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Background: Hyperuricaemia (HUA) is a common metabolic disease that has 
become a global public health burden. The Planetary Health Diet Index for the 
United  States (PHDI-US), a sustainable dietary pattern emphasizing a plant-
based diet, has great potential for chronic disease prevention and control, but 
its relationship with HUA is unclear.
Methods: This study was based on nationally representative NHANES data. 
Multivariate logistic regression and restricted cubic spline models were used 
to assess the association between raw PHDI-US and HUA. The key dietary 
component Dairy was identified by machine learning, the optimized PHDI-Dairy 
index was constructed, and the association between dairy intake and HUA risk 
was verified in an independent self-built cohort.
Results: Primitive PHDI-US was significantly negatively correlated with the risk 
of HUA, but its protective effect was weaker than traditional dietary indices such 
as AHEI, AEI, and MEDI. Machine learning results show that Dairy is the most 
critical component in PHDI-US composition. The PHDI-Dairy index, constructed 
after optimizing the weight of dairy products, was more negatively correlated 
with the risk of HUA, and the protection efficiency was better than that of other 
dietary indices. External validation further confirmed that increased dairy intake 
was associated with a low risk of HUA.
Conclusion: PHDI-US was negatively correlated with the risk of HUA. After 
optimizing the weighting of dairy products, PHDI-Dairy demonstrated a 
significantly enhanced protective effect, outperforming both the original PHDI 
and other dietary indices. This result highlights its potential as a nutritional 
intervention tool for chronic diseases, contributing to both public health and 
environmental sustainability.
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1 Introduction

Hyperuricemia (HUA) refers to the pathological state in which the concentration of serum 
uric acid (SUA) is continuously higher than the normal threshold. This threshold is based on 
the saturated concentration of uric acid in physiological fluids. When it exceeds, the risk of 
urate crystal precipitation increases significantly, which can easily cause gout (1). The essence 
of HUA is the result of a purine metabolism disorder or renal excretion dysfunction (2). HUA 
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is closely related to many chronic diseases, such as cardiovascular 
disease, renal dysfunction, and diabetes, and is an important risk 
factor for the occurrence and development of these diseases (3–5). 
With the development of the global economy and changes in people’s 
lifestyles, such as increased intake of high-purine foods in the diet, 
reduced exercise, and increased drinking, the incidence of HUA is 
increasing year by year. According to the data, the prevalence of 
hyperuricemia among adults in 31 provinces (autonomous regions 
and municipalities directly under the central government) in 
mainland China showed an upward trend; that is, the overall 
prevalence in 2018–2019 was 14.0%, which was 2.9 percentage points 
higher than 11.1% in 2015–2016 (6). The onset and progression of 
HUA are usually hidden. Many patients have no obvious symptoms in 
the early stage of the disease, and are often diagnosed when gout 
attacks or other complications occur. However, once complications 
occur, the difficulty of treatment will increase and the prognosis will 
be  affected. Therefore, timely identification of HUA and early 
intervention are of great significance for preventing complications and 
reducing the burden of disease (7).

In recent decades, the global burden of diet-related 
non-communicable diseases (NCDs) has increased dramatically, and 
the current food production and consumption system also poses a 
major threat to the health of the planet. Based on this, the EAT-Leaf 
Blade Committee has proposed a dietary model that combines 
health and sustainability goals. In order to evaluate people’s 
compliance with this dietary pattern, it is necessary to establish 
corresponding indicators. The Planetary Health Diet Index for the 
United States (PHDI-US) came into being (8). PHDI-US emphasizes 
increasing the intake of fruits, vegetables, whole grains, nuts, and 
beans, while reducing the consumption of red meat, processed meat, 
and eggs. Studies have shown that following the dietary pattern 
advocated by PHDI-US is not only closely related to reducing the 
incidence of major diseases such as cancer (9), cardiovascular 
disease (10), and lung disease (11), but also can significantly reduce 
the negative impact on the environment. In contrast, other dietary 
indices such as the Alternative Healthy Eating Index (AHEI), the 
Healthy Eating Index (HEI), and the Mediterranean Diet Score 
(MEDI) have also been shown to be closely related to a variety of 
diseases (12). The difference is that most of these traditional dietary 
indexes only focus on the health benefits of diet and lack 
consideration of the environmental impact of dietary patterns, 
which makes it difficult to meet the current needs of coordinated 
development of health and environment. It is worth noting that 
dietary structure is closely related to the occurrence and development 
of HUA, and excessive intake of high-purine foods is one of the 
important factors leading to elevated serum uric acid (6). However, 
there is a paucity of studies that combine the PHDI-US with HUA 
to investigate the effects of healthy and sustainable dietary patterns 
on HUA. It is also unclear whether the PHDI-US is more 
advantageous than other dietary indices in reducing HUA. Therefore, 
the aim of this study was to investigate the association between 
PHDI and HUA, and to compare the protective effects of PHDI-US 
and other dietary indices (AHEI, HEI, MEDI) on HUA, and to find 
important components of PHDI-US to optimize PHDI-US, so as to 
provide a new perspective and theoretical support for improving 
HUA prevention and control strategies and promoting the 
realization of global health and environmental sustainable 
development goals.

