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1 Introduction

The global metabolic disorder, type 2 diabetes mellitus (T2DM), significantly increases

the risk of cognitive dysfunction, including Alzheimer’s disease (AD) and mild cognitive

impairment (MCI). Evidence shows that there is the same pathophysiological mechanism

between T2DM and neurodegeneration (1–4). The Mediterranean diet (MedDiet)—a

dietary pattern rich in fruits, vegetables, whole grains, nuts, fish, and olive oil, with

low saturated fat intake—may improve cognitive dysfunction of T2DM. However,

challenges such as the lack of a unified MedDiet definition and compliance standards

make translational research difficult to operate. This opinion article summarizes the

current understanding of the pathological mechanisms that link T2DM with cognitive

dysfunction and evaluates the protective effects of the MedDiet. The aim is to inform

therapeutic strategies that could delay or prevent cognitive decline associated with T2DM.

Additionally, it analyzes the potential challenges related to implementing the MedDiet in

the context of T2DM-associated cognitive impairment.

2 Pathophysiological links between type 2 diabetes
mellitus and cognitive dysfunction

2.1 Insulin resistance and brain insulin signaling

Peripheral insulin resistance (IR) in T2DM disrupts central insulin signaling through

various mechanisms, leading to neurodegeneration. Hyperinsulinemia, a characteristic

feature of T2DM, reduces insulin passing through the blood–brain barrier (BBB) by

downregulating insulin receptors (5). This process diminishes insulin availability in critical

brain regions, such as the hippocampus and cortex (6). Decreased insulin signaling

impedes the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway, which

is crucial for neuronal survival, synaptic plasticity, and glucose metabolism (7). Inhibition

of PI3K/AKT activity triggers the activation of glycogen synthase kinase-3β (GSK-3β),

resulting in tau hyperphosphorylation and the formation of neurofibrillary tangles—

a pathological marker of AD (8, 9). Meanwhile, the decrease in insulin-degrading

enzyme (IDE) activity due to IR can diminish amyloid-β (Aβ) clearance, accelerating

the deposition of Aβ plaques (10). Aβ aggregates further exacerbate insulin resistance by

binding to neuronal insulin receptors and activating pro-inflammatory pathways, forming

a vicious cycle.
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Chronic peripheral insulin resistance can also induce

neuroinflammation by causing systemic metabolic disorders.

Elevated levels of free fatty acids and cytokines, such as TNF-α

and IL-6, activate microglia and astrocytes, causing oxidative stress

and permanent synaptic damage (11). Inflammatory mediators

disrupt the integrity of the BBB, allowing peripheral inflammatory

molecules to penetrate the brain and exacerbate neuronal

inflammation. In addition, advanced glycation end products

(AGEs) caused by hyperglycemia interact with AGE receptors

on neurons, triggering NF-κB activation and further enhancing

the production of Aβ and tau pathology (12–14). Neuroimaging

studies have shown that the utilization rate of glucose in the

brain of patients with T2DM is reduced and the hippocampus

is atrophied (15), which correlates with impairments in memory

and executive function. These findings highlight that peripheral

insulin resistance plays an important role in the dysfunction of

brain insulin signaling and AD-like changes in T2DM.

2.2 Dyslipidemia and lipid metabolism
dysregulation

Dyslipidemia, also known as lipid metabolism disorders,

involves imbalances in cholesterol, triglycerides, and other lipid

components. These imbalances are closely linked to cardiovascular

diseases, obesity, and metabolic syndrome. The process of lipid

metabolism changes with age (16).

The key subtype of dyslipidemia, dysregulation of cholesterol

metabolism, and the synergistic effect of the ApoE4 allele, the

main genetic risk factor of AD, exacerbate AD-related pathological

changes. ApoE4 reduces the efficiency of cholesterol transport

in the brain, decreasing the clearance of Aβ peptides, while

dysregulated cholesterol metabolism promotes the abnormal

processing of the amyloid precursor protein (APP), increasing

Aβ production (17, 18). The above dual mechanisms amplify

Aβ deposition, while cholesterol imbalance activates kinases such

as GSK-3β, driving tau hyperphosphorylation and the formation

of neurofibrillary tangles (19). ApoE4 accelerates neuronal

damage and further exacerbates tau pathology by disrupting

microtubule stability and reducing tau degradation. In patients

with T2DM, chronic hyperglycemia and IR will destroy brain

lipid homeostasis and aggravate the imbalance of cholesterol

metabolism. The metabolic stress associated with T2DM impairs

ApoE-mediated clearance of Aβ, which synergizes with the intrinsic

clearance deficiency of ApoE4 to accelerate the accumulation of

Aβ. Meanwhile, hyperglycemia and abnormal lipid metabolism

enhance tau phosphorylation, while ApoE4 enhances tau pathology

by altering intracellular signaling. These interactions collectively

elevate the dementia risk in T2DM patients carrying ApoE4 far

beyond that of individuals with either condition alone.

