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Background and aim: Pediatric cancer is a significant health concern, particularly 
in low- and middle-income countries with lower cure rates. The nutritional 
status of these patients is crucial because malnutrition, whether due to a 
deficiency or excess of energy, can negatively impact treatment response and 
long-term outcomes. Since resting energy expenditure (REE) is a key parameter 
for planning appropriate nutritional support, accurate assessment is essential. 
However, the most precise methods, such as indirect calorimetry (IC), are not 
always available, leading to predictive equations based on easily accessible 
variables. These equations may be  inaccurate if they are not specifically 
designed for children with cancer. Therefore, this study presents an equation 
to estimate REE in pediatric patients with oncological diagnosis and to compare 
the accuracy of this equation with those of previous equations developed in 
different pediatric populations to assess its utility in a clinical population.
Methodology: A cross-sectional study was conducted in pediatric patients 
aged 6 to <18 years with a recent oncological diagnosis. After diagnosis, 
anthropometric measurements were taken, nutritional status was assessed, 
body composition was determined using bioelectrical impedance, and REE was 
measured through IC.
Results: A total of 226 pediatric participants were evaluated, of whom 203 
were included in the final analysis. The majority had solid tumors (68.5%), 
followed by leukemia (20.2%) and brain tumors (11.3%). Significant differences in 
anthropometric and biochemical variables were observed among the different 
diagnoses, with patients with brain tumor having lower REE/kg of body weight. 
Two new REE prediction equations specific to this population were developed: 
the INP-simple model, which is based on basic clinical variables, and the INP-

OPEN ACCESS

EDITED BY

Luca Giacomelli,  
Polistudium srl, Italy

REVIEWED BY

Katarzyna Zadka,  
Independent Researcher, Warsaw, Poland
Luiz Claudio Barreto Silva Neto,  
Federal University of Espirito Santo, Brazil

*CORRESPONDENCE

Martha Guevara-Cruz  
 martha.guevarac@incmnsz.mx  

Isabel Medina-Vera  
 Isabelj.medinav@gmail.com

RECEIVED 30 June 2025
ACCEPTED 08 September 2025
PUBLISHED 24 September 2025

CITATION

​García-Guzmán AD, ​Becerra-Morales SN, ​
Pinzón-Navarro BA, ​Baldwin-Monroy DD, ​
Zapata-Tarres M, ​Velasco-Hidalgo L, ​
Avila-Nava A, del Socorro ​Cárdenas-Cardos R, 
​Maldonado-Silva K, ​Guevara-Cruz M and ​
Medina-Vera I (2025) Development of a 
predictive equation for resting energy 
expenditure in pediatric patients with 
oncological diagnosis.
Front. Nutr. 12:1656975.
doi: 10.3389/fnut.2025.1656975

COPYRIGHT

© 2025 García-Guzmán, Becerra-Morales, 
Pinzón-Navarro, Baldwin-Monroy, 
Zapata-Tarres, Velasco-Hidalgo, Avila-Nava, 
del Socorro Cárdenas-Cardos, 
Maldonado-Silva, Guevara-Cruz and 
Medina-Vera. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Original Research
PUBLISHED  24 September 2025
DOI  10.3389/fnut.2025.1656975

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2025.1656975&domain=pdf&date_stamp=2025-09-24
https://www.frontiersin.org/articles/10.3389/fnut.2025.1656975/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1656975/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1656975/full
https://www.frontiersin.org/articles/10.3389/fnut.2025.1656975/full
mailto:martha.guevarac@incmnsz.mx
mailto:Isabelj.medinav@gmail.com
https://doi.org/10.3389/fnut.2025.1656975
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2025.1656975


García-Guzmán et al.� 10.3389/fnut.2025.1656975

Frontiers in Nutrition 02 frontiersin.org

Morpho model, which includes body composition. Both new INP equations 
showed less bias in REE estimation (114.8, 95% CI: −408, 638) than traditional 
equations, including the Harris-Benedict (−133.6, 95% CI: −671.5, 404.2), FAO 
(−178.8, 95% CI: −683.9, 326.3), Schofield (−185.4, 95% CI: −697.6, 326.8), IOM 
(−201, 95% CI: −761.7, 359.7), Oxford (−110.6, 95% CI: −661.4, 440.1), Kaneko 
(−135.6, 95% CI: −652.5, 381.4) and Müller (−162.6, 95% CI: −715.1, 389.9) 
equations but not the Molnár equation (−82.3, 95% CI: −741.3, 576.7).
Conclusion: Children with cancer often have energy expenditure levels that 
differ from the recommended values, increasing their risk of malnutrition or 
obesity. Predictive equations specifically developed for this population may 
offer improved accuracy for estimating REE in clinical settings, although external 
validation is still needed.

KEYWORDS

resting energy expenditure, cancer, pediatrics, equations, nutrition

Introduction

Pediatric cancer is among the leading causes of morbidity and 
mortality (1, 2); in high-income countries, more than 80% of affected 
children are cured, but in many low- and middle-income countries, 
the cure rate is only approximately 20% (3). However, with advances 
in treatments, survival rates have increased. The oncological process 
and associated therapies can have a significant effect on nutritional 
status (4), and this results in a critical challenge that could affect the 
response to treatment (5); since these are growing patients, it could 
affect long-term results (6) as well as early relapse in those with states 
of malnutrition (deficit or excess) (7), since a deteriorated nutritional 
status is associated with increased mobility and mortality, and accurate 
nutritional assessment followed by timely interventions could improve 
survival and clinical outcomes (8), significantly affecting quality of life 
(9, 10). Therefore, the role of nutrition (including nutritional 
assessment and interventions) during pediatric cancer treatment is 
extremely important and is reflected in patients’ clinical outcomes. 
Adequate nutrition, and thus a good nutritional status, reduces the 
total time needed to complete oncological treatment, decreases the 
need for antifungal therapy, and is associated with increased overall 
survival (11). A deteriorated nutritional status has frequently been 
observed at the time of diagnosis or during its subsequent 
management; malnutrition at the time of diagnosis has a high 
variability in prevalence, ranging from 7% in those with leukemia to 
50% in those with neuroblastoma (12). Malnutrition is a critical 
challenge that can lead to poor treatment tolerance and poor 
prognosis; the causes are multifactorial but likely involve interactions 
between the iatrogenic consequences of treatment and complex 
interactions between energy and substrate metabolism; therefore, it is 
essential to address the nutritional status of pediatric patients with 
cancer as an integral part of their medical care, ensuring that they 
receive adequate nutritional support.

