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Introduction: Blue honeysuckle (Lonicera caerulea L.) is a nutritionally valuable cold-
climate berry characterized by a considerable bitter taste. While bitter compounds 
in plant foods are often associated with favorable physiological activities, their 
specific identities in blue honeysuckle remain unclear.
Methods: This study combined sensory evaluation, electronic tongue 
analysis, and untargeted metabolomics based on ultra-performance liquid 
chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) to 
identify and compare bitter compounds in three cultivars of blue honeysuckle.
Results: A total of 73 bitter metabolites were identified in blue honeysuckle, 
predominantly flavonoids, amino acids and derivatives, phenolic acids, lipids, 
and tannins. The highest-bitterness variety, Chaoxian (CX) exhibited specific 
accumulation of l-valine, l-leucine, l-histidine, l-phenylalanine, eriodictyol, 
trifolin, isoorientin, naringin, and eriocitrin compared to Luohuotan (LHT) and 
Lanjingling (LJL). The KEGG enrichment analysis implicated the biosynthesis 
of amino acids (ko01230) and flavonoid biosynthesis (ko00941) as primary 
contributors to inter-varietal bitterness divergence.
Discussion: These findings provide important information for retaining bioactive 
bitter metabolites in blue honeysuckle and optimizing its flavor profile to 
enhance market acceptability.
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1 Introduction

Blue honeysuckle (Lonicera caerulea L.), belonging to Caprifoliaceae family, mainly 
distributed in cold temperate regions of China, Russia, Japan, and America, is a cold-land 
small berry with high nutritional and medicinal value (1, 2). The blue honeysuckle fruit is 
oval-shaped, blue-purple, covered with white frost, and similar in appearance and taste to 
blueberries (2, 3). As an emerging third-generation fruit, blue honeysuckle is known as “the 
king of the third generation of small berries” due to its high nutritional and health value (2, 
4). Blue honeysuckle has garnered significant attention not only for its unique flavor, but also 
for its rich content of bioactive compounds, including amino acids, vitamins, phenolic acids, 
anthocyanins, organic acids, and flavonoids. These bioactive compounds collectively drive its 
multifaceted health benefits, including antioxidant, anti-inflammatory, hypolipidemic, 
hepatoprotective, and vasoprotective properties, which underpin its growing scientific and 
commercial significance (5, 6). As of 2022, the worldwide planting area for this crop was 
projected to have expanded to around 10,000 hectares (7). As a novel functional small berry, 
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blue honeysuckle has been increasingly introduced into the food 
market in the form of juices, jams, wines, and cans (6, 8).

The recognition threshold for bitter components is usually low and 
can even be tasted in micromolar concentrations, making bitter the most 
easily perceived flavor (9). Despite blue honeysuckle exhibit favorable 
nutritional qualities, its sensory characteristics, particularly bitterness, 
pose challenges to consumer acceptance and industrial applications (1). 
Bitterness, often considered an undesirable flavor, can significantly affect 
the overall flavor profile of fruit products and influence consumer 
preference (10). However, bitter compounds often have good 
physiological activity (11). Previous studies on plant bitterness have 
mainly focused on compounds such as alkaloids, flavonoids, terpenes, 
and phenolic acids, which are known contributors to bitter taste in 
various fruits and vegetables (12–14). Currently, there is a lack of research 
on specific bitter compounds in blue honeysuckle and their variation 
between cultivars. Xia et al. (1) identified 7-ketologanin, sweroside, and 
loganin as key bitter compounds in blue honeysuckle through sensory-
guided analysis. The high accumulation of 7-ketologanin was considered 
the primary factor contributing to the significantly stronger bitterness 
intensity observed in wild varieties A1 (37.11 ± 0.08 mg/100 g) and A2 
(34.70 ± 0.01 mg/100 g), compared to the cultivated varieties ‘Beilei’ 
(7.04 ± 0.01 mg/100 g), “Vladivostok” (7.05 ± 0.02 mg/100 g), and 
‘Lanjingling’ (2.84 ± 0.02 mg/100 g). Zhang et al. (6) found that loganic 
acid, arbutin, and coumarin were the main components responsible for 
the differences in bitter flavor among different varieties of blue 
honeysuckle fruits (Wulan, Berel, and L. pallasii). Studies have shown 
that bitter substances in fruits and vegetables are usually beneficial to 
human health (15), therefore, identifying bitter components in blue 
honeysuckle facilitates the enhanced utilization of this berry and 
supports its industrial-scale applications. Metabolomics has proven to 
be a powerful tool for elucidating complex biochemical traits in plants, 
enabling the discovery of key metabolites associated with taste, aroma, 
and nutritional quality (16, 17).

In the present study, systematic characterization of three different 
varieties of blue honeysuckle (Chaoxian, Luohuotan, and Lanjingling) 
was carried out using sensory evaluation, electronic tongue analysis, 
and untargeted metabolomics. The objectives of this study were to 
compare the metabolite profiles of three distinct blue honeysuckle 
varieties (CX, LHT, and LJL), identify potential compounds 
contributing to bitterness, and provide insights into metabolic 
pathways associated with the biosynthesis of bitter components in blue 

honeysuckle. The findings of this study provide valuable information 
for the future isolation of bitter bioactive compounds in blue 
honeysuckle and the improvement of the sensory quality of blue 
honeysuckle-derived food products.

2 Materials and methods

2.1 Materials and chemicals

Three varieties of blue honeysuckle, namely Chaoxian (CX), 
Luohuotan (LHT), and Lanjingling (LJL), were selected for the 
experiment. All blue honeysuckle samples were harvested at full 
ripeness in mid-June from the same experimental orchard (Harbin, 
Heilongjiang, China) under consistent cultivation conditions. The 
three cultivars of blue honeysuckle exhibited distinct morphological 
differences (Figure  1). “CX” berries exhibitd a slender cylindrical 
shape, with average fruit length and width of approximately 2.3 cm 
and 1.3 cm, respectively; ‘LHT’ fruits were shorter, rounder, and oval-
shaped, averaging approximately 1.5 cm in length and 0.9 cm in 
width; “LJL” fruits displayed intermediate length (about 2.1 cm long 
and 1.0 cm wide) with irregular morphology and slight flattening. 
Methanol, acetonitrile, and formic acid (chromatographically pure) 
were purchased from Kemio Chemical Tengda Biotechnology Co. 
(Xi’an, China). Potassium chloride and tartaric acid (analytical grade) 
were supplied by Merck KGaA (Darmstadt, Germany). Other reagents 
used were of analytical grade.

