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Association between dietary 
carbohydrate intake and multiple 
sclerosis risk: a large-scale cohort 
study
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Hangzhou, China

Introduction: Multiple sclerosis (MS) is a chronic autoimmune disorder 
characterized by neuroinflammation and demyelination. Although diet may 
influence MS risk, evidence regarding carbohydrate intake remains unclear.
Methods: We examined this association in a prospective cohort of 210,483 
participants from the UK Biobank. Dietary carbohydrates were assessed using 
repeated 24-hour recalls. The diagnosis of MS cases was based on hospital 
inpatient records coded with the International Classification of Diseases, 10th 
Revision (ICD-10) code G35. The association between carbohydrate intake and 
MS risk was analyzed using Cox proportional hazards models.
Results: Over a median follow-up of 13.25 years, 495 incident MS cases were 
identified. A per interquartile range (IQR) increase in intake of total carbohydrates 
(HR = 1.21, 95% CI: 1.05–1.40), total sugars (HR = 1.23, 95% CI: 1.10–1.38), fiber 
(HR = 1.20, 95% CI: 1.08–1.33), fructose (HR = 1.25, 95% CI: 1.12–1.39), and 
glucose (HR = 1.20, 95% CI: 1.08–1.34) was associated with an increased risk 
of MS (all false discovery rate [FDR]-P < 0.05). Restricted cubic spline analyses 
showed linear dose–response relationships between these five carbohydrate 
types and MS risk (all Pnonlinear > 0.05). In addition, the associations between these 
carbohydrates and MS risk exhibited variations across different age and sex 
subgroups.
Discussion: Our findings indicate that higher carbohydrate intake is associated 
with an increased risk of MS. Further studies are warranted to elucidate the 
underlying mechanisms.
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1 Introduction

Multiple sclerosis (MS) is an autoimmune disease predominantly mediated by T cells and 
marked by chronic inflammatory demyelination within the central nervous system (1). The 
pathophysiology of MS involves disruption of the blood–brain barrier, infiltration of immune 
cells, and production of myelin-specific autoantibodies, which collectively contribute to axonal 
damage and subsequent neurological dysfunction (2). Between 2013 and 2020, the global 
burden of MS increased, with the total number of affected individuals rising from 2.3 million 
to 2.8 million. In 2020, the estimated global prevalence was 36 per 100,000 population (95% 
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confidence interval [CI]: 35.87–35.95) (3). Notably, the incidence of 
MS exhibits significant geographic disparities, with European 
countries reporting the highest rates (4). Given the growing disease 
burden of MS, conducting etiological research and implementing 
targeted preventive measures are essential.

Although the precise etiology of MS remains unclear, a growing body 
of evidence highlights the significant involvement of environmental 
exposures in MS development (5). Among modifiable risk factors, dietary 
carbohydrate intake has garnered increasing attention due to its potential 
role in modulating inflammation, a key mechanism in the onset of MS (6, 
7). For instance, refined sugar intake is positively correlated with 
inflammatory biomarkers, specifically hypersensitive C-reactive protein 
(hs-CRP) and Interleukin-6 (IL-6), both of which are key players in 
systemic inflammation (8). Conversely, consumption of dietary fiber and 
whole grains has been linked to reduced inflammation, a benefit partly 
attributed to the production of short-chain fatty acids (SCFAs) through 
microbial fermentation in the gut (9, 10). Moreover, dietary carbohydrates 
may also have immune-modulating activities. For example, excessive 
fructose intake can exacerbate symptoms through gut microbiota 
dysbiosis and immune dysregulation in murine models of experimental 
autoimmune encephalomyelitis (EAE), which serves as an established 
animal model for MS (11). Similarly, high glucose levels promote the 
differentiation of T helper 17 (Th17) cells by activating the mTOR 
signaling pathway, thereby enhancing autoimmune responses in EAE 
(12). Collectively, these studies indicate that dietary carbohydrates can 
modulate both inflammatory and immune pathways in MS, with different 
types of carbohydrates exerting distinct biological effects.

