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Trajectories of health conditions
predict cardiovascular disease
risk among middle-aged and
older adults: a national cohort
study

Wenlong Li'!, Tian Liu'', Yuanjia Hu', Hanwen Zhou?,
Yingcheng Liu?, Haijiao Zeng?', Yuan Zhang', Cong Zhang?,
Kangjie Li*, Zuhai Hu?, Pinyi Chen?, Hua Wang?*, Biao Xie'* and
Xiaoni Zhong'*

tDepartment of Health Statistics, School of Public Health, Chongging Medical University, Chongqing,
China, ?College of Science, Xichang University, Xichang, China

Background: Most previous studies have focused on the association between
health conditions measured at a single time point and the risk of cardiovascular
disease (CVD), while evidence regarding the impact of long-term trajectories
of health conditions is limited. This study aimed to construct models of health
condition trajectories and to evaluate their association with CVD risk and
predictive value.

Methods: This study included 2,512 participants aged 45 years and older
from the China Health and Retirement Longitudinal Study (CHARLS), who were
followed from 2011 to 2018. Trajectories of multimorbidity status, activities of
daily living (ADLs) limitations, body roundness index (BRI), pain, sleep duration,
depressive symptoms, and cognitive function were identified using latent
class growth models (LCGMs). Cox regression models were used to assess
associations between these trajectories and incident CVD. Ten machine learning
(ML) algorithms were applied to evaluate the predictive capacity of different
variable groups for CVD. Additionally, SHapley Additive exPlanations (SHAP)
values were used to interpret predictor importance and direction in the machine
learning models.

Results: Distinct high-risk trajectories of physical and psychological health
were independently associated with increased CVD risk. Higher risks of CVD
were observed for the moderate-ascending (HR = 1.42, 95% Cl: 1.08-1.89)
and high-ascending (3.01, 2.16-4.20) trajectories of multimorbidity status;
the high-ascending trajectory of ADLs limitations (2.58, 1.87-3.56); the high-
stable trajectory of BRI (1.67, 1.03-2.70); the moderate-ascending (1.51, 1.07-
2.12) and high-ascending (2.28, 1.56-3.35) trajectories of pain; the moderate-
descending (1.51, 1.09-2.10), low-ascending (1.70, 1.22-2.38), and high-
posterior-ascending (2.54, 1.69-3.82) trajectories of depressive symptoms; and
the low-ascending trajectory of sleep duration (1.33, 1.02—-1.74). Notably, the
model based on trajectories of health conditions achieved the highest predictive
performance among all variable groups (CatBoost AUC = 0.740), with SHAP
analysis confirming that the trajectories of multimorbidity status, BRI, and ADLs
limitations were the most influential predictors.
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Conclusion: Long-term deterioration in both physical and psychological health
is strongly associated with increased CVD risk, highlighting the importance of
early intervention and continuous health monitoring.

KEYWORDS

trajectories of health conditions, cardiovascular disease, latent class growth model,
machine learning, SHapley Additive exPlanations

Introduction

Cardiovascular disease (CVD) remains the leading cause
of death and disability worldwide (1). With the aging of
the population and the increasing coexistence of physical and
psychological health problems, the prevention and management
of CVD are becoming increasingly complex, especially among
middle-aged and older adults (2). In China, rapid urbanization and
population aging have further aggravated the social and economic
burden caused by CVD (3, 4). Therefore, early identification of
high-risk individuals is crucial for preventing CVD events and
reducing the disease burden.

A large number of studies have confirmed that impairments
in physical and psychological health are closely associated with
increased risk of CVD (5-11). However, most studies rely on
cross-sectional assessments at a single time point and fail to
reveal the dynamic trajectories of health status over time (12, 13),
which may underestimate the true relationship between health
changes and CVD risk. Recent studies have shown that analyzing
health trajectories based on longitudinal data can better reflect
population heterogeneity and improve the prediction of CVD risk
(14). Existing studies have found that adverse trajectories of health
conditions such as body roundness index (BRI) (15), sleep duration
(9), and depressive symptoms (16) are significantly associated with
increased CVD risk.

Abbreviations: CVD, Cardiovascular disease; ADLs, Activities of daily living;
BRI, Body roundness index; ML, Machine learning; SHAP, SHapley Additive
exPlanations; CHARLS, China Health and Retirement Longitudinal Study;
CAPI, Computer-Assisted Personal Interviews; STROBE, Strengthening the
Reporting of Observational Studies in Epidemiology; BADLs, Basic activities
of daily living; IADLs, Instrumental activities of daily living; CESD-10, 10-
item Center for Epidemiological Studies Depression Scale; TICS-10, 10-item
Telephone Interview for Cognitive Status; AIC, Akaike Information Criterion;
BIC, Bayesian Information Criterion; aBIC, Adjusted Bayesian Information
Criterion; BLRT, Bootstrapped Likelihood Ratio Test; LMR, Lo-Mendell-Rubin
test; HR, Hazard ratio; Cl, Confidence interval; SD, Standard deviation; IQR,
Interquartile range; ANOVA, Analysis of Variance; LR, Logistic regression;
SVM, Support vector machine; GBM, Gradient boosting machine; NN, Neural
network; RF, Random forest; XGBoost, Extreme gradient boosting; KNN, K-
nearest neighbors; AUC, Area under the receiver operating characteristic
curve; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; BMI,
Body mass index; TG, Triglycerides; CREA, Creatinine; HDL-C, High-density
lipoprotein cholesterol; LDL-C, Low-density lipoprotein cholesterol; TC,
Total cholesterol; GLU, Fasting blood glucose; UA, Uric acid; CRP, C-reactive

protein.
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Most existing studies have focused only on a single domain
of either physical or psychological health and lack comprehensive
although
traditional biomarkers can be used for CVD risk assessment

analyses integrating multiple health trajectories;
(17, 18), they fail to reflect the dynamic and multidimensional
changes in health status. Integrating multiple health trajectories
may provide a more comprehensive and dynamic understanding of
the mechanisms underlying CVD and improve its risk prediction.