2 Methods

2.1 Study population

The data of this study are from the National Health and 
Nutrition Examination Survey (NHANES) public database. The 
NHANES aims to comprehensively assess the health and 
nutritional status of the U.S. population with a complex, stratified, 
multistage probability cluster sampling design. The study utilized 
data from the National Health and Nutrition Examination Survey 
(NHANES) with a sample size of 22,087 participants. Given that 
NHANES is a large, publicly available dataset, no explicit sample 
size estimation was required. The study selected the NHANES 
cycle data from 2005 to 2018 as the basis for analysis. The data 
during this period covered the latest diet, biochemical tests, and 
health status information. In terms of research object screening, 
adult participants aged ≥ 20 years were first included to ensure 
that the study population had relatively mature and stable 
characteristics in physiology and eating habits. Other exclusion 
criteria were: (1) missing data on gender, education, race, PIR, 
diabetes, and smoking; (2) Missing diet and HUA data. Finally, 
22,087 participants were included in this study. The NHANES 
database has been approved by the Research Ethics Review Board 
of the National Center for Health Statistics of the United States, 
and all participants have signed informed consent to ensure the 
compliance and ethical rationality of research data acquisition. 
The research strictly follows the ethical principles established by 
the ‘Helsinki Declaration ‘from beginning to end. The presentation 
and publication of the research results are only displayed in the 
form of a group data summary, and do not involve the specific 
information of any individual participant. Relevant information 
can be obtained from the NCHS website (Figure 1).1

1  https://www.cdc.gov/nchs/nhanes/index.htm

FIGURE 1

Flow chart of participant selection from the NHANES 2005–
2018 cycles.
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2.2 Assessment of Planetary Health Diet 
Index

Professionally trained investigators used the USDA Automated 
Multiple Pass Method to collect 24-h dietary review data (13). 
Participants were required to recall all the food and drinks consumed 
the previous day, and the measurement guidelines were used to assist 
in estimating food portions during the survey. 3–10 days after the first 
face-to-face interview, the investigators conducted a second 
unannounced dietary interview by telephone to obtain two-day 
dietary information and ensure the reliability and representativeness 
of the data. To incorporate dietary recall data into the Food Pattern 
Equivalent Database (FPED) (14). FPED assigns food to 
37 U. S. Department of Agriculture food pattern components based 
on the food composition table. For a single component of food, direct 
distribution; for multi-component food, the standard recipe file is 
used to decompose it into the gram weight of each component to 
ensure the accurate classification of the data. The total energy intake 
(TEI) was derived from the two-day average total intake reported in 
the diet questionnaire and incorporated into all models to control 
confounding factors and reduce irrelevant variations in dietary 
variables, thereby providing a more accurate and reliable database for 
PHDI calculations (15). Finally, based on these processed data, 
combined with the PHDI scoring criteria, the participants ‘planetary 
health diet index scores were calculated. In this study, we used the R 
language tool DietaryIndex to calculate dietary indices such as 
PHDI-US, MEDI, AHEI, and HEI (16, 17). The source code, validation 
files, and tutorials are all open from GitHub,2 providing a standardized 
solution for dietary index calculation (18). PHDI-US consists of 16 
components, with a total score of 0 to 150 points. It has six dimensions, 
including vegetables, fruits, whole grains, beans, nuts, healthy fats, and 
other plant foods intake, as well as the right amount of meat, fish, eggs, 
refined grains, and other foods (8). PHDI-US can quantify compliance 
with planetary healthy eating. The higher the score, the more in line 
with the dietary recommendations of a planetary healthy diet.

2.3 Diagnosis of hyperuricemia

Uric acid concentration was determined by the Beckman Coulter 
LX20 (Brea, CA) colorimetry (19). Hyperuricemia was defined as 
male ≥ 420 mmol/L (7 mg/dL), female ≥ 360 mmol/L (6 mg/dL), or 
use of uric acid-lowering drugs (20).

2.4 Self-built cohort

This study included a cohort of 2,819 individuals from southern 
China with complete data on hyperuricemia (HUA) and dairy intake. 
This cohort was a retrospective study conducted in Guangxi, where 
participants were selected based on the following criteria: adults aged 
over 20 years, with documented uric acid laboratory tests, physical 
examinations, and no clear history of renal disease, nephritis, or 
related endocrine disorders. The diagnostic criteria for HUA were 

2  https://github.com/jamesjiadazhan/dietaryindex

consistent with those described above, and dairy intake was assessed 
based on the component-specific scoring standards of the Planetary 
Health Diet Index (PHDI) developed by the EAT–Lancet Commission. 
This was a retrospective study that did not involve any personally 
identifiable information or biological specimens. Ethical approval was 
obtained from the Ethics Committee of Liuzhou People’s Hospital 
(Approval No. KY2025-009-01). Research involving human 
participants was reviewed and approved by the same committee. All 
participants provided written informed consent prior to inclusion in 
the study.

2.5 Covariate

The covariates were determined by a comprehensive review of 
literature and clinical expertise. These variables include socio-
demographic characteristics such as age, gender, race, education level, 
household poverty-to-income ratio (PIR), drinking and smoking 
history. In addition, hypertension and diabetes outcomes were also 
considered. Demographic characteristics were collected through 
standardized questionnaires and face-to-face interviews. With 1.3 
times the poverty line as the boundary, PIR < 1.3 is defined as the 
poverty level, and PIR ≥ 1.3 is the non-poverty level. Hypertension 
was defined as a patient’s self-reported history of hypertension, use of 
antihypertensive drugs, systolic blood pressure (SBP) ≥ 140 mmHg, 
or diastolic blood pressure (DBP) ≥ 90 mmHg. Diabetes was defined 
as a history of diabetes, HbA1c level ≥ 6.5% or fasting blood glucose 
level ≥ 126 mg/dL. The classification of the remaining covariates can 
be seen in Table 1.

2.6 Machine learning

We applied a random forest regression (RFR) model to evaluate 
the relative importance of 16 dietary components in relation to 
hyperuricemia. The dataset was randomly split into a training set 
(70%) and a testing set (30%) to evaluate model performance. The 
model parameters were tuned to reduce overfitting risk: the number 
of trees was set to 100, the maximum tree depth was restricted to 3, 
the minimum samples required for splitting an internal node was 2, 
and the minimum samples required at a leaf node was 1. The loss 
function was set to squared error. The maximum number of features 
considered at each split was optimized, and the threshold for splitting 
was set at 0.0001. Model performance and generalizability were 
assessed using the testing set and out-of-bag (OOB) error estimates. 
The comparable performance between training and testing sets 
indicated that overfitting was not a major concern. Feature importance 
was subsequently derived from the mean decrease in impurity across 
all trees.