To date, most nutritional epidemiological studies on MS have 
focused on overall dietary patterns (13–15), diet quality (16, 17), or 
specific food groups—such as fish (18), ultra-processed foods (19), 
fruits and vegetables (19), and processed red meat (20). Research on 
nutrient intake has largely emphasized fatty acids (21, 22) and vitamin 
D (23, 24). In contrast, limited population-level evidence exists 
regarding the role of carbohydrate intake in MS development. Notably, 
a recent prospective study using the UK Biobank (UKB) examined the 
association between the intake of grains, staples, vegetables, and 
fruits—major dietary sources of carbohydrates—and the risk of MS, 
but found no significant relationship (25). Given that epidemiological 
evidence on carbohydrates and MS remains scarce, we  aimed to 
address this gap by leveraging the UKB dataset to comprehensively 
evaluate the associations between total carbohydrate intake, nine 
specific carbohydrate subtypes, and the risk of MS.

2 Methods

2.1 Study population

The UKB consists of a large, population-based prospective cohort 
recruited from individuals across the UK aged 40–69 at baseline. More 
than 500,000 participants provided genetic samples, biological 
samples, and completed questionnaires covering demographics, 
lifestyle factors, and health history. The study was approved by the 
relevant ethics committee, and informed consent was obtained from 
all participants prior to their inclusion.

The inclusion and exclusion criteria for this study were as follows: 
Initially, a total of 502,355 participants were considered. First, 
we excluded 116 participants who had withdrawn from the study, leaving 
502,239 individuals. We then included only those who had completed at 

least one 24-h dietary recall (n = 210,882). Subsequently, participants 
with a baseline diagnosis of MS were excluded (n = 399), yielding a final 
analytical cohort of 210,483 participants (Supplementary Figure S1).

2.2 Outcome determination

The main outcome was the occurrence of newly diagnosed MS cases, 
identified through hospital inpatient records coded with 10th Revision 
(ICD-10) code G35 (26). A diagnosis of MS was considered valid if it 
appeared in either the primary or secondary diagnostic position in any 
hospital admission record. The date of onset was defined as the earliest 
recorded diagnosis of MS. The follow-up duration was calculated from 
the date of the initial assessment until the earliest occurrence of one of 
the following events: diagnosis of incident MS, death, loss to follow-up, 
or the end of the study period (31 October 2022).

2.3 Exposure definition

Dietary intake data were collected using the Oxford WebQ, a tool 
specifically developed for large-scale cohort studies. This instrument 
employs a standardized 24-h dietary recall method to capture detailed 
consumption information from the previous day, including 206 food 
items and 32 beverages (27).

Estimates of nutrient intake were derived using the updated 
version of the Oxford WebQ nutrient calculation system. This method 
has demonstrated strong validity when benchmarked against 
calculations based on the UK Food Standards Agency and McCance 
and Widdowson food composition database. Validation studies 
indicate a strong agreement between these estimates and dietary 
intake assessed through interviewer-administered 24-h recalls (energy 
intake correlation coefficient r = 0.96, carbohydrate intake r = 0.95) 
(27, 28).

The UKB collected 24-h dietary recall data over five rounds. The 
first round was conducted in person at assessment centers between 
April 2009 and September 2010. Subsequently, eligible participants 
with valid email addresses were invited to complete four additional 
online 24-h dietary recalls from February 2011 to June 2012. To 
enhance the reliability of dietary intake estimates, this study used 
averaged values from all available dietary assessments (or a single 
measurement if only one was available) to estimate individual-level 
carbohydrate consumption (29).

Adjustment for total energy intake was performed using the 
residual method. Specifically, carbohydrate intake was regressed on 
total energy intake using linear regression. The residuals from these 
models were then extracted and combined with the predicted 
carbohydrate intake at the mean energy intake of the population to 
derive energy-adjusted carbohydrate variables. These adjusted 
variables were subsequently used in association analyses with MS. This 
approach isolates the variation in carbohydrate intake that is 
independent of total energy intake (30, 31).