To address these gaps, we aimed to (1) identify distinct
trajectories of multimorbidity status, limitations in activities
of daily living (ADLs), BRI, pain, sleep duration, depressive
symptoms, and cognitive function using latent class growth
models (LCGMs) based on longitudinal data from the China
Health and Retirement Longitudinal Study (CHARLS); (2)
evaluate their associations with incident CVD; and (3) assess the
incremental predictive value of these trajectories for CVD risk
using machine learning (ML) approaches, with SHapley Additive
exPlanations (SHAP) applied to interpret the contributions
and directions of key predictors. These findings may help to
improve precise risk stratification and early intervention for CVD,
and promote individualized as well as community-level disease
prevention strategies.

Methods
Study population

CHARLS is a nationally representative longitudinal cohort
of Chinese residents aged 45 years and older, initiated by
Peking University in 2011 to collect high-quality microdata
for research on aging-related issues. The baseline survey,
conducted from June 2011 to March 2012, included 17,708
individuals from 10,257 households across 150 counties or
districts and 450 villages or urban communities in 28 provinces.
Follow-up waves were conducted biennially: Wave 2 (2013-
2014), Wave 3 (2015-2016), and Wave 4 (2017-2018). Data
collection used face-to-face computer-assisted personal interviews
(CAPI) and included comprehensive assessments of demographic
characteristics, socioeconomic status, health status, physical
measurements, and biomarkers. To ensure data quality, CHARLS
employed rigorous quality control procedures at each wave,
including standardized interviewer training, centralized field
supervision, built-in logic and range checks within the CAPI
system, and double data entry for verification. The study protocol
was approved by the Institutional Review Board of Peking
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University (IRB00001052-11015) and adhered to the STROBE
guidelines (19).

In this study, physical and psychological data from Waves 1, 2,
and 3 were used to identify trajectories of multimorbidity status,
ADLs limitations, BRI, pain, sleep duration, depressive symptoms,
and cognitive function. Data from Wave 4 were analyzed to
examine the associations between these trajectories and CVD
incidence. Exclusion criteria were as follows: (1) age <45 years in
Wave 1; (2) incomplete follow-up from Wave 1 to Wave 4; (3)
missing health condition data in any of Waves 1-3; (4) incomplete
CVD data across Waves 1-4; (5) confirmed diagnosis of CVD in
Waves 1-3; and (6) missing data in >20% of covariates. The final
analytic sample included 2,512 participants. The flow of participant
selection is shown in Figure 1.

Assessment of health conditions

Multimorbidity status was assessed based on self-reported
of 12
diabetes, dyslipidemia,

physician diagnoses chronic conditions, including

hypertension, chronic lung disease,
asthma, kidney disease, liver disease, gastrointestinal disorders,
cancer, psychiatric disorders, memory-related conditions, and
arthritis. Multimorbidity was defined as the presence of two or
more chronic conditions in the same individual, has been widely
employed in large-scale studies of Chinese middle-aged and older
adults (20, 21). Each condition was assigned a score of 1, with
a maximum possible score of 12, where higher scores indicate
greater severity of multimorbidity.

ADLs limitations are assessed through a comprehensive
evaluation of basic activities of daily living (BADLs) and
BADLs
include six items: dressing, bathing, eating, transferring in

instrumental activities of daily living (IADLs) (22).

and out of bed, toileting, and managing urinary and bowel
function. IADLs comprise five items: performing household chores,
meal preparation, shopping, managing finances, and medication
adherence. Each item is rated on a four-point scale: (1) no difficulty;
(2) difficulty but manageable; (3) difficulty requiring assistance;
and (4) inability to perform. This assessment focuses on long-term
physical function, excluding difficulties expected to resolve within
3 months. A score of 0 is assigned to items with no difficulty, while
any degree of difficulty is scored as 1. The total ADLs limitations
score is calculated by summing the scores for BADLs and IADLs.
Participants who do not complete all items within either BADLs
or TADLs are excluded from the calculation. The possible score
ranges for IADLs, BADLs, and overall ADLs limitations are 0-5, 0—
6, and 0-11, respectively; higher scores indicate greater limitations
in physical activity. The ADL scale has been extensively applied
in previous studies of older adults in China, demonstrating robust
reliability and validity (23, 24).

BRI  was  calculated  as

1— [ waist circumference (cm)/2m]?
[0.5% height (cm)]?

the nearest 0.1 cm using a stadiometer with participants standing

3642 — 3655 X

(25, 26). Height was measured to

upright and barefoot. Waist circumference was measured to the
nearest 0.1 cm at the level of the umbilicus at the end of normal
expiration using a non-stretchable tape.
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Pain was assessed by asking participants to report all areas of the
body currently experiencing pain, including the head, shoulders,
arms, chest, abdomen, back, waist, hips, legs, knees, ankles, and
neck (27). The total number of painful sites was calculated, ranging
from 0 to 15, with higher counts indicating greater pain severity.
This approach has been widely used in large-scale epidemiological
studies in Chinese adults (28, 29).

Nighttime sleep duration was assessed by asking, “During
the past month, how many hours of actual sleep did you get at
night?” Responses were recorded as integers. This question was
adapted from the Pittsburgh Sleep Quality Index (PSQI) (30, 31),
a validated instrument with established reliability and validity in
prior research (32).

Depressive symptoms were assessed using the 10-item short
form of the Center for Epidemiologic Studies Depression Scale
(CESD-10), a validated self-report instrument (33) widely used
in epidemiological surveys. Participants were asked to recall their
feelings over the past week and rate 10 items (including being
bothered by trivial matters, having difficulty concentrating, feeling
depressed, feeling that everything was an effort, feeling hopeful,
feeling fearful, experiencing restless sleep, feeling happy, feeling
lonely, and feeling unable to continue) on a scale from 0 [rarely
or none of the time (<1 day)] to 3 [most or all of the time (5-
7 days)]. Items 5 and 8 were reverse-scored before calculating the
total score, which ranged from 0 to 30, with higher scores indicating
more severe depressive symptoms. The CESD-10 has demonstrated
good reliability and validity in older Chinese adults (34).