2.3 Vascular injury and cerebral
hypoperfusion

Vascular injury and cerebral hypoperfusion are critical

contributors to cognitive dysfunction in patients with T2DM, with

chronic hyperglycemia playing a central role in these pathological

processes. Prolonged hyperglycemia directly damages vascular

endothelial cells, the protective barrier between blood and vessel

walls, by activating the TLR4 signaling pathway. This activation

promotes the release of pro-inflammatory cytokines (e.g., IL-6 and

TNF-α) and triggers oxidative stress through excessive production

of reactive oxygen species (ROS) (20, 21). Endothelial damage

disrupts the balance between the anticoagulant and procoagulant

functions of endothelial cells, leading to platelet aggregation,

lipid deposition, and the formation of atherosclerotic plaques.

Consequently, vascular stenosis and stiffening occur, which reduces

cerebral blood flow and impairs brain perfusion.

Cerebral blood insufficiency reduces the supply of nutrients

and oxygen to neurons, particularly affecting microvascular

networks that are critical for maintaining cognitive function (22).

Microvascular complications, including diabetic retinopathy (a

marker of cerebral microvascular injury), are strongly associated

with more severe cognitive decline (23). Research has shown that

extensive microvascular damage can affect synaptic plasticity and

neuronal metabolism (24). Additionally, chronic hyperglycemia-

induced endothelial dysfunction weakens the BBB, increasing the

risk of cerebral edema, hemorrhage, and the accumulation of

neurotoxic substances such as β-amyloid, which further exacerbates

neuronal damage.

Beyond microvascular injury, large-vessel atherosclerosis, such

as carotid artery stenosis, significantly impacts cognitive networks

by altering cerebral hemodynamics. Studies have shown that the

severity of carotid stenosis in patients with T2DM correlates with

the extent of cognitive impairment, with severe stenosis doubling

the risk of cognitive decline (25). Systemic atherosclerosis also

accelerates the progression of cognitive deficits, as a decrease

in blood flow in key brain areas, such as the left wedge and

superior occipital gyrus, will damage visual processing, memory,

and attention, which are domains critical for maintaining cognitive

function. Asymptomatic cerebral infarction and microbleeds can

further impair cognitive networks, particularly in the domains

of attention and processing speed (26). Collectively, these

vascular pathologies create a vicious cycle: hyperglycemia leads to

endothelial injury and hypoperfusion, which in turn exacerbates

metabolic dysregulation and accelerates cognitive decline in

patients with T2DM.

3 Mechanisms of MedDiet in
T2DM-related cognitive dysfunction

The MedDiet refers to the lifestyle of residents in the

Mediterranean region, rather than a simple, strict dietary plan.

Its core concepts encompass consuming more legumes, vegetables,

fruits, nuts, whole grains, spices, and fish (with olive oil as a

key source of fat); consuming fish or other seafood at least

twice a week; moderately consuming dairy products and eggs;

eating less red meat and desserts; and drinking a small amount

of wine. It also encourages people to interact with each other

and to savor healthy, fresh foods. This dietary pattern is low in

saturated fat, accounting for ∼10% of energy intake (27, 28), and

is rich in various micronutrient functional components, including

vitamins, carotenoids, unsaturated fatty acids, and diverse bioactive
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FIGURE 1

Composition of the MedDiet and its role in cognitive impairment caused by T2DM.

plant phenolic compounds with antioxidant and anti-inflammatory

effects. These plant-derived phenolic compounds may regulate

insulin action and metabolism in insulin-sensitive tissues, exerting

effects that prevent or treat insulin resistance and its related diseases

(29). Initially, Ancel Keys, an expert in animal physiology and

biology, discovered through experiments that Italians had a lower

prevalence of heart disease and coronary artery disease (30, 31).