In pediatric patients with cancer, the interaction between systemic 
inflammation and metabolic alterations triggers cancer-related 
cachexia, which is characterized by a progressive loss of lean body 
mass with or without fat loss, resulting in an energy imbalance that 
compromises immune function and treatment response. The role of 
proinflammatory cytokines such as TNF-α, IL-1, and IL-6 in activating 
protein catabolism and mitochondrial dysfunction in muscle, 
processes that exacerbate physical and functional decline in these 

children (13), is highlighted in this work. The presence of cachexia in 
patients with an oncological diagnosis increases treatment-related 
toxicity and long-term morbidity and potentially affects mortality 
(14). The loss of muscle mass reduces the body’s capacity to metabolize 
drugs properly, while metabolic changes can alter drug clearance rates, 
making dose adjustment challenging (15). Moreover, immune 
dysfunction associated with cachexia impairs the patient’s ability to 
fight infections, increasing complications and prolonging hospital 
stays (16). These complications may contribute to treatment 
interruption and dose reduction, negatively influencing prognosis 
(17). Therefore, addressing malnutrition and cachexia early during the 
cancer treatment process is critical not only to improve nutritional 
status but also to enhance therapeutic outcomes and reduce adverse 
effects. Integrating nutritional support into the oncological care plan 
can improve quality of life and overall survival (18).

To receive adequate nutritional support, it is essential to evaluate 
the REE of patients to estimate their energy requirements in the 
nutritional context. Accurately determining REE in patients with 
cancer is crucial for nutritional planning, treatment optimization, and 
muscle mass preservation. Thus, REE is a key parameter in the 
nutritional care of patients with cancer since it directly influences their 
health, recovery, and quality of life (19). The most accurate method 
for measuring REE is indirect calorimetry (IC) (20); however, in many 
scenarios, this method is not available in the clinical context because 
it is costly (21) in the hospital and clinical context, and predictive 
equations (PEs) to estimate REE are frequently and quickly used 
because the information is obtained through easily accessible variables 
such as height, weight, age and sex, and fat-free mass (22). Many PEs 
have been developed over time. However, no specific REE prediction 
equation has been designed for the pediatric population with an 
oncological diagnosis (23).

The use of REE prediction equations may present biases due to 
individual variability, particularly when equations are used that were 
generated in a population different from the one to which they will 
be applied (14). Moreover, as a limitation, few equations have been 
validated explicitly in pediatric populations or in children with 
complex conditions such as cancer, which can lead to less precise 
results; having an equation designed for this population will help 
improve the accuracy of the estimation of energy expenditure and, 
therefore, the quality of nutritional management in pediatric patients 
with cancer. Therefore, the aims of the present study were to develop 
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an equation to estimate REE in pediatric patients with oncological 
diagnosis, compare its accuracy with that of previous equations 
developed in different pediatric populations, and assess its utility in a 
clinical population.

Materials and methods

Study design

We performed a cross-sectional study of pediatric patients with 
recent (within 0 to 2 weeks) oncological diagnosis; participants were 
recruited between 2019 and 2024 in the Oncological Department of 
the Instituto Nacional de Pediatría, a third-level pediatric hospital in 
Mexico City, Mexico. Patients aged 6 to <18 years were included only 
if they were treatment-naïve, meaning that they had not yet started 
oncological treatment, and were excluded if they were taking 
medications known to affect metabolic function (insulin, 
corticosteroids or thyroid hormones) or antihistamines and herbal 
supplements, as well as if they had a diagnosis of hypothyroidism and 
hyperthyroidism. In addition, patients with severe cognitive or motor 
impairments that prevented completion of the required assessment, 
such as those with autism spectrum disorder or significant motor 
disabilities, were excluded.

After oncological diagnosis, anthropometric measurements were 
taken from the patients, and their nutritional status was evaluated. 
Body composition was also determined through electrical impedance 
and energy expenditure at rest with IC. Hand grip strength was 
evaluated with dynamometry, the level of physical activity was 
estimated, and the levels of routine serum biochemicals were taken 
from the clinical records.

Clinical evaluations, anthropometric 
parameters, and nutritional status

All participants provided a medical history, in which the 
oncological diagnosis, date of diagnosis and clinical symptoms were 
documented. Participants were weighed on a calibrated digital scale 
(SECA 813; Seca GmbH&Co., Hamburg, Germany), and height was 
measured with an ultrasonic stadiometer (InLab S50; InBody Co., 
Seoul, Korea). Waist, hip, thigh, calf, wrist, and neck circumferences 
and mid-upper arm circumference (MUAC) were measured with a 
tape measure (SECA 201; Seca GmbH&Co., Hamburg, Germany). All 
measurements were taken with the patients standing up. Waist 
circumference was measured with the arms crossed in front of the 
chest; the measurement was taken between the lower edge of the 10th 
rib and the iliac crest. Hip circumference was measured by placing a 
tape measure at the largest protuberance of the buttock.

Thigh circumference was measured with the legs separated, and 
the tape was wrapped around the midpoint between the hip bone and 
the knee bone. Calf circumference was measured with the arms on the 
side of the body; the measurement was taken at the largest 
protuberance of the calf. Wrist circumference was measured with a 
tape measure without any pressure; the superior border of the tape was 
placed just distal to the prominence of the radial and ulnar bones. 
Neck circumference was measured with the upright and the head in 
the Frankfort horizontal plane; the tape was placed at the midpoint of 

the neck height. Finally, MUAC was measured with the arms on the 
side of the body; the tape was positioned halfway between the 
acromion and the radius.