2.7 Statistical method

In order to ensure the national representativeness of the survey 
data, this study adopted the weight system recommended by the 
National Center for Health Statistics (NCHS). Continuous variables 
were described by mean ± standard deviation (normal distribution) 
or median (non-normal distribution), and t test was used to compare 
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the differences between groups. The categorical variables were 
described by composition ratio, and the chi-square test was used for 
comparison between groups. Using the quartile grouping method, the 
subjects were divided into four groups according to the PHDI level, 
and the lowest group (Quartile 1) was used as a reference to construct 
three logistic regression models that gradually adjusted confounding 

factors. Model 1 did not adjust for confounding factors, Model 2 
adjusted for gender and age, and Model 3 adjusted for age, gender, 
race, PIR, education, BMI, smoking, and hypertension. The odds ratio 
(OR) and 95% confidence interval (95% CI) were calculated to show 
the association strength between different dietary quality index 
groups and HUA, and the trend test (P for trend) was performed to 

TABLE 1  Baseline characteristics of participants.

Characteristic Non-HUA With HUA P value

PHDI-US 64.58 (±14.88) 63.87 (±14.68) 0.05

Gender <0.001

 � Female 55,869,863 (46.85%) 14,369,471 (58.59%)

 � Male 63,388,078 (53.15%) 10,156,729 (41.41%)

Age <0.001

 � 20–45 59,754,823 (50.11%) 10,311,666 (42.04%)

 � 45–60 34,348,266 (28.80%) 6,549,745 (26.71%)

 � 60–75 19,274,327 (16.16%) 5,388,588 (21.97%)

 � >75 5,880,525 (4.93%) 2,276,201 (9.28%)

BMI <0.001

 � <18.5 2,053,994 (1.72%) 38,979 (0.16%)

 � 18.5–25 38,911,117 (32.63%) 3,018,773 (12.31%)

 � 25–30 40,327,528 (33.82%) 7,395,285 (30.15%)

 � >30 37,965,302 (31.83%) 14,073,163 (57.38%)

Race <0.001

 � Mexican American 10,005,584 (8.39%) 1,486,759 (6.06%)

 � Other Hispanic 6,198,528 (5.20%) 956,172 (3.90%)

 � Non-Hispanic White 83,689,523 (70.18%) 17,844,956 (72.76%)

 � Non-Hispanic Black 11,188,947 (9.38%) 2,615,450 (10.66%)

 � Other race—including multi-racial 8,175,359 (6.86%) 1,622,863 (6.62%)

PIR 0.65

 � Below poverty threshold 36,726,064 (30.80%) 7,664,655 (31.25%)

 � Above poverty threshold 82,531,878 (69.20%) 16,861,545 (68.75%)

Education 0.01

 � Below high school 15,180,336 (12.73%) 3,043,215 (12.41%)

 � High school 25,755,442 (21.60%) 5,977,814 (24.37%)

 � Above high school 78,322,163 (65.67%) 15,505,171 (63.22%)

Smoking <0.001

 � No 50,491,804 (42.34%) 11,285,443 (46.01%)

 � Yes 68,766,138 (57.66%) 13,240,757 (53.99%)

Drinking 0.03

 � No 116,266,271 (97.49%) 23,716,987 (96.70%)

 � Yes 2,991,670 (2.51%) 809,213 (3.30%)

Hypertension <0.001

 � No 118,489,056 (99.36%) 24,062,074 (98.11%)

 � Yes 768,885 (0.64%) 464,126 (1.89%)

Diabetes <0.001

 � No 8,646,073 (7.25%) 2,780,238 (11.34%)

 � Yes 110,611,868 (92.75%) 21,745,962 (88.66%)
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determine whether the association changed regularly with 
the grouping.

At the same time, the restricted cubic splines (RCS) method was 
used to fit the dose–response relationship model, and the RCS 
Prediction Plot was drawn to visually present the nonlinear correlation 
between the continuous variables of dietary quality index and HUA 
risk. In order to identify the dietary factors most related to the 
reduction of HUA risk, machine learning methods such as random 
forest and feature importance analysis were used to evaluate 16 food 
components of PHDI-US. Based on the key features of model 
screening, the original PHDI-US is recalibrated. Then, through 
logistic regression and linear regression, the recalibrated PHDI-US, 
original PHDI-US, and the other three dietary indices (AHEI, HEI, 
and MEDI) were compared to analyze the difference in the efficacy of 
each index in reducing the risk of HUA and its linear correlation with 
HUA. In order to verify the dose–response relationship between dairy 
intake and hyperuricemia, this study used an independent cohort of 
the southern Chinese population for analysis, and used restricted 
cubic spline (RCS), logistic regression, and quantile regression to 
evaluate. It is worth noting that although the study confirmed that 
there was a significant correlation between PHDI-US and HUA, the 
results only showed correlation, and no causal relationship was 
established. A cohort of the southern Chinese population was used to 
verify the dose–response relationship between dairy intake and 
hyperuricemia. The statistical methods used were restricted cubic 
spline, logistic regression, and quantile regression. All statistical 
analyses were performed using the R language. All hypothesis tests 
were set to a bilateral significance level of 0.05; that is, when the 
p-value was less than the threshold, the results were considered 
statistically significant.

3 Results

3.1 Baseline characteristics of the study 
population

To explore the differences in characteristics between non-HUA 
and HUA populations and their potential association with PHDI-US, 
this study analyzed baseline characteristics by grouping patients with 
or without HUA. The baseline table was generated using NHANES 
survey weights with stratification and clustering to ensure nationally 
representative estimates. The results showed that (Table 1), the mean 
PHDI-US of the non-HUA group was 64.58 ± 14.88, which was higher 
than that of the HUA group (63.87 ± 14.68), but the difference 
between the groups did not reach a statistically significant level 
(p = 0.05). In the non-HUA group and the HUA group, the proportion 
of women was 46.85% vs. 58.59%, and the proportion of men was 
53.15% vs. 41.41% (p <  0.001). The proportion of 20–45, 45–60, 
60–75, and > 75 years old varied between the two groups, with 
statistically significant differences (p < 0.001). Specifically, the younger 
age group (20–45 years) was more prevalent in the no HUA group 
(50.11%), and the older age group (>75 years) was more prominent in 
the HUA group (9.28%). In terms of BMI categories, underweight 
(<18.5) and normal weight (18.5–25) were more common in the 
non-HUA group (1.72, 32.63%), whereas overweight (25–30) and 
obesity (>30) were more common in the HUA group (30.15, 57.38%), 
with statistically significant differences (p < 0.001). The HUA group 

