104).

Simultaneously, many polyphenols inhibit pro-oxidant
enzymes like xanthine oxidase, NADPH oxidase, and lipoxygenase,
further reducing ROS generation at its source (105–110). This
multi-level intervention in oxidative processes contributes to their
potent protective effects in reproductive tissues. These antioxidant
mechanisms of polyphenolic compounds are illustrated in Figure 3.
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FIGURE 2

Oxidative balance and oxidative stress in reproductive systems (Created with BioRender.com).

TABLE 1 Oxidative stress biomarkers in reproductive pathology.

Biomarker category Specific markers Tissue/Sample Associated conditions Clinical significance

Lipid peroxidation MDA, 4-HNE,
8-isoprostane

Sperm membranes,
oocyte membranes

Oligoasthenozoospermia, ovarian
insufficiency

Membrane damage in PUFA-rich
reproductive cells

Protein oxidation Protein carbonyls,
3-nitrotyrosine

Seminal plasma,
follicular fluid

Fertilization failure, embryo arrest Compromised enzymatic activity for
gamete fusion

DNA damage 8-OHdG Sperm DNA, oocytes Embryo loss, recurrent miscarriage Genotoxicity in natural conception and
ART

Antioxidant depletion SOD, GPx, CAT activity;
GSH levels

Serum, follicular fluid PCOS, endometriosis, idiopathic
infertility

Impaired antioxidant defenses

3.2 Carotenoids: lycopene and lutein

Carotenoids constitute a family of lipophilic pigments
characterized by a polyisoprenoid structure with an extensive
conjugated double bond system (111). This chemical architecture
enables carotenoids to quench singlet oxygen and neutralize
peroxyl radicals particularly efficiently, with their antioxidant
activity correlating directly with the number of conjugated double
bonds (112, 113). The most biologically relevant carotenoids
for reproductive health include lycopene (predominant in
tomatoes) and lutein (abundant in green leafy vegetables), and
β-carotene (found in orange and yellow vegetables) (111–115). The
structural classification and distinct functional properties of major
reproductive-relevant carotenoids are illustrated in Figure 4.

Lycopene, containing 11 conjugated and two non-conjugated
double bonds, demonstrates the highest singlet oxygen quenching
capacity among common carotenoids—approximately twice that of
β-carotene (116). Its acyclic structure contributes to its exceptional
antioxidant properties (117). Particularly noteworthy is lycopene’s
tissue-specific accumulation pattern, with concentrations in the
prostate gland reaching levels up to 10-fold higher than those in
serum, suggesting specialized uptake mechanisms and particular
relevance for male reproductive health (116, 118–121).

Mechanistically, lycopene functions through both physical and
chemical quenching of reactive species (122–124). In physical
quenching, the carotenoid absorbs energy from singlet oxygen,
transitioning to an excited triplet state before dissipating the
energy as heat, returning to ground state without chemical
alteration (122, 123). This process can be repeated multiple times,
allowing a single lycopene molecule to deactivate numerous singlet
oxygen molecules (122, 124, 125). Chemical quenching involves
electron transfer or addition reactions with free radicals, effectively
terminating radical chain reactions but resulting in lycopene
oxidation (126–128).

Lutein belongs to the xanthophyll subclass of carotenoids,
distinguished by the presence of oxygen-containing functional
groups. These polar groups affect their orientation within biological
membranes, with lutein spanning the lipid bilayer perpendicular
to the membrane surface (129, 130). This specific membrane
organization enables lutein to efficiently intercept lipid peroxyl
radicals before they initiate chain reactions, particularly protecting
the polyunsaturated fatty acid-rich membranes of developing
oocytes and sperm cells (131–133). Research indicates that
lutein’s membrane-stabilizing effects contribute significantly to
maintaining mitochondrial integrity under oxidative challenge—a
critical factor for energy-intensive reproductive processes (134).
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FIGURE 3

Biomarkers of oxidative stress (Created with BioRender.com).

FIGURE 4

Classification of carotenoids relevant to reproductive health (Created with BioRender.com).
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Unlike some antioxidants with restricted tissue distribution,
carotenoids effectively cross both the blood-testis and blood-follicle
barriers, providing direct protection to gametes (135). Their strong
lipophilicity also facilitates accumulation in steroidogenic tissues,
where they protect steroid-synthesizing enzymes from oxidative
damage, potentially preserving hormonal balance essential for
reproductive function (136–138).

3.3 Other active components: organosulfur
compounds

Beyond polyphenols and carotenoids, several other
phytochemical classes demonstrate significant antioxidant
activity relevant to reproductive health. Organosulfur compounds,
predominantly found in Allium species (garlic, onions) and
cruciferous vegetables, represent a structurally diverse group
including allicin, diallyl sulfides, and isothiocyanates (139–141).
These compounds feature reactive sulfur-containing functional
groups that provide unique biochemical properties extending
beyond conventional antioxidant mechanisms.

Allicin (diallyl thiosulfinate), formed when garlic is crushed
through the enzymatic action of alliinase on alliin, contains a
reactive thiosulfinate group that interacts with thiol-containing
proteins. This interaction affects multiple redox-sensitive
enzymes and transcription factors (142–144). Rather than acting
primarily as direct radical scavengers, organosulfur compounds
function as indirect antioxidants by potently inducing phase II
detoxification enzymes through the Nrf2 pathway. Additionally,
they upregulate thioredoxin and glutathione systems—critical
components of cellular redox homeostasis in reproductive
tissues (145–147).