The cognitive assessment was adapted from the Health and
Retirement Study (HRS). Consistent with previous studies (35, 36),
cognitive function was categorized into two domains: episodic
memory and mental intactness. Episodic memory was evaluated
using the word recall test, which included both immediate and
delayed recall of 10 words. Each task was scored from 0 to 10
points, yielding a total of 20 points. Mental intactness was assessed
using items from the 10-item Telephone Interview for Cognitive
Status (TICS-10), comprising serial subtraction of 7 from 100 up to
five times (5 points), orientation to the current year, month, day,
day of the week, and season (5 points), and reproduction of two
overlapping pentagons (1 point). The global cognitive score was
calculated as the sum of the episodic memory and mental intactness
scores, ranging from 0 to 31, with higher scores indicating better
cognitive function. This instrument has been shown to be a reliable
and valid measure of cognitive function in Chinese middle-aged
and older adults in prior research (37, 38).

Assessment of CVD events

The primary outcome was incident CVD events ascertained
in Wave 4, including heart disease and stroke. Consistent with
previous studies (39-41), CVD events were identified based on self-
reported physician-diagnosed in response to the questions: “Has a
doctor ever diagnosed you with a heart attack, angina, coronary
artery disease, heart failure, or other cardiovascular condition?”
or “Has a doctor ever informed you that you have had a stroke?”
Participants who reported a new diagnosis of heart disease or
stroke during follow-up were considered to have incident CVD
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Inclusion

17,708 participants in CHARLS enrolled in Wave 1

<45y in Wave 1 (n=602)
Missing age in Wave 1 (n=175)

Incompletely engaged in Wave 1 to Wave 4
(n=5,376)

Insufficient information on health conditions
from Wave 1 to Wave 3 (n=5,965)

Missing values on CVD from Wave 1 to Wave 4
(n=428)

5,162 individuals participated from Wave 1 to Wave 4

With CVD from Wave 1 and Wave 3 (n=2,322)
More than 20 % missing of the covariates (n=328)

2,512 individuals were included in the final study

297 individuals had CVD

FIGURE 1

Participant flowchart. CHARLS, China Health and Retirement Longitudinal Study; CVD, cardiovascular disease.

Exclusion

events. To ensure the accuracy of these self-reported outcomes,
CHARLS implemented internal consistency checks during follow-
up interviews: participants who had reported heart disease or stroke
in the previous wave were asked to reconfirm the diagnosis, and if
they denied the prior report, the original record was retrospectively
corrected to reduce recall bias and enhance the validity of outcome
ascertainment (42).

Covariates

Covariates were assessed using data from the 2015 survey
(Wave 3) of CHARLS.

Sociodemographic and lifestyle variables were obtained
through structured, face-to-face interviews conducted by trained
interviewers. Sociodemographic variables included age, sex,
marital status (married vs. unmarried), residence (rural vs. urban),
and educational level (primary school or below, middle school,
high school or above). Lifestyle factors comprised smoking status
(current, former, or never) and drinking status (drinking > 1/week,
<1/week, or never).

Physical measurements were obtained following standardized
procedures (43). Blood pressure (BP) was measured with an
electronic sphygmomanometer (HEM-7200 Monitor) after 5min
of rest in the sitting position, and the mean of three BP
measurements was used in the analyses. WC was measured
using nonstretched tape at the navel level at minimal respiration.
Height was measured with a 213 stadiometer with participants
standing upright and barefoot on the floor board of the
instrument. Weight was measured using an HN-286 scale, and
BMI was calculated as weight in kilograms divided by height
squared (m?).
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Laboratory measurements were based on fasting venous blood
samples collected at township hospitals or community health
centers using EDTA-K; anticoagulant vacuum tubes. Samples were
processed within 2h of collection, with plasma and bufty coat
separated by centrifugation, aliquoted into cryovials, and stored
at —20°C on site. All specimens were transported on dry ice
via a monitored cold chain (temperature recorded every 5min)
to KingMed Diagnostics (Tianjin, China), a College of American
Pathologists—and ISO 15189-accredited laboratory (44), where
assays were performed using standardized protocols with daily
internal quality-control runs reviewed weekly by the CHARLS
research team. Measured biomarkers included triglycerides (TG),
creatinine (CREA), high-density lipoprotein cholesterol (HDL-C),
low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC),
fasting blood glucose (GLU), uric acid (UA), and C-reactive protein
(CRP). Details of assay methods, coefficients of variation, and
detection limits are provided in Supplementary Table S1.

Statistical analysis

Model fit and optimal latent class selection were evaluated using
the Akaike Information Criterion (AIC), Bayesian Information
Criterion (BIC), adjusted BIC (aBIC), Bootstrapped Likelihood
Ratio Test (BLRT), Lo-Mendell-Rubin (LMR) test, and entropy.
Statistically significant BLRT and LMR P-values (<0.05) indicated
that the k-class model provided a better fit than the (k-1)-class
model. The optimal model was determined by lower AIC, BIC, and
aBIC values and higher entropy. Each latent class was required to
include at least 5% of the sample, and clarity and interpretability of
trajectories were also considered. After trajectory identification, a
nominal categorical variable was generated to assign participants to
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trajectory groups. Model fit and trajectory separation were further
assessed by data visualization.

To evaluate the risk of CVD, the endpoint of Wave 3 was
set as the baseline for survival analyses. The duration from the
baseline (2015) to the occurrence of a CVD event, death, or loss
to follow-up was recorded as the follow-up time. Cox proportional
hazards models were used to estimate hazard ratios (HRs) and 95%
confidence intervals (CIs) for the association between trajectories
of health conditions and incident CVD. Three models were
fitted: Model 1 included no covariates; Model 2 was adjusted
for age and gender. To further address potential confounding by
sociodemographic factors, physical examination, and blood test
results, Model 3 additionally adjusted for marital status, residence,
education level, drinking status, smoking status, BMI, SBP, DBP,
TG, CREA, HDL-C, LDL-C, TC, GLU, UA, and CRP. Subgroup
analyses and interaction tests were also conducted to examine
whether associations between trajectories of health conditions and
CVD risk differed by age, gender, marital status, education level,
residence, smoking status, drinking status, BMI, SBP, and DBP.