had a higher proportion of Non-Hispanic White (p < 0.001). The 
proportion of current smokers in the HUA group was lower than that 
in the non-HUA group, and the proportion of drinkers was higher 
than that in the non-HUA group (p < 0.05). The non-HUA group had 
a higher proportion of people with lower educational levels (p < 0.05). 
In addition, the HUA group had a higher proportion of hypertension 
and a lower proportion of diabetes (p <  0.001). There was no 
statistically significant difference in economic level between the two 
groups (p > 0.05).

3.2 Association of PHDI-US/AHEI/HEI/MEDI 
with HUA

In this study, model construction and RCS analysis were used to 
explore the association and dose–response relationship between 
dietary quality index (PHDI-US, AHEI, HEI, and MEDI) and 
HUA. The results showed that (Table 2), with the increase of PHDI 
quartiles, OR in Model 1–3 increased first and then decreased, and the 
trend test p < 0.01. In Model 3, the OR value of PHDI-US Q4 was 0.82 
(95% CI, 0.73–0.93), which was lower than that of HEI Q4 (0.86, 95% 
CI, 0.76–0.97), but higher than that of AHEI Q4 (0.77, 95% CI, 0.67–
0.87), indicating that the correlation between PHDI-US Q4 and HUA 
risk reduction was stronger than that of HEI but weaker than that of 
AHEI. The association between MEDI Q4 and HUA was statistically 
significant only in Model 2 (0.87, 95% CI, 0.77–0.99), showing a 
protective effect. In Model 1 and Model 3, the association was not 
significant (p >  0.05). RCS images further visualize the nonlinear 
dose–response relationship between dietary index and HUA risk. The 
results (Figure 2) showed that a significant decrease in the risk of HUA 
was observed with the increase of PHDI-US, AHEI, and HEI scores 
(p < 0.05). Compared with PHDI-US, elevated AHEI and HEI scores 
showed a stronger risk-reducing effect on HUA. In contrast, no 
statistically significant association between MEDI score and HUA risk 
was observed (p > 0.05).

3.3 Machine learning identifies the relative 
importance of specific dietary components 
in PHDI-US

In order to solve the problem that the correlation strength of 
PHDI-US in the HUA association study is lower than that of other 
dietary indices, this study introduces a random forest algorithm to 
mine the feature importance of 16 dietary components contained in 
PHDI-US. The results of feature importance analysis (Figure  3) 
showed that “Dairy” was the most influential dietary component 
associated with HUA risk. Based on this finding, this study 
constructed a modified index, PHDI-Dairy, by weighted adjustment 
and recalibration of dairy ingredients. Multivariate logistic regression 
was used to evaluate the association between PHDI-Dairy and 
HUA. The results (Table 3) showed that in the three models, with the 
increase of quartiles, the OR values associated with PHDI-Dairy and 
HUA gradually decreased (p < 0.05), indicating that adherence to 
PHDI-Dairy was associated with a reduced risk of HUA. Among 
them, after adjusting for all confounding factors (Model 3), the OR 
value of PHDI-Dairy fourth quartile (Q4) associated with HUA was 
0.73 (95% CI, 0.65–0.82, p < 0.01), indicating that PHDI-Dairy has a 
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strong negative correlation with HUA and is superior to other dietary 
indices. It is worth noting that at the fourth quantile level, the adjusted 
PHDI-Dairy increased the risk reduction benefit by 9% compared 
with the original PHDI (OR: 0.73 vs. 0.82). In order to further 
compare the correlation strength between the optimized PHDI-Dairy 
and other dietary indexes on HUA, this study used a multivariate 
linear regression model to evaluate the correlation between each 
dietary index and HUA. The results showed that (Table 4), PHDI-
Dairy was negatively correlated with HUA risk, and the correlation 
was the strongest compared with other dietary indices 
(Estimate = −1.28, SE = 0.11, t = −11.71, 95% CI: −1.49~−1.07, 
p < 0.001). For every 1 unit increase in PHDI-Dairy, the risk of HUA 
decreased by an average of 1.28 points. In addition, AHEI and HEI 
were negatively correlated with HUA (p < 0.05). In contrast, PHDI-US 
was not significantly associated with HUA (p > 0.05), and MEDI was 
positively correlated with HUA (p < 0.05). The RCS results further 
revealed (Figure  4) that PHDI-Dairy was significantly negatively 
correlated with HUA risk (P for overall < 0.001) compared with 
PHDI-US before optimization. Linear regression coefficients showed 
that among all dietary indicators, the absolute value of the negative 
coefficient of PHDI-Dairy was the largest, indicating that it had the 

strongest correlation with HUA. The absolute value of the negative 
coefficient of HEI is small, and the absolute value of the negative 
coefficient of AHEI is greater than that of HEI, but weaker than the 
adjusted PHDI-Dairy (Figure  5). The above differences were 
statistically significant.

3.4 Sensitivity analysis

Compared with PHDI-US, PHDI-Dairy optimizes the prediction 
performance to some extent. Specifically, the AUC of PHDI-US was 
0.51 (95% CI: 0.50–0.52), which was close to the random level. The 
sensitivity of PHDI was high but the confidence interval was wide 
(0.72, 95% CI: 0.28–0.83). The specificity of PHDI-US was low (0.30, 
95% CI: 0.21–0.76). The positive predictive value (PPV) was weak 
(0.18, 95% CI: 0.17–0.19), and the negative predictive value (NPV) 
was good (0.84, 95% CI: 0.83–0.86). The AUC of the modified PHDI-
Dairy was slightly increased to 0.54 (95% CI: 0.53–0.55). The 
sensitivity decreased to 0.56 (95% CI: 0.53–0.58) but the confidence 
interval was significantly narrowed. The specificity was improved to 
0.51 (95% CI: 0.50–0.52), and a good negative exclusion ability was 

TABLE 2  Association between dietary quality indices and HUA by quartiles.