S-allylcysteine and S-allylmercaptocysteine, water-soluble
organosulfur derivatives found in aged garlic extracts, demonstrate
particular efficacy in reproductive protection. These compounds
preserve mitochondrial function under oxidative challenge,
inhibit lipid peroxidation cascades, and modulate inflammatory
prostaglandin production (148–151). Studies indicate they
maintain sperm membrane integrity and motility when exposed to
oxidative insults, suggesting specific applications in male fertility
preservation (149, 150, 152).

3.4 Bioavailability and action targets

The therapeutic potential of plant-derived antioxidants faces
a significant challenge: their limited bioavailability (91, 153,
154). The very chemical properties that make polyphenols and
carotenoids such effective antioxidants—their aromatic rings,
extensive conjugation, and hydroxyl groups—also contribute
to poor water solubility, limited absorption, extensive first-
pass metabolism, and rapid elimination. Most compounds
demonstrate systemic bioavailability below 10% when administered
in conventional forms, substantially limiting their biological effects
(91, 153, 155–157).

Bioavailability varies considerably between compounds and
depends on multiple factors including molecular size, lipophilicity,

solubility, pKa, and matrix effects (158, 159). Carotenoids illustrate
how food processing dramatically influences absorption—cooking
tomatoes in oil increases lycopene bioavailability by up to
fivefold compared to raw consumption, as heat disrupts cellular
structures while lipids facilitate incorporation into mixed micelles
necessary for intestinal uptake (158, 160, 161). For polyphenols like
anthocyanins, intact glycosides are absorbed differently than their
aglycone counterparts, with transporter-mediated uptake playing a
crucial role (162, 163).

Compounds including curcumin and resveratrol face
particularly profound bioavailability challenges. Despite
demonstrated efficacy in vitro, curcumin’s poor aqueous solubility,
chemical instability at physiological pH, and extensive metabolism
result in barely detectable plasma concentrations after oral
administration (164–167). Similarly, resveratrol undergoes
extensive sulfation and glucuronidation, with free resveratrol
representing less than 1% of total plasma resveratrol after oral
dosing (168–171).

To address these limitations, several innovative delivery
strategies have emerged. Nanoencapsulation techniques using
liposomes, solid lipid nanoparticles, or polymeric micelles
dramatically improve water dispersibility while protecting
compounds from premature degradation (172–174). Phospholipid
complexation enhances membrane transport and tissue
distribution by improving amphipathic properties (175).
Formulation with absorption enhancers like piperine inhibits
conjugating enzymes and efflux transporters, significantly
increasing bioavailability. For instance, piperine co-administration
increases curcumin bioavailability by up to 2,000%, though the
clinical significance of this enhancement in humans requires
further validation (176, 177).

The molecular targets of plant-derived antioxidants extend
far beyond direct radical scavenging, revealing sophisticated
mechanisms that explain their effects on reproductive health.
Many compounds modulate key transcription factors that serve
as master regulators of cellular redox status. Nuclear factor
erythroid 2-related factor 2 (Nrf2) activation by polyphenols
and curcumin triggers coordinated upregulation of dozens
of cytoprotective enzymes, creating persistent protection that
outlasts the compound’s presence. Simultaneously, inhibition
of nuclear factor kappa B (NF-κB) suppresses inflammatory
cascades that would otherwise amplify oxidative damage (178–
181).

Plant antioxidants also demonstrate remarkable specificity
for critical reproductive targets. Epigallocatechin gallate and
resveratrol modulate peroxisome proliferator-activated receptor
gamma activity, improving insulin sensitivity crucial for hormonal
balance in polycystic ovary syndrome (182–184). Flavonoids
and carotenoids directly influence mitochondrial function—
the energy and ROS production centers within reproductive
cells—by stabilizing membranes, improving electron transport
efficiency, and activating mitochondrial antioxidant systems.
These targeted effects explain why plant-derived compounds
often show reproductive benefits that exceed what would be
predicted from their direct radical scavenging capacity alone (183).
Table 2 summarizes the bioavailability challenges faced by major
plant antioxidant classes and the corresponding enhancement
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TABLE 2 Bioavailability enhancement strategies for plant-derived antioxidants.

Compound class Representative
compound

Original
bioavailability

Major
limiting
factors

Optimal
enhancement
strategy

Enhancement
effect

Key clinical
applications

Flavonols Quercetin 1–2% Poor water
solubility, extensive
first-pass
metabolism

Nano-liposome
encapsulation

10–15 fold increase Anti-inflammatory,
cardiovascular
protection

Catechins EGCG 5–10% Gastric acid
degradation,
protein binding

Nanoparticle
delivery + vitamin
C

3–5 fold increase Neuroprotection,
anticancer

Anthocyanins Cyanidin <1% pH sensitivity, rapid
metabolism

Microencapsulation
technology

5–8 fold increase Vascular
endothelial function
improvement

Curcuminoids Curcumin <1% Extremely poor
water solubility,
rapid metabolism

Phospholipid
complexes +
piperine

20–30 fold increase Anti-inflammatory,
arthritis adjuvant
therapy

Stilbenoids Resveratrol 0.5–2% Photosensitivity,
glucuronidation

Lipid nanoparticles 5–10 fold increase Anti-aging,
cardiovascular
protection

Carotenoids Lycopene 10–30% Heat/light
instability,
fat-dependent
absorption

Microemulsification
+ isomerization

Enhanced to
50–70%

Prostate cancer
prevention

Organosulfur compounds Allicin 3–5% High volatility,
gastric acid
decomposition

Enteric-coated
formulation +
stabilizers

3–4 fold increase Antibacterial,
antihypertensive

strategies that have proven most effective in improving their
therapeutic potential.

3.5 Integrated antioxidant mechanisms and
signaling pathway regulation

Plant-derived antioxidants protect reproductive function
through an integrated network of mechanisms that extend
beyond simple ROS neutralization. The coordinated regulation of
multiple signaling pathways generates synergistic protective effects,
addressing the multifactorial nature of reproductive oxidative
stress through the engagement of diverse cellular defense systems.

