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Background: Vitamins are vital for children’s health, and deficiencies can cause 
disorders, compromising quality of life and survival. This study systematically 
assesses multivitamin levels, nutritional status, and associated factors in children 
from Henan, China. It aims to provide robust evidence to improve pediatric 
nutrition and inform policies for local governments and institutions.
Methods: This retrospective study analyzed data from 1,995 healthy children who 
underwent routine physical examinations between March 1, 2022, and May 20, 
2024. General clinical information and vitamin test results, including vitamins 
A, D, B1, B2, B3, B5, B7, and C, were retrieved from electronic medical records. 
Participants were categorized into four age groups: under 3 years, 3–5 years, 
6–11 years and 12–18 years. Seasonal classification comprised spring, summer, 
autumn, and winter.
Results: The cohort consisted of 1,185 males and 810 females. Age distribution 
included 248 children under 3 years, 743 children aged 3 to 5 years, 883 children 
aged 6 to 11 years and 121 children aged 12 years or older. Analysis of vitamin 
insufficiency revealed the highest insufficiency rates for vitamin B7 (58.8%), 
followed by vitamin D (28.5%), A (28.0%), B1 (11.8%), C (9.1%), E (2.2%), and B3 
(0.1%). Notable sex-specific differences were identified in vitamin D, E, B2, B5, 
and C levels. Age-dependent variations were observed for vitamin A, D, E, B1, B2, 
B3, B5, B7, and C, while seasonal fluctuations impacted vitamin A, D, E, B1, B3, 
B5, B7, and C. Sex-based analysis indicated a higher prevalence of vitamin A and 
C insufficiencies in males and a greater incidence of vitamin D insufficiency in 
females. Preschool children exhibited the highest vitamin A insufficiency rates, 
whereas adolescent aged children demonstrated the highest insufficiencies in 
vitamin D, E, B1, B7, and C. Seasonal analysis revealed increased vitamin A and 
C insufficiencies during summer, heightened vitamin D and B7 insufficiencies in 
winter, vitamin E insufficiencies in spring, and vitamin B1 deficiencies in autumn.
Conclusion: A high prevalence of vitamin insufficiencies, particularly in vitamins 
B7, D, A, and C, was observed among children in Henan, China, with variation 
rates associated with sex, age, and season.
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Introduction

Vitamins are essential micronutrients indispensable for sustaining 
human health (1). They are classified into water-soluble vitamins 
(including vitamin C and B-complex vitamins) and fat-soluble 
vitamins (such as vitamins A, D, E, and K). These nutrients are integral 
to numerous physiological processes, including energy metabolism, 
antioxidant defense, immune modulation, and blood coagulation. 
Vitamin deficiencies can precipitate a range of adverse health 
outcomes, including compromised immune function, skeletal 
abnormalities, and cognitive impairments (2–6).

Childhood vitamin insufficiencies/deficiencies represent a 
significant global public health concern. Current evidence indicates 
that approximately 25% of children worldwide experience subclinical 
vitamin A (VA) deficiency, with nearly 250 million children annually 
at risk of blindness due to inadequate VA intake (7). In China, the 
prevalence of pediatric vitamin deficiencies, particularly VA and 
vitamin D (VD), has shown a rising trend. A cross-sectional survey 
conducted in Jiangsu Province between 2016 and 2017 reported a 
0.8% prevalence of VA deficiency among children, with an additional 
15.8% classified as marginally deficient (8). Notably, geographic 
disparities persist, with rural children displaying a significantly 
elevated risk of VA deficiency compared to their urban counterparts 
(9). VD deficiency is similarly concerning, affecting 23.2% of children 
with deficient levels and 54.2% with insufficient levels. The pediatric 
VD status is influenced by a range of factors, including sex, age, 
geographical location, duration of sunlight exposure, and maternal 
education (10). In northern China, children exhibit increased rates 
of VD deficiency during winter due to reduced ultraviolet radiation 
exposure (9). Moreover, deficiencies in B vitamins among children 
constitute a substantial global public health challenge (11). As 
children age, their physiological demand for B vitamins increases; 
however, dietary practices in many households fail to meet these 
requirements, resulting in significant nutritional gaps (12).