Variable 
name

Model 1 p-value Model 2 p-value Model 3 p-value

OR (95%CI) OR (95%CI) OR (95%CI)

PHDI-US

Quartile 1 Reference - Reference - Reference -

Quartile 2 0.90 (0.81–1.01) 0.07 0.87 (0.78–0.95) <0.01 0.86 (0.77–0.97) 0.02

Quartile 3 0.95 (0.85–1.07) 0.43 0.91 (0.82–1.03) 0.13 0.92 (0.82–1.03) 0.14

Quartile 4 0.83 (0.74–0.93) <0.01 0.81 (0.73–0.91) <0.01 0.82 (0.73–0.93) <0.01

P for trend <0.01 <0.01 <0.01

AHEI

Quartile 1 Reference - Reference - Reference -

Quartile 2 0.99 (0.89–1.11) 0.95 0.91 (0.81–1.02) 0.11 0.95 (0.85–1.07) 0.43

Quartile 3 0.93 (0.84–1.04) <0.01 0.81 (0.73–0.91) <0.01 0.89 (0.79–1.07) 0.06

Quartile 4 0.78 (0.70–0.87) <0.01 0.62 (0.55–0.70) <0.01 0.77 (0.67–0.87) <0.01

P for trend <0.01 <0.01 <0.01

HEI

Quartile 1 Reference - Reference - Reference -

Quartile 2 1.01 (0.91–1.13) 0.77 0.95 (0.85–1.06) 0.39 0.99 (0.88–1.11) 0.92

Quartile 3 0.97 (0.87–1.09) 0.65 0.88 (0.78–0.98) 0.02 0.99 (0.88–1.12) 0.95

Quartile 4 0.85 (0.76–0.95) <0.01 0.70 (0.62–0.79) <0.01 0.86 (0.76–0.97) 0.02

P for trend <0.01 <0.01 <0.01

MEDI

Quartile 1 Reference - Reference - Reference -

Quartile 2 0.94 (0.85–1.06) 0.32 0.91 (0.81–1.02) 0.11 0.9 3 (0.82–1.04) 0.19

Quartile 3 0.90 (0.82–0.99) 0.04 0.86 (0.78–0.95) <0.01 0.96 (0.86–1.07) 0.49

Quartile 4 0.96 (0.85–1.08) 0.52 0.87 (0.77–0.99) 0.04 1.06 (0.93–1.21) 0.41

P for trend 0.14 <0.01 0.74

Model 1, No covariates were adjusted; Model 2, Adjusted for gender and age; Model 3, Adjusted for age, gender, race, PIR, education, BMI, smoking, and hypertension. PHDI, Planetary Health 
Diet Index; AHEI, Alternative Healthy Eating Index; DII, Dietary Inflammatory Index; HEI, Healthy Eating Index; HEI, Healthy Eating Index. MEDI, Mediterranean Diet Index; OR, Odds 
Ratio; CI, Confidence Interval.
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maintained (NPV was 0.85, 95% CI: 0.84–0.86). More details can 
be seen in Table 5.

3.5 Independent cohort

Using a cohort of a cross-sectional study in southern China for 
external validation, in Model 1 (unadjusted model), a higher Dairy 

quantile was significantly negatively correlated with a lower risk of 
hyperuricemia, especially in the fourth quantile (Quartile 4), the OR 
was 0.72 (95% CI: 0.59–0.87), and the p value was 0.01. In Model 2 and 
Model 3, after further adjusting for covariates such as age, gender, BMI, 
smoking, and hypertension, the results were consistent, indicating that 
Dairy had a continuous protective effect on hyperuricemia, especially 
in the fourth quartile. More details can be  seen in Table  6. The 
restricted cubic spline plots showed a significant negative correlation 
between dairy intake and hyperuricemia (Figure 6). As the dairy value 
increased, the risk of hyperuricemia gradually decreased (p < 0.01).

3.6 Mediation analysis

In this study, we conducted a mediation analysis to explore the 
mechanism by which the Planetary Health Diet Index (PHDI-Dairy) 
influences hyperuricemia (HUA). The results showed that the urinary 
albumin-to-creatinine ratio (UACR) plays a significant mediating role in 
the relationship between PHDI-Dairy and HUA. Specifically, the indirect 
effect (IE) of PHDI-Dairy on HUA was −0.0007, with a 95% confidence 
interval (CI) of (−0.0009, −0.0005), indicating that PHDI-Dairy exerts 
its effect on lowering HUA risk through the improvement of 

FIGURE 2

Associations between dietary quality indices and hyperuricemia (HUA) based on restricted cubic spline models. (A) PHDI-US; (B) AHEI; (C) HEI-2015; 
(D) MEDI.

FIGURE 3

Importance ranking of dietary components based on random forest 
analysis. Dairy, nuts and peanuts, fruits, legumes, and non-starchy 
vegetables are shown according to their relative contribution.
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TABLE 3  Association of PHDI-Diary with HUA.

Variable name Model 1 p-value Model 2 p-value Model 3 p-value

OR (95%CI) OR (95%CI) OR (95%CI)

Low PHDI-Dairy Reference - Reference - Reference -

High PHDI-Dairy 0.97 (0.96–0.98) <0.01 0.97 (0.96–0.98) <0.01 0.95 (0.94–0.97) <0.01

Interquartile

 � Quartile 1 Reference - Reference - Reference -

 � Quartile 2 0.90 (0.81–1.01) 0.06 0.91 (0.82–1.02) 0.12 0.90 (0.81–1.02) 0.09

 � Quartile 3 0.71 (0.63–0.79) <0.01 0.70 (0.63–0.79) <0.01 0.74 (0.66–0.83) <0.01

 � Quartile 4 0.69 (0.62–0.77) <0.01 0.69 (0.61–0.78) <0.01 0.73 (0.65–0.82) <0.01

 � P for trend <0.01 <0.01 <0.01

Model 1, No covariates were adjusted; Model 2, Adjusted for gender and age; Model 3, Adjusted for age, gender, race, PIR, education, BMI, smoking, and hypertension. HUA, hyperuricemia; 
OR, Odds Ratio; CI, Confidence Interval.