The Kelch-like ECH-associated protein 1–Nuclear factor
erythroid 2–Antioxidant Response Element pathway (Keap1–
Nrf2–ARE) is a master regulator of cellular antioxidant responses
and a primary target for many plant compounds (185–187). Under
basal conditions, Nrf2 remains sequestered in the cytoplasm by
Keap1 (64, 186, 187). Plant antioxidants can modify cysteine
residues in Keap1, causing conformational changes that release
Nrf2 and allow its nuclear translocation (186–188). Once in the
nucleus, Nrf2 binds to antioxidant response elements and activates
cytoprotective genes such as glutathione synthase, thioredoxin
reductase, and heme oxygenase-1(64). This cascade amplifies
antioxidant defenses and enhances resilience against oxidative
insults in reproductive tissues.

The nuclear factor kappa B pathway (NF-κB ) represents
another crucial target. Aberrant NF-κB activation drives pro-
inflammatory cytokine production that exacerbates oxidative stress
in reproductive pathologies (189, 190). Plant compounds such

as curcumin, resveratrol, and EGCG inhibit NF-κB signaling by
preventing IκB phosphorylation, blocking nuclear translocation,
and suppressing DNA binding activity (16, 181, 189, 191).
These anti-inflammatory actions directly complement antioxidant
defenses, disrupting the feed-forward loop between inflammation
and oxidative stress that underpins many reproductive disorders
(16, 192).

Mitochondrial protection is equally significant for reproductive
cells with high energy demands. Plant antioxidants activate SIRT1
and PGC-1α to promote mitochondrial biogenesis (193, 194),
enhance the activity of mitochondrial antioxidant enzymes (193),
improve electron transport chain efficiency (194), and regulate
mitochondrial membrane permeability (194). Such preservation
of mitochondrial integrity ensures sustained ATP production and
reduces ROS overgeneration, processes that are critical for oocyte
maturation and sperm motility.

Finally, metabolic regulation provides an additional protective
layer, particularly in conditions such as PCOS and diabetic
erectile dysfunction (ED) (195, 196). Plant compounds activate
AMPK signaling, enhance glucose utilization, and regulate lipid
metabolism (195). By addressing systemic metabolic dysregulation,
these actions indirectly alleviate reproductive oxidative stress while
reinforcing direct antioxidant effects.

Collectively, these mechanisms demonstrate how antioxidant,
anti-inflammatory, mitochondrial, and metabolic pathways
converge to safeguard reproductive health. Their simultaneous
engagement distinguishes plant-derived antioxidants from
conventional single-target drugs and helps explain their efficacy
across diverse reproductive pathologies, as illustrated in Figure 5
and summarized in Table 3.
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FIGURE 5

Integrated pathways regulated by plant-derived antioxidants (Created with BioRender.com).

TABLE 3 Core regulatory pathways and synergistic mechanisms of major plant antioxidants in reproductive health.

Active compound Core regulatory pathway Synergistic mechanism

Curcumin Keap1-Nrf2 + NF-κB inhibition Inhibits NF-κB by blocking IκBα degradation while activating Nrf2 to
enhance HO-1 expression

Resveratrol SIRT1 activation → PGC-1α deacetylation → mitochondrial
biogenesis

Combined with AMPK activation, promotes fatty acid oxidation and
reduces ROS production

EGCG Inhibits IKKβ phosphorylation (NF-κB pathway) + Fe² +
chelation (ROS neutralization)

Polyphenol hydroxyl structure simultaneously scavenges free radicals
and regulates inflammatory gene transcription

Quercetin Nrf2 nuclear translocation + inhibits MAPK/AP-1 inflammatory
signaling

Flavonol structure enhances SOD activity, synergistically inhibits
JNK/ERK phosphorylation

Lycopene Physical quenching of singlet oxygen (ROS neutralization) +
inhibits NF-κB nuclear translocation

Lipophilic properties protect membrane structure, reducing oxidative
stress-induced inflammation

4 Plant antioxidant interventions in
reproductive diseases: clinical
evidence and therapeutic strategies

Plant antioxidant interventions have shown promising
therapeutic potential across major reproductive disorders, with
clinical evidence supporting their efficacy in treating fertility issues,
inflammatory conditions, and metabolic dysfunction.

4.1 Interventions in fertility disorders

Oxidative stress represents a major contributing factor to both
male and female infertility, making plant-derived antioxidants
attractive therapeutic candidates with growing clinical evidence.

4.1.1 Evidence-based approaches for male
infertility

Oxidative stress represents a major contributing factor to
male infertility, with studies indicating its involvement in
30%−80% of idiopathic infertility cases (197). Plant-derived
antioxidants have demonstrated significant potential in addressing
sperm oxidative damage and improving male fertility parameters
through targeted interventions with strong clinical evidence (198–
200).

Lycopene has emerged as one of the most well-studied plant
antioxidants for male fertility. Human trials reported that lycopene
supplementation (4–8 mg daily for 3–12 weeks) significantly
improved sperm parameters (116). Mechanistically, lycopene’s
selective accumulation in the testes (reaching concentrations
10-fold higher than serum levels) enables direct protection of
developing sperm cells from oxidative damage (201).
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Coenzyme Q10, though not strictly a plant compound but
available in various plant sources, has demonstrated consistent
benefits in male infertility treatment (202, 203). A meta-analysis
including eight randomized controlled trials with a total of
877 male participants showed that CoQ10 supplementation
significantly increased total sperm count, sperm motility, and
progressive motility, and also improved the rate of normal
sperm morphology (203). These improvements correlate with
decreased oxidative stress markers in seminal plasma and reduced
sperm DNA fragmentation, confirming the antioxidant mechanism
underlying the clinical benefits (204).