Currently, evidence suggests an age-dependent increase in the 
prevalence of vitamin deficiencies among children (13). Children’s 
nutritional status directly impacts their future health and 
developmental potential. However, comprehensive investigations into 
the vitamin nutritional levels and status of children in Henan, China 
are still lacking. This study aims to systematically assess the nutritional 
status of various vitamins among children in Henan, China and 
identify key influencing factors through epidemiological surveys. The 
outcomes are intended to inform public health policy, support 
clinicians in identifying high-risk groups, and guide the development 
of targeted intervention strategies. Additionally, the findings will 
provide practical insights into pediatric healthcare and nutrition, 
promoting a more evidence-based and standardized approach to 
managing child health.

Materials and methods

Study design and population

A retrospective study was conducted at Henan Provincial 
Children’s Hospital (Children’s Hospital Affiliated to Zhengzhou 

University). Henan Provincial Children’s Hospital is a tertiary 
hospital located in a major city in Henan, China. It is designated as 
a National Regional Medical Center for Children and is recognized 
as the Henan Provincial Children’s Medical Center. Thanks to the 
country’s comprehensive child health insurance system, children 
from diverse socioeconomic backgrounds can receive treatment at 
this center. As one of the largest children’s hospitals in Henan, China, 
it serves patients from Henan Province, making its patient 
population a representative sample of the pediatric population in 
Henan, China. From March 1, 2022, to May 20, 2024, 1,995 healthy 
children who underwent routine physical examinations at the 
Department of Child Health Care and Health Management Center 
were enrolled in this study. The inclusion criteria encompassed: (1) 
age below 18 years; (2) availability of complete electronic medical 
records containing age, sex, and vitamin assay results. Exclusion 
criteria comprised: (1) diagnosis of infectious diseases; (2) history 
of congenital anomalies; (3) presence of growth and developmental 
disorders; (4) hematological diseases or dysfunctions of the liver, 
kidneys, or heart.

The selection of vitamins was based on their established roles in 
child development and emerging regional concerns regarding 
suboptimal micronutrient status, particularly in areas undergoing dietary 
transition. While vitamins such as A, D, and C are widely recognized for 
their clinical significance, other B-vitamins (e.g., B1, B2, B3, B5, B7) were 
included to provide a comprehensive nutritional overview and support 
public health surveillance, given limited contemporary data in this 
population. It should be noted that biochemical deficiency does not 
invariably correspond to overt clinical disease; rather, it identifies 
populations at potential risk or with suboptimal status.

The study protocol adhered to the principles of the Declaration of 
Helsinki and was approved by the Ethics Review Committee of Henan 
Children’s Hospital (Approval No. 2022-K-L045). As the study 
employed anonymized retrospective data obtained during standard 
clinical practice, the requirement for informed consent was waived, as 
verified by the Ethics Review Board of Henan Children’s Hospital 
(Approval No. 2022-K-L045).

Data collection

Demographic data and laboratory parameters were 
systematically extracted from the electronic medical record system 
for children undergoing routine health examinations. Demographic 
variables included age, sex, examination date, and clinical 
diagnoses. The primary laboratory indicators encompassed vitamin 
assay results, specifically targeting retinol (VA), 25-(OH)-vitamin 
D2, 25-(OH)-vitamin D3, vitamin E (VE), vitamin B1 (VB1), 
vitamin B2 (VB2), vitamin B3 (VB3), vitamin B5 (VB5), vitamin 
B7 (VB7), and vitamin C (VC). Total VD level was calculated by 
25-(OH)-vitamin D2 plus 25-(OH)-vitamin D3. Serum vitamin 
levels were determined using the ultra-performance liquid 
chromatography–tandem mass spectrometry (UPLC-MS/MS) 
system (Waters Corp, Milford, MA). Sample preparation was 
performed following the manufacturer’s protocol outlined in the 
commercial reagent kit (Shanghai Kehua Biological Technology 
Co., Ltd.).
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Operational definitions

	 1)	 Age Stratification

Children under 18 years were stratified into three 
developmental stages:

	(a)	 Infancy/Toddler Period: < 3 years.
	(b)	 Preschool Age: 3–5 years.
	(c)	 School Age: 6 to 11 years.
	(d)	 Adolescent age: ≥ 12 years

	 2)	 Seasonal Classification

The calendar year was segmented into four 
meteorological seasons:

	(a)	 Spring: March–May.
	(b)	 Summer: June–August.
	(c)	 Autumn: September–November.
	(d)	 Winter: December–February of the following year.