ML comprises a variety of algorithms capable of revealing
complex relationships among variables, making it an important
tool for disease prediction. With advances in computational
technology and the widespread application of large-scale datasets,
the role of ML in health risk prediction has become increasingly
prominent (45). In this study, the data were randomly divided
into training and testing sets at a ratio of 8:2. Ten ML
algorithms were used, including Logistic Regression (LR), Support
Vector Machine (SVM), Gradient Boosting Machine (GBM),
Neural Network (NN), Random Forest (RF), Extreme Gradient
Boosting (XGBoost), K-Nearest Neighbors (KNN), AdaBoost,
LightGBM, and CatBoost, to evaluate the predictive ability of four
variable groups: sociodemographic factors, blood tests, physical
examinations, and trajectories of health conditions for CVD risk.
To systematically compare the predictive contributions of each
variable group, two modeling strategies were adopted. First, in the
model including all variable groups, each group was sequentially
excluded to assess its impact on model performance. Second,
independent models were constructed by including only one
variable group to evaluate its individual predictive ability. Model
performance was evaluated using the area under the receiver
operating characteristic curve (AUC) to quantify the contribution
of each variable group to CVD risk prediction. In addition, to
enhance model interpretability, SHAP analysis was conducted on
the optimal ML model based on trajectories of health conditions,
and a summary plot was used to visualize the importance of each
feature and its impact direction on the model output.

Outliers in continuous variables were defined as values more
than 1.5 times the interquartile range (IQR) below the first
quartile (Q1) or above the third quartile (Q3) and were excluded
from the analysis. Covariates with less than 20% missingness
were subsequently imputed using the missForest algorithm, a
nonparametric random forest-based approach capable of handling
both continuous and categorical variables by leveraging observed
values from other features to predict missing ones (46). For
continuous variables with a normal distribution, data are presented
as mean =+ standard deviation (SD) and compared using analysis
of variance (ANOVA), whereas variables with a non-normal
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distribution are presented as median (IQR) and compared using
the Kruskal-Wallis H test. LCGM analyses were conducted using
Mplus version 8.3, and all other analyses were performed using R
version 4.4.2 and Python version 3.11.7. A two-sided p-value < 0.05
was considered statistically significant.

Results

Identification of trajectories of health
conditions

To provide a more comprehensive understanding of the
longitudinal changes in health conditions among middle-aged and
older adults, this study applied LCGM to analyze the trajectories
of multimorbidity status, ADLs limitations, BRI, pain, sleep
duration, depressive symptoms, and cognitive function. The study
population was divided into five categories (CLASS-1 to CLASS-
5), and the optimal model for each health condition was selected
based on evaluation metrics including AIC, BIC, aBIC, entropy,
LMR (P), and BLRT (P) (Supplementary Tables 52-58). Ultimately,
the optimal trajectories for the seven health conditions were
determined (Figure 2; Supplementary Figure S1).

The trajectories of multimorbidity status were best represented
by a quadratic estimation class-3 model (AIC = 16,380.4; BIC
= 16,467.9; aBIC = 16,420.2; entropy = 0.940). Under the same
number of classes, quadratic estimation yielded lower AIC, BIC,
and aBIC than linear and free estimation. The class-3 model
fit significantly better than the class-2 model (BLRT and LMR,
both P < 0.001), whereas the class-4 model offered no additional
improvement (LMR P = 0.237), indicating that three distinct and
well-separated classes most appropriately described the data.

The trajectories of ADLs limitations were best captured by a
free estimation class-2 model (AIC = 18,391.5; BIC = 18,444.0;
aBIC = 18,415.4; entropy = 0.988). Although quadratic estimation
achieved the lowest information criteria overall, its class-2 model
did not pass the LMR test (P = 0.061), and its class-3 model
contained classes with proportions below 5% (0.079/0.025/0.025),
limiting clinical interpretability. Free estimation outperformed
linear estimation in all information criteria, and the class-2 free
estimation model fit significantly better than the class-1 model
(BLRT and LMR, both P < 0.001), whereas the class-3 model
was not significant (LMR P = 0.072). This suggests that a
simpler two-class solution offered both statistical robustness and
practical interpretability.

The trajectories of BRI were best represented by a free
estimation class-3 model (AIC = 20,429.7; BIC = 20,499.6; aBIC
= 20,461.5; entropy = 0.851). Although quadratic estimation
produced the lowest overall information criteria, its entropy
was markedly lower than that of linear and free estimation.
Free estimation yielded lower information criteria than linear
estimation, and the class-3 model showed significant improvement
over the class-2 model (BLRT and LMR, both P < 0.001) with
all class proportions >5%, supporting its selection as the optimal
balance between model fit and interpretability.

The trajectories of pain were best captured by a free estimation
class-3 model (AIC = 28,632.0; BIC = 28,702.0; aBIC = 28,663.9;
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FIGURE 2

Trajectories of health conditions. BRI, body roundness index; ADLs, activities of daily living. (A) Multimorbidity status: low-ascending (blue line, low
baseline multimorbidity scores with gradual increase; 39.5% of participants), Moderate-ascending (green line, moderate baseline scores with steady
increase; 49.6%), High-ascending (red line, high baseline scores with further increase; 11.0%). (B) ADLs limitations: low-stable (blue line, persistently
low limitation scores; 93.2%), High-ascending (red line, high baseline scores with progressive increase; 6.8%). (C) BRI: low-stable (blue line, low
baseline BRI maintained over time; 44.8%), moderate-stable (green line, moderate baseline BRI remaining stable; 41.2%), high-stable (red line, high
baseline BRI maintained over time; 14.0%). (D) Pain: low-stable (blue line, persistently low pain scores; 84.3%), moderate-ascending (green line,
moderate baseline scores with steady increase; 10.1%), high-ascending (red line, high baseline scores with marked increase; 5.6%). (E) Sleep duration:
low-ascending (blue line, short baseline sleep duration with gradual increase; 19.9%), high-stable (red line, long baseline sleep duration maintained
over time; 80.1%). (F) Depressive symptoms: low-stable (blue line, low baseline depressive symptom scores maintained over time; 69.4%),
low-ascending (green line, low baseline scores with gradual increase; 11.7%), moderate-descending (orange line, moderate baseline scores with
gradual decrease; 13.5%), High-posterior-ascending (red line, high baseline scores with early decline followed by later increase; 5.3%).
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entropy = 0.988). Although quadratic estimation yielded lower
overall information criteria, its class-3 model contained a small
class (0.083/0.030/0.887), limiting interpretability. Free estimation
outperformed linear estimation, and the class-3 model significantly
improved fit over the class-2 model (BLRT and LMR, both
P < 0.001) with all class proportions >5%, ensuring stable
classification accuracy.