Nutritional status was assessed using the BMI-for-age z score and 
height-for-age z score, according to the classification and values 
established by the WHO. AnthroPlus software (24) was used to obtain 
the BMI-for-age z score and height-for-age z score using data such as 
sex, date of birth, date of assessment, weight, and height. Reference 
points were classified according to the WHO, where < −3 SDs = severe 
malnutrition, −3 to −2 SDs = moderate malnutrition, ≥ − 2 to 1 
SDs = standard, >1 to <2 SDs = overweight, and >2 SDs = obesity. The 
height-for-age indicator was assessed using the same data. The cutoff 
points were classified according to the WHO: 1.99 to −1.99 
SDs = standard height, <−2 SDs = short, and >2 SDs = tall (25).

Oncological diagnostic stratum

Oncological diagnoses were stratified into three groups: solid 
tumors (nasopharyngeal carcinoma, ganglioglioma, hepatoblastoma, 
lymphoma, rhabdomyosarcoma, synovial sarcoma, osteosarcoma, 
neuroblastoma, germ cell tumor, Ewing sarcoma, rhabdomyosarcoma, 
retinoblastoma, Wilms tumor, rhabdoid tumor, Langerhans cell 
histiocytosis, and hepatocarcinoma), leukemias (acute lymphoblastic 
leukemia and acute myeloid leukemia), and brain tumors (stem 
glioma, astrocytoma, ependymoma, and medulloblastoma).

Measurement of resting energy 
expenditure

Resting energy expenditure by IC (REE-IC) was measured. We used 
CardioCoach VO2 max (Korr Medical Technologies Inc., Salt Lake City, 
Utah). The patients wore a face mask connected to the calorimeter, and 
a computer recorded variables such as VO2, FEO2, and FECO2. The 
patients were placed in a supine position for 10 min prior to the start of 
the test; after autocalibration with barometric pressure, temperature, 
and humidity, as well as during the respiration stabilization phase, the 
calorimeter analyzed the variables in a computer interphase every 
minute for 20 min (26, 27). Data from the software from patients with 
stable calorimetry analysis were defined as a respiratory coefficient 
between the physiological ranges [(QR) = 0.68–1.2] or having at least 1 
period with less than 10% coefficient of variation (26).

Body composition

Body composition was assessed by using a multifrequency 
bioimpedance device, employing bioelectrical impedance analysis 
(BIA) (InBody S10 R, InBody Co., Ltd., Seoul, Korea) with the 
standard technique; BIA’s internal equation was used. Measurements 
were performed with the patient in a supine position, with the arms 
separated from the trunk by ∼30° and the legs separated by ∼45°; 
there was no contact with the bed’s metal frame, and the room 
temperature was ambient. The patients had to lie in position for 5 min 
and were not allowed to eat or make any major physical effort in the 
preceding 8 h; they were also not allowed to drink in the preceding 
3 h. Body weight and height were entered into the device. The area 
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where the electrodes were to be placed was cleaned first with alcohol 
and then with electroconductive wet wipes of impedance equipment; 
the electrodes were placed on both the hands and the feet, according 
to the manufacturer’s instructions (InBody Co). The electrodes were 
kept in a sealed bag to protect against heat; the machine was calibrated 
before use with a known impedance circuit, per the manufacturer’s 
guidelines. The phase angle at 50 kHz was reported, and the following 
formula was used to determine it [Arc tangent (Xc/R)] Å ~ (180/5). 
The skeletal muscle mass index (SMI) was calculated by dividing 
skeletal muscle mass (kg) by the square of the height (m2).

Handgrip strength

The posture for measuring the handgrip strength was standing, 
with legs straight and weight bearing, balanced on both feet, feet 
shoulder-width apart, shoulder adducted and neutrally rotated, elbow 
flexed to 90°, forearm in neutral position, wrist between 0° and 30° of 
dorsiflexion and between 0° and 15° of ulnar deviation; measurements 
were made with a Lafayette hydraulic hand dynamometer (Jamar 
Model J00105 Lafayette Instrument Company, United States) and were 
performed on the dominant hand in triplicate, and the average 
measurement was recorded (28).

Estimation of physical activity

To determine the physical activity of the participants, 1 physical 
activity questionnaire was used; if the participant was under 14 years 
old, the PAQ-C was used, and for those over 14 years old, the PAQ-A 
was used (29). These questionnaires consisted of 9 and 10 items, each 
with a 5-point response scale ranging from low activity (score of 1) to 
high activity (score of 5). The level of physical activity was classified as 
low, moderate, or high based on the average scores obtained from the 
questionnaire (1–2.33: low, 2.34–3.66: moderate, and 3.67–5: high).

REE predictive equations

The predictive equations evaluated in this study were selected 
because they are those used in the pediatric population: Food and 
Agriculture Organization/World Health Organization (FAO/WHO) 
(30), Schofield (31), Institute for Medicine of the National Academies 
and Food and Nutrition Board (IOM) (32), Oxford (33), Kaneko (34), 
and Müller (35). In addition, the new equations were compared with 
the Harris–Benedict equation (36), since it is the most common 
equation used, despite it being obtained from a population with 
normal body weight.

Routine serum biochemistry

The most recent laboratory results of the following biochemical 
parameters were obtained from the medical records: albumin, 
creatinine, BUN (blood urea nitrogen), calculated urea, ALT (alanine 
aminotransferase), AST (aspartate aminotransferase), triglycerides, 
total cholesterol, HDL cholesterol (high-density lipoprotein), LDL 
(low-density lipoprotein) cholesterol, calcium, phosphorus, potassium 

and serum sodium, hemoglobin, leukocytes, hematocrit and mean 
corpuscular volume.

Statistical analysis

Continuous variables are expressed as the means ± standard 
deviations or medians (25th–75th percentiles), and categorical 
variables are expressed as frequencies and percentages. The 
Kolmogorov–Smirnov test was used to assess the normality of the 
variables, and logarithmic transformation will be performed on those 
that do not have a normal distribution. To compare variables between 
oncological diagnoses, one-way ANOVA with post hoc Bonferroni’s 
multiple comparison test was used.