2.2 Determination of the chemical 
constituents of blue honeysuckle samples

2.2.1 Total flavonoid (TF) determination
The content of TF was determined by using the aluminum nitrate 

colorimetric method (18). Fresh blue honeysuckle fruit samples were 
homogenized into a uniform pulp. The uniform pulp sample (0.5 g) 
was extracted twice with 60% ethanol (v/v) under reflux (20 mL per 
extraction). The filtrates were combined, evaporated to dryness, 
dissolved in 60% ethanol (v/v), and diluted to a final volume of 
25 mL. The sample solution (1 mL) was mixed with 1 mL of 5% 
sodium nitrite solution (m/v) and allowed to stand for 6 min, then, 

FIGURE 1

Morphological characterization of three varieties of blue honeysuckle.
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1 mL of 10% aluminum nitrate solution (m/v) was added and the 
mixture was left to stand for 6 min. Subsequently, 1 mL of sodium 
hydroxide solution (4%, m/v) and ethanol solution (60%, v/v) were 
added, and the mixture was left to stand for 15 min. An ultraviolet–
visible spectrophotometer (T600, Persee General Instrument Co., Ltd., 
Beijing, China) was employed to measure the absorbance of the 
mixture at 510 nm. Rutin was selected as the standard in this assay, 
and the results were expressed as milligrams of rutin equivalents per 
gram of sample.

2.2.2 Total sugar (TS) determination
The TS content was analyzed using the phenol-sulfuric acid 

method (19). First, 1.0 g of uniform pulp sample was mixed with 
20 mL of distilled water and extracted at 90°C for 3 h. After extraction, 
the mixture was filtered, and the residue was washed with distilled 
water. The filtrate and wash solution were combined and diluted with 
distilled water to a final volume of 250 mL. The diluted test sample 
(1 mL) was taken, then, 1 mL of 5% phenol (m/v) and 5 mL of 
concentrated sulphuric acid were added. After cooling, the absorbance 
of the mixed solution was measured at 490 nm. Glucose was served as 
the standard in this determination, with results reported in milligram 
glucose equivalents per gram of sample.

2.2.3 Total acid (TA) determination
The TA content was analyzed using the titration assay (20). The 

water used in this test was carbon dioxide-free or neutral distilled 
water. The uniform pulp sample (5.0 g) was extracted with 50 mL of 
distilled water at 80°C for 3 min. The extract was filtered after cooling. 
The filtrate (20 mL) was titrated with 0.05 mol/L sodium hydroxide as 
the standard titrant, and phenolphthalein was used as the indicator. 
The TA was expressed as a percentage of malic acid.

2.2.4 Total polyphenol (TP) determination
The content of TF was determined based on the published Folin–

Ciocalteu colorimetric method (21). The uniform pulp sample (1.0 g) 
was mixed with 20 mL of distilled water and extracted at 100°C for 
30 min. The mixture was filtered after cooling, and the filtrate is 
diluted to 50 mL with distilled water. Then, 1 mL of the test solution 
was mixed with 1 mL of Folin–Ciocalteu reagent and 3 mL of 7.5% 
sodium carbonate solution (m/v). The mixture was diluted to 10 mL 
with distilled water, thoroughly mixed, and allowed to develop color 
at room temperature for 30 min, followed by absorbance measurement 
at 765 nm. Gallic acid was used for standard calibration, and the 
results were expressed as milligrams of gallic acid equivalents per 
gram of sample.

2.2.5 Quantitative analysis of free amino acids
Free amino acid content was measured according to the method 

described by Yang et al. (22) with slight modifications. Fresh blue 
honeysuckle samples were frozen at −80°C for 12 h and subsequently 
freeze-dried in a vacuum freeze dryer (Scientz-100F, Xinzhi 
Biotechnology Co., Ltd., China) at −50°C under 0.5 MPa for 48 h. 
Then, the freeze-dried blue honeysuckle samples were ground into 
powder using a grinder (MM 400, Retsch, Germany) at 30 Hz for 
1.5 min and sieved through a 60-mesh screen. The blue honeysuckle 
powder samples (0.5 g) were mixed with sulfosalicylic acid solution 
(10 mL, 40 g/L) and extracted for 15 h at 4°C. The extracted 
suspension was centrifuged at 4025 × g for 10 min in a high-speed 

centrifuge (3-30 K, SIGMA, Germany), and then the supernatant was 
evaporated to dryness. After drying, the sample was dissolved in 1 mL 
of sodium citrate buffer and passed through a 0.22 μm filter membrane 
(Tianjin Linghang Experimental Equipment Co., Ltd., Tianjin, China). 
The content of free amino acids was measured by an automatic amino 
acid analyzer (A300, MembraPure, Germany). The buffer flow rate 
was 20 mL/h, and the reaction flow rate was 10 mL/h. A sodium-form 
cationic resin column (200 mm × 4.6 mm) was employed for the test, 
with a feed volume of 50 μL, and detector wavelengths of 570 nm 
and 440 nm.

2.3 Electronic tongue analysis

Taste attributes of the three different varieties of blue honeysuckle 
samples were determined using a TS-5000Z electronic tongue system 
(INSENT Corporation, Japan). Fresh blue honeysuckle fruit samples 
were squeezed to obtain the juice. For the analysis of sourness, 
bitterness, astringency, umami, and saltiness, the juice was diluted 
three times with distilled water. For sweetness analysis, a separate 
aliquot of the juice was diluted 100 times with distilled water.

2.4 Sensory evaluation of bitter taste levels

The sensory panel was composed of 15 members (8 females and 
7 males, aged 25–45 years) and underwent specialized bitterness 
recognition training with quinine solutions (0.01, 0.02, 0.03, and 
0.05 g/L). Fresh blue honeysuckle samples from three varieties (CX, 
LHT, and LJL) were randomly coded and presented to sensory 
panelists at room temperature (25 ± 1°C). The intensity of bitterness 
was rated using a structured 9-point scale, where 1 represented “not 
bitter at all” and 9 indicated “extremely bitter.” Between samples, 
panelists rinsed their mouths with purified water and waited for 1 min 
to avoid taste interference.

2.5 Metabolomics analysis

2.5.1 Metabolome extraction
Metabolome extraction was performed based on the method 

described by Liu et al. (14) with slight modifications. The freeze-dried 
blue honeysuckle powder sample (100 mg) prepared in section 2.2.5 
was dissolved in 1.2 mL of 70% (v/v) methanol extraction solution. 
The dissolved samples were left overnight at 4°C, during which time 
they were vortexed six times to increase the extraction rate. The 
samples were centrifuged at 16100 × g for 10 min, and the 
supernatants were filtered through a 0.22 μm microfilter and kept in 
an injection bottle for Ultra Performance Liquid Chromatography 
(UPLC)-Tandem mass spectrometry (MS/MS) analysis.