The trajectories of sleep duration were best represented by
a quadratic estimation class-2 model (AIC = 28,197.2; BIC =
28,261.3; aBIC = 28,226.4; entropy = 0.698). Quadratic estimation
had the lowest overall information criteria, and the class-2 model
fit significantly better than the class-1 model (BLRT and LMR,
both P < 0.001) with all class proportions >5%. The class-
3 model showed further decreases in information criteria but
reduced entropy (0.580), suggesting potential overfitting without
substantive improvement in interpretability.

The trajectories of depressive symptoms were best captured
by a quadratic estimation class-4 model (AIC = 44,872.98; BIC
= 44,983.72; aBIC = 44,923.36; entropy = 0.825). Quadratic
estimation produced the lowest information criteria overall, and the
class-4 model showed further decreases compared with the class-
3 model (AIC = 45,161.93; BIC = 45,249.36; aBIC = 45,201.70)
with significant BLRT and LMR tests (both P < 0.001) and

10.3389/fnut.2025.1657587

all class proportions >5%. The class-5 model yielded slightly
lower information criteria but nonsignificant LMR (P = 0.150),
confirming that the four-class model achieved the best trade-off
between fit, complexity, and interpretability.

The trajectories of cognitive function were best represented
by a free estimation class-2 model (AIC = 41,711.24; BIC =
41,763.70; aBIC = 41,735.10; entropy = 0.708). Although quadratic
estimation showed the lowest overall information criteria, its
entropy was low (0.626 for class-2, 0.615 for class-3), limiting
stability. Free estimation yielded lower information criteria than
linear estimation, and the class-2 model showed higher entropy
than the class-3 model and significantly improved fit over the
single-class model (BLRT and LMR, both P < 0.001) with all
class proportions >5%, supporting the adoption of a parsimonious
two-class solution.

Baseline characteristics by trajectories of
health conditions

As shown in Figure 3, a heatmap of p-values revealed
statistically significant differences (P < 0.05) in demographic and
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FIGURE 3
Heatmap of P-values for participants’ characteristics stratified by trajectories of health conditions. BRI, body roundness index; ADLs, activities of daily
living.
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health-related characteristics across the different health condition
trajectory groups. Specifically, individuals in the adverse health
conditions trajectory group were older, had lower educational
attainment, were more likely to live in rural areas, and had a
higher proportion of females. In addition, the proportions of
individuals who did not drink alcohol or smoke were also higher
in this group. In terms of health, these individuals had more
severe multimorbidity status, higher levels of ADLs limitations,
BRI, pain, and depressive symptoms, shorter sleep duration, and
poorer cognitive function (Supplementary Tables S9-515).

Baseline characteristics by incident CVD
status

A total of 2,512 participants were included in the final analysis.
Baseline characteristics are presented in Table 1. The mean age
was 60.78 £ 7.85 years; 54.62% were male, 84.28% were married,
and 65.64% resided in rural areas. During the follow-up period,
297 participants developed CVD. Participants who developed CVD
were more likely to be older, smoke less, have lower education level,
and have higher BMIL, SBP, DBP, TG, and CRP. They were also more
likely to have multimorbidity, ADLs limitations, higher BRI, greater
pain, and more severe depressive symptoms.

Associations between trajectories of health
conditions and CVD risk

In the fully adjusted model (Model 3; Figure 4), we observed
that several trajectories of health conditions were associated with
an increased risk of CVD, as follows: the moderate-ascending
(HR = 1.42, 95% CI: 1.08-1.89) and high-ascending (3.01, 2.16-
4.20) trajectories of multimorbidity status (vs. low-ascending); the
high-ascending trajectory of ADLs limitations (2.58, 1.87-3.56; vs.
low-stable); the high-stable trajectory of BRI (1.67, 1.03-2.70; vs.
low-stable); the moderate-ascending (1.51, 1.07-2.12) and high-
ascending (2.28, 1.56-3.35) trajectories of pain (vs. low-stable); the
moderate-descending (1.51, 1.09-2.10), low-ascending (1.70, 1.22-
2.38), and high-posterior-ascending (2.54, 1.69-3.82) trajectories
of depressive symptoms (all vs. low-stable); and the low-ascending
trajectory of sleep duration (1.33, 1.02-1.74; vs. high-stable).

These associations remained robust in both unadjusted and
age- and sex-adjusted models, except that the association between
cognitive function trajectory and CVD risk was no longer
significant after adjustment for age and sex.

Subgroup analysis

We further explored these associations in prespecified
subgroups (Supplementary Tables S16-522). The high-ascending
trajectory of ADLs limitations was associated with a substantially
increased risk of CVD among participants with diastolic blood
pressure > 80 mmHg (4.27, 2.68-6.79; P for interaction =
0.003; Supplementary Table S17). The high-ascending trajectory
of pain was associated with a higher risk of CVD among
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current smokers (5.56, 2.69-11.51; P for interaction = 0.01;
Supplementary Table S19). For sleep duration, the low-ascending
trajectory was associated with a higher risk of CVD among
unmarried participants (2.68, 1.38-5.23; P for interaction = 0.044;
Supplementary Table S20). Among women, a high-posterior-
ascending trajectory of depressive symptoms was associated with
a higher risk of CVD (2.93, 1.75-4.92; P for interaction = 0.027;
Supplementary Table S21). No significant subgroup differences
were observed for multimorbidity status, BRI, or cognitive
function trajectories.

Comparative predictive value of variable
groups for CVD risk

In this study, ten commonly used ML algorithms, including
LR, SVM, GBM, NN, RF, XGBoost, KNN, AdaBoost, LightGBM,
and CatBoost, were applied to evaluate the predictive ability
of four groups of variables for CVD risk: sociodemographic
variables, blood test variables, physical examination variables,
and trajectories of health conditions (Supplementary Table 523).
The results showed that when all variables were included, the
model achieved a maximum AUC of 0.721 (95% CI: 0.655-0.787);
after excluding blood test variables, model performance slightly
improved (0.738, 0.678-0.798), whereas excluding trajectories of
health conditions led to a marked decrease in performance (0.651,
0.574-0.728); excluding physical examination or sociodemographic
variables resulted in a smaller decrease in performance (physical
examination: 0.710, 0.640-0.781; sociodemographic: 0.722, 0.656—-
0.787). Detailed results are provided in Supplementary Table 524,
Further analysis showed that the model based solely on trajectories
of health conditions achieved the highest AUC among all variable
groups (CatBoost: AUC 0.740, 95% CI: 0.671-0.808; Figure 5),
further confirming the incremental value of trajectories of health
conditions for CVD risk prediction.