Green tea catechins represent another promising intervention.
Studies have shown that the addition of green tea extract during
sperm cryopreservation can significantly improve sperm motility
and DNA integrity (205–207). The combined antioxidant and anti-
inflammatory properties of green tea catechins appear particularly
beneficial for men with elevated seminal inflammatory markers
(208, 209).

Combination approaches may offer enhanced therapeutic
potential compared to single-compound interventions.
Evidence suggests that the combination of Serenoa repens
(saw palmetto) with lycopene and selenium shows greater
efficacy than Serenoa alone in reducing prostate inflammation.
While this combination theoretically may improve sperm
quality through multiple pathways, clinical studies are still
needed to verify its specific effects on fertility parameters
(210). This potential synergistic effect likely results from
complementary mechanisms targeting different aspects of
oxidative damage protection.

Practical clinical considerations for male infertility
management include initiating antioxidant therapy for at
least 3 months (corresponding to the spermatogenic cycle); higher
doses may be required for men with severe oxidative stress or
inflammatory conditions; regular monitoring of seminal oxidative
stress markers to assess treatment response; combining plant
antioxidants with lifestyle modifications for optimal results;
and considering individualized approaches based on specific
infertility factors.

4.1.2 Botanical interventions for female fertility
enhancement

Female reproductive function demonstrates particular
vulnerability to oxidative damage, with both oocyte quality and
ovarian reserve showing sensitivity to redox imbalances. The
clinical application of plant antioxidants in female fertility has
yielded promising results, though evidence levels vary across
different compounds and conditions.

Resveratrol has shown remarkable potential in improving
ovarian function and oocyte quality (211). In clinical research,
resveratrol supplementation (150 mg/day for 3 months)
significantly improved ovarian response in women with diminished
ovarian reserve undergoing assisted reproduction, resulting in
higher antral follicle counts and improved hormone profiles
(212). The ability of resveratrol to activate SIRT1/FOXO3a
pathways appears particularly beneficial for preserving follicular
reserve and enhancing mitochondrial function in aging oocytes
(213, 214).

Curcumin demonstrates significant potential for women
with endometriosis-related infertility. A randomized clinical
trial by Jannatifar et al. (215) investigated the effect of
nanomicelle curcumin (120 mg/day for 10 weeks) in women
with stage III/IV endometriosis undergoing assisted reproductive
technology (ART). The study showed that nanomicelle curcumin
supplementation significantly reduced inflammatory markers
(IL-8 and TNF-α) and oxidative stress biomarkers (MDA) in
follicular fluid, while increasing antioxidant enzyme levels (TAC,
CAT, and SOD). These biochemical improvements translated
to enhanced ART outcomes, including increased number
of mature oocytes, improved fertilization rates, and higher
quality embryos. This correlates with reduced oxidative stress
biomarkers in follicular fluid and normalized inflammatory
markers (215).

Clinical application guidelines for female fertility include
individualized selection of plant antioxidants based on specific
fertility issues (216); initiating treatment at least 3 months
before conception attempts for optimal effect (217); regular
monitoring of ovarian reserve markers to assess response;
careful consideration of dosage, as excessive antioxidant
supplementation may paradoxically impair normal reproductive
processes by disrupting physiological ROS signaling essential for
fertilization and embryo development; and special attention to
formulation quality and bioavailability enhancement (183, 216).
Additionally, the timing of intervention appears critical, with
benefits maximized when treatment begins well before assisted
reproductive procedures.

4.2 Plant antioxidants in
inflammation-related reproductive system
diseases

Inflammatory conditions of the reproductive system,
particularly endometriosis and pelvic inflammatory disease
(PID), represent significant clinical challenges with substantial
oxidative stress components. Plant antioxidants have emerged as
promising non-hormonal management options with favorable side
effect profiles in these conditions.

Curcumin has demonstrated particular efficacy in
endometriosis management (218, 219). The latest randomized,
double-blind, placebo-controlled trial showed that nanocurcumin
(80 mg/day) combined with dienogest for 8 weeks significantly
improved dysmenorrhea, dyspareunia, chronic pelvic pain,
and dyschezia in endometriosis patients, while enhancing
quality of life and sexual function index (except for orgasm
domain) (218). These clinical benefits correspond with
curcumin’s ability to inhibit endometriotic implant growth
and invasiveness through multiple mechanisms, including
inhibition of NF-κB activation, reduction of inflammatory
cytokine production, decreased angiogenic factor expression,
and induction of apoptosis in ectopic endometrial cells
(219, 220). In endometriosis mouse models, curcumin treatment
significantly reduced implanted endometrial lesions, attributed
to inhibition of NF-κB translocation and reduction of angiogenic
mediators (220).
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Green tea polyphenols complement curcumin’s effects in
endometriosis management (221). Research indicates that EGCG
can inhibit endometrial implant proliferation and adhesion while
inducing apoptosis in ectopic tissue (221). Animal studies report
that green tea extract reduced both the number and size of
endometriosis lesions through antiangiogenic and antioxidant
effects, suggesting effective disease progression control through
simultaneous targeting of multiple pathological processes (221,
222).

Resveratrol represents another promising intervention,
demonstrating powerful anti-inflammatory and antiangiogenic
properties in endometriosis models (223). By inhibiting COX-2
and reducing prostaglandin synthesis, resveratrol mitigates
inflammatory cytokine release. In an experiment, oral resveratrol
administration to nude mice with human endometriosis implants
significantly reduced lesion number and volume through
blockade of NF-κB activation and disruption of the inflammatory
microenvironment required for lesion maintenance (224).