2.5.2 UPLC-MS/MS analysis
The data acquisition instrument system was mainly composed of 

UPLC (Nexera X2, SHIMADZU, Japan) and MS/MS (4,500 QTRAP, 
SCIEX, Holland). UPLC conditions: chromatographic column: 
Agilent  SB-C18, 1.8 μm, 2.1 mm × 100 mm; mobile phase A: 
ultrapure water (containing 0.1% formic acid), mobile phase B: 
acetonitrile (containing 0.1% formic acid); elution gradient: 0.00 min, 
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5% B-phase; 0.00–9.00 min, B-phase proportion increased linearly 
from 5 to 95%; 9.00–10.00 min, 95% B-phase; 10.00–11.10 min, 
B-phase proportion decreased to 5%; 11.10–14.00 min, 5% B-phase; 
flow rate: 0.35 mL/min; column temperature: 40°C; injection volume: 
4 μL. Mass spectrometry conditions: The electrospray ionization 
temperature was 550°C, the mass spectrometry voltage was 5,500 V 
(positive mode)/−4,500 V (negative mode), the curtain gas was 25 psi, 
and the collision-induced dissociation parameter was set to high. In 
triple quadrupole mass spectrometers, each ion pair was scanned for 
detection based on optimized declustering potential and collision 
energy settings (23).

A self-built metabolite database provided by MetWare 
Biotechnology Co., Ltd. (Wuhan, China) was used for metabolite 
identification. The differential analysis of metabolites was performed 
on the Metware Cloud Platform (MetWare Biotechnology Co., Ltd., 
Wuhan, China). BitterDB database1 was utilized to identify potential 
bitter metabolites. The identified metabolites were functionally 
annotated by the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
Compound database,2 followed by topological mapping to KEGG 
Pathway maps to elucidate their metabolic network relationships.

2.6 Data analysis

The results of three parallel tests were averaged and expressed as 
mean ± standard deviation. Statistical analyses were conducted using 
IBM SPSS Statistics 22.0 (SPSS Inc., Chicago, IL, United States), with 
significant differences among groups determined by one-way analysis 
of variance (ANOVA) followed by Duncan’s multiple range test for 
post hoc pairwise comparisons at p < 0.05. Principal component 
analysis (PCA) and hierarchical cluster analysis cluster were 
conducted using Origin 2023 (OriginLab Corporation, Northampton, 
Massachusetts, United  States) software, and scientific graphs 
were generated.

3 Results and discussion

3.1 Chemical constituents of blue 
honeysuckle

Flavonoids, sugars, and polyphenols were widely present in blue 
honeysuckle, as reported in previous studies (2, 8). The contents of 
TF, TS, TA, and TP of the three varieties of blue honeysuckle were 
shown in Table  1. Among the three cultivars, CX exhibited the 
highest contents of TF and TP, followed by LHT with intermediate 
values, while LJL showed the lowest contents of TF and TP. CX and 
LHT showed no significant difference in TS content, but both were 
significantly higher than LJL. In terms of TA content, the level in 
LHT was significantly higher than those in CX and LJL. These 
compositional differences are likely to influence the sensory 
characteristics of the cultivars, particularly the bitterness, as higher 

1  https://bitterdb.agri.huji.ac.il/dbbitter.php

2  https://www.kegg.jp/kegg/compound/

TF and TP contents have been associated with increased bitter taste 
intensity (24).

Free amino acids act as key contributors to the sensory 
characteristics of natural foods, with diverse taste profiles including 
sourness, sweetness, bitterness, and umami (10). The free amino acid 
contents of different varieties in blue honeysuckle were shown in 
Table 2. A complete set of 22 amino acids was measured, consisting of 
9 essential amino acids, and 13 non-essential amino acids. Among 
them, l-glutamine, l-glutamic acid, and l-aspartic acid collectively 
account for over 80% of the total amino acid content in blue 
honeysuckle, constituting the primary components of its free amino 
acid profile. These free amino acids serve as the primary contributors 
to the umami taste of blue honeysuckle. The contents of l-arginine, 
l-lysine, l-valine, l-leucine, and l-phenylalanine reached the 
maximum levels in CX. Based on sensory attributes, the 
aforementioned amino acids are generally associated with bitterness 
(22, 25).

3.2 Electronic tongue analysis

The taste attributes of three different varieties of blue honeysuckle 
were measured by the electronic tongue system. Since the reference 
solution was prepared using 30 mM potassium chloride and 0.3 mM 
tartaric acid, which contain small amounts of acid and salt, the 
tasteless points of the sourness and saltiness were −13 and −6, 
respectively. As shown in Table 3, blue honeysuckle exhibited diverse 
taste profiles, and all other taste indicators except for richness are 
effective indicators (with response values higher than the tasteless 
point). Sourness was the prominent flavour indicator of all three blue 
honeysuckle fruits, with LHT being the most acidic, which is 
consistent with the results of the TA measurements. Blue honeysuckle 
fruits had a certain degree of bitterness and astringency, and there 
were some differences in bitterness and astringency among the three 
varieties, with CX having the greatest bitterness, aftertaste-bitterness 
(B), and aftertaste-astringency (A), LHT being in the middle, and LJL 
having the least. The bitterness intensity of the three blue honeysuckle 
varieties (CX, LHT, and LJL) aligns consistently with sensory 
evaluation test results.

PCA is a multivariate analytical tool designed to uncover 
underlying patterns and correlations within complex datasets (26). 
Based on the PCA results (Figure 2A), the first principal component 
(PC1) and the second principal component (PC2) explained 75.5 and 
20.5% of the variation, respectively. The proximity of the sample 
points within the group indicated high intra-group reproducibility, 
while the considerable distance between the sample points of various 
groups suggested differences in flavor among the three blue 

TABLE 1  The constituents and bitterness intensity of three varieties of 
blue honeysuckle samples.

Sample TF (mg/g) TS 
(mg/g)

TA (%) TP 
(mg/g)

CX 10.5 ± 0.360a 51.4 ± 1.37a 1.7 ± 0.030a 5.1 ± 0.10a

LHT 9.70 ± 0.630b 48.9 ± 2.27a 2.0 ± 0.030b 4.6 ± 0.070b

LJL 9.04 ± 0.210c 41.5 ± 3.38b 1.9 ± 0.050c 4.3 ± 0.19c

The experimental results are expressed as the mean ± standard deviation (n = 3). Different 
letters in the same column indicate a significant difference (p < 0.05).
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honeysuckle groups (27). The taste attribute contribution plot 
(Figure  2B) demonstrated that bitterness exhibited the highest 
contribution along the PC1, followed by astringent-A and 
aftertaste-B. On the PC2, astringency, saltiness, and sourness 
demonstrated significant contributions. These findings indicated that 

the flavor differentiation among the three blue honeysuckle varieties 
was primarily attributed to the aforementioned taste attributes.