The correlation of each of the anthropometric variables, as well as 
age and sex, with the REE measured by IC was evaluated through 
Pearson or Spearman correlation depending on the distribution of the 
variables to analyze which of them had a greater correlation with the 
REE that could better predict the model. Subsequently, a stepwise 
regression analysis was carried out where we used those variables with 
an input significance less than 0.05 and an output probability of 0.10 
as the criteria, where the REE measured by IC was taken as the 
dependent variable and age, sex, height, weight, fat-free mass and 
oncological diagnosis as independent variables, from which the best 
estimation model was obtained based on the R2 and the 
significance value.

The regression was then tested using the Intro method with the 
intention of identifying the variables with the greatest explanatory 
power and statistical significance, and a multiple linear regression was 
carried out considering the biological relationship of the independent 
variables introduced into the model. To validate the multiple linear 
regression model, several statistical assumptions were evaluated. 
Homoscedasticity was assessed using plots of residuals versus fitted 
values. Multicollinearity was checked by calculating the VIF for each 
independent variable. Independence of errors was evaluated using the 
Durbin–Watson statistic, which indicated no significant 
autocorrelation. These analyses confirmed the validity of the model.

Categorical variables were coded as follows: sex was treated as a 
binary variable (0 = girls. 1 = boys), although for clarity, separate 
equations were presented for each sex. Oncological diagnosis was 
included, and although total REE did not significantly differ across 
oncological diagnoses, relevant differences emerged when REE was 
adjusted by body weight (REE/body weight). In this analysis, patients 
with solid tumors and leukemia presented similar REE/body weight 
values, whereas those diagnosed with brain tumors presented 
significantly different values. Based on these findings, oncological 
diagnosis was included as an independent variable in the statistical 
model. From a statistical standpoint, the inclusion of this variable 
improved the model’s explanatory capacity, as evidenced by an 
increase in the adjusted R2 value. Clinically, the observed metabolic 
differences across tumor types further justified the incorporation of 
oncological diagnosis in the predictive equations for REE. This 
variable was included using dummy coding with leukemia as the 
reference category (OD = 0), solid tumors coded as OD = 1, and brain 
tumors coded as OD = 2. The numeric values for the OD in the final 
equations represent the regression coefficients associated with each 
category. Bland–Altman’s method was used to evaluate the agreement 
between the REE-IC and the REE-PE estimated by the new equation 
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by plotting the distribution of the differences between the REE-PE and 
REE-IC (mean bias and 95% CI) against their respective average 
values. The same procedure was performed with the other PEs from 
the literature. To evaluate the accuracy of the new predictive equations 
and the previously reported REE equations in oncology patients, the 
mean absolute error (MAE) was used as the primary 
performance metric.

Patients with missing data were excluded from the analysis, and 
no data imputation was performed for the variables. All p values were 
two-tailed, and we  considered p < 0.05 to indicate statistical 
significance. All the statistical analyses were performed using SPSS 
(version 25; SPSS, Inc., Chicago, IL) and GraphPad Prism (version 9.0; 
GraphPad Software, Inc., San Diego, CA) software. The sample size 
was calculated with a coefficient correlation equation (37) to obtain 
an optimal number of subjects to develop a new model for predicting 
REE. Ten variables were considered for the sample size assessment. 
The size of the sample required to develop the equation was 200 
subjects. The relationships between REE and the ten variables were 
assessed using Pearson’s correlation coefficients.

Results

A total of 226 participants were evaluated, of whom 2 were 
excluded because they did not have an oncological diagnosis at the 
time of confirmation. Among those who met the inclusion criteria, 
8 could not undergo IC assessment because the mask was too big for 
their face or because they moved too much to perform the test, and 
7 could not wear the mask because they had an oxygen requirement 
and used nasal cannulas. Of the 209 who did undergo the IC 

assessment, the data from one were not used because breathing could 
not be detected during the test, and the data from 5 a variation in the 
O2 volume > 10% were not stable. Thus, the data from 203 
participants were analyzed, of whom 68.5% had a diagnosis of a solid 
tumor, 20.2% of leukemia and 11.3% of a brain tumor, as shown in 
Figure 1.

Baseline characteristics of the participants

The anthropometric variables, body composition characteristics 
and REE of the participants over all oncological diagnosis strata are 
shown in Table 1, and we observed that 57.6% of the population were 
men, with an average age of 12.2 ± 3 years. Analysis of the diagnostic 
strata revealed that the variables of waist circumference and body fat 
percentage significantly differed among children with a diagnosis of a 
brain tumor. Although the estimated visceral fat area was not 
significantly different, the average was significantly different 
(74.6 ± 50.7 cm2) from the other two oncological strata analyzed (solid 
tumor: 56.3 ± 41.8 cm2; leukemia: 51.3 ± 37.6 cm2). All participants 
had an average fat-free mass of 33.8 ± 11 kg and a body cell mass of 
21.9 ± 7.4 kg. The average phase angle was 5.2 ± 2.2°, and although no 
statistically significant differences were observed, the cerebral tumor 
stratum had an average of 4.9 ± 1.2°, the solid tumor stratum had an 
average of 5.1 ± 1.2°, and the leukemia stratum had an average of 
5.7 ± 4.3°.

With respect to the level of physical activity performed, no 
statistically significant differences were found between diagnostic 
strata. However, 90.6% of all participants reported mild physical 
activity, and only 1% (n = 2) reported a high level of physical activity. 

FIGURE 1

Flow chart of the study participants.
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As indicated by the profile of biochemical variables, the leukemia 
diagnosis stratum presented a higher level of BUN than solid tumors 
and brain tumors did (p = 0.001). With respect to triglycerides, the 
solid tumor stratum presented a lower level than the leukemia and 
brain tumor strata did (p = 0.038); interestingly, the leukemia stratum 
presented lower hemoglobin (p = 0.001) and hematocrit (p = 0.001) 

concentrations, and the other biochemical variables are shown in 
Supplementary Table  1. When the biochemical variables were 
correlated with REE, no significant associations were found for most 
of them, with the exception of creatinine, whose correlation was 
r = 0.370 (p = 0.001); urea, r = 0.215 (p = 0.011); and leukocytes, 
r = 0.271 (p = 0.001).

TABLE 1  Characteristics of all the subjects and comparison between diagnosis oncological strata.