	 3)	 Vitamin insufficiency criteria

According to the Chinese Expert Consensus on Clinical 
Applications of VA and VD in Children (2024) (14):

	(a)	 VA (retinol) insufficiency: < 300 ng/mL.
	(b)	 VD insufficiency: < 20 ng/mL.

For vitamins without established guidelines, insufficiency 
thresholds were determined based on reference ranges from Mayo 
Clinic, Labcorp, and Quest Diagnostics:

	(a)	 VE insufficiency: < 3.8 μg/mL (Mayo Clinic).
	(b)	 VB1 insufficiency: < 2.12 ng/mL (Quest Diagnostics).
	(c)	 VB2 insufficiency: < 1 ng/mL (Mayo Clinic).
	(d)	 VB3 insufficiency: < 5.2 ng/mL (Labcorp).
	(e)	 VB5 insufficiency (Mayo Clinic):

	 (i)	Ages 0–10 years: < 3.45 ng/mL.
	 (ii)	Ages > 10 years: < 37 ng/mL.

	(f)	 VB7 insufficiency (Mayo Clinic):
	 (i)	Ages < 12 years: < 0.1 ng/mL.
	 (ii)	Ages ≥ 12 years: < 0.22 ng/mL

	(g)	 VC insufficiency: < 4 μg/mL (Mayo Clinic).

Statistical analysis

All statistical analyses were performed using SPSS version 24.0. 
Continuous variables with non-normal distribution were expressed 
as median values along with interquartile ranges (25th–75th 
percentiles) and compared using the Mann–Whitney U test. 
Categorical variables were presented as numerical counts 
(percentages) and analyzed using the chi-square test. A two-tailed 
p-value < 0.05 was considered statistically significant.

Results

Study population characteristics

Between March 1, 2022, and May 20, 2024, a total of 1,995 
pediatric patients who underwent routine health examinations were 
included in this study. As outlined in Table 1, the cohort comprised 
1,185 males (59.4%) and 810 females (40.6%). The age distribution 
included 248 infants/toddlers (aged < 3 years, 12.4%), 743 preschool-
aged children (aged 3 to 5 years, 37.2%), 883 school-aged children 
(aged 6 to 11 years, 44.3%) and 121 adolescents (aged ≥ 12 years, 
6.1%). The seasonal distribution of health examinations was as follows: 
500 examinations conducted in spring (25.1%), 775  in summer 
(38.8%), 230 in autumn (11.5%), and 490 in winter (24.6%).

Vitamin levels and nutritional status of 
healthy examined children

As presented in Table 2, the median concentrations (25th percentile, 
75th percentile) for VA, VD, VE, VB1, VB2, VB3, VB5, VB7, and VC 
were as follows: VA: 349.8 (293.7, 414.2) ng/mL; VD: 25.2 (19.0, 32.0) 
ng/mL; VE: 7.0 (5.7, 8.4) μg/mL; VB1: 3.4 (2.6, 4.7) ng/mL; VB2: 9.2 
(6.4, 13.0) ng/mL; VB3: 32.8 (21.9, 50.9) ng/mL; VB5: 52.6 (42.2, 72.0) 
ng/mL; VB7: 0.085 (0.043, 0.137) ng/mL; and VC: 11.3 (7.5, 15.4) μg/
mL. Analysis of vitamin nutritional status revealed that VB7 exhibited 
the highest insufficiency rate at 58.8%, followed by VD (28.6%), VA 
(28.0%), VB1 (11.8%), VC (9.1%), VE (2.2%), and VB3 (0.1%). Notably, 
the insufficiency rates for VB2 and VB5 among the healthy pediatric 
population were both 0% (Supplementary Table 1).