3.3 Bitter taste levels evaluation of three 
varieties of blue honeysuckle

Results from sensory evaluation confirmed significant differences 
in bitter taste intensity among the three varieties (Figure 3), with CX 
showing the highest average bitterness score of 7.8 ± 0.52, followed 
by LHT with a moderate bitterness score of 6.0 ± 0.34, and LJL 
recording the lowest bitterness score of 3.1 ± 0.25.

3.4 Metabolic profiles and differential 
metabolites in three varieties of blue 
honeysuckle

A total of 692 metabolites were identified, including 71 amino 
acids and their derivatives, 105 phenolic acids, 36 nucleotides and 
their derivatives, 176 flavonoids, 2 quinones, 26 lignans and 
coumarins, 11 tannins, 9 alkaloids, 23 terpenes, 65 organic acids, 104 
lipids, and 64 other metabolites. Among them, flavonoids, phenolic 
acids, and lipids were established as the principal constituents of CX, 

TABLE 2  Content of free amino acids in different varieties of blue honeysuckle.

Free amino acid Amino acid type 
(essential/non-
essential)

Content (μg/g, dry weight)

CX LHT LJL

l-Histidine Essential 2.0 ± 0.070a 1.2 ± 0.10b 0.75 ± 0.11c

l-Arginine Non-essential 46.8 ± 1.56a 32.2 ± 2.54b 27.5 ± 2.42c

l-Asparagine Non-essential 62.7 ± 4.44a 8.72 ± 0.390b 12.7 ± 0.29c

l-Glutamine Non-essential 2081 ± 56.59a 1761 ± 59.57c 1984 ± 19.34ab

l-Serine Non-essential 49.6 ± 0.670a 30.8 ± 0.620b 32.9 ± 0.250b

l-Glycine Non-essential 6.1 ± 0.29a 4.8 ± 1.0b 5.2 ± 0.91b

l-Aspartic acid Non-essential 82.5 ± 1.02a 82.2 ± 3.05a 103 ± 0.570b

l-Citrulline Non-essential 0.6 ± 0.1a 0.4 ± 0.07b 0.5 ± 0.2c

l-Glutamic acid Non-essential 342 ± 3.39a 187 ± 5.72b 291 ± 0.930c

l-Threonine Essential 25 ± 0.12a 16 ± 0.51b 18 ± 0.53c

l-Alanine Non-essential 54 ± 3.2a 24 ± 0.80b 30 ± 0.23c

γ-Aminobutyric acid Non-essential 67 ± 0.97a 41 ± 3.0b 42 ± 1.2b

l-Proline Non-essential 66.9 ± 2.47a 10.4 ± 1.01b 13.0 ± 1.23c

l-Ornithine Non-essential 2 ± 0.04a 1 ± 0.03b 1 ± 0.03b

l-Lysine Essential 18 ± 0.23a 11 ± 0.27b 17 ± 0.23c

l-Tyrosine Non-essential 7.9 ± 0.29a 7.0 ± 0.25a 11 ± 0.88b

l-Methionine Essential 1.1 ± 0.040a 1.7 ± 0.090b 1.6 ± 0.010b

l-Valine Essential 30 ± 0.42a 13 ± 0.25b 11 ± 0.45c

l-Isoleucine Essential 4.2 ± 0.010a 3.6 ± 0.050b 6.7 ± 0.22c

l-Leucine Essential 11 ± 0.11a 6.8 ± 0.29b 5.9 ± 0.10c

l-Phenylalanine Essential 39 ± 0.59a 26 ± 0.80b 20 ± 0.96c

l-Tryptophan Essential 9.0 ± 0.48a 12 ± 0.47b 19 ± 0.10c

The experimental results are expressed as the mean ± standard deviation (n = 3). Different letters in the same row indicate a significant difference (p < 0.05).

TABLE 3  Determination of electronic tongue taste characteristics of 
different varieties of blue honeysuckle.

Taste 
indicator

Tasteless 
point

CX LHT LJL

Sourness −13 9.4 ± 0.040a 10 ± 0.030b 10 ± 0.050b

Bitterness 0 2.8 ± 0.020c 1.3 ± 0.030b 1.8 ± 0.020a

Astringency 0 1.5 ± 0.020b 1.8 ± 0.010a 1.3 ± 0.020c

Aftertaste-B 0 0.70 ± 0.010b 0.39 ± 0.020a 0.37 ± 0.020a

Aftertaste-A 0 2.1 ± 0.020c 1.7 ± 0.020b 1.46 ± 0.02a

Umami 0 1.8 ± 0.040b 1.9 ± 0.040a 2.0 ± 0.050a

Richness 0 0.08 ± 0.05c −0.4 ± 0.04a −0.2 ± 0.12b

Saltiness −6 1.2 ± 0.020c 1.0 ± 0.0040b 0.50 ± 0.020a

Sweetness 0 4.0 ± 0.040a 4.3 ± 0.080b 4.4 ± 0.050b

Data are expressed as mean ± standard deviation (n = 3). Significant differences (p < 0.05) 
are indicated by different superscript letters within a row.
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LHT, and LJL. These functional compounds demonstrated 
antioxidative properties by mitigating oxidative stress and suppressing 
β-amyloid production, thereby indirectly attenuating Alzheimer’s 
disease (14).

PCA of metabolite data was carried out for three varieties of 
blue honeysuckle samples. As shown in Figure  4A, the 
contribution rates of PC1 and PC2 were 43.7 and 28.1%, 
respectively, with a combined total of 71.8%, suggesting that PC1 
and PC2 contained most of the metabolite information of the blue 
honeysuckle samples (26). The three blue honeysuckle varieties 
(CX, LHT, and LJL) were clearly separated and the three biological 
replicate samples of each variety were clustered together, 
demonstrating the reliability and good repeatability of the 

experiment, as well as significant differences among the three 
varieties (28). Moreover, distinct clustering into three groups was 
evident on the hierarchical clustering heatmap (Figure  4B), 
indicating significant differences in metabolites among the 
three varieties.

To identify metabolites with significant differences in 
accumulation between blue honeysuckle varieties, a screening 
threshold of |log2Fold change (FC)| ≥ 1 and p ≤ 0.05 was applied. As 
shown in Figure  4C, a total of 221 differential metabolites were 
detected between CX and LHT, with 151 up-regulated and 70 down-
regulated metabolites in CX. Among the 185 differential metabolites 
identified between CX and LJL, 119 and 66 metabolites were 
up-regulated and down-regulated in CX, respectively (Figure 4D). In 
addition, 154 differential metabolites were present between LHT and 
LJL, with 84 and 70 metabolites up- and down-regulated in LHT, 
respectively (Figure 4E). The differential metabolites in various blue 
honeysuckle samples could be categorized into more than 11 classes 
(Table  4), and the majority of differential metabolites were 
categorized into four classes, including flavonoids, amino acids and 
derivatives, lipids, and phenolic acids. Meanwhile, multiple 
comparative analysis (Figure  4F) revealed that three different 
varieties of blue honeysuckle had 24 shared differential metabolites. 
These metabolites covered multiple biochemical classes, mainly 
flavonoids (e.g., isohyperoside, pinocembrin-7-O-neohesperidoside, 
and kaempferol-3,7-di-O-glucoside), amino acids and derivatives 
(e.g., 5-hydroxy-l-tryptophan, l-phenylalanine, and l-isoleucine), 
phenolic acids (e.g., brevifolin carboxylic acid and 
3,4,5-tricaffeoylquinic acid), and organic acids (e.g., fumaric acid and 
succinic anhydride).