For pelvic inflammatory disease, plant antioxidants serve
as valuable adjuncts to antibiotic therapy (225). According
to NHANES data, PID affects approximately 2.5 million
women of reproductive age in the United States, and while
antibiotic treatment can alleviate symptoms, poor obstetric
outcomes and high recurrence rates persist. Studies indicate
that antioxidant supplementation during and after antibiotic
treatment can reduce residual oxidative damage, improve recovery
rates, and potentially decrease the risk of post-inflammatory
sequelae such as tubal factor infertility (226). This approach
addresses the oxidative stress and inflammatory cascade that
continue even after pathogen eradication. For example, a
study on asiatic acid (AA) demonstrated that AA significantly
inhibits oxidative stress, reduces cytokine and chemokine
production, and decreases inflammatory cascade through
inhibition of NLRP3 inflammasome and NF-κB pathway, similar
to mechanisms observed with other plant antioxidants such
as curcumin and resveratrol in suppressing NF-κB activation.
Complementary and alternative medicine as an adjunctive
therapy to Western medicine has shown significant efficacy in
PID treatment through dual mechanisms of antioxidant and
anti-inflammatory actions, providing new strategies for improving
patient outcomes (227).

In male reproductive tract inflammation, particularly
prostatitis and epididymitis, plant antioxidants have also shown
promising therapeutic potentia. Chronic prostatitis, affecting up to
50% of men during their lifetime, presents significant therapeutic
challenges with substantial oxidative stress components. Recent
studies have demonstrated that plant-derived antioxidants
effectively modulate inflammatory pathways in male reproductive
tissues (228). For instance, lycopene has shown remarkable
therapeutic effects in epididymitis through multiple mechanisms:
significantly reducing inflammatory cytokines (IL-1β, IL-6, and
TNF-α), enhancing antioxidant enzyme activity (SOD, GSH-PX,
and CAT), and inhibiting the PI3K/AKT signaling pathway
(229). Similarly, curcumin has demonstrated efficacy in prostatitis
management by suppressing NF-κB activation and reducing
pro-inflammatory mediators, while quercetin has been clinically
proven to improve symptoms in chronic prostatitis patients (230).
These plant-based compounds not only complement antibiotic

therapy but also address the persistent oxidative stress and
inflammatory cascade that continue after infection resolution,
potentially reducing long-term complications such as infertility
and chronic pelvic pain syndrome in male patients.

4.3 Plant antioxidants in metabolic
reproductive disorders

Metabolic reproductive disorders such as PCOS and
erectile dysfunction require comprehensive approaches
that simultaneously address oxidative stress and underlying
metabolic imbalances.

4.3.1 Multi-target approach in polycystic ovary
syndrome

Polycystic ovary syndrome (PCOS) represents a complex
endocrine-metabolic disorder characterized by a vicious cycle
between insulin resistance and oxidative stress (16, 231, 232). Plant
antioxidants offer unique therapeutic potential through multi-
target regulation of these interlinked pathological processes.

Cinnamon extract demonstrates remarkable efficacy in
PCOS management (16). In a study of 80 women with
PCOS, daily administration of 1,500 mg cinnamon powder
capsules for 12 weeks significantly reduced fasting insulin
and insulin resistance. Another double-blind randomized
controlled trial showed that 3 g/day of cinnamon extract
significantly decreased fasting blood glucose (p = 0.001) and
glycosylated hemoglobin (p = 0.023) (16). These improvements
are attributed to cinnamon’s ability to enhance insulin
receptor signaling and its polyphenols acting as insulin
mimetics (233). Additionally, cinnamon’s antioxidants
alleviate systemic oxidative stress, evidenced by significantly
reduced serum MDA levels in cinnamon-treated PCOS
patients (234).

Green tea catechins similarly demonstrate capacity to improve
PCOS metabolic and endocrine states. Clinical trials in overweight
PCOS women found that green tea extract (rich in EGCG) 500
mg/day for 12 weeks led to significantly reduced free testosterone
and fasting insulin levels compared to baseline (235). Decreased
free testosterone indicates alleviated hyperandrogenemia, partly
attributed to improved insulin sensitivity (235). Green tea
polyphenols not only increase antioxidant defenses but also possess
anti-androgenic effects; by reducing ovarian oxidative stress, EGCG
may help restore more normal hormonal balance and promote
ovulation (235).

Curcumin’s anti-inflammatory and insulin-sensitizing effects
effectively counter low-grade inflammation and metabolic
dysfunction in PCOS (236, 237). In rodent models of PCOS,
curcumin supplementation restored estrous cycles and reduced
ovarian oxidative stress markers, improving oocyte quality and
ovulation rates (238). Human research, though preliminary,
shows encouraging results: PCOS patients taking curcumin
(1,500 mg/day) for 12 weeks significantly lowered fasting blood
glucose and insulin levels (237). Additionally, curcumin reduced
oxidative stress biomarkers and increased total antioxidant
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capacity (236). These results align with curcumin’s known ability
to activate AMPK (enhancing insulin signaling) and upregulate
Nrf2-dependent antioxidants, thereby breaking the insulin
resistance-oxidative stress cycle (239).

Resveratrol also demonstrates significant metabolic and
endocrine benefits in PCOS. In a double-blind trial, PCOS
women taking resveratrol (1,500 mg/day) for 3 months
showed 23% reduced total testosterone and 22% reduced
dehydroepiandrosterone sulfate levels, while the placebo group
showed no significant changes (240). This significant androgen
level reduction suggests resveratrol directly improves ovarian
steroidogenesis, possibly through reducing ovarian theca cell
hyperresponsiveness. Resveratrol-treated patients also showed
improved insulin sensitivity and mild weight reduction, though
not all parameters reached statistical significance (240).