Sex-specific variations in pediatric vitamins 
levels and nutritional status

Male participants demonstrated significantly higher peripheral 
blood levels of VD and VB5 compared to their female counterparts. 
In contrast, female participants exhibited markedly elevated levels of 
VE, VB2, and VC. No statistically significant differences between sex 
were observed for VA, VB1, VB3, and VB7 (Table 3). Analysis of 
vitamin nutritional status indicated a significantly greater prevalence 
of VC insufficiency among male children, whereas VD insufficiency 
was significantly more prevalent among female children 
(Supplementary Table 2).

Age-specific variations in pediatric vitamin 
levels and nutritional status

Serum concentrations of VA, VD, VE, and B-complex vitamins 
(B1, B2, B3, B5, B7), as well as VC, exhibited significant age-dependent 
variations among children. VA levels were notably lowest within the 
3–5-year age group, while VD, VE, and all analyzed B vitamins (B1, 
B2, B3, B5, B7), as well as VC, demonstrated progressive declines with 
increasing age (Table 4). Vitamin nutritional status analysis revealed 
distinct age-related insufficiency patterns. The highest prevalence of 
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VA insufficiency (31.1%) occurred in the 3–5-year group. In contrast, 
the insufficiency rates of VD, VE, VB1, VB7, and VC displayed 
significant positive correlations with age, peaking at 60.3, 5.0, 33.9, 
100.0, and 24.8%, respectively, among children aged ≥ 12 years 
(Supplementary Table 3).

Season-specific variations in pediatric 
vitamins levels and nutritional status

Analysis of vitamin levels in pediatric subjects undergoing health 
examinations identified significant seasonal variations in VA, VD, VE, 
VB1, VB3, VB5, VB7, and VC. VA, VB1, VB5, and VC levels reached 
their lowest values during summer, while VD and VB7 levels were 
minimized in winter. VE and VB3 levels were lowest in spring 
(Table 5). Evaluation of vitamin nutritional status revealed pronounced 
seasonal disparities in insufficiency rates for VA, VD, VE, and VC. The 
highest insufficiency rates for VA (32.9%) and VC (13.7%) occurred 
in summer, whereas VD (42.2%) and VB7 (61.6%) insufficiency rates 
were most prevalent in winter. Additionally, VE insufficiency reached 
its peak in spring (4.4%), and VB1 demonstrated the highest 
insufficiency rate in autumn (16.5%) (Supplementary Table 4).

Discussion

Vitamins are fundamental nutrients essential for maintaining 
normal physiological functions, particularly during key stages of 
growth and development in childhood. Adequate vitamin intake is 
crucial for both physical and cognitive maturation. Vitamin 
deficiencies in children constitute a major global public health issue, 
exacerbated by the rapid progression of globalization and 
urbanization, particularly in low- and middle-income countries. 
Insufficient vitamin intake during childhood is associated with stunted 
growth, compromised immunity, and impaired cognitive abilities. 
Deficiencies in VA are linked to a range of visual impairments, 
including night blindness, xerophthalmia, and severe complications 
such as corneal ulceration and potential blindness (15). According to 
the World Health Organization, approximately 200 million children 
worldwide experience VA deficiency, directly affecting growth and 
immune function (16). VD deficiency is associated with skeletal 
abnormalities, including rickets (17), and recent studies have 
identified correlations between VD deficiency and increased risks of 
infectious diseases, cardiovascular conditions, and neurological 
disorders (5, 18, 19). Additionally, VE deficiency is linked to 
neurological impairments and immune dysfunction (20), while B 
vitamin deficiencies are implicated in various cardiovascular, 
neurological, and dermatological conditions (21–24).