Model explanation

To further clarify the contribution of each trajectory of health
conditions to CVD risk prediction, SHAP analysis was performed
on the CatBoost model, which achieved the highest AUC in the
testing set. As shown in Figure 6, multimorbidity status had the
greatest impact on model output (35.2% of the total mean absolute
SHAP value), followed by BRI (19.4%), ADLs limitations (13.0%),
pain (10.2%), depressive symptoms (10.1%), sleep duration (6.3%),
and cognitive function (5.7%). The SHAP summary plot illustrates
the direction and magnitude of the impact of each trajectory
category on CVD risk prediction. The high-ascending trajectory
(red dots) of multimorbidity status markedly increased predicted
risk, whereas the moderate-ascending trajectory (purple dots) had
little effect or showed a weak protective effect, and the low-
ascending trajectory (blue dots) conferred a clear protective effect.
For BRI, the high-stable trajectory (red dots) was associated
with increased risk, the moderate-stable trajectory (purple dots)
was close to zero with a weak impact, and the low-stable
trajectory (blue dots) conferred a protective effect. For ADLs
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TABLE 1 Baseline characteristics of participants.

Characteristics

10.3389/fnut.2025.1657587

N 2,512 2,215 297

Sociodemographic factors

Age 60.78 £+ 7.85 60.53 £ 7.83 62.66 £ 7.78 <0.001

Gender 0.129

Female 1,140 (45.38) 993 (44.83) 147 (49.49)

Male 1,372 (54.62) 1,222 (55.17) 150 (50.51)

Marital status 0.530

Married 2,117 (84.28) 1,863 (84.11) 254 (85.52)

Unmarried 395 (15.72) 352 (15.89) 43 (14.48)

Residence 0.900

Rural 1,649 (65.64) 1,455 (65.69) 194 (65.32)

Urban 863 (34.36) 760 (34.31) 103 (34.68)

Education level 0.014

Primary school or lower 1,491 (59.36) 1,298 (58.60) 193 (64.98)

Middle school 685 (27.27) 625 (28.22) 60 (20.20)

High school or above 336 (13.38) 292 (13.18) 44 (14.81)

Drinking status 0.238

Never drinking 1,543 (61.43) 1,348 (60.86) 195 (65.66)

Drinking <1/week 448 (17.83) 398 (17.97) 50 (16.84)

Drinking >1/week 521 (20.74) 469 (21.17) 52(17.51)

Smoking status 0.006

Never smoking 1,299 (51.71) 1,139 (51.42) 160 (53.87)

Former smoking 427 (17.00) 362 (16.34) 65 (21.89)

Current smoking 786 (31.29) 714 (32.23) 72 (24.24)

Physical examination factors

BMI, kg/m* 23.65 +3.43 23.55 £ 3.40 24.43 £3.55 <0.001

SBP, mmHg 127.96 + 20.14 127.15 4+ 19.84 134.06 £ 21.30 <0.001

DBP, mmHg 75.59 £+ 11.82 75.38 £ 11.87 77.13 £11.31 0.016

Blood test factors

TG, mmol/L 112.39 (82.30, 168.36) 111.50 (81.42, 167.26) 120.35 (89.38, 177.88) 0.023

CREA, pmol/L 0.81 £0.23 0.81£0.23 0.81£0.23 0.916

HDL-C, mmol/L 51.60 + 11.89 51.64 £+ 11.80 51.27 £12.63 0.618

LDL-C, mmol/L 103.11 £ 28.44 102.82 £ 28.08 105.22 £ 30.99 0.174

TC, mmol/L 185.04 £ 35.99 184.60 £ 35.88 188.27 £ 36.75 0.099

GLU, mmol/L 102.06 £ 30.78 101.67 £ 30.58 104.97 £ 32.08 0.083

UA, pmol/L 4.99 +1.39 4.98 + 1.40 5.07 +1.29 0.262

CRP, mg/L 1.40 (0.80, 2.50) 1.40 (0.70, 2.40) 1.60 (0.90, 3.00) <0.001

Trajectories of health conditions factors

Multimorbidity status <0.001

Low-ascending 991 (39.45) 915 (41.31) 76 (25.59)

(Continued)
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TABLE 1 (Continued)

10.3389/fnut.2025.1657587

Characteristics Total No CVD CVvD P
Moderate-ascending 1,245 (49.56) 1,099 (49.62) 146 (49.16)

High-ascending 276 (10.99) 201 (9.07) 75 (25.25)

ADLs limitations <0.001
Low-stable 2,342 (93.23) 2,094 (94.54) 248 (83.50)

High-ascending 170 (6.77) 121 (5.46) 49 (16.50)

BRI <0.001
Low-stable 1,126 (44.82) 1,028 (46.41) 98 (33.00)

Moderate-stable 1,035 (41.20) 905 (40.86) 130 (43.77)

High-stable 351 (13.97) 282 (12.73) 69 (23.23)

Pain <0.001
Low-stable 2,118 (84.32) 1,893 (85.46) 225 (75.76)

Moderate-ascending 253 (10.07) 213 (9.62) 40 (13.47)

High-ascending 141 (5.61) 109 (4.92) 32(10.77)

Sleep duration 0.032
High-stable 2,012 (80.10) 1,788 (80.72) 224 (75.42)

Low-ascending 500 (19.90) 427 (19.28) 73 (24.58)

Depressive symptoms <0.001
Low-stable 1,744 (69.43) 1,570 (70.88) 174 (58.59)

Moderate-descending 340 (13.54) 291 (13.14) 49 (16.50)

Low-ascending 294 (11.70) 249 (11.24) 45 (15.15)

High-posterior-ascending 134 (5.33) 105 (4.74) 29 (9.76)