Variables All n = 203 Solid tumor 
n = 139

Leukemias 
n = 41

Brain tumor 
n = 23

p value

Age (years) 12.2 ± 3 12.4 ± 2.9 11.3 ± 3.3 13 ± 2.8 0.06

Sex boys/girls (%) 57.6/42.4 54.7/45.3 58.5/41.5 73.9/26.1 0.222

Body weight (kg) 45.7 ± 16.6 45.5 ± 16.3 43.8 ± 17.3 50.4 ± 17.3 0.297

Height (cm) 147.6 ± 23.6 147 ± 26.1 147.5 ± 18.5 151 ± 14.9 0.649

BMI-age (z score) 0.64 ± 1.5 −0.071 ± 1.6 0.234 ± 1.2 0.561 ± 1.3 0.149

Height-for-age (z score) −0.404 ± 1.04 −0.471 ± 1.08a −0.044 ± 0.87b −0.644 ± 0.975a 0.035

Waist circumference (cm) 71.8 ± 12.5 70.8 ± 11.92b 71.5 ± 12.79b 78.16 ± 14.7a 0.039

Hip circumference (cm) 78.5 ± 13.5 78.3 ± 13.40 77. 4 ± 14.3 82.0 ± 13.5 0.431

Neck circumference (cm) 31.9 ± 4.3 31.9 ± 4.0 30.6 ± 4.8b 33.8 ± 4.2a 0.015

Thigh circumference (cm) 40.0 ± 8.4 40.4 ± 8.2 38.0 ± 9.2 41.3 ± 7.9 0.197

Calf circumference (cm) 28.8 ± 5.7 28.8 ± 5.5 28.9 ± 6.4 29.1 ± 5.6 0.974

MUAC (cm) 22.6 ± 4.5 22.6 ± 4.5 21.6 ± 4.5 24.2 ± 4.4 0.088

Body composition

Fat mass (%) 23.4 ± 11 23.3 ± 11b 20.9 ± 10b 29.2 ± 9a 0.020

Fat-free mass (kg) 33.8 ± 11 34 ± 11 32.8 ± 11 34.1 ± 11 0.819

Intracellular water (L) 15.3 ± 5.1 15.4 ± 5.2 14.8 ± 5.1 15.3 ± 5 0.806

Extracellular water (L) 9.4 ± 3.1 9.4 ± 3.1 9.1 ± 3.2 9.6 ± 3.1 0.827

Total body water (L) 24.7 ± 8.2 24.8 ± 8.2 23.9 ± 8.2 24.9 ± 8.0 0.822

Proteins (kg) 6.61 ± 2.2 6.68 ± 2.2 6.42 ± 2.1 6.62 ± 2.1 0.812

Minerals (kg) 2.48 ± 0.7 2.49 ± 0.7 2.42 ± 0.7 2.58 ± 0.8 0.710

Skeletal muscle mass (kg) 17.9 ± 6.7 18.1 ± 6.8 17.3 ± 6.6 17.9 ± 6.6 0.811

Body cell mass (kg) 21.9 ± 7.4 22.1 ± 7.5 21.2 ± 7.3 21.9 ± 7.2 0.807

Visceral fat area (cm2) 57.2 ± 42.3 56.3 ± 41.8 51.3 ± 37.6 74.6 ± 50.7 0.109

Total phase angle (°) 5.2 ± 2.2 5.1 ± 1.2 5.7 ± 4.3 4.9 ± 1.2 0.275

Indirect calorimetry

REE (kcal/day) 1,180 ± 319 1,198 ± 316 1,179 ± 354 1,067 ± 246 0.214

REE/body weight (kcal/kg/day) 28.4 ± 9.3 28.7 ± 9.1a 29.8 ± 10a 23.4 ± 7.1b 0.026

REE/FFM (kcal/kg/day) 37.2 ± 10.8 37.6 ± 10.8 38.5 ± 11.4 32.4 ± 8 0.111

VO2 consumption (ml/min) 171 ± 47.6 129.1 ± 36.3 174.1 ± 54.7 151 ± 37.3 0.172

VCO2 consumption (ml/min) 128.1 ± 39.6 129.1 ± 36.3 133.8 ± 52.4 109. 9 ± 26.7 0.112

RQ 0.74 ± 0.10 0.74 ± 0.09 0.73 ± 0.13 0.72 ± 0.12 0.829

Physical activity

Physical activity (points) 1 (1–1.45) 1 (1–1.44) 1 (1–1.57) 1 (1–1.59) 0.899

Physical activity level, n (%) 0.851

Mild 184 (90.6) 127 (91.2) 36 (87.8) 21 (91.3)

Moderate 17 (8.4) 10 (7.2) 5 (12.2) 2 (8.7)

High 2 (1) 2 (1.6) 0 (0) 0 (0)

BMI-age: body mass index-for-age; MUAC: Mid-Upper Arm Circumference; REE: Resting Energy Expenditure; REE/FFM: Resting Energy Expenditure per Fat-Free Mass; VO2: Oxygen 
Consumption, VCO2: Carbon Dioxide Production; RQ: Respiratory Quotient.
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For the variables of REE, no statistically significant differences 
were observed in total REE between diagnostic strata. However, 
when the REE/kg of body weight was analyzed, the REE/kg of body 
weight (23.4 ± 7.1 kcal/kg/day) was lower in the brain tumors than 
in the solid tumor stratum (28.7 ± 9.1 kcal/kg/day) and leukemia 
(29.8 ± 10 kcal/kg/day) (p = 0.026). The correlations between all the 
anthropometric and body composition variables and REE are 
shown in Table  2. Among the anthropometric variables, body 
weight was the most strongly correlated (r = 0.586, r2 = 0.343; 
p < 0.001). Among the body composition variables, fat-free mass 
was most strongly correlated (r = 0.577; r2 = 0.332; p < 0.001), and 
among the clinical variables, age was greatest (r = 0.437; r2 = 0.190; 
p < 0.001).

Equation development for pediatric 
patients with an oncological diagnosis

Two REE prediction equations were developed for pediatric 
patients with an oncological diagnosis. The first was easily obtainable 
variables for the clinical context, and we call it the INP-simple model, 
which includes weight in kilograms, age in years, height in centimeters, 
sex, and oncological diagnosis. The other model was developed with 
a body composition variable, and we called it the INP-Morpho model, 
which was developed with weight in kilograms, age in years, free fat 
mass in kilograms, height in centimeters, sex and oncological 
diagnosis; the new equations are presented in Table 3.