2.4 Definition and measurement of 
covariates

Based on existing epidemiological evidence (32–41), the 
covariates included sociodemographic characteristics, lifestyle factors, 
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and other dietary factors, such as age, sex race, body mass index 
(BMI), education, Townsend deprivation index (TDI), smoking status, 
alcohol drinking status, physical activity, energy-adjusted fat, and 
energy-adjusted protein. Participants with a college, university, or 
professional degree, as well as those with a vocational qualification, 
were classified as having a “High” level of education. Those who had 
completed A-levels, AS-levels, O-levels, GCSEs, CSEs, or equivalent 
qualifications were categorized as having a “Medium” level of 
education. All other participants were classified as having a “Low” 
level of education. Socioeconomic status was quantified using the 
continuous TDI, derived from UK Office for National Statistics area-
level deprivation data linked to the residential postcodes of 
participants. Regular physical activity was defined as fulfilling at least 
one of the following criteria: accumulating 150 min or more of 
moderate-intensity exercise per week; 75 min or more of vigorous-
intensity exercise per week; performing moderate-intensity activity on 
five or more days per week; or engaging in vigorous-intensity activity 
on at least 1 day per week (42).

2.5 Statistical analysis

All statistical analyses were performed using R software (version 
4.2.3). Responses marked as “Prefer not to answer” or “Do not know” 
were treated as missing data. To enhance data completeness and 
ensure the robustness of the results, multiple imputation was applied 
to handle missing covariate data (43). The imputation models were 
selected based on the variable type (continuous, binary, or ordinal), 
and the resulting imputed datasets were used in subsequent analyses. 
Cox proportional hazards regression models were employed to 
evaluate the association between energy-adjusted carbohydrate intake 
and the risk of MS. To examine potential linear associations, restricted 
cubic splines were fitted, using the 25th, 50th, and 75th percentiles of 
carbohydrate intake as knot locations. Additionally, stratified analyses 
were conducted by sex (men vs. women) and by age group (< 60 years 
vs. ≥ 60 years).

The robustness of the results was evaluated through a series of 
sensitivity analyses: (1) exclusion of participants with missing 
covariate data; (2) removal of individuals diagnosed with MS within 
the first two years after baseline; (3) omission of participants with 
implausible energy intake (for men: < 3,347 kJ/day or > 17,573 kJ/day; 
for women: < 2,092 kJ/day or > 14,644 kJ/day) (44); (4) restriction to 
participants who completed at least three dietary assessments; (5) 
additional adjustment for type 2 diabetes, hyperlipidemia, and 
hypertension (45, 46); (6) further adjustment for energy-adjusted 
vitamin D intake (47, 48); (7) exclusion of individuals with any of the 
16 pre-existing autoimmune diseases (e.g., rheumatoid arthritis, celiac 
disease) at baseline (49), with the corresponding ICD-10 codes 
provided in Supplementary Table S1.

3 Results

Of the 210,483 individuals free of MS at enrollment, 495 
developed the disease over a median follow-up of 13.25 years 
(interquartile range [IQR]: 12.67–14.05). Among these incident cases, 
358 (72.3%) were female. Table 1 presents the baseline demographic 
characteristics and macronutrient intakes across quartiles (Q1-Q4) of 

total carbohydrate intake. With increasing carbohydrate consumption, 
the proportions of male participants and individuals engaging in 
physical activity showed a gradual upward trend. Intakes of energy, 
fat, and protein also increased across the quartiles. Age was remarkably 
consistent across all four groups. The remaining characteristics did not 
follow a strict monotonic increasing or decreasing trend across 
quartiles but instead exhibited some variation.