Cognitive function 0.020
High-stable 1,648 (65.61) 1,471 (66.41) 177 (59.60)

Low-descending 864 (34.39) 744 (33.59) 120 (40.40)

Data are presented as the mean (+ standard deviation), median (interquartile range), or frequency (percentage), as appropriate. BMI, body mass index; SBP, systolic blood pressure; DBP,
diastolic blood pressure; TG, triglycerides; CREA, creatinine; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; GLU, glucose; UA,
uric acid; CRP, c-reactive protein; BRI, body roundness index; ADLs, activities of daily living; CVD, cardiovascular disease.

limitations, the high-ascending trajectory (red dots) indicated
increased risk, while the low-stable trajectory (blue dots) indicated
a protective association. These findings highlight that adverse
long-term trajectories of multimorbidity status, BRI, and ADLs
limitations are significant contributors to CVD risk and should be
incorporated into risk stratification and early preventive strategies
in clinical practice.

Discussion

In this large, prospective cohort study of middle-aged and older
Chinese adults, we utilized multiple waves of CHARLS data to
construct longitudinal trajectories of health conditions, including
multimorbidity status, ADLs limitations, BRI, pain, sleep duration,
depressive symptoms, and cognitive function. The study found
that trajectories of multimorbidity status (moderate-ascending
and high-ascending), ADLs limitations (high-ascending), BRI
(high-stable), pain (moderate-ascending and high-ascending),
depressive symptoms (moderate-descending, low-ascending, and

Frontiersin Nutrition

high-posterior-ascending), and sleep duration (low-ascending)
were independently associated with a significantly increased risk
of CVD. In contrast, the association between declining cognitive
function and CVD risk was no longer significant after adjustment
for confounding factors. Incorporating these health condition
trajectories into ML models significantly improved the AUC
for CVD risk prediction. Further SHAP analysis revealed the
importance of multimorbidity status and BRI in the model. These
findings highlight the importance of dynamically monitoring
health status and provide valuable insights for the precise risk
stratification of CVD among middle-aged and older adults.

With advancing age, higher trajectories of multimorbidity
status, ADLs limitations, and BRI are associated with an increased
risk of CVD, consistent with findings from previous cohort studies
(47, 48). The continuous accumulation of multimorbidity status
is closely associated with the decline in functional status, and
the risk of transitioning from independence to limitation in
ADLs increases accordingly (49). Moreover, abdominal obesity, as
indicated by a moderate or high level of BRI, has been associated
with greater disease burden and functional deterioration (50),
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FIGURE 4
The relationship between trajectories of health condition and CVD risk. Model 1 was a univariate model. Model 2 was adjusted for age and gender.
Model 3 was based on model 2, with additional adjustments for marital status, residence, education level, drinking status, smoking status, body mass
index, systolic blood pressure, diastolic blood pressure, triglycerides, creatinine, high-density lipoprotein, low-density lipoprotein, total cholesterol,
glucose, uric acid, and C-reactive protein. CVD, cardiovascular disease; BRI, body roundness index; ADLs, activities of daily living.

as well as a higher prevalence of CVD (51). The combined
effects of these adverse trajectories of health conditions may
further increase the risk of CVD. Mechanistically, these trajectories
mainly result from physiological changes related to aging. As age
increases, the functions of multiple organ systems and the immune
system gradually decline, leading to reduced immune responses to
pathogens and a tendency toward chronic low-grade inflammation,
which is a key driver of the onset and progression of CVD (52,
53). At the same time, cardiac function, vascular structure, and
integrity also decline with age, further increasing susceptibility
to CVD (54, 55). Abdominal obesity, especially increased visceral
fat, further promotes this process by enhancing the secretion of
pro-inflammatory cytokines, increasing oxidative stress (56), and
causing direct myocardial damage (57). Chronic inflammation,
immunosenescence, and physiological deterioration form a vicious
cycle, significantly amplifying the susceptibility of older adults
to CVD.

Among middle-aged and older adults with moderate-ascending
and high-ascending trajectories of pain, the risk of CVD is
significantly increased. Previous cross-sectional and cohort studies
have shown that chronic pain is associated with an increased
risk of CVD (58, 59). Activation of the sympathetic nervous
system is considered a potential physiological mechanism by which
pain influences the development of CVD (60), and two-sample
Mendelian randomization studies have also found that widespread
chronic pain may be an important determinant of coronary artery
disease (61). In addition, smoking has a significant impact on
both pain trajectories and CVD risk. Although short-term nicotine
exposure exhibits certain analgesic effects (62), smokers report pain
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in multiple anatomical sites more frequently than non-smokers
(63, 64). Cigarette smoke can affect the regulation of various
hormones and alter nociceptive pathways, thereby enhancing pain
sensitivity and perception (65). Studies have also indicated a
bidirectional relationship between tobacco use and persistent pain
(66), and smoking is also an important contributor to CVD risk
(67). These findings suggest that the interactions among pain,
smoking, and CVD risk may be realized through multiple biological
and behavioral pathways. Further research is needed to explore
these mechanisms.

We observed that middle-aged and older adults with a
low-ascending trajectory of sleep duration had a significantly
increased risk of CVD. This association is consistent with
findings from the UK Biobank, a large-scale prospective cohort
study, which demonstrated that short sleep duration is associated
with an increased risk of CVD incidence and mortality (68).
Mechanistically, insufficient sleep duration may promote the
development and progression of cardiovascular disease through
multiple pathways, including activation of the sympathetic
nervous system, exacerbation of chronic inflammation, and
metabolic dysregulation (69-71). Further analysis indicated
that marital status plays an important moderating role in
the relationship between the trajectory of sleep duration and
CVD risk. Married individuals are more likely to develop
healthy sleep behaviors due to spousal support, while unmarried
individuals are more prone to psychological stress, which
may indirectly increase the risk of CVD (72, 73). These
findings suggest that integrating the trajectory characteristics
of sleep duration and relevant social behavioral factors may
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FIGURE 5

ROC curves for the ten ML models. (A) Sociodemographic variables only. (B) Blood test variables only. (C) Physical examination variables only. (D)
Trajectories of health conditions variables only. ML, machine learning; LR, logistic regression; SVM, support vector machine; GBM, gradient boosting
machine; NN, neural network; RF, random forest; XGBoost, extreme gradient boosting; KNN, k-nearest neighbors; AdaBoost, adaptive boosting;
LightGBM, light gradient boosting machine; CatBoost, categorical boosting.

help optimize cardiovascular disease risk stratification and
intervention strategies.