Equation validation in pediatric patients 
with oncological diagnosis

The average REE measurement by IC was 1,200 ± 306 kcal/day; 
however, compared with the REE prediction equations, a lower bias 
was observed with the new equations designed, and with the Molnár 
equation, the equation that represented a greater bias for this 
population was that of IOM and Schofield (Figure 2). In the validation 
of the predictive equations for REE, the equations with the lowest 
MAEs were the Morpho model (161 kcal), the simple model 
(168.5 kcal), and the Molnár equation (166.8 kcal); these equations 
showed, on average, smaller absolute deviations than the REE 
measured by IC. In contrast, classical equations such as Schofield 
(244.5 kcal), Müller (228.9 kcal), and IOM (200.2 kcal) presented the 
highest MAEs (Table 4).

Discussion

Accurate estimation of energy requirements in children with 
cancer is important for nutritional management. When this 
measurement is not feasible or IC is not available, prediction 
equations become valuable tools for estimating REE. In our study, two 
equations were designed to estimate REE in children with cancer. The 
first, called the INP-simple model, uses easily obtainable variables 
such as weight, age, height, sex, and type of cancer diagnosis. The 
second, called the INP-morpho model, can be  applied if body 
composition analysis equipment is available and includes fat-free 
mass and the variables in the simple model. These are the first 

equations created with accessible data to estimate energy 
requirements in children with cancer and are especially useful in 
places where IC is unavailable. The equation explains between 43 and 
44% of the variability in the REE, meaning that nearly half of the 
variation in the data can be accounted for; this indicates a moderate 
level of precision; therefore, the model has an acceptable predictive 
capacity. However, this finding also suggests that there may be other 
important factors not included in the equation or a high degree of 
random variability.

This study also compared the accuracy of different equations and 
revealed that the designed equations and the Oxford equation showed 
the least bias. The Oxford equation, created in a pediatric population 
in England, also uses body weight, age, and sex as its main variables. 
On the other hand, predictive equations are easy to use, but some 
equations have limitations. They do not consider important factors 
such as body composition or the impact of energy on chronic disease 
(38). Similarly, several studies have shown that prediction equations 
are unreliable for assessing nutritional needs in children with chronic 
diseases (39, 40). These studies indicate that although predictive 
equations are the most economical and rapid method for estimating 

TABLE 2  Correlation coefficients for REE measured by IC and 
anthropometric and body composition variables.

Variables R R2 p value

Anthropometric variable

Body weight (kg) 0.586 0.343 <0.001

Height (cm) 0.154 0.023 0.030

BMI-age (z score) 0.303 0.092 0.001

Height-for-age (z score) 0.089 0.007 0.212

Waist circumference (cm) 0.499 0.294 <0.001

Hip circumference (cm) 0.488 0.238 <0.001

Neck circumference (cm) 0.514 0.264 <0.001

Thigh circumference (cm) 0.486 0.236 <0.001

Leg circumference (cm) 0.562 0.315 <0.001

MUAC (cm) 0.497 0.247 <0.001

Clinical variables

Age (years) 0.437 0.190 <0.001

Sex −0.198 0.4 0.005

Body composition variables

Fat mass (%) 0.388 0.150 <0.001

Fat-free mass (kg) 0.577 0.332 <0.001

Intracellular water (L) 0.571 0.326 <0.001

Extracellular water (L) 0.570 0.324 <0.001

Total body water (L) 0.576 0.331 <0.001

Proteins (kg) 0.570 0.324 <0.001

Minerals (kg) 0.569 0.323 <0.001

Skeletal muscle mass (kg) 0.571 0.326 <0.001

Body cell mass (kg) 0.571 0.326 <0.001

Visceral fat area (cm2) 0.299 0.089 <0.001

Total phase angle (°) 0.109 0.011 0.139

BMI-age: body mass index-for-age; MUAC: Mid-Upper Arm Circumference.
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REE, they lack the reliability necessary to measure REE, which calls 
into question their usefulness in the clinical setting. Although CI is 
the ideal method, fewer than 10% of centers that treat children with 
cancer have this equipment. Therefore, understanding the accuracy of 
prediction equations in these patients is important since an incorrect 

estimate of energy requirements and inaccurate energy supply 
negatively affect growth and development and exacerbate other 
known negative outcomes associated with malnutrition (41, 42). It is 
therefore important that this study demonstrated the accuracy of 
certain previously designed equations and the design of new equations 

TABLE 3  Resting energy expenditure prediction equation developed for Mexican pediatric with oncological diagnosis.

Simple REE equation (INP-simple model) Morphofunctional REE equation (INP-Morpho model)

Girls:

REE = (11*W) + (22*A) – 

(3*H) + (OD) + 640

R = 0.660 Girls:

REE = (9*W) + (17*A) + (4*FFM) – 

(3*H) + (OD) + 650

R = 0.664

R2 = 0.435 R2 = 0.441

Boys:

REE = (11*W) + (22*A) – 

(3*H) + (OD) + 520

p = 0.0001 Boys:

REE = (9*W) + (17*A) + (4*FFM) – 

(3*H) + (OD) + 540

p = 0.0001

W: weight (kg); A: age (y); H: height (cm)

Substitute the value of Oncological diagnosis (OD) in the equation according 

to the patient’s diagnosis:

Brain tumor + 95

Solid tumor + 195

Leukemia + 219

W: weight (kg); A: age (y); FFM: fat free mass; H: height (cm)

Substitute the value of Oncological diagnosis (OD) in the equation according to the 

patient’s diagnosis:

Brain tumor + 100

Solid tumor + 201

Leukemia + 225

*Sex was treated as a binary variable in both equations. Since the equations are presented separately for girls and boys, the sex coefficient has been absorbed into the intercept term.