However, his views were challenged by other scholars. In response,

he conducted the renowned “Seven Countries Study,” which

confirmed that the Mediterranean dietary pattern was associated

with a lower risk of cardiovascular events (32, 33). It is hypothesized

that such effects may contribute to a reduction in the risk of

dementia (34–36). Building on his research, the Mediterranean

dietary pattern has gradually gained widespread recognition.

The MedDiet has been proven to better ameliorate IR in

obese individuals, with its induced reductions in insulin levels

and other IR markers—such as the homeostatic model assessment

(HOMA) index—being early and sustained (37, 38). A meta-

analysis encompassing several randomized trials, including the

large-scale PREDIMED trial (34), revealed that the MedDiet, when

compared to low-fat diets, decreased the risk of stroke (HR =

0.60, 95% CI = 0.45–0.80). Another observational study reported

lower incidence rates of Parkinson’s and AD among individuals

adhering to the MedDiet (39). An observational study that utilized

dietary questionnaires to evaluate and quantify dietary adherence

among various population groups found that individuals with

the highest adherence to the MedDiet had lower incidence rates

of MCI and AD, as well as slower rates of cognitive decline

(Figure 1), compared to those with poor adherence (40–43). A 4.2-

year observational study in Israel found that strict adherence to a

MedDiet in patients with type 2 diabetes was associated with slower

cognitive decline (44). To further explore the key components of

the Mediterranean dietary pattern, scholars conducted a follow-up

of ∼250,000 participants for 11.4 years and found that consuming

2–4 servings of fish per week and 1–2 servings of fruits per day were

associated with a reduced risk of dementia (45).

The primary role of the MedDiet lies in its positive effects on

glucose metabolism, including improvements in IR, enhancements

in insulin clearance, and the strengthening of β-cell function

(46). It counteracts cognitive decline through the antioxidant and

anti-inflammatory properties of polyphenols (found in olive oil

and berries) and omega-3 fatty acids (present in fish) (47–49). It

stabilizes glucose levels, improves lipid profiles (reducing LDL-

C while increasing HDL-C) (28), enhances endothelial function

for cerebrovascular health (50), and modulates the gut–brain axis

through its high fiber content, which fosters beneficial microbiota

(51, 52). Cross-sectional studies indicate that high adherence is

associated with improved verbal memory in diabetes patients (P =
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0.043), whereas the PREDIMED trial confirmed a 30% reduction

in diabetes incidence and a slowdown in cognitive decline among

high-risk groups (53). When combined with aerobic exercise, it

synergistically enhances glycemic control, lipid metabolism, and

gut microbiota diversity. Metformin, a GLP-1 receptor agonist, and

other hypoglycemic drugs may reduce cognitive dysfunction in

T2DM, a finding that warrants further study.

However, the MedDiet currently lacks a standardized

definition, adherence criteria, and scoring system. This significantly

hampers comparisons between studies and impedes the translation

of scientific research into practical recommendations for the

general public (54). On the other side of the shield, despite the

well-established benefits of the MedDiet, researchers acknowledge

that uncertainties persist regarding its implementation in non-

Mediterranean regions. Adherence to the MedDiet poses a

common challenge, as it is often perceived as difficult to maintain

in non-Mediterranean areas (55).

4 Conclusion

T2DM and cognitive dysfunction share common

pathophysiological mechanisms. MedDiet’s anti-inflammatory,

antioxidant, and metabolic regulatory effects provide a promising

intervention for patients with cognitive impairment of T2DM.

By improving insulin sensitivity, stabilizing glucose levels,

optimizing lipid metabolism, and improving cerebrovascular

function, MedDiet has been proven to reduce the risk of stroke,

MCI, and AD in T2DM patients. Observational studies, such as

PREDIMED, have demonstrated their role in slowing cognitive

decline, particularly when combined with lifestyle changes

including exercise.

There are still challenges regarding MedDiet, including

standardization of MedDiet and long-term adherence strategies,

especially in non-Mediterranean regions. Research on MedDiet

bioactive ingredients for specific pathologies may become the

future research direction, and dietary interventions will be included

in the personalized management of type 2 diabetes to maximize

cognitive protection. In general, these efforts may bridge the gap

between basic research and clinical practice and ultimately reduce

the burden of cognitive dysfunction associated with T2DM.
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