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Trajectories of health conditions 
predict cardiovascular disease 
risk among middle-aged and 
older adults: a national cohort 
study 

Wenlong Li1† , Tian Liu1† , Yuanjia Hu1, Hanwen Zhou1 , 
Yingcheng Liu1 , Haijiao Zeng1 , Yuan Zhang1 , Cong Zhang1 , 
Kangjie Li1, Zuhai  Hu1 , Pinyi Chen1, Hua  Wang2*, Biao Xie1* and 
Xiaoni Zhong1* 
1 Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, 
China, 2 College of Science, Xichang University, Xichang, China 

Background: Most previous studies have focused on the association between 
health conditions measured at a single time point and the risk of cardiovascular 
disease (CVD), while evidence regarding the impact of long-term trajectories 
of health conditions is limited. This study aimed to construct models of health 
condition trajectories and to evaluate their association with CVD risk and 
predictive value. 
Methods: This study included 2,512 participants aged 45 years and older 
from the China Health and Retirement Longitudinal Study (CHARLS), who were 
followed from 2011 to 2018. Trajectories of multimorbidity status, activities of 
daily living (ADLs) limitations, body roundness index (BRI), pain, sleep duration, 
depressive symptoms, and cognitive function were identified using latent 
class growth models (LCGMs). Cox regression models were used to assess 
associations between these trajectories and incident CVD. Ten machine learning 
(ML) algorithms were applied to evaluate the predictive capacity of different 
variable groups for CVD. Additionally, SHapley Additive exPlanations (SHAP) 
values were used to interpret predictor importance and direction in the machine 
learning models. 
Results: Distinct high-risk trajectories of physical and psychological health 
were independently associated with increased CVD risk. Higher risks of CVD 
were observed for the moderate-ascending (HR = 1.42, 95% CI: 1.08–1.89) 
and high-ascending (3.01, 2.16–4.20) trajectories of multimorbidity status; 
the high-ascending trajectory of ADLs limitations (2.58, 1.87–3.56); the high-
stable trajectory of BRI (1.67, 1.03–2.70); the moderate-ascending (1.51, 1.07– 
2.12) and high-ascending (2.28, 1.56–3.35) trajectories of pain; the moderate-
descending (1.51, 1.09–2.10), low-ascending (1.70, 1.22–2.38), and high-
posterior-ascending (2.54, 1.69–3.82) trajectories of depressive symptoms; and 
the low-ascending trajectory of sleep duration (1.33, 1.02–1.74). Notably, the 
model based on trajectories of health conditions achieved the highest predictive 
performance among all variable groups (CatBoost AUC = 0.740), with SHAP 
analysis confirming that the trajectories of multimorbidity status, BRI, and ADLs 
limitations were the most influential predictors. 
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Conclusion: Long-term deterioration in both physical and psychological health 
is strongly associated with increased CVD risk, highlighting the importance of 
early intervention and continuous health monitoring. 

KEYWORDS 

trajectories of health conditions, cardiovascular disease, latent class growth model, 
machine learning, SHapley Additive exPlanations 

Introduction 

Cardiovascular disease (CVD) remains the leading cause 
of death and disability worldwide (1). With the aging of 
the population and the increasing coexistence of physical and 
psychological health problems, the prevention and management 
of CVD are becoming increasingly complex, especially among 
middle-aged and older adults (2). In China, rapid urbanization and 
population aging have further aggravated the social and economic 
burden caused by CVD (3, 4). Therefore, early identification of 
high-risk individuals is crucial for preventing CVD events and 
reducing the disease burden. 

A large number of studies have confirmed that impairments 
in physical and psychological health are closely associated with 
increased risk of CVD (5–11). However, most studies rely on 
cross-sectional assessments at a single time point and fail to 
reveal the dynamic trajectories of health status over time (12, 13), 
which may underestimate the true relationship between health 
changes and CVD risk. Recent studies have shown that analyzing 
health trajectories based on longitudinal data can better reflect 
population heterogeneity and improve the prediction of CVD risk 
(14). Existing studies have found that adverse trajectories of health 
conditions such as body roundness index (BRI) (15), sleep duration 
(9), and depressive symptoms (16) are significantly associated with 
increased CVD risk. 