Overall, the differentially accumulated metabolites could 
be  broadly divided into two groups (Table  4). The first group of 
differential metabolites constituted antioxidant components such as 
flavonoids, alkaloids, phenolic acids, and terpenoids, while the second 
group included taste-related components such as organic acids, and 
amino acids and derivatives (29). Most differentially accumulated 

FIGURE 2

(A) Principal component analysis (PCA) of three blue honeysuckle varieties based on electronic tongue data. (B) Loadings plot of taste attributes from 
electronic tongue analysis for blue honeysuckle varieties. The plot illustrates the contribution of each taste attribute to the first two principal 
components, which together explain 96.0% of the total variance (PC1: 75.5%; PC2: 20.5%). The direction of the vectors indicates the correlation 
between the original taste attribute and the PCs, while their length represents the magnitude of that contribution.

FIGURE 3

Bitter taste levels of three blue honeysuckle cultivars. Data represent 
mean ± standard deviation of three repeats. Different letters above 
the bars indicate significant differences.
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metabolites of the antioxidant components were found at higher 
concentrations in CX sample. CX, LHT, and LJL displayed similar 
metabolite accumulation patterns. There were significant differences 

in about 20–30% of the metabolites between the various varieties of 
blue honeysuckle samples, with flavonoids being the major 
differential metabolites.

FIGURE 4

(A) PCA analysis of all metabolite profiles across different blue honeysuckle groups. (B) Hierarchical clustering heatmap of all metabolites in blue 
honeysuckle of three varieties. Red indicates a high relative content and green indicates a low relative content. (C–E) Volcano plot of differentially 
accumulated metabolites in blue honeysuckle with p ≤ 0.05 and |log2FC| ≥ 1 between (C) CX vs. LHT, (D) CX vs. LJL, (E) LHT vs. LJL. The red, green, 
and gray dots represent the up-regulated, down-regulated, and non-significantly differentially accumulated metabolites between the comparison 
groups, respectively. (F) Venn diagram of differentially accumulated metabolites among CX, LHT, and LJL.

https://doi.org/10.3389/fnut.2025.1650764
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Zhu et al.� 10.3389/fnut.2025.1650764

Frontiers in Nutrition 08 frontiersin.org

3.5 Screening and differential analysis of 
potential bitter metabolites among 
different varieties of blue honeysuckle

The metabolites identified in the blue honeysuckle samples were 
further analyzed in comparison with the BitterDB database (30) and 
relevant literature for further screening of potential bitter metabolites. 
As shown in Table  5, a total of 73 were screened as potentially 
associated with the bitterness of blue honeysuckle, including 11 amino 
acids and derivatives, 11 phenolic acids, 1 nucleotide and derivative, 
30 flavonoids, 6 tannins, 2 terpenoids, 1 organic acid, 6 lipids, and 5 
other categories. Flavonoids, amino acids and derivatives, phenolic 
acids, and lipids constituted the most abundant classes of potential 
bitterness-associated metabolites identified in blue honeysuckle.

Flavonoids have been systematically characterized as the primary 
bitter principles in fruits and vegetables (13). Catechin and gallic acid 
are the main bitter substances in green tea, and catechin, epicatechin, 
gallic acid, and quercetin serve as key contributors to the increased 
bitterness in wine (10). According to Table 5, the most diverse types 
of bitter substances screened from blue honeysuckle were flavonoids 
(30 species), primarily including chrysin, pinocembrin, naringenin, 
phloretin, luteolin, eriodictyol, catechin, epicatechin, epigallocatechin, 
isorhamnetin, apigenin-O-glycosides, naringenin-O-glycosides, 
kaempferol-O-glycosides, quercetin-O-glycosides, luteolin-O-
glycosides, cyanidin-O-glycosides, eriodictyol-O-glycosides, 
diosmetin-O-glycosides, and isorhamnetin-O-glycosides. Xia et al. (1) 
similarly identified various flavonoid bitter substances such as 
anthocyanins, flavan-3-ols, flavanonols, flavones, and flavonols in blue 
honeysuckle. Epigallocatechin is a common catechin compound 
found in plant-based foods such as tea, apples, and grapes (31). 
Catechin is the main component of tea polyphenols, accounting for 
approximately 75 to 80% of the total polyphenol content in tea (32). 
The above two substances are one of the primary sources of the bitter 

and astringent taste of tea. Compared with LJL, epicatechin was 
significantly down-regulated in CX and LHT (Supplementary Table S1). 
It has been reported that phenolic acids exhibit a sour and astringent 
taste, whereas quercetin-3-O-rutinoside has a mild astringent taste. 
Phenolic acids and quercetin-3-O-rutinoside could enhance the 
bitterness of catechins (33). Most of the flavonoid bitter metabolites 
exhibited high bitter intensity. For instance, kaempferol-3-O-
galactoside and kaempferol-3-O-rutinoside demonstrated remarkably 
low bitterness thresholds of 0.00067 mmol/L and 0.00043 mmol/L, 
respectively, both significantly lower than the widely used bitter 
reference compound quinine hydrochloride (0.3 mmol/L) (22). The 
content of eriodictyol, isorhamnetin, kaempferol-3-O-galactoside, 
luteolin-6-C-glucoside, naringenin-7-O-neohesperidoside, and 
eriodictyol-7-O-rutinoside showed up-regulated expression in CX 
(Supplementary Table S1). Thus, these flavonoids may be one of the 
contributing factors to the intensified bitter taste in the varieties of 
blue honeysuckle.