The distribution of carbohydrate and its subtypes in both MS and 
non-MS populations is presented in Supplementary Table S2. 
Compared with the non-MS group, individuals with MS had 
significantly higher energy-adjusted intakes of carbohydrates (median: 
260.65 vs. 256.01 g/d, p = 0.018), total sugars (median: 128.18 vs. 
122.78 g/d, p < 0.001), fiber (median: 17.72 vs. 17.39 g/d, p = 0.012), 
fructose (median: 28.48 vs. 26.69 g/d, p < 0.001), glucose (median: 
26.24 vs. 25.11 g/d, p = 0.004), and sucrose (median: 47.49 vs. 
45.20 g/d, p = 0.001).

Associations of MS risk with each IQR increase in energy-
adjusted carbohydrate intake are shown in Table 2. In the age- and 
sex-adjusted model (Model 1), per IQR increase in intake of energy-
adjusted total carbohydrates (HR = 1.15, 95% CI: 1.03–1.28), total 
sugars (1.19, 1.08–1.31), fiber (1.14, 1.03–1.26), fructose (1.17, 1.06–
1.29), glucose (1.15, 1.04–1.26), and sucrose (1.14, 1.04–1.25) were 
positively associated with MS risk, and all associations remained 
significant after false discovery rate (FDR) correction (all 
FDR-p < 0.05). After further adjustment for sociodemographic and 
lifestyle factors (Model 2), we observed that the associations for 
these carbohydrate types with MS risk were either slightly 
strengthened or remained similar, and all remained statistically 
significant (all FDR-p < 0.05). In the fully adjusted model, which 
included energy-adjusted fat and protein intake (Model 3), total 
carbohydrates (HR = 1.21, 95% CI: 1.05–1.40), total sugars (1.23, 
1.10–1.38), fiber (1.20, 1.08–1.33), fructose (1.25, 1.12–1.39), and 
glucose (1.20, 1.08–1.34) continued to show positive associations 
with MS risk (all FDR-p < 0.05), with no substantial changes in effect 
sizes compared to Model 2. However, energy-adjusted sucrose was 
no longer statistically significant after FDR correction 
(FDR-p = 0.052).

In addition to analyzing carbohydrate intake as a continuous 
variable, we  examined the associations between the five 
aforementioned carbohydrate types and MS by categorizing their 
intake into quartiles (Q1–Q4). As shown in Supplementary Table S3, 
participants in the third quartile (Q3) of energy-adjusted total 
carbohydrate intake exhibited a significantly higher MS risk compared 
to those in the lowest quartile (Q1) (HR = 1.41, 95% CI: 1.08–1.84) in 
the fully adjusted model. Energy-adjusted total sugars also 
demonstrated a positive association (Q4 vs. Q1: HR = 1.71, 95% CI: 
1.29–2.27). Higher fiber intake corresponded to increased MS risk 
(Q4 vs. Q1: HR = 1.43, 95% CI: 1.10–1.86), and similar positive 
associations emerged for fructose (Q4 vs. Q1: HR = 1.62, 95% CI: 
1.22–2.15) and glucose (Q4 vs. Q1: HR = 1.40, 95% CI: 1.06–1.86). 
These quartile-based findings align with the per IQR increase analysis, 
reinforcing a positive link between carbohydrate intake and MS risk.

We conducted several sensitivity analyses and found that the 
majority of the results remained stable, with minimal changes in effect 
sizes and sustained statistical significance. Notably, when the analysis 
was restricted to participants who completed at least three 24-h 
dietary assessments, the association between dietary fiber and MS was 
of borderline statistical significance, while the HR remained largely 
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TABLE 1  Baseline characteristics across the lowest and highest quartiles of total carbohydrate intake.