TABLE 4  Multiple Linear Regression Analysis of the Association Between Dietary Indices and Uric Acid.

Variable name Estimate Std_Error t_value p value CI_2.5 CI_97.5

(Intercept) 344.30 3.91 88.09 0 336.64 351.96

PHDI-US 0.08 0.04 1.83 0.07 −0.01 0.17

PHDI-Dairy −1.28 0.11 −11.71 0.00 −1.49 −1.07

AHEI −0.50 0.10 −5.22 0.00 −0.68 −0.31

HEI-2015 −0.18 0.08 −2.11 0.03 −0.34 −0.01

MEDI 3.57 0.83 4.28 0.00 1.94 5.21

PHDI, Planetary Health Diet Index; AHEI, Alternative Healthy Eating Index; HEI, Healthy Eating Index; HEI, Healthy Eating Index; MEDI, Mediterranean Diet Index; CI, Confidence 
Interval.

FIGURE 4

Association between PHDI-Dairy and hyperuricemia (HUA) based on restricted cubic spline models. The curve depicts odds ratios (95% CI) across 
PHDI-Dairy levels, with histograms showing the distribution of participants.
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UACR. Additionally, the proportion of mediation by UACR was 11.29%, 
meaning that 11.29% of the effect of PHDI-Dairy on HUA is mediated 
through the improvement of UACR. More details can be seen in Figure 7.

4 Discussion

Based on the nationally representative NHANES data, this study 
systematically explored the relationship between PHDI-US and the 
risk of hyperuricemia for the first time. Our analysis showed that a 
higher PHDI-US score (indicating a healthier plant-based diet 
pattern) was associated with a significantly reduced risk of HUA. This 
negative correlation is still robust after a multivariate adjustment 
model. Although PHDI-US showed a protective effect, its correlation 
strength was significantly weaker than AHEI and AEI. In order to 
further optimize the prediction performance, this study applied 
machine learning methods to improve the PHDI-Dairy index. The 

association between this index and HUA risk reduction was 
significantly stronger than that of the original PHDI-US, AHEI, AEI, 
and MEDI. Sensitivity analysis showed the enhancement effect of 
PHDI-Dairy, especially its improvement in discrimination and 
negative predictive value. External validation further confirmed the 
protective effect of Dairy on hyperuricemia. This finding reveals the 
importance of weight improvement of the dietary index, and also 
provides a new idea for dietary intervention of metabolic diseases.

Existing evidence indicates that the PHDI-US is not only 
associated with a lower risk of HUA but also exhibits protective effects 
against various chronic diseases. In cardiovascular disease, adherence 
to PHDI-US is linked to a reduced risk (10), potentially mediated 
through several mechanisms: dietary fiber moderates glucose 
absorption into the bloodstream (21); plant-based diets help maintain 
long-term healthy weight, thereby decreasing the risk of cardiovascular 
disease and type 2 diabetes (22); and improved gut microbiota 
composition may influence disease susceptibility (23). In respiratory 

FIGURE 5

Linear regression coefficients of dietary indices in relation to hyperuricemia (HUA). Estimates and 95% confidence intervals were derived from 
multivariable linear regression models for AHEI, HEI-2015, MEDI, PHDI-Dairy, and PHDI-US.

TABLE 5  Predictive Performance of PHDI and PHDI-Dairy for HUA.

Models AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

PHDI-US 0.51 (0.50–0.52) 0.72 (0.28–0.83) 0.30 (0.21–0.76) 0.18 (0.17–0.19) 0.84 (0.83–0.86)

PHDI-Dairy 0.54 (0.53–0.55) 0.56 (0.53–0.58) 0.51 (0.50–0.52) 0.20 (0.19–0.21) 0.85 (0.84–0.86)

AUC, area under the receiver operating characteristic curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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health, higher PHDI-US adherence is significantly associated with 
lower asthma prevalence, a correlation partly mediated by BMI (11). 
For metabolic liver conditions such as Metabolically Dysregulated-
Associated Steatotic Liver Disease (MASLD), PHDI’s plant-based 
orientation, rich in unsaturated fatty acids, may counter the 
pro-steatotic effects of saturated fats, thereby reducing disease risk 
(24). In mental health, PHDI-US shows a strong negative correlation 
with depression, potentially due to limited intake of red meat and 
saturated fats. Such restriction may reduce reactive oxygen species 
(ROS) production and oxidative stress, mitigating immune 
dysregulation and inflammatory responses linked to depression (25, 
26). These cross-disease findings suggest that PHDI’s plant-based, 
animal-limited dietary pattern may exert multi-disease preventive 
effects through shared metabolic pathways, such as anti-inflammatory 

and antioxidant mechanisms, offering new insights into managing 
HUA and metabolic comorbidities.

From the perspective of metabolic pathways, the plant-based diet 
advocated by PHDI-US can directly reduce the dietary purine load by 
replacing the red meat diet (27). Intestinal dysbiosis can impair the 
gut mucosal barrier, triggering low-grade systemic and renal 
inflammation, thereby elevating serum uric acid levels (28). 
Phytochemicals exert anti-inflammatory and epigenetic modulatory 
effects that influence gut flora (29). Sulforaphane (SFN) from 
cruciferous vegetables inhibits xanthine oxidase and adenosine 
deaminase activities, thereby reducing uric acid synthesis. It also 
promotes uric acid excretion by upregulating ABCG2 and 
downregulating URAT1/GLUT9, while suppressing NLRP3 
inflammasome activation via the TLR4/MyD88 pathway (30). 

TABLE 6  Association of dairy with HUA.