Amino acids, particularly essential amino acids, frequently 
exhibit bitter taste profiles and serve as biosynthetic precursors for 
bitter constituents in food systems (34). Studies have revealed that 
l-phenylalanine is a key contributor to the bitter taste in bamboo 
shoots, and l-valine, l-isoleucine, and l-phenylalanine are 
identified as primary bitter components in Zanthoxylum 
Bungeanum Maxim (22, 35). In blue honeysuckle, several bitter 
amino acids have been identified, including l-valine, l-leucine, 
l-isoleucine, l-tyrosine, and l-tryptophan. These amino acids 
possess relatively high bitterness intensities, with reported taste 
thresholds of 30, 12, 10, 4, and 5 mmol/L, respectively (36, 37). 
Compared to the LJL group, l-histidine, l-leucine, l-valine, and 
l-phenylalanine exhibited significant up-regulation in both CX and 
LHT samples (FC ≥ 2). The shared differential metabolites between 
CX, LHT, and LJL included two bitter compounds, l-phenylalanine 
and l-isoleucine (Figure  4F), which might be  the primary 
contributors to the bitterness of the blue honeysuckle. The potential 
role of amino acid bitter metabolites in blue honeysuckle bitterness 
needs to be further explored.

Phenolic acids contribute to bitterness and astringency in wine, 
peas, and corn germ protein flour (38). In the present study, phenolic 
acids like benzamide, salicylic acid, gentisic acid, caffeic acid, and 
arbutin contributed to the bitter flavor of blue honeysuckle. Salicylic 
acid frequently accumulates in bitter vegetables and fruits such as 
bitter orange and bitter gourd, but it typically functions as a precursor 
metabolite or byproduct of the primary bitter components, rather than 
serving as a direct contributor to bitterness (39). Coffee acid 
contributes to both the bitterness and astringency of peas (38). 
Arbutin is a phenolic glycoside compound with a reported bitter taste 
threshold of only 0.9 mmol/L, which produces a bitter taste by 
stimulating the hTAS2R16 receptor (25). Fatty acids have recently 
been identified as the primary bitter compounds in oat and pea 
protein isolates (37, 40). Blue honeysuckle contained free fatty acids 
with strong bitterness (bitter recognition threshold < 1 mmol/L), such 
as palmitic acid, α-linolenic acid, linoleic acid, stearic acid, and 
(9Z,11E) − 13-hydroxyoctadeca-9,11-dienoic acid. Among them, 
α-linolenic acid, linoleic acid, and stearic acid were more abundant in 
blue honeysuckle (peak area > 1 × 107). The phenolic acid and fatty 
acid metabolites showed no significant differences among CX, LHT, 
and LJL (Supplementary Table S1).

TABLE 4  Statistical analysis of differential cumulative metabolite counts 
for three different varieties of blue honeysuckle.

Metabolite 
class

CX_vs_LHT CX_vs_LJL LHT_vs_LJL

Up Down Up Down Up Down

Flavonoids 37 31 43 34 37 21

Amino acids 

and derivatives

24 3 22 4 4 9

Lipids 34 1 15 0 4 12

Phenolic acids 28 8 14 6 14 9

Organic acids 9 10 7 4 11 1

Terpenoids 6 5 7 2 3 3

Alkaloids 2 1 0 1 0 0

Lignans and 

coumarins

3 4 3 2 4 3

Nucleotides and 

derivatives

6 2 3 6 0 4

Tannins 0 0 0 5 3 3

Others 12 2 5 2 3 4

Total 151 70 119 66 84 70
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TABLE 5  Potential metabolites associated with bitterness detected by UPLC–MS/MS.

Metabolites 
classification

Metabolites Formula Peak area (× 104) Bitter 
recognition 
threshold 
(mmol/L)

Bitter receptors 
targets

References

CX LHT LJL

Flavonoids Chrysin C15H10O4 1.7 ± 0.41 1.1 ± 0.089 0.96 ± 0.016 — hTas2r14, hTas2r39 (32)

Pinocembrin C15H12O4 1.53 ± 0.175 1.46 ± 0.190 1.85 ± 0.813 — hTas2r14, hTas2r39 (32)

Naringenin C15H12O5 41.3 ± 3.69 54.8 ± 12.9 96.1 ± 5.52 — hTas2r14, hTas2r39 (32)

Phloretin C15H14O5 23.1 ± 5.62 20.1 ± 2.55 21.4 ± 2.40 — hTas2r14, hTas2r39 (32)

Luteolin C15H10O6 6.35 ± 0.592 4.97 ± 1.04 5.59 ± 0.620 — hTas2r14, hTas2r39 (32)

Eriodictyol C15H12O6 66.7 ± 2.24 18.9 ± 3.36 47.0 ± 4.49 — hTas2r14, hTas2r39 (32)

Catechin C15H14O6 447 ± 17.1 198 ± 22.2 417 ± 44.3 0.41 hTas2r14, hTas2r39 (31, 32)

Epicatechin C15H14O6 513.8 ± 10.54 500.6 ± 62.29 1,649 ± 108.9 0.54 hTas2r4, hTas2r14, 

hTas2r39, mTas2r105

(31, 32, 41)

Epigallocatechin C15H14O7 6.38 ± 0.911 8.72 ± 0.206 7.27 ± 1.34 0.52 hTas2r14, hTas2r39 (31, 32)

Isorhamnetin C16H12O7 0.92 ± 0.18 0.41 ± 0.16 0.43 ± 0.066 — hTas2r14, hTas2r39 (32)

Apigenin-8-C-Glucoside 

(Vitexin)

C21H20O10 10 ± 0.74 7.4 ± 1.5 3.2 ± 0.13 0.001 (42)

Apigenin-6-C-glucoside 

(Isovitexin)

C21H20O10 19.3 ± 1.92 15.3 ± 2.40 7.11 ± 1.16 — (43)

Naringenin-7-O-glucoside 

(Prunin)

C21H22O10 910 ± 85.0 451 ± 54.8 384 ± 21.8 — (43)

Kaempferol-3-O-glucoside 

(Astragalin)

C21H20O11 47.5 ± 8.62 21.5 ± 2.56 31.7 ± 10.5 0.029 (44)

Quercetin-3-O-rhamnoside 

(Quercitrin)

C21H20O11 17.7 ± 1.74 9.78 ± 2.30 10.6 ± 0.370 — (43)

Kaempferol-3-O-galactoside 

(Trifolin)

C21H20O11 1946 ± 131.9 519.7 ± 58.30 492.3 ± 36.06 0.00067 (31)

Luteolin-6-C-glucoside 

(Isoorientin)

C21H20O11 23 ± 1.8 4.8 ± 0.42 1.5 ± 0.40 0.016 (42)

Cyanidin-3-O-glucoside 

(Kuromanin)

C21H21O11 474 ± 9.88 393 ± 7.22 388.1 ± 24.4 — (45)

Quercetin-3-O-galactoside 

(Hyperin)

C21H20O12 435 ± 36.0 791 ± 94.1 352 ± 42.7 0.004 (42)

Quercetin-3-O-glucoside 

(Isoquercitrin)

C21H20O12 439 ± 22.2 858 ± 36.7 389 ± 20.0 0.028 (25)

(Continued)
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Metabolites 
classification

Metabolites Formula Peak area (× 104) Bitter 
recognition 
threshold 
(mmol/L)