Clinical implementation considerations for PCOS include
the importance of individualized approaches based on PCOS
phenotype; the value of combining multiple plant antioxidants
to address different aspects of this heterogeneous syndrome;
and the need for sufficient treatment duration (minimum 12
weeks) to achieve measurable improvements in metabolic and
reproductive parameters.

4.3.2 Therapeutic strategies for erectile
dysfunction

Erectile dysfunction (ED) represents a common complication
with complex pathophysiology involving endothelial dysfunction
and reduced nitric oxide (NO) bioavailability (241). Metabolic
diseases such as diabetes, metabolic syndrome, and obesity
contribute to ED through shared mechanisms (242–244). Plant
antioxidants offer promising therapeutic options by targeting these
fundamental mechanisms.

Panax Ginseng and its active components ginsenosides have
attracted attention for their potential to improve erectile function
(245, 246). Studies indicate that ginsenosides possess antioxidant
properties that can enhance nitric oxide synthase (NOS) activity
in cavernosal endothelial cells, reducing oxidative stress damage
to vascular endothelium, thereby promoting NO-mediated smooth
muscle relaxation and improving erectile function (245, 246).
Systematic reviews of multiple clinical trials have shown that
compared to placebo, ginseng preparations can significantly
improve erectile function scores in ED patients, which is consistent
with their antioxidant and NO-promoting mechanisms of action,
despite some heterogeneity in study design and preparations
used (247–249).

Pycnogenol
R©

(French maritime pine bark extract) is a
standardized extract rich in powerful antioxidants including
proanthocyanidins, catechins, and phenolic acids that directly
target endothelial dysfunction associated with ED (250). Research
confirms that Pycnogenol

R©
enhances endothelial NO production

by increasing endothelial nitric oxide synthase (eNOS) activity
and protects the generated NO from degradation by scavenging
superoxide anion radicals, thereby improving its bioavailability
(250). Its powerful antioxidant capacity helps reduce vascular
oxidative stress. Clinical trials, particularly those combining
Pycnogenol

R©
with the NO precursor L-arginine, report significant

improvements in men’s erectile function scores, an effect attributed
to synergistically enhanced NO bioavailability and vascular
endothelial protection (251).

Pomegranate (Punica granatum) is rich in potent polyphenolic
antioxidants such as punicalagins and ellagic acid that effectively
combat oxidative stress (252, 253). Preclinical studies and some
clinical evidence suggest that pomegranate and its extracts
can promote cardiovascular health by improving endothelial
function and reducing oxidative stress levels (253, 254). Research
indicates that pomegranate juice can enhance NO bioavailability
by protecting NO from oxidative destruction and possibly
upregulating eNOS expression (255). Although large-scale clinical
evidence for ED is limited, a preliminary study observed
improvements in erectile function scores in some men with mild
to moderate ED after consuming pomegranate juice, suggesting
the need for larger controlled trials for verification (256). The core
mechanism for its potential vascular benefits (relevant to ED) is
believed to be the reduction of systemic and vascular oxidative
stress, thus protecting the NO signaling pathway critical for erectile
response (253, 254).

Green tea catechins, particularly EGCG, show broad prospects
for alleviating ED. In animal studies, EGCG supplementation
preserved cavernosal smooth muscle content and improved erectile
responses (257). One study found that rats receiving EGCG
(with sildenafil) showed significantly increased eNOS expression
and cyclic guanosine monophosphate levels in cavernosal tissues,
with reduced MDA (lipid peroxidation marker) levels, compared
to untreated groups (258). This indicates that EGCG enhances
NO signaling and reduces oxidative damage in penile tissues
(257). Researchers concluded that EGCG serves as a “cavernosal
antioxidant,” potentially offering useful adjunctive therapy to PDE5
inhibitors for patients (258).

Curcumin, despite its broad antioxidant and anti-inflammatory
effects, faces bioavailability challenges in ED treatment (259,
260). Recent innovations using topically applied curcumin-
loaded nanoparticles found significantly improved erectile function
parameters (261). This provides evidence that curcumin can protect
erectile function by improving penile endothelial function and
reducing fibrosis and oxidative damage. Studies have shown that
administration of curcumin or its water-soluble conjugate led
to enhancement of erectile function in diabetes induced-erectile
dysfunction by stimulating increased synthesis of endothelial NOS
and neuronal NOS (262, 263).

Clinical application considerations include the potential for
plant antioxidants as adjunctive therapy alongside conventional
PDE5 inhibitors; the importance of early intervention, ideally at the
first signs of metabolic complications; and the value of addressing
both metabolic control and oxidative stress simultaneously
for optimal outcomes. Comprehensive treatment approaches
combining lifestyle modifications with targeted antioxidant
supplementation may provide the most effective strategy for
improving erectile function, especially in cases where ED is
driven by metabolic disorders and oxidative stress. Table 4
consolidates the clinical evidence for plant antioxidants across
various reproductive disorders, including dosage regimens,
primary outcomes, and underlying mechanisms demonstrated in
human studies.
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TABLE 4 Clinical evidence of plant antioxidants in reproductive disorders.

Reproductive condition Plant compound Dosage/Duration Primary
outcome

Mechanism Study type

Male infertility Lycopene 4–8 mg/day, 3–12 weeks Improved sperm
parameters

Selective testicular
accumulation,
membrane
protection

Human trials

Diminished ovarian reserve Resveratrol 150 mg/day, 3 months Higher antral follicle
counts, improved
hormone profiles

SIRT1/FOXO3a
activation

RCT

Endometriosis Nanomicelle curcumin 120 mg/day, 10 weeks Reduced inflammatory
markers (IL-8, TNF-α),
improved ART outcomes

NF-κB inhibition RCT (Jannatifar
et al.)