Characteristics Quartiles of total carbohydrates (g/d)

Q1 (≤201.94) Q2 (>201.94 and 
≤ 247.24)

Q3 (>247.24 and 
≤ 298.05)

Q4 (>298.05)

N 52,621 52,621 52,620 52,621

Age (y), median (IQR) 57.00 (12.00) 57.00 (13.00) 57.00 (13.00) 57.00 (14.00)

Sex, n (%)

 � Female 35,776 (67.99) 32,343 (61.46) 27,538 (52.33) 20,220 (38.43)

 � Male 16,845 (32.01) 20,278 (38.54) 25,082 (47.67) 32,401 (61.57)

Race, n (%)

 � White 49,667 (94.39) 50,569 (96.10) 50,702 (96.35) 49,842 (94.72)

 � Others 2,762 (5.25) 1866 (3.55) 1732 (3.29) 2,574 (4.89)

 � Missing 192 (0.36) 186 (0.35) 186 (0.35) 205 (0.39)

TDI, median (IQR) −2.17 (4.04) −2.37 (3.84) −2.40 (3.66) −2.27 (3.84)

BMI, kg/m2, median (IQR) 26.48 (5.84) 26.13 (5.52) 26.09 (5.44) 26.35 (5.49)

Education, n (%)

 � High 26,251 (49.89) 28,117 (53.44) 28,751 (54.63) 28,379 (53.93)

 � Medium 20,836 (39.60) 20,043 (38.09) 19,645 (37.33) 19,382 (36.83)

 � Low 5,172 (9.83) 4,214 (8.01) 4,035 (7.67) 4,618 (8.78)

 � Missing 362 (0.69) 247 (0.47) 189 (0.36) 242 (0.46)

Alcohol drinking status, n (%)

 � Current 49,414 (93.91) 49,580 (94.22) 49,435 (93.95) 48,575 (92.31)

 � Previous 1,491 (2.83) 1,455 (2.77) 1,536 (2.92) 1943 (3.69)

 � Never 1,656 (3.15) 1,529 (2.91) 1,609 (3.06) 2054 (3.90)

 � Missing 60 (0.11) 57 (0.11) 40 (0.08) 49 (0.09)

Smoking status, n (%)

 � Current 5,029 (9.56) 3,806 (7.23) 3,450 (6.56) 4,197 (7.98)

 � Previous 19,443 (36.95) 18,888 (35.89) 18,307 (34.79) 18,040 (34.28)

 � Never 27,981 (53.17) 29,794 (56.62) 30,742 (58.42) 30,243 (57.47)

 � Missing 168 (0.32) 133 (0.25) 121 (0.23) 141 (0.27)

Physical activity, n (%)

 � No 14,956 (28.42) 14,090 (26.78) 13,051 (24.80) 11,610 (22.06)

 � Yes 37,009 (70.33) 38,047 (72.30) 39,153 (74.41) 40,505 (76.97)

 � Missing 656 (1.25) 484 (0.92) 416 (0.79) 506 (0.96)

Energy, kJ/d, median (IQR) 6242.94 (1842.28) 7701.96 (1554.64) 8900.52 (1642.29) 10991.40 (2605.61)

Fat (g/d), median (IQR) 52.45 (26.92) 64.34 (26.39) 73.98 (28.63) 91.58 (38.05)

Protein (g/d), median (IQR) 65.68 (24.96) 74.62 (22.48) 81.49 (23.28) 94.52 (29.86)

Total sugars (g/d), median (IQR) 80.41 (34.10) 108.76 (32.62) 132.07 (37.08) 170.71 (57.7)

Free sugar (g/d), median (IQR) 33.11 (25.89) 48.26 (28.62) 62.20 (33.72) 86.37 (50.04)

Starch (g/d), median (IQR) 83.62 (37.06) 115.66 (32.86) 138.00 (36.85) 174.31 (56.27)

Fiber (g/d), median (IQR) 12.31 (5.78) 16.10 (5.68) 18.57 (6.18) 22.56 (8.45)

Fructose (g/d), median (IQR) 17.93 (12.78) 24.55 (13.90) 29.23 (15.66) 36.45 (21.27)

Glucose (g/d), median (IQR) 16.56 (10.58) 22.82 (11.36) 27.44 (12.89) 34.72 (18.02)

Lactose (g/d), median (IQR) 9.98 (8.07) 12.59 (8.40) 14.27 (8.89) 16.51 (10.50)