Henan Province, situated in Henan, China, is the cradle of Huaxia 
civilization with over 3,200 years of recorded history. It served as the 
cultural, economic, and political center of China until approximately 
1,000 years ago. Henan has a substantial child population; according 
to data from the Henan Provincial Government at the end of 2024, 
children under 15 years old numbered 20.71 million, constituting 
21.2% of the total population. Furthermore, Henan Provincial 
Children’s Hospital, as the sole National Regional Medical Center for 
Children in Henan, China, provides services to children from Henan 
and neighboring provinces. However, the prevalence of vitamin 

deficiency disorders among children is increasing, and children’s 
nutritional status directly impacts their future health and 
developmental potential. Therefore, it is imperative to investigate the 
vitamin nutritional levels and status of children in Henan, China.

TABLE 2  Serum vitamins levels of healthy examined children.

Variables Concentration

VA (ng/mL) 349.8 (293.7, 414.2)

VD (ng/mL) 25.2 (19.0, 32.0)

VE (μg/mL) 7.0 (5.7, 8.4)

VB1 (ng/mL) 3.4 (2.6, 4.7)

VB2 (ng/mL) 9.2 (6.4, 13.0)

VB3 (ng/mL) 32.8 (21.9, 50.9)

VB5 (ng/mL) 52.6 (42.2, 72.0)

VB7 (ng/mL) 0.085 (0.043, 0.137)

VC (μg/mL) 11.3 (7.5, 15.4)

VA, vitamin A, VD, vitamin D, VE, vitamin E, VB1, vitamin B1, VB2, vitamin B2, VB3, 
vitamin B3, VB5, vitamin B5, VB7, vitamin B7, VC, vitamin C.

TABLE 3  Sex-specific vitamins levels.

Variables Male 
(n = 1,185)

Female 
(n = 810)

p

VA (ng/mL) 346.9 (290.4, 413.9) 354.9 (297.4, 417.5) 0.120

VD (ng/mL) 25.6 (19.7, 32.1) 24.6(17.7, 31.8) 0.035

VE (μg/mL) 6.8 (5.6, 8.3) 7.1 (5.9, 8.7) < 0.001

VB1 (ng/mL) 3.4 (2.6, 4.6) 3.4 (2.6, 4.8) 0.562

VB2 (ng/mL) 8.9 (6.3, 12.4) 9.6 (6.7, 13.9) < 0.001

VB3 (ng/mL) 33.3 (22.1, 51.4) 32.3 (21.8, 50.2) 0.384

VB5 (ng/mL) 53.5 (42.9, 73.2) 51.5 (40.8, 70.8) 0.015

VB7 (ng/mL) 0.083 (0.040, 0.136) 0.087 (0.046, 0.139) 0.139

VC (μg/mL) 10.9 (7.0, 15.2) 11.6 (7.8, 15.6) 0.014

VA, vitamin A, VD, vitamin D, VE, vitamin E, VB1, vitamin B1, VB2, vitamin B2, VB3, 
vitamin B3, VB5, vitamin B5, VB7, vitamin B7, VC, vitamin C.

TABLE 1  Basic characteristics of study subjects.

Variables Total number (n = 1,995)

Sex

Male, n (%) 1,185 (59.4%)

Female, n (%) 810 (41.0%)

Age

< 3 years, n (%) 248 (12.4%)

3–5 years, n (%) 743 (37.2%)

6–11 years, n (%) 883 (44.3%)

≥ 6 years n (%) 121 (6.1%)

Season

Spring, n (%) 500 (25.1%)

Summer, n (%) 775 (38.8%)

Autumn, n (%) 230 (11.5%)

Winter, n (%) 490 (24.6%)
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This study provides the first comprehensive assessment of multiple 
vitamin levels and nutritional status among children in Henan, China. 
It found that female children exhibited a higher prevalence of VD 
insufficiency. This disparity may be attributed to reduced sunlight 
exposure, thereby limiting endogenous VD synthesis. In contrast, 
female children typically present with higher levels of VE, VB2, VB5, 
and VC, accompanied by lower insufficiency rates compared to males. 
Sex-specific variations in vitamin requirements are evident; adolescent 
males generally exhibit higher energy and vitamin demands, which 
are attributed to accelerated growth rates, increased weight gain, and 
higher physical activity levels. Moreover, dietary patterns differ 
between sex, with females tending to adopt more balanced nutritional 
practices. In contrast, males are more likely to engage in selective 
eating, increasing the risk of micronutrient deficiencies.