PCOS Cinnamon powder 1,500 mg/day, 12 weeks Reduced fasting insulin
and insulin resistance

Insulin receptor
signaling
enhancement

Double-blind RCT

Erectile dysfunction Panax Ginseng Variable doses Significant improvement
in erectile function
scores vs. placebo

NOS activity
enhancement,
oxidative stress
reduction

Systematic reviews

5 Bioavailability enhancement
strategies and functional food
development

5.1 Formulation strategies for enhanced
bioavailability

A key challenge limiting the clinical efficacy of plant
antioxidants lies in their generally poor bioavailability. Novel
formulation technologies have emerged to address this critical
issue, significantly enhancing the therapeutic potential of these
compounds in reproductive health applications.

Nanoencapsulation techniques represent a major advancement
in plant antioxidant delivery (264, 265). Liposomal encapsulation
markedly enhances the bioavailability of compounds like curcumin
and resveratrol, with some studies reporting up to a five-
fold increase in blood concentrations (266–268). Nanoemulsion
technology can enhance the solubility and cellular uptake of
lipophilic compounds such as lycopene and carotenoids, and may
promote their distribution in biological fluids and improve in vivo
bioavailability (269, 270). Solid lipid nanoparticles offer additional
advantages of controlled release profiles and enhanced stability
during gastrointestinal transit, which proves particularly valuable
for compounds prone to degradation in acidic environments (271–
273).

Phospholipid complexation substantially improves the
pharmacokinetic profiles of many plant antioxidants (274, 275).
Through the formation of amphipathic complexes with
phospholipids, EGCG demonstrates enhanced membrane
permeability and improved bioavailability (276). Animal
pharmacokinetic studies have demonstrated that phospholipid-
complexed curcumin exhibits approximately a fivefold increase
in plasma concentration compared to standard curcumin
formulations (277). This technology particularly benefits
reproductive applications where penetration of blood-testis
and blood-follicle barriers proves crucial for therapeutic efficacy.

Enzyme inhibition strategies represent another effective
approach to enhancing bioavailability. Piperine, a major

component of black pepper, inhibits UDP-glucuronosyltransferase
and hepatic arylhydrocarbon hydroxylase, thereby reducing the
first-pass metabolism of compounds such as curcumin. Clinical
studies have demonstrated that co-administration of piperine
(20 mg) with curcumin can increase curcumin’s bioavailability by
up to 2,000%, although this widely cited figure remains subject to
debate regarding its actual therapeutic impact in clinical settings
(278). Similarly, certain flavonoids like quercetin have been
reported to inhibit metabolizing enzymes when co-administered
with specific compounds, potentially prolonging their half-lives
and enhancing therapeutic efficacy (279).

Chemical modification approaches, while more complex,
offer significant potential. Developing water-soluble derivatives of
lycopene and other carotenoids has shown promise in preclinical
studies, with these modified compounds maintaining antioxidant
activity while exhibiting superior absorption characteristics.
Similarly, synthesizing pro-drug forms of plant polyphenols that
undergo enzymatic activation in target tissues can enhance tissue-
specific delivery and reduce systemic side effects.

Implementation considerations for clinical practice include
recognizing that different plant antioxidants benefit from different
enhancement technologies; considering potential interactions
between delivery systems and the antioxidant mechanisms of the
compounds; and acknowledging that enhanced bioavailability
may necessitate dosage adjustments to maintain optimal
safety profiles. Table 5 provides practical guidance on clinical
dosing and bioavailability considerations for the major plant
antioxidants discussed, facilitating evidence-based implementation
in reproductive health practice.

5.2 Functional food development for
reproductive health

Translating plant antioxidant research into accessible
functional food products represents an important strategy
for reproductive health protection. Functional food development
requires specific design principles, with formulations incorporating
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TABLE 5 Clinical dosage and bioavailability considerations for plant antioxidants.

Compound Reported dosage in
studies

Bioavailability
challenge

Enhancement strategy Clinical considerations

Curcumin Variable (clinical studies) Extremely poor water solubility,
rapid metabolism

Phospholipid complexes, piperine
combination

Enhanced bioavailability may
require dosage adjustment

Resveratrol 150 mg/day (ovarian reserve
study)

Photosensitivity, glucuronidation Lipid nanoparticles, quercetin
synergy

Long-term compliance for
reproductive benefits

EGCG 500 mg/day (green tea
studies)

Gastric acid degradation, protein
binding

Nanoparticle delivery, vitamin C
combination

Timing relative to meals important

Lycopene 4–8 mg/day (male fertility
studies)

Heat/light instability,
fat-dependent absorption

Microemulsification, cooking with
oil

Higher bioavailability with food
processing

Cinnamon 1,500 mg/day (PCOS studies) Not extensively discussed Standardized extracts Blood glucose monitoring in
diabetic patients

complementary antioxidants in physiologically relevant ratios.
For instance, combining lycopene, selenium, and zinc has
demonstrated synergistic effects in improving male fertility
(280). Matrix selection significantly impacts stability and
bioavailability—lipid matrices enhance absorption of lipophilic
antioxidants, while protein matrices support sustained release
of polyphenolic compounds (281). Processing parameters must
be optimized to maintain bioactivity while ensuring safety
and shelf life, with techniques such as microencapsulation and
freeze-drying widely applied (281). Sensory characteristics
determine consumer acceptance, with taste and texture
influencing long-term compliance—particularly important
for reproductive interventions requiring extended periods
(282, 283).