Bitter receptors 
targets

References

CX LHT LJL

Kaempferol-3-O-(6″-

malonyl) glucosie

C24H22O14 3.7 ± 0.37 36.4 ± 5.13 12.8 ± 0.881 0.035 (44)

Apigenin-7-O-

neohesperidoside 

(Rhoifolin)

C27H30O14 234 ± 42.2 135 ± 21.2 42.4 ± 1.88 0.029 (42)

Naringenin-7-O-Rutinoside 

(Narirutin)

C27H32O14 390 ± 13.6 76.6 ± 8.10 207 ± 28.7 0.042 (42)

Naringenin-7-O-

Neohesperidoside 

(Naringin)

C27H32O14 446 ± 43.5 69.9 ± 7.11 185 ± 14.6 0.01 (44)

Kaempferol-3-O-rutinoside 

(Nicotiflorin)

C27H30O15 493.1 ± 24.05 303.5 ± 10.01 1,132 ± 213.4 0.00043 (31)

Eriodictyol-7-O-Rutinoside 

(Eriocitrin)

C27H32O15 75.8 ± 14.4 17.2 ± 4.08 41.4 ± 3.66 0.012 (42)

Diosmetin-7-O-rutinoside 

(Diosmin)

C28H32O15 343 ± 207 587 ± 26.0 322 ± 34.9 0.023 (42)

Diosmetin-7-O-

Neohesperidoside 

(Neodiosmin)

C28H32O15 157 ± 105 80.7 ± 9.02 134 ± 12.2 0.022 (42)

Quercetin-3-O-rutinoside 

(Rutin)

C27H30O16 150 ± 3.06 145 ± 25.9 182.0 ± 7.5 0.117 (42)

Isorhamnetin-3-O-

rutinoside (Narcissin)

C28H32O16 1,105 ± 51.03 690.3 ± 52.88 1,288 ± 263.4 0.033 (42)

TABLE 5  (Continued)

(Continued)
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Metabolites 
classification

Metabolites Formula Peak area (× 104) Bitter 
recognition 
threshold 
(mmol/L)

Bitter receptors 
targets

References

CX LHT LJL

Amino acids and 

derivatives

l-Valine C5H11NO2 2,684 ± 274.8 737.5 ± 23.37 649.5 ± 49.20 30 (36)

l-Leucine C6H13NO2 1,652 ± 215.7 398.2 ± 39.85 381.8 ± 24.30 12 (36)

l-Isoleucine C6H13NO2 3,807 ± 641.0 1,020 ± 96.67 980.5 ± 78.01 10 (37)

l-Lysine C6H14N2O2 261 ± 39.4 40.2 ± 11.2 46.7 ± 4.10 80 (37)

l-Histidine C6H9N3O2 31 ± 6.4 4.5 ± 1.0 3.4 ± 0.70 48 hTas2r1 (36)

l-Phenylalanine C9H11NO2 564 ± 153 237 ± 66.7 250 ± 31.8 45 hTas2r1 (37)

l-Arginine C6H14N4O2 149 ± 63.7 56.5 ± 46.8 46.1 ± 15.5 75 (37)

l-Tyrosine C9H11NO3 396 ± 97.4 259 ± 110 379 ± 64.7 4 (37)

Glycyl-l-leucine C8H16N2O3 4.33 ± 2.01 1.76 ± 0.135 2.21 ± 0.173 22.909 hTas2r1 (46)

l-Tryptophan C11H12N2O2 24.4 ± 7.24 22.8 ± 11.0 17.9 ± 8.34 5 hTas2r4, hTas2r39 (37)

l-Glycyl-l-phenylalanine C11H14N2O3 2.5 ± 1.3 1.1 ± 0.34 1.3 ± 0.44 4.365 hTas2r1 (46)

Lipids Palmitic acid C16H32O2 3.2 ± 0.46 2.7 ± 0.15 2.8 ± 0.060 0.807 (47)

α-Linolenic acid C18H30O2 2,954 ± 196.0 1,151 ± 57.04 2,457 ± 868.3 0.28 (44)

Linoleic acid C18H32O2 2,205 ± 283.8 1,615 ± 145.0 1714 ± 572.8 0.93 (40)

Stearic acid C18H36O2 3,065 ± 193.2 3,302 ± 376.0 3,059 ± 223.5 0.726 (37)

(9Z,11E)-13-

hydroxyoctadeca-9,11-

dienoic acid

C18H32O3 8.4 ± 1.2 6.6 ± 2.2 6.5 ± 0.72 0.79 (40)

12,13-dihydroxy-9Z-

octadecenoic acid

C18H34O4 1.2 ± 0.39 1.0 ± 0.017 1.0 ± 0.043 — (48)

Nucleotides and 

derivatives

Adenosine C10H13N5O4 264 ± 121 789 ± 61.6 741 ± 4.29 77 (25)

Tannins Procyanidin B1 C30H26O12 858 ± 134 159 ± 114 891 ± 80.3 0.4 hTas2r5, hTas2r7 (38, 44)

Procyanidin B2 C30H26O12 324.3 ± 8.284 331.5 ± 46.72 3,022 ± 186.2 0.485 (49)

Procyanidin B3 C30H26O12 91.9 ± 5.40 390 ± 22.7 175 ± 40.1 0.5 (44)

Procyanidin B4 C30H26O12 22.9 ± 2.31 20.7 ± 3.43 20.5 ± 11.8 — hTas2r5 (38)

Procyanidin C1 C45H38O18 38.3 ± 2.59 92.2 ± 26.6 25.8 ± 25.2 0.4 hTas2r5 (31, 44)

Procyanidin C2 C45H38O18 37.4 ± 6.12 118 ± 29.7 215 ± 26.0 0.00104 hTas2r5 (38)

Terpenoids Sweroside C16H22O9 116 ± 5.48 510 ± 41.0 658 ± 28.6 — (50)

Swertiamarin C16H22O10 9.49 ± 2.08 12.5 ± 2.69 13.8 ± 4.40 — (51)

(Continued)

TABLE 5  (Continued)
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Metabolites 
classification

Metabolites Formula Peak area (× 104) Bitter 
recognition 
threshold 
(mmol/L)

Bitter receptors 
targets

References

CX LHT LJL

Phenolic acids Benzamide C7H7NO 6.1 ± 0.65 15 ± 5.4 11 ± 1.3 — hTas2r14 (52)

5-Hydroxymethylfurfural C6H6O3 40.7 ± 1.66 40.6 ± 3.84 45.0 ± 3.69 — (53)

Salicylic acid C7H6O3 5.1 ± 0.85 9.8 ± 2.5 8.2 ± 1.6 — hTas2r14, mTas2r135 (41)

4-Hydroxybenzoic acid C7H6O3 11 ± 3.7 11 ± 1.5 5.9 ± 0.43 0.0145 (38)