Vitamin requirements also vary significantly across developmental 
stages. Infants necessitate increased VD intake to support proper 
skeletal growth, while adolescents require higher levels of VA and VC 
to facilitate immune system maturation (25). Changes in dietary 
habits, nutrient consumption, and physiological demands with age can 
result in vitamin deficiencies, adversely affecting health outcomes 
(26). The analysis identified distinct age-related trends, with levels of 
VD, VE, VB1, VB2, VB3, VB5, VB7, and VC progressively declining 
as age increases. Correspondingly, insufficiency rates for VD, VE, 

VB1, VB7, and VC rise with age, reaching their lowest levels in infants 
under 2 years and peaking in adolescent age over 12 years. This 
pattern likely reflects optimal nutrition during infancy, characterized 
by breastfeeding, fortified formulas, and routine VD supplementation 
to prevent rickets, contrasted with decreased dietary regulation and 
reduced outdoor activities as children grow older.

Seasonal fluctuations in vitamin levels arise from a complex 
interplay of factors, including sunlight exposure, dietary patterns, and 
physiological adaptations. VD levels exhibit pronounced seasonal 
variability, with deficiency risk significantly increasing during winter 
due to reduced daylight and lower UVB radiation (27). This study 
corroborates these findings, identifying the lowest VD levels and the 
highest insufficiency rates during winter. Seasonal variations also 
significantly affect VA, VE, VB1, VB3, VB5, VB7, and VC levels. Data 
analysis reveals that insufficiency rates for VA and VC peak during 
summer, while VE insufficiency is most prevalent in spring, and VC 
insufficiency rates increase in summer. These seasonal differences are 
likely influenced by the variable availability of fresh fruits and 
vegetables throughout the year (28).

This comprehensive analysis identifies significant associations 
between vitamin insufficiency rates and factors such as sex, age, and 
seasonal variations. However, several limitations should be considered. 
First, the single-center design may restrict the generalizability of our 

TABLE 4  Age-specific vitamins levels.

Variables < 3 year (n = 248) 3–5 year (n = 743) 6–11 year (n = 883) ≥ 12 year (n = 121) p

VA (ng/mL) 353.3 (290.4, 411.4) 340.0 (284.5, 396.5) 350.9 (293.4, 422.2) 397.0 (346.5, 470.3)cef < 0.001

VD (ng/mL) 38.0 (32.6, 46.2) 28.3 (22.7, 33.0)a 21.4 (16.5, 26.5)bd 17.1 (12.3, 22.5)cef < 0.001

VE (μg/mL) 8.2 (6.8, 10.1) 7.2 (6.0, 8.6)a 6.6 (5.45, 8.0)bd 6.0 (5.1, 7.4)cef < 0.001

VB1 (ng/mL) 5.8 (3.9, 8.6) 3.6 (2.7, 4.7)a 3.2 (2.5, 4.1)bd 2.5 (1.9, 3.3)cef < 0.001

VB2 (ng/mL) 13.9 (9.5, 19.4) 9.5 (6.9, 13.1)a 8.3 (5.9, 11.7)bd 6.9 (5.5, 9.2)cef < 0.001

VB3 (ng/mL) 45.8 (26.6, 74.6) 34.0 (22.7, 50.9)a 30.4 (20.8, 45.8)bd 31.0 (17.8, 49.1)cef < 0.001

VB5 (ng/mL) 89.3 (52.3, 115.6) 56.9 (46.3, 72.8)a 46.6 (38.1, 58.8)bd 41.9 (34.6, 52.4)cef < 0.001

VB7 (ng/mL) 0.136 (0.066, 0.212) 0.091 (0.045, 0.141)a 0.077 (0.039, 0.122)bd 0.072 (0.041, 0.112)cef < 0.001

VC (μg/mL) 14.0 (10.3, 17.8) 12.0 (8.1, 15.9)a 10.3 (6.8, 14.4)bd 8.1 (4.0, 11.7)cef < 0.001

VA, vitamin A, VD, vitamin D, VE, vitamin E, VB1, vitamin B1, VB2, vitamin B2, VB3, vitamin B3, VB5, vitamin B5, VB7, vitamin B7, VC, vitamin C.
aP < 0:05 for 3–5 year vs. < 3 year. bP < 0:05 for 6–11 year vs. < 3 year. cP < 0:05 for ≥ 12 years vs. < 3 year. dP < 0:05 for 6–11 year vs. 3–5 year. eP < 0:05 for ≥ 12 years vs. 3–5 year. fP < 0:05 for 
≥ 12 years vs. 6–11 year.