Fortified beverages represent widely applied functional food
formats. Green tea beverages have demonstrated significant effects
on male sperm parameters, including enhanced motility and DNA
integrity protection (206, 284, 285). Pomegranate juice has shown
improvements in mild erectile dysfunction, with mechanisms
linked to enhanced nitric oxide bioavailability (286, 287). While
convenient, beverages have limited carrier capacity for lipophilic
compounds, which can be addressed through emulsifiers or
nanoemulsion technologies (288–291).

Stability control represents a key challenge, addressed through
co-antioxidants, microencapsulation techniques, and appropriate
packaging systems (292–295). Quality control and standardization
ensure safety and efficacy, including toxicological analysis and
monitoring batch-to-batch variation. Regulatory frameworks vary
between regions, with the US FDA allowing relatively relaxed
structure-function claims, while EFSA requires health claims based
on substantial clinical evidence (296–298).

In conclusion, functional food development for reproductive
health has established systematic frameworks encompassing
formulation design, carrier selection, and stability control. By
optimizing these factors, the bioavailability and stability of plant
antioxidants can be enhanced, providing practical pathways for
application in reproductive health protection. Table 6 outlines
potential functional food development applications based on
the evidence presented, illustrating how plant antioxidants
can be translated into practical interventions for reproductive
health promotion.

6 Future perspectives and conclusions

This review systematically explored the regulatory effects of
bioactive components from plant-based foods on reproductive
system oxidative stress and their protective mechanisms.
By integrating the latest research advances, we examined
the relationship between oxidative stress and reproductive
dysfunction, analyzed how plant-derived antioxidants protect
against inflammation-related and metabolism-related reproductive
diseases, and evaluated their application in treating male and
female infertility. From a food science perspective, we highlighted
the sources, bioavailability, and optimal delivery methods of these
bioactive compounds, providing a comprehensive framework for
translating laboratory findings into practical dietary strategies and
functional food development for reproductive health protection.

Future research should elucidate the tissue-specific
mechanisms of plant active components in reproductive tissues;
develop bioavailability enhancement technologies to overcome the
limitations of low bioavailability; evaluate the synergistic effects
of multiple plant active components to optimize combination
strategies; and conduct standardized long-term clinical studies to
establish optimal intervention protocols for different reproductive
disorders. Emerging advanced techniques, such as single-cell RNA
sequencing, spatial transcriptomics, and integrative metabolomics,
offer powerful tools to address these questions. Single-cell and
spatial approaches enable the dissection of tissue- and cell-type–
specific gene expression patterns within reproductive organs, while
high-resolution metabolomics combined with bioinformatics
pipelines allows the identification of metabolic signatures that
couple with these transcriptional programs (299). Such integrated
multi-omics strategies will provide a concrete framework to
link plant-derived antioxidant interventions with tissue-specific
molecular pathways, thereby advancing precision reproductive
medicine. Additionally, integration with functional genomics and
bioinformatics will promote the development of personalized
antioxidant intervention strategies.

Another critical future direction involves the establishment
of uniform dosage standards for plant extracts in clinical
trials. Variability in plant origin, cultivation conditions, harvest
time, and processing methods often leads to inconsistencies
in bioactive compound concentrations, thereby complicating
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TABLE 6 Functional food development applications for reproductive health based on evidence from research studies.

Application area Active compounds Evidence from
article

Development approach Target benefits

Male fertility support Lycopene + CoQ10 + Green
tea catechins

Clinical trials showing
improved sperm parameters

Combination antioxidant
formulations

Enhanced sperm motility and
DNA integrity

Female reproductive health Resveratrol + Curcumin Studies on ovarian reserve
and endometriosis

Targeted antioxidant interventions Improved oocyte quality and
reduced inflammation

Metabolic reproductive
disorders

Cinnamon extract + Green
tea polyphenols

PCOS studies with insulin
sensitization

Standardized plant extracts Glucose regulation and
hormonal balance

General antioxidant beverages Green tea catechins +
Pomegranate polyphenols

Mentioned benefits for sperm
DNA and erectile function

Natural beverage formulations Daily antioxidant support for
reproductive health

Enhanced bioavailability
products

Various compounds with
delivery systems

Extensive discussion of
nano-encapsulation and
phospholipid complexes

Advanced formulation
technologies

Improved therapeutic efficacy

dose–response evaluation. To overcome these uncertainties,
standardized extraction protocols, chemical fingerprinting, and
quantification of key bioactive components should be routinely
applied. In addition, adherence to good manufacturing practice
guidelines and the development of internationally recognized
reference standards will be essential to ensure reproducibility
and comparability across studies. Such measures will facilitate
the reliable translation of plant-based bioactives into clinical and
functional food applications.

It should also be noted that plant-derived antioxidants may
exert dose-dependent biphasic effects, exhibiting potential pro-
oxidant activity under specific concentrations or redox conditions.
Moreover, prolonged or high-dose use could pose risks of unknown
toxicity or adverse interactions, particularly when combined
with pharmaceuticals or other dietary supplements. Therefore,
future clinical research should incorporate rigorous dose–response
studies, long-term safety evaluations, and systematic monitoring
of potential drug–nutrient and nutrient–nutrient interactions to
ensure both efficacy and safety in translational applications.

In addition, the future translation of these findings into
clinical and functional food applications will require rigorous
safety evaluation and compliance with regulatory frameworks
to ensure both efficacy and consumer protection. Overall,
plant-derived bioactive substances regulate reproductive system
oxidative stress through multi-pathway protective mechanisms,
providing significant interventions from inflammation inhibition
to metabolic improvement. Combined with functional food
development, these compounds hold strong potential to
deliver safe, effective, and sustainable solutions for reproductive
health challenges.
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