Maltose (g/d), median (IQR) 2.83 (2.72) 4.10 (3.25) 5.21 (3.99) 7.42 (6.45)

Sucrose (g/d), median (IQR) 27.22 (16.45) 38.48 (17.99) 48.21 (21.41) 65.88 (33.83)

BMI, body mass index; CI, confidence interval; HR, hazard ratio; IQR, interquartile range; TDI, Townsend deprivation index.
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unchanged (HR = 1.19, 95% CI: 1.00–1.41; p = 0.056). For other 
carbohydrate types (total carbohydrates, total sugars, fructose, and 
glucose), greater variability in effect estimates was observed in this 
sensitivity analysis, although statistical significance was largely 
maintained. This increased variability may be  attributed to the 
substantial reduction in sample size resulting from the inclusion 
criterion of at least three dietary assessments (Supplementary Table S4).

Based on these findings, we plotted RCS curves to visualize the 
dose–response relationships between carbohydrate intake and MS 
risk, as shown in Figure 1. Total carbohydrates, total sugars, fiber, 
fructose, and glucose intake all showed positive associations with MS 
risk (all P overall < 0.05). Furthermore, each relationship was found to 
be linear (all P nonlinear > 0.05).

The stratified analysis revealed that the associations of total 
carbohydrates, total sugars, fiber, fructose, and glucose with MS 
remained statistically significant only in females, but not in males. In 
age-stratified analyses, significant associations were observed for total 
carbohydrates and total sugars only among participants younger than 
60 years old, whereas no significant associations were found in those 
aged 60 or older. In contrast, the strength of the associations for fiber, 
fructose, and glucose with MS appeared to be stronger in the older age 
group (≥60 years) (Figure 2).

4 Discussion

Leveraging data from the UKB, this prospective cohort study 
provides the comprehensive evidence linking dietary carbohydrate 
intake and its subclasses with incident MS risk. Higher intakes of total 
carbohydrates, total sugars, fiber, fructose, and glucose were 
significantly associated with increased MS risk, with dose–response 
analyses revealing a linear association between these carbohydrate 
intake and MS incidence. Furthermore, these associations exhibited 
variations by sex and age.

Our findings indicate that a higher intake of carbohydrates is 
associated with an increased risk of MS, consistent with earlier 
reports. For example, the participants with MS were found to 
consume more carbohydrates than healthy individuals in a previous 

case–control study (50). Similarly, following a Mediterranean diet—
which is naturally low in refined carbohydrates—has been linked to 
a lower risk of MS (51). Intervention studies further support the 
importance of carbohydrate quality: substituting refined grains with 
whole grains such as rye and whole-wheat pasta was shown to reduce 
levels of IL-6, an inflammatory molecule implicated in MS (52). 
Collectively, these findings suggest that both the quantity and quality 
of carbohydrates may influence MS risk.

In addition to total carbohydrate intake, we found that high sugar 
intake was significantly associated with increased MS risk. This aligns 
with mechanistic insights from a animal study, which indicated that 
excessive sugar may disrupt gut bacteria, particularly by depleting 
butyrate-producing bacteria that are crucial for maintaining both 
intestinal and blood–brain barrier integrity (53). Such dysbiosis could 
contribute to neuroinflammation and immune dysregulation, 
potentially explaining our observations. In particular, fructose and 
glucose—simple sugars abundant in sweetened foods and beverages—
were strongly associated with MS risk. Experimental studies have 
shown that chronic high-fructose intake can induce hippocampal 
neuroinflammation, gliosis, and neuronal loss in mice (54), while 
glucose has been shown to promote Th17 cell differentiation, a process 
known to exacerbate neuroinflammatory responses (12). Nevertheless, 
further human studies are needed to clarify the specific roles of 
different sugars in MS pathogenesis.