Vanillin C8H8O3 6.24 ± 1.17 7.81 ± 1.55 6.61 ± 2.03 — hTas2r14, hTas2r39, 

hTas2r49

(54)

Gentisic acid C7H6O4 46.7 ± 16.7 18.2 ± 2.48 24.1 ± 4.33 0.0129 (44)

Vanillic acid C8H8O4 4.0 ± 1.9 1.4 ± 0.72 1.6 ± 0.33 0.05947 hTas2r14 (44)

Caffeic acid C9H8O4 193 ± 157 149 ± 67.2 38.9 ± 14.4 0.0111 hTas2r1, hTas2r14 (44)

Arbutin C12H16O7 78.2 ± 7.24 17.6 ± 14.4 43.3 ± 2.76 0.9 hTas2r16, mTas2r126, 

oaTas2r811, btTas2r16, 

laTas2r16c

(25, 52, 55)

Neochlorogenic acid C16H18O9 120 ± 2.96 134 ± 32.4 87.3 ± 8.22 — (56)

Protocatechuic acid C7H6O4 103 ± 37.5 44.0 ± 4.88 60.8 ± 2.49 0.0324 hTas2r14, hTas2r47 (44, 57)

Organic acids Quinic acid C7H12O6 604 ± 21.8 536 ± 56.3 579 ± 14.0 0.052 (44)

Others Vitamin B3 C6H5NO2 11.8 ± 7.66 6.21 ± 5.42 9.02 ± 4.34 5.5 (38)

D-Pantothenic acid C9H17NO5 121.6 ± 10.94 199.4 ± 16.97 197.7 ± 13.63 — hTas2r14, hTas2r40, 

hTas2r43, hTas2r44

(41)

Resveratrol C14H12O3 5.82 ± 2.11 5.72 ± 1.28 7.05 ± 1.35 0.206 hTas2r1, hTas2r14, 

hTas2r39

(32, 38)

Vitamin B1 C12H17ClN4OS 13 ± 0.39 24 ± 1.2 14 ± 1.3 0.1 hTas2r1, hTas2r7, 

hTas2r39

(58, 59)

Vitamin B2 C17H20N4O6 13 ± 2.0 4.8 ± 1.2 4.5 ± 0.85 0.65 (38)

Peak area results are expressed as the mean ± standard deviation of three repeats. “—” indicates that no results were found.

TABLE 5  (Continued)
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Tannins are oligomers or polymers composed of derivates from 
(+)-catechin and its isomers, which may be responsible for bitter and 
astringent flavors in grapes and wine (38). Six bitter tannins, namely 
procyanidin B1, B2, B3, B4, C1, and C2, were identified in blue 
honeysuckle. Procyanidin B4 and C2 are characterized with astringent 
and bitter taste in an aqueous ethanol solution at a concentration of 
0.9 g/L. Tannin-derived bitter metabolites identified in blue 
honeysuckle possess exceedingly low bitterness thresholds (< 
0.5 mmol/L). Procyanidin B2, B4, and C1 showed down-regulation in 
CX and LHT compared to the low-bitter LJL (Supplementary Table S1). 
In addition to the above substances, a number of terpenoids 
(sweroside, swertiamarin), vitamins (D-pantothenic acid, vitamin B1, 
B2, B3), resveratrol, adenosine, and quinic acid with a bitter flavor 
have been identified in blue honeysuckle. Compared with LHT, 
vitamin B1 was significantly up-regulated in CX, while sweroside was 
significantly down-regulated in CX.

3.6 Analysis of the biosynthetic pathways 
of bitter compounds in blue honeysuckle

The KEGG database is widely utilized for investigating signal 
transduction pathways and metabolite accumulation, serving as a 
principal public repository for pathway analysis (60). As illustrated 
in Figure 5, the differential bitter metabolites among various blue 
honeysuckle samples are predominantly accumulated in 
biosynthesis of secondary metabolites (ko01110), metabolic 
pathways (ko01100), biosynthesis of amino acids (ko01230), 

flavonoid biosynthesis (ko00941), aminoacyl-tRNA biosynthesis 
(ko00970), flavone and flavonol biosynthesis (ko00944), and ABC 
transporters (ko02010). These enriched KEGG pathways were 
mostly closely related to fruit growth, development, and flavor 
formation of blue honeysuckle (13). The biosynthesis of amino 
acids and flavonoids biosynthesis were identified as key pathways 
associated with bitter compound accumulation in blue honeysuckle 
(Figure  6). Within the biosynthesis of amino acids pathway, 
significant accumulation of branched-chain amino acids (BCAAs), 
such as l-valine, l-leucine, and l-isoleucine, was observed in the 
high-bitter cultivar CX compared to LHT and LJL. These amino 
acids and their metabolic intermediates (e.g., 2-oxoisovalerate, 
3-isopropylmalate) are known precursors for various secondary 
metabolites, including bitter-tasting compounds. The elevated levels 
of l-histidine in CX also suggest its potential role in bitterness 
perception. More importantly, the flavonoid biosynthesis pathway 
showed a strong association with bitterness differentiation. In 
particular, naringenin, prunin, naringin, and vitexin were 
significantly up-regulated in CX and LHT, with much lower levels 
detected in LJL. Epicatechin was found enriched in all three 
cultivars (peak area > 1 × 106, Table  5) but showed the highest 
accumulation in LJL, implying that it may contribute to overall taste 
complexity but is not the primary driver of bitterness. Collectively, 
the accumulation patterns of l-valine, l-leucine, l-isoleucine, 
l-histidine, naringin, and vitexin were consistent with the bitterness 
gradient (CX > LHT > LJL), indicating that they are potential key 
factors contributing to the bitterness of blue honeysuckle. These 
compounds might synergistically cause bitter taste variations 

FIGURE 5

KEGG pathway analysis of differentially bitter metabolites in blue honeysuckle between (A) CX vs. LHT, (B) CX vs. LJL, (C) LHT vs. LJL.
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among blue honeysuckle varieties and warrant further validation as 
biomarkers of bitterness in future breeding and quality 
control strategies.

4 Conclusion

In summary, this study combined sensory evaluation and 
non-targeted metabolomics approachs to reveal key bitter compounds 
and pathways responsible for the bitterness differences among three 
blue honeysuckle cultivars. Flavonoids and amino acids and 
derivatives were identified as the major contributors to the bitterness 
of blue honeysuckle, especially l-valine, l-leucine, l-isoleucine, 
l-histidine, and vitexin. Enrichment of these compounds in amino 
acid and flavonoid biosynthesis pathways critically defines CX’s 
intense bitterness profile. These findings provide valuable insights for 
improving flavor quality while preserving bioactive components of 
blue honeysuckle, and have potential applications in functional food 
development and breeding strategies.
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