This study found that individuals with moderate-descending,
low-ascending, and high-posterior-ascending trajectories of
depressive symptoms had a significantly increased risk of CVD.
Extensive epidemiological evidence has clearly demonstrated
that higher levels of depressive symptoms are independently
associated with an increased risk of cardiovascular disease
(10, 74, 75). The relationship between depression and CVD
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is highly complex, involving mechanisms such as autonomic
nervous system imbalance, chronic inflammation, unhealthy
lifestyle behaviors, and various adverse metabolic factors (76-78).
Further analysis suggested sex differences in the association
between depressive symptoms and CVD. Previous research
indicates that this association is present in both men and
women, but appears stronger in women (79, 80). The stronger
association between depressive symptoms and CVD observed in
women may be explained by several interrelated mechanisms.
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FIGURE 6
SHAP summary plot. The plot displays the relative importance and SHAP value distribution for each health condition trajectory (categorical variable)
in the CatBoost model. The x-axis shows SHAP values. Colors correspond to distinct trajectory categories for each health condition: multimorbidity
status (blue = low-ascending, purple = moderate-ascending, red = high-ascending), ADLs limitations (blue = low-stable, red = high-ascending), BRI
(blue = low-stable, purple = moderate-stable, red = high-stable), pain (blue = low-stable, purple = moderate-ascending, red = high-ascending),
sleep duration (blue = low-ascending, red = high-stable), depressive symptoms (blue = low-stable, light purple = moderate-descending, purple =
low-ascending, red = high-posterior-ascending), cognitive function (blue = low-decreasing, red = high-stable). SHAP, SHapley Additive
exPlanations; CatBoost, categorical boosting; BRI, body roundness index; ADLs, activities of daily living.

Women often demonstrate greater hypothalamic-pituitary-
adrenal axis and autonomic reactivity to psychosocial stress,
which can amplify endothelial dysfunction and inflammatory
activation in the setting of depression (81). Sex hormones,
particularly estrogen, modulate vascular tone, lipid metabolism,
and platelet function; their decline after menopause may
exacerbate the cardiovascular impact of depression (82). In
addition, sex chromosome-linked genetic and
factors may further contribute to differential susceptibility,

epigenetic

potentially interacting with depression to accelerate CVD
development (83).

After adjusting for covariates, this study found no significant
association between the low-decreasing trajectory of cognitive
function and CVD risk. Although some studies based on single
measurements have shown an association between cognitive
decline and CVD risk (11), single-point assessments are easily
influenced by short-term factors such as acute health conditions
and mood fluctuations, making it difficult to capture the long-
term evolution of cognitive function. In addition, confounding
factors such as depression and social support are often insufficiently
controlled, which may lead to an overestimation of the association.
The results of this study suggest that this discrepancy may
also be related to differences in analytical methods, follow-up
duration, and sample characteristics. Furthermore, longitudinal
neuroimaging evidence indicates that vascular injury, metabolic
disturbances, and systemic inflammation are shared biological
pathways linking cognitive decline and CVD, and that variation in
these mechanisms across populations and study designs may partly
account for inconsistent findings (84). Future studies should rely on
multicenter, long-term cohort data to further clarify the potential
association between changes in cognitive function and CVD risk,
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in order to facilitate more accurate identification and intervention
of cardiovascular risk.

Given that CVD often has a prolonged preclinical phase, there
is an urgent need for effective tools to enable early identification
of high-risk individuals. In this study, we developed a CVD risk
prediction model that integrates trajectories of seven physiological
and psychological health conditions. Compared to traditional
models that include only sociodemographic, blood test, and
physical examination variables, the inclusion of health condition
trajectories significantly improved the model’s predictive ability. By
dynamically integrating multidimensional health data, this model
can more comprehensively capture long-term changes in both
physiological and psychological health, providing a new perspective
for the early identification and intervention of CVD risk. Compared
with models that rely on coronary angiography, cardiac magnetic
resonance imaging, or multi-omics technologies (85-87), our
model demonstrates greater accessibility and broader application
prospects. All relevant information can be conveniently obtained
through standardized questionnaires, physical examinations, and
routine blood tests, making it particularly suitable for screening
high-risk individuals for CVD in community populations. In
addition, this approach relies on low-cost and easily accessible
data, which is especially valuable for implementation in resource-
limited settings.

The major strength of this study lies in its ability to identify
distinct trajectories of multimorbidity status, ADLs limitations,
BRI, pain, sleep duration, depressive symptoms, and cognitive
function, and to systematically elucidate their associations with
the risk of incident CVD as well as their predictive value.
However, this study also has several limitations. First, the study
population was limited to Chinese individuals, which restricts the
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external generalizability of the findings. Second, the assessments
of CVD and multimorbidity status were based on self-reported
physician-diagnosed conditions, without standardized diagnostic
verification, which may introduce recall or misclassification bias.
In addition, ADLs limitations, pain, sleep duration, depressive
symptoms, and cognitive function were all measured using self-
reported methods, which, although commonly employed in large-
scale epidemiological studies, may still lead to subjective bias.
Third, while the SHAP method improved model interpretability,
its analytical results only reflect associations between variables
and cannot be used for causal inference. Finally, there may still
be unmeasured or residual confounding factors. Future research
should validate these findings in multi-center and multi-ethnic
populations to enhance generalizability, incorporate more objective
assessment tools to reduce subjective bias, and link survey data
with clinical or health insurance records to enable outcome
validation, thereby strengthening the robustness and applicability
of the conclusions.

Conclusion

This study demonstrates that the long-term deterioration
of health conditions, including multimorbidity status, ADLs
limitations, BRI, pain, sleep duration, and depressive symptoms, is
associated with an increased risk of CVD in middle-aged and older
adults. The ML model based on trajectories of health condition
significantly improves the accuracy of CVD risk prediction,
providing an efficient and cost-effective tool for early screening and
intervention, with significant clinical applicability.
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