Abbreviations: CVD, Cardiovascular disease; ADLs, Activities of daily living; 

BRI, Body roundness index; ML, Machine learning; SHAP, SHapley Additive 

exPlanations; CHARLS, China Health and Retirement Longitudinal Study; 

CAPI, Computer-Assisted Personal Interviews; STROBE, Strengthening the 

Reporting of Observational Studies in Epidemiology; BADLs, Basic activities 

of daily living; IADLs, Instrumental activities of daily living; CESD-10, 10-

item Center for Epidemiological Studies Depression Scale; TICS-10, 10-item 

Telephone Interview for Cognitive Status; AIC, Akaike Information Criterion; 

BIC, Bayesian Information Criterion; aBIC, Adjusted Bayesian Information 

Criterion; BLRT, Bootstrapped Likelihood Ratio Test; LMR, Lo-Mendell-Rubin 

test; HR, Hazard ratio; CI, Confidence interval; SD, Standard deviation; IQR, 

Interquartile range; ANOVA, Analysis of Variance; LR, Logistic regression; 

SVM, Support vector machine; GBM, Gradient boosting machine; NN, Neural 

network; RF, Random forest; XGBoost, Extreme gradient boosting; KNN, K-

nearest neighbors; AUC, Area under the receiver operating characteristic 

curve; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; BMI, 

Body mass index; TG, Triglycerides; CREA, Creatinine; HDL-C, High-density 

lipoprotein cholesterol; LDL-C, Low-density lipoprotein cholesterol; TC, 

Total cholesterol; GLU, Fasting blood glucose; UA, Uric acid; CRP, C-reactive 

protein. 

Most existing studies have focused only on a single domain 
of either physical or psychological health and lack comprehensive 
analyses integrating multiple health trajectories; although 
traditional biomarkers can be used for CVD risk assessment 
(17, 18), they fail to reflect the dynamic and multidimensional 
changes in health status. Integrating multiple health trajectories 
may provide a more comprehensive and dynamic understanding of 
the mechanisms underlying CVD and improve its risk prediction. 

To address these gaps, we aimed to (1) identify distinct 
trajectories of multimorbidity status, limitations in activities 
of daily living (ADLs), BRI, pain, sleep duration, depressive 
symptoms, and cognitive function using latent class growth 
models (LCGMs) based on longitudinal data from the China 
Health and Retirement Longitudinal Study (CHARLS); (2) 
evaluate their associations with incident CVD; and (3) assess the 
incremental predictive value of these trajectories for CVD risk 
using machine learning (ML) approaches, with SHapley Additive 
exPlanations (SHAP) applied to interpret the contributions 
and directions of key predictors. These findings may help to 
improve precise risk stratification and early intervention for CVD, 
and promote individualized as well as community-level disease 
prevention strategies. 

Methods 

Study population 

CHARLS is a nationally representative longitudinal cohort 
of Chinese residents aged 45 years and older, initiated by 
Peking University in 2011 to collect high-quality microdata 
for research on aging-related issues. The baseline survey, 
conducted from June 2011 to March 2012, included 17,708 
individuals from 10,257 households across 150 counties or 
districts and 450 villages or urban communities in 28 provinces. 
Follow-up waves were conducted biennially: Wave 2 (2013– 
2014), Wave 3 (2015–2016), and Wave 4 (2017–2018). Data 
collection used face-to-face computer-assisted personal interviews 
(CAPI) and included comprehensive assessments of demographic 
characteristics, socioeconomic status, health status, physical 
measurements, and biomarkers. To ensure data quality, CHARLS 
employed rigorous quality control procedures at each wave, 
including standardized interviewer training, centralized field 
supervision, built-in logic and