Variable 
name

Model 1 p-value Model 2 p-value Model 3 p-value

OR (95%CI) OR (95%CI) OR (95%CI)

Interquartile

Quartile 1 Reference - Reference - Reference -

Quartile 2 0.86 (0.68–1.09) 0.21 0.87 (0.68–1.11) 0.28 0.87 (0.68–1.11) 0.14

Quartile 3 0.80 (0.62–1.04) 0.10 0.81 (0.62–1.06) 0.13 0.81 (0.62–1.07) <0.01

Quartile 4 0.72 (0.59–0.87) <0.01 0.73 (0.60–0.88) <0.01 0.73 (0.60–0.89) <0.01

P for trend <0.01 <0.01 <0.01

Model 1, No covariates were adjusted; Model 2, Adjusted for gender and age; Model 3, Adjusted for age, gender, BMI, smoking, and hypertension. HUA, hyperuricemia; OR, Odds Ratio; CI, 
Confidence Interval.

FIGURE 6

Association between dairy intake and hyperuricemia (HUA) based on restricted cubic spline models. The curve depicts odds ratios (95% CI) across 
levels of dairy intake, with histograms indicating the distribution of participants.
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Cereal-derived dietary fiber moderates uric acid levels by inhibiting 
the elevation of serum uric acid induced by dietary RNA, AMP, 
adenosine, or adenine (31). Furthermore, it enhances glucose-
dependent insulinotropic polypeptide (GIP) secretion and improves 
insulin sensitivity, counteracting hyperuricemia caused by insulin 
resistance (32). In addition, the regulation of dietary fiber on uric acid 
may also be  affected by inflammatory response, and its detailed 
mechanism still needs to be  further explored (33, 34). Notably, 
although legumes—particularly soy products—contain moderate to 
high purine levels and are often restricted in gout diets in Asian 
countries, a large-scale Singapore Chinese Health Study (n = 63,257) 
found that both soy and non-soy legume consumption were associated 
with a reduced risk of gout. Although soy protein may mildly increase 
uric acid, typical Asian consumption levels are not clinically 
significant. Multiple studies support that plant-based diets do not 
elevate hyperuricemia or gout risk, even with high-purine plant foods. 
Accordingly, the British Rheumatology Association guidelines 
encourage soy and plant protein intake while advising avoidance of 
high-purine animal foods (35).

Recent evidence indicates that the controversy surrounding beans 
and purines in the context of plant-based diets and uric acid 
metabolism may be overstated. While beans and soy products are 
relatively rich in purines, several large-scale prospective cohort studies 
and meta-analyses have consistently shown that plant-derived purines 
exert a weaker impact on serum uric acid levels and gout risk 
compared with animal-derived purines such as those from meat and 
seafood (36). For example, a case-crossover study demonstrated that 
high intake of animal purines markedly increased the risk of recurrent 
gout attacks, whereas the effect of plant purines was minimal. In 
addition, a recent systematic review concluded that habitual 
consumption of soy products was not associated with an increased 
incidence of hyperuricemia and might even confer a protective effect 
(37). Randomized controlled feeding trials, such as those examining 
the DASH diet, further support that dietary patterns emphasizing 
plant-based foods modestly lower serum uric acid (38). Current 
clinical guidelines also reflect this updated understanding: the 2020 
American College of Rheumatology guideline and the 2022 NICE 
guideline both recommend focusing on limiting animal-based purine-
rich foods, alcohol, and fructose-containing beverages, while not 
specifically restricting beans or soy products (39). Similarly, the 

Chinese dietary guideline for hyperuricemia emphasizes balanced 
nutrition and preparation methods (e.g., boiling and discarding broth 
to reduce purine content) rather than avoidance of legumes (40). 
Collectively, these findings support the inclusion of beans and soy 
products within plant-based dietary patterns aimed at reducing 
hyperuricemia risk.

Notably, this study used machine learning to optimize the 
PHDI-US into PHDI-Dairy. The effectiveness of this improved 
strategy was shown in the logistic regression model, and external 
validation further confirmed the significant protective role of dairy 
against HUA, underscoring the scientific value of targeted dietary 
index refinement. The original PHDI-US showed weaker protective 
effects than other indices, likely due to its stronger emphasis on 
“environmental sustainability.” For example, limiting red meat intake 
to no more than 2.4% of total calories, but the weight distribution of 
key nutritional components of uric acid metabolism (such as dairy 
products) is insufficient. Dairy is a major dietary source of calcium 
and contains proteins (mainly casein and whey), fat, and lactose. The 
enhanced performance of PHDI-Dairy may be attributed to several 
mechanisms: facilitating calcium-dependent urinary uric acid 
excretion (41); Improving hyperuricemia through whey-derived 
peptide Pro-Glu-Trp by enhancing intestinal uric acid excretion, 
modulating gut microbiota, and protecting intestinal barrier in rats 
(42); and suppressing HUA-related inflammation. Specifically, dairy 
compounds like GMP and G600 milk fat extract can inhibit IL-1β-
mediated inflammation triggered by monosodium urate crystals (43). 
Our results are further supported by previous population-based 
studies. A randomized crossover trial reported that consumption of 
various types of milk reduced serum urate by approximately 10% (44). 
Higher intake of whole-fat dairy, milk, low-fat dairy, yogurt, and 
cheese is also associated with decreased hyperuricemia risk (45). 
These findings suggest that including more dairy and key nutrients in 
dietary advice can better prevent high uric acid. It also helps create 
chronic disease strategies that combine nutrition, metabolism, and 
environmental goals.