From a public health perspective, our study highlights the 
potential of dietary modification as a population-wide strategy for 
reducing the risk of MS. The observed association between the intake 
of carbohydrates and sugars—particularly fructose and glucose—and 
MS incidence suggests that nutritional interventions could contribute 
meaningfully to the primary prevention of MS. These findings are 
consistent with new WHO guidelines strongly recommending that 
adults and children limit their daily intake of free sugars (defined as 
monosaccharides and disaccharides added to foods and beverages) to 
less than 10% of total energy intake to lower the risk of overweight, 
obesity, and dental caries (55). By extending the relevance of sugar 
reduction to neurological health, our results support the integration 
of dietary recommendations into public health policies aimed at 
preventing chronic immune-mediated diseases.

TABLE 2  Association between per IQR increase in carbohydrate intake and the risk of multiple sclerosis.

Energy-adjusted 
carbohydrate intake 
(per IQR increase)

Model 1 Model 2 Model 3

HR (95%CI) p FDR-P HR (95%CI) p FDR-P HR (95%CI) p FDR-P

Total carbohydrates 1.15 (1.03–1.28) 0.012 0.020 1.21 (1.08–1.35) 0.001 0.001 1.21 (1.05–1.40) 0.008 0.015

Total sugars 1.19 (1.08–1.31) <0.001 0.004 1.24 (1.12–1.37) <0.001 <0.001 1.23 (1.10–1.38) <0.001 0.001

Free sugar 1.08 (0.98–1.19) 0.134 0.179 1.07 (0.97–1.18) 0.172 0.229 1.02 (0.92–1.14) 0.659 0.718

Starch 0.96 (0.86–1.07) 0.416 0.499 0.97 (0.87–1.08) 0.614 0.687 0.95 (0.85–1.06) 0.321 0.385

Fiber 1.14 (1.03–1.26) 0.011 0.020 1.19 (1.08–1.32) 0.001 0.001 1.20 (1.08–1.33) 0.001 0.002

Fructose 1.17 (1.06–1.29) 0.002 0.008 1.24 (1.13–1.37) <0.001 <0.001 1.25 (1.12–1.39) <0.001 0.001

Glucose 1.15 (1.04–1.26) 0.007 0.016 1.21 (1.09–1.33) <0.001 0.001 1.20 (1.08–1.34) 0.001 0.003

Lactose 0.98 (0.88–1.09) 0.718 0.783 0.98 (0.88–1.10) 0.750 0.750 0.99 (0.89–1.11) 0.894 0.894

Maltose 1.00 (0.93–1.07) 0.964 0.964 0.98 (0.92–1.05) 0.630 0.687 0.96 (0.90–1.03) 0.259 0.345

Sucrose 1.14 (1.04–1.25) 0.005 0.016 1.14 (1.04–1.25) 0.005 0.009 1.11 (1.01–1.22) 0.030 0.052

Cases/total person-years: 495/2770945. Model 1, adjusted for age and sex. Model 2, model 1 adjustments plus adjusted for race, education, TDI, BMI, smoking status, alcohol drinking status, 
and physical activity. Model 3, model 2 adjustments plus energy-adjusted fat and energy-adjusted protein. BMI, body mass index; CI, confidence interval; HR, hazard ratio; IQR, interquartile 
range; TDI, Townsend deprivation index. Bold values indicate statistically significant results (p < 0.05 or FDR-p < 0.05) and HRs (95% CIs) showing statistical significance.
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Interestingly, although fiber is generally considered beneficial due to 
its anti-inflammatory and gut-health promoting properties, our results 
showed a positive association with MS risk. This unexpected finding may 
be  due to the different types of fiber. Dietary fibers are commonly 
classified into soluble and insoluble types based on their water solubility. 
Soluble fibers—such as inulin and guar gum—can be  fermented by 
colonic microbiota, yielding metabolites including short-chain fatty acids 
like butyrate (56). In contrast, insoluble fibers, such as cellulose and 
hemicellulose, primarily enhance intestinal motility and are less readily 
utilized by gut microbes (57). Notably, emerging evidence suggests that 
different types of fiber may have divergent effects on health. For instance, 
previous study has reported that high doses of soluble fibers may 
promote colorectal carcinogenesis in mice, while insoluble fibers did not 
show similar effects (58). More specifically, high intake of soluble fiber 
may induce gut microbiota dysbiosis—enriching potential pathogens 
and reducing beneficial commensals—thereby facilitating colorectal 
tumorigenesis. Additionally, soluble fiber can disrupt intestinal 