TABLE 5  Season-specific vitamins levels.

Variables Spring (n = 500) Summer (n = 775) Autumn (n = 230) Winter (n = 490) p

VA (ng/mL) 344.6 (294.7, 402.9) 341.6 (282.8, 422.6) 348.7 (299.3, 400.1) 370.0 (308.6, 432.3)cef < 0.001

VD (ng/mL) 24.4 (17.9, 31.8) 27.1 (21.5, 32.8)a 25.4 (20.5, 32.7)b 22.0 (15.2, 29.7)cef < 0.001

VE (μg/mL) 6.6 (5.4, 8.0) 7.5 (6.3, 8.9)a 6.7 (5.4, 8.3)d 6.7 (5.6, 8.1)e < 0.001

VB1 (ng/mL) 3.7 (2.7, 5.0) 3.3 (2.6, 4.4)a 3.3 (2.5, 4.6)b 3.5 (2.5, 5.0)e 0.004

VB2 (ng/mL) 9.2 (6.3, 12.6) 9.3 (6.5, 13.1) 9.6 (6.4, 13.8) 8.9 (6.4, 13.2) 0.559

VB3 (ng/mL) 29.6 (20.0, 44.6) 34.6 (23.4, 51.8)a 34.3 (19.3, 55.2) 33.1 (22.8, 52.0)c < 0.001

VB5 (ng/mL) 53.1 (42.4, 73.7) 50.5 (40.7, 70.3)a 57.3 (44.2, 76.4)d 53.6 (42.4, 71.9)e 0.008

VB7 (ng/mL) 0.094 (0.052, 0.145) 0.084 (0.045, 0.132) 0.081 (0.042, 0.144) 0.079 (0.030, 0.135)c 0.025

VC (μg/mL) 12.1 (7.6, 16.9) 9.8 (6.2, 13.4)a 10.5 (7.3, 14.1)b 13.3 (9.7, 16.8)cef < 0.001

VA, vitamin A, VD, vitamin D, VE, vitamin E, VB1, vitamin B1, VB2, vitamin B2, VB3, vitamin B3, VB5, vitamin B5, VB7, vitamin B7, VC, vitamin C.
aP < 0:05 for 3–5 year vs. < 3 year; bP < 0:05 for 6–11 year vs. < 3 year; cP < 0:05 for ≥ 12 years vs. < 3 year; dP < 0:05 for 6–11 year vs. 3–5 year; eP < 0:05 for ≥ 12 years vs. 3–5 year; fP < 0:05 for 
≥ 12 years vs. 6–11 year.
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findings, and future multicenter studies are warranted for validation. 
Second, the lack of data on dietary habits, lifestyle factors, and 
socioeconomic status may introduce residual confounding. 
Furthermore, the limited sample size in certain subgroups—
particularly within the broadly defined 12-18-year age group 
encompassing diverse pubertal stages—restricted finer age 
stratification and may have obscured more nuanced developmental 
trends. Additionally, the assessment of thiamine status relied solely on 
total blood thiamine levels rather than more sensitive functional 
assays, which may reduce the sensitivity to detect functional 
thiamine insufficiency.

Conclusion

In conclusion, this study reveals a high prevalence of vitamin 
insufficiencies, particularly vitamins B7, D, A, and C among children 
in Henan, China, with variations significantly associated with sex, age, 
and season. These findings provide critical evidence to guide public 
health policy formulation and support the implementation of targeted 
nutritional interventions, such as age-specific supplementation and 
seasonal dietary recommendations, to improve pediatric health 
outcomes in this population.
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