From the perspective of clinical significance, the PHDI-Dairy 
proposed in this study provides a new intervention direction for the 
prevention and treatment of HUA. In the face of patients with 
hyperuricemia, doctors may develop personalized dietary plans based 
on the dietary patterns recommended by PHDI-US, and assist in 
disease treatment by adjusting the dietary structure. From the 
perspective of public health, PHDI-US is of great value in 
environmental protection. PHDI-US advocates increasing plant food 
intake and reducing the consumption of animal products (especially 
red meat), which can reduce agricultural-related environmental 
damage from the source. Taking animal husbandry as an example, 
animal-free US agricultural modeling systems can reduce US 
agricultural greenhouse gases (28%) (46). The promotion of the 
PHDI-US diet can reduce the demand for meat, thereby reducing the 
scale of animal husbandry, reducing greenhouse gas emissions, 
alleviating water resources and land pressure, and protecting 
biodiversity. Other evidence also suggests that higher PHDI-US is 
associated with lower greenhouse gas emissions (47). This means that 
integrating the PHDI-US concept into public health policy 
formulation may reduce the risk of HUA while promoting 
environmental protection and achieving a win-win situation between 
human health and the earth’s ecology.

This study has several limitations. The cross-sectional design is 
difficult to establish the causal timing relationship between dietary 

FIGURE 7

Mediation analysis of the association between PHDI-Dairy and 
hyperuricemia (HUA) with urinary albumin-to-creatinine ratio (UACR) 
as a mediator. Indirect effect (IE), direct effect (DE), and proportion 
mediated were estimated using mediation models with 95% 
confidence intervals.
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patterns and HUA, which needs to be further verified by follow-up 
cohort studies. PHDI-Dairy’s dairy product weight optimization is 
based on the dietary characteristics of the American population. 
Whether it is universal in the Asian population dominated by soybean 
consumption still needs to be verified by cross-regional research. In 
addition, the research data relies on 24-h recall, which does not reflect 
long-term dietary patterns and is susceptible to recall bias. A key 
limitation of our study is the reliance on two 24-h dietary recalls to 
estimate usual intake. Although 24-h recalls are widely used in 
nutritional epidemiology, they may not fully capture long-term dietary 
habits and are subject to day-to-day variability. Moreover, recall bias 
is inevitable, as participants may underreport or misreport certain 
food groups, such as dairy products or plant-based items, which could 
influence the accuracy of PHDI and dairy intake assessments. These 
measurement errors may attenuate the observed associations and 
should be acknowledged as a potential source of uncertainty when 
interpreting the findings.

Another limitation concerns the generalizability of the optimized 
PHDI-Dairy. The index was originally derived from U.S. dietary data 
and subsequently applied to a Chinese cohort, where dietary patterns 
differ substantially, particularly in the relative contribution of dairy 
versus soy products. Such cultural differences in staple food choices 
and protein sources may influence both the validity and applicability 
of the optimized index across populations. Therefore, while our 
findings support the utility of PHDI-Dairy in the Chinese context, 
further validation and potential adaptations are warranted before 
applying the index in other cultural settings. Future work should 
consider region-specific dietary structures to ensure broader 
applicability and accuracy. It should be  noted that although the 
associations between PHDI-US, PHDI-Dairy and health outcomes 
were statistically significant, their predictive performance in terms of 
discrimination was relatively weak, as reflected by AUC values close 
to 0.5. It is important to note that the primary goal of this study was 
not prediction, but rather to optimize the index. The higher AUC after 
adjustment compared to before adjustment demonstrates that the 
optimization was successful. Future research should therefore aim to 
integrate PHDI-US with other biomarkers or lifestyle indicators to 
improve predictive utility and to explore its application in diverse 
clinical and public health contexts. Another limitation relates to the 
external “southern China” cohort used for validation. Although this 
cohort provides valuable data for testing the applicability of the index 
in a different setting, its recruitment procedures and representativeness 
may limit generalizability. Participants were drawn from a specific 
regional population, which may not fully reflect the broader 
demographic and dietary diversity of southern China. In addition, 
potential selection bias and unmeasured confounding cannot be ruled 
out, which should be  taken into account when interpreting the 
external validation results.

This study highlights the health benefits of optimizing dairy 
intake, such as improving bone health and providing essential 
nutrients like calcium and protein. However, the environmental 
impact of dairy production, particularly in terms of greenhouse gas 
emissions and water usage, remains a key concern. Balancing these 
benefits with sustainability is crucial. One approach is to promote 
lower-fat or fermented dairy products, which can reduce health risks 
while still delivering nutritional value. Additionally, incorporating 
plant-based alternatives, like almond or oat milk, can help reduce 
environmental impact while providing similar nutritional benefits. 

Ultimately, optimizing dairy intake in a way that promotes both health 
and sustainability is central to achieving the goals of the Planetary 
Health Diet Index.

The mediation analysis in this study revealed that the Planetary 
Health Diet Index (PHDI-Dairy) influences hyperuricemia (HUA) 
partly through the improvement of kidney function, as indicated by 
the urinary albumin-to-creatinine ratio (UACR). Specifically, PHDI-
Dairy reduces the risk of HUA by improving UACR levels, accounting 
for 11.29% of the total effect. This finding underscores the potential 
role of kidney function in the protective effect of PHDI-Dairy on 
HUA. Although we did not initially hypothesize that this effect would 
primarily be mediated through kidney function, this finding offers 
new insights, suggesting that protecting kidney function may be an 
important pathway in reducing HUA risk while optimizing diet. 
Future studies could further explore other potential mediating 
mechanisms and assess their applicability across different populations.

Based on the above findings, future studies can further carry out 
prospective intervention trials of PHDI-Dairy to clarify the dose-
effect relationship between dairy intake and uric acid metabolism. It 
is also possible to develop improved versions of regionalized PHDI 
(such as the Asian version to increase the weight of soy products) to 
promote the precise and personalized development of dietary 
intervention programs. These explorations will not only deepen the 
scientific understanding of the relationship between diet and uric acid 
metabolism, but also provide a more solid evidence base for the 
collaborative intervention strategy of `healthy diet-disease prevention-
environmental protection`.

5 Conclusion

In conclusion, this study suggests that while PHDI-US shows a 
weaker protective effect against hyperuricemia (HUA) compared with 
other dietary indices in high-adherence populations, the optimized 
PHDI-Dairy demonstrates superior performance, providing 
preliminary evidence to improve the applicability of the EAT-Lancet 
dietary pattern in individuals with HUA.
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