metabolism, leading to elevated fecal butyrate and serum bile acids, along 
with reduced fecal inosine. Although direct evidence linking soluble fiber 
to MS is limited, we hypothesized that the positive association observed 
in our study may reflect high intake of soluble fiber and subsequent 
microbial metabolite activity, which could influence MS pathogenesis 
through the gut–brain axis. This hypothesis warrants further 
experimental validation.

Stratified analysis by sex revealed that the significant association 
between carbohydrate intake and MS was observed only in females. 
From a statistical perspective, this may be attributed to the larger 
sample size in this subgroup compared to males, where the limited 
sample size might have resulted in insufficient statistical power to 
detect a significant HR. Furthermore, the observed differences in 
associations may also reflect underlying sex-specific physiological 
mechanisms. MS incidence is higher in women, particularly during 
reproductive age (20–49 years), with a female-to-male ratio reaching 
up to 3:1 (59, 60). Hormonal influences play a key role in immune 

FIGURE 1

Restricted cubic spline curves depicting the dose–response relationship between total carbohydrates (A), total sugars (B), fiber (C), fructose (D), and 
glucose (E) and the risk of multiple sclerosis. Models were adjusted for age, sex, race, education, BMI, TDI, smoking status, alcohol drinking status, 
physical activity, energy-adjusted fat, and energy-adjusted protein. The x-axis represents carbohydrate intake, excluding extreme values at the 5th and 
95th percentiles. The hazard ratio is shown as a solid line, with the corresponding 95% confidence interval represented by the shaded area between 
the dashed lines. BMI, body mass index; CI, confidence interval; TDI, Townsend deprivation index.
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modulation. Estrogen, exhibits a biphasic immunomodulatory effect: 
it stimulates immune responses at low concentrations but acts as a 
strong immunosuppressant during pregnancy (33). Moreover, women 
generally demonstrate stronger antibody and T cell-mediated immune 
responses, which further contribute to this sexual dimorphism (61). 
The inherently higher susceptibility of women to MS may explain why 
the observed positive association between carbohydrate intake and 
MS was more pronounced in females.

Our study has some limitations should be noted. First, the UKB 
cohort primarily comprises middle-aged and older White participants, 
which limits generalizability to early-onset MS and other populations. 
Second, residual confounding cannot be completely excluded, particularly 
with respect to factors such as gut microbiome composition, which 
warrants prioritization in future research. Third, despite the prospective 
design, lag-period analysis, and extensive covariate adjustment, reverse 
causality remains plausible. Individuals with early MS symptoms or a 
high-risk profile may have altered their dietary habits prior to enrollment. 
However, the robustness of our findings after excluding early cases and 
adjusting for baseline chronic conditions mitigates this concern. Fourth, 
dietary data were self-reported, introducing potential measurement error. 
Fifth, although the overall cohort was large, the number of incident MS 
cases was modest, limiting statistical power and highlighting the need for 
replication in larger cohorts. Sixth, the UKB does not distinguish fiber 
subtypes (e.g., soluble vs. insoluble), preventing clarification of whether 
the observed positive association with MS risk is driven primarily by 
soluble fiber. Finally, while this study identifies correlative associations, it 
does not provide experimental validation of the mechanisms by which 
dietary carbohydrates influence MS pathology, which is a crucial next step 
that we plan to undertake in subsequent research.

5 Conclusion

In conclusion, we found significant associations between higher 
intakes of total carbohydrates, total sugars, fiber, fructose, and glucose 
and an increased MS risk. These findings offer valuable insights for 

developing dietary interventions focused on carbohydrate regulation 
to mitigate MS risk, which may help reduce its public health burden.
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