FIGURE 2

Bland–Altman plots displaying the agreement and difference between the resting energy expenditure by indirect calorimetry (REE-IC) and the resting 
energy expenditure predicted (REE-PE) by the (A) simple model, (B) morpho model, (C) Oxford equation and (D) Molnár equation. The solid red line 
represents the mean bias of the prediction equation, the red dotted lines represent the limits of agreement (± 95% CI), and the black dotted lines 
represent the ±10% accuracy limits.
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in children with cancer. Similarly, in another study, Kellerman and 
colleagues determined the impact of chemotherapy exposure on REE 
in children with a recent cancer diagnosis during the first 6 months of 
intensive chemotherapy and whether predictive equations allowed for 
the estimation of the accuracy of these requirements at the time of 
diagnosis as a basis for nutritional interventions. Their findings 
illustrate the inability of commonly used predictive equations to 
calculate REE at the time of childhood cancer diagnosis. While a 
general overestimation, significant bias, and moderate to low 
agreement were observed for all three equations, the WHO and 
Schofield (weight, height) equations were more reliable for resting 
energy estimates than the RDA equation was (43). Our study agrees 
with the overestimation of the Schofield and FAO equation.

In the population studied, a greater percentage of fat mass was 
observed in patients with brain tumors, as well as a lower REE/body 
weight ratio, than in children with leukemia or solid tumors. The 
difference is between 5 kcal/kg/day. This could be due to hypothalamic 
involvement. In a retrospective cohort of children with brain tumors 
at risk for hypothalamic dysfunction, approximately 67% had a 
measured REE less than 90% of their predicted REE, which was linked 
to the severity of hypothalamic damage, indicating a reduction in 
resting energy expenditure (44). In contrast, patients with brain 
tumors had higher body weights. This finding is documented, with 13 
to 40% of these patients being overweight or obese, mainly due to 
hormonal alterations and hypothalamic damage, rather than the 
tumor directly causing obesity (45, 46). In these patients, adipose 
tissue may exhibit reduced thermogenic activity, which facilitates fat 
accumulation (47).

However, it is also important to consider the type of tumor 
referred to in the equation we designed since it has previously been 
demonstrated that regardless of tumor size, small tumors experience 
high rates of glycolysis and lactate production, independent of their 
oxygen supply (48), and excess lactate is converted back into glucose 
in the liver (cyclodeoxyribose), which leads to a net consumption of 
adenosine triphosphate (49, 50). This increase in glucose turnover 
may contribute significantly to high REE and muscle catabolism in 
patients with cancer (51, 52). In terms of the variables most closely 
related to REE in our study, the results were like those reported in 
previous research conducted on adults. In this study, 714 patients with 

cancer and 642 healthy individuals were evaluated, and REE and body 
composition were analyzed to determine their relationships with 
energy expenditure. The results revealed that patients with cancer had 
an elevated REE (47%). Similarly, the type of cancer, pathological 
stage, and duration of the disease influenced the REE. In contrast, fat 
mass, fat-free mass, and body cell mass decrease in patients with 
cancer, which may be related to elevated REE (53).

In our equation, we also found that age has a significant influence 
on REE. Age is a significant predictor of REE in patients with cancer, 
and advanced age is generally associated with lower REE when adjusted 
for body composition. However, most of the available data focus on 
adults, and direct pediatric data are limited. In adult patients with 
cancer, age, fat-free mass (FFM), and inflammation (measured by 
C-reactive protein, CRP) together explain much of the variability in 
REE, suggesting that similar factors may influence pediatric patients as 
they age (54, 55). Another important variable in the design of the 
equations that influenced the REE was sex. Sex differences in energy 
expenditure are evident in children, as compared with girls, boys tend 
to have higher resting and total energy expenditure, mainly due to 
higher activity levels and intrinsic factors beyond body composition. 
Fat-free mass is the main primary determinant of energy expenditure, 
but sex remains an independent predictive factor. However, when body 
composition is very similar, these differences may diminish. 
Understanding these patterns is important for tailoring nutritional and 
physical activity recommendations to children (56–60).

Studies have shown that patients with cancer are malnourished or 
overfed, according to the use of predictive equations, compared with 
the use of IC (61, 62); this is important in pediatric patients with 
cancer, as both underweight and overweight can negatively affect their 
clinical outcome and exacerbate the late effects of treatment. 
Malnutrition can lead to impaired growth and development, increased 
infection rates, increased use of resources, poor therapeutic response, 
and long hospital stays. In addition, children and adolescents who are 
malnourished during their illness are at greater risk of morbidity and 
mortality. It is therefore essential to identify pediatric patients at risk 
of developing malnutrition and to ensure the reliability of the 
equations used to determine their REE.

Additionally, overeating can predispose patients to developing 
hyperglycemia and liver dysfunction, which can cause fluid overload. 

TABLE 4  Equations validation in pediatric with oncological diagnosis.

Predictive equations REE mean kcal Bias (CI 95%) kcal/day Mean absolute error kcal

Indirect calorimetry 1,200 ± 306

Simple model 1,086 ± 196 114.8 (−408, 638) 168.5 (82.2–345.7)

Morpho model 1,088 ± 191 114.8 (−408, 638) 161 (84.5–340)

Harris-Benedict 1,334 ± 269 −133.6 (−671.5, 404.2) 196 (85.3–332.1)

FAO 1,379 ± 275 −178.8 (−683.9, 326.3) 209.6 (97.5–359.5)

Schofield 1,385 ± 287 −185.4 (−697.6, 326.8) 244.5 (103.7–413.9)

IOM 1,400 ± 316 −201 (−761.7, 359.7) 200.2 (106.5–383.7)

Oxford 1,311 ± 324 −110.6 (−661.4, 440.1) 194 (93.3–347.3)

Kaneko 1,336 ± 243 −135.6 (−652.5, 381.4) 183.7 (97.5–337.6)

Molnár 1,281 ± 303 −82.3 (−741.3, 576.7) 166.8 (68.1–298.3)

Müller 1,364 ± 248 −162.6 (−715.1, 389.9) 228.9 (111.3–368.2)

Bland–Altman’s method was used to evaluate the agreement between the resting energy expenditure measured by indirect calorimetry (REE-IC) and the predicted resting energy expenditure 
(REE-PE) estimated by all the equations by plotting the distribution of the differences between REE-PE and REE-IC (mean bias).
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In addition, children with certain types of cancer are at greater risk of 
becoming overweight or obese during treatment due to the therapies 
used (19). Overeating can exacerbate weight gain, increasing the 
likelihood of developing obesity-related complications that persist 
during survival (63). A study by Zhang et al. evaluated the REE in 
childhood cancer survivors and reported that it was almost 500 kcal/
day lower than the estimated energy requirements. These findings 
suggest that obesity in this patient population could be related to a 
reduction in total energy expenditure (64). Therefore, it is essential to 
know the REE of a child with cancer to promote recovery and healing 
and to prevent or slow the progression of malnutrition (65).

We use the KORR Ree Vue calorimeter, which, we emphasize, has 
been previously evaluated in studies of overweight and obese 
adolescents and has been shown to be  a reliable and accurate 
assessment tool compared to traditional IC, unlike other portable 
indirect calorimeters (66). Adjusting energy intake in patients with 
cancer at the beginning of treatment is essential, as adequate caloric 
intake improves nutritional status, helps maintain body weight, and is 
associated with better clinical outcomes and lower mortality (67, 68). 
However, predictive equations for REE are also necessary during 
treatment, since energy requirements can vary significantly 
throughout the course of the disease and its management. Changes in 
metabolism, body composition, and the effects of chemotherapy or 
radiotherapy can alter actual energy expenditure both during and after 
treatment (69).

The heterogeneity of different oncological diagnoses and medical 
treatments could have a significant impact on REE. Solid tumors may 
induce inflammatory responses that differ from those observed in 
leukemias, potentially altering REE in distinct ways. Additionally, 
compared with other agents, certain chemotherapeutic agents have 
more pronounced catabolic effects and can modify basal metabolism. 
Although patients receiving corticosteroids were excluded from the 
present study to avoid their confounding effects on metabolism and 
REE, this methodological decision also limits the applicability of the 
findings to real-world clinical settings, where corticosteroids are 
commonly used, particularly in leukemia treatment. Therefore, 
caution should be exercised when these results are generalized to 
patients undergoing active treatment. In this context, clinical and 
therapeutic differences could contribute to the variability in REE and 
should be considered in future studies. A longitudinal design would 
be  particularly relevant for evaluating the evolution of REE 
throughout treatment and recovery, as well as the inclusion of larger 
and more homogeneous samples in terms of tumor type and 
treatment protocol. Such an approach would allow for a better 
understanding of the determinants of REE and, in turn, help optimize 
nutritional support with the aim of improving clinical outcomes in 
pediatric oncology. In parallel, the analysis of biochemical variables 
in this study revealed that most were not significantly correlated with 
REE, suggesting that other physiological or pathological factors may 
influence energy metabolism. However, moderate positive 
correlations were observed with creatinine (r = 0.370, p = 0.001), 
calculated urea (r = 0.215, p = 0.011), and the leukocyte count 
(r = 0.271, p = 0.0001). The association with creatinine may reflect a 
relationship between REE and muscle mass or renal function, while 
elevated urea levels could indicate increased protein catabolism. The 
correlation with leukocytes supports the hypothesis that 
inflammatory processes may increase REE in these patients. 
Nevertheless, these associations, while statistically significant, are of 

modest magnitude and should be interpreted with caution. Further 
research is needed to clarify the mechanisms linking clinical 
biomarkers with the metabolic alterations observed in 
this population.

Among the limitations of the study are the imbalance in the 
diagnostic stratum groups, where more patients were diagnosed with 
solid tumors, followed by leukemia and brain tumors, in addition to 
the diversity of diagnoses within the proposed strata. Additionally, 
tumor staging was not included in the analysis due to lack of consistent 
data across participants. This variable may influence energy 
metabolism and should be  considered in future studies. Another 
limitation is that the data obtained in this study belong to a single 
group of patients from one hospital. Although it is a significant sample 
size, the fact that these data are from a single center may affect the 
generalizability of the results. However, this is the first study to design 
an equation for children with cancer. Another limitation is that a 
broader range of variables, such as the type and severity of the disease, 
were not included. Another limitation is that the equation 
overestimates the REE by an average of 115 kcal compared with the 
measured value; this reflects a positive bias, indicating a systematic 
rather than a random error. While this level of bias is generally 
considered acceptable, it could theoretically lead to a weight gain of 
approximately 5 kg over the course of a year (70). Nonetheless, it is 
important to note that this equation demonstrates a smaller bias than 
the other equations evaluated. One important limitation of our study 
is the exclusion of patients who were unable to complete the 
assessments due to severe cognitive or motor impairments, including 
those with autism spectrum disorder or significant motor disabilities. 
While necessary to ensure the integrity of the data collected, this 
exclusion may introduce selection bias and limit the generalizability 
of our findings to the broader pediatric oncology population. Future 
studies should consider alternative assessment strategies to include 
children with such conditions to ensure more inclusive and 
representative data.

A strength of this study is that body composition was included in 
the design of the equation, given that lean body mass is directly 
related to energy requirements. Another strength is that newly 
diagnosed patients who had not started treatment were included. 
Therefore, it would be worthwhile to explore further how variables 
influence the measurement of REE in different contexts. Moreover, 
the evidence of our results should be reinforced with a larger sample 
size and validation of the equations, and changes across different 
phases of treatment, follow-up, and disease severity should 
be determined.

Conclusion

Children with cancer tend to have energy expenditures that are lower 
or higher than the recommended level depending on the oncological 
diagnosis, which increases their risk of obesity or malnutrition. The use 
of predictive equations tailored to this population is important for 
accurately estimating REE in clinical settings. This study supports the use 
of equations specifically developed for children with cancer, as they 
appear more appropriate than standard equations. However, it is crucial 
to note that these new equations should be applied only in children 
diagnosed with cancer, considering those who have not yet started 
oncological treatment or other medications such as corticosteroids. 
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Additionally, the type of cancer should be considered, as it significantly 
influences energy expenditure. Further studies are still needed to refine 
these predictive models and to identify specific markers that explain 
variations in REE across different cancer types. Standard predictive 
equations may not accurately estimate individual energy needs, 
highlighting the importance of personalized nutritional assessment and 
continuous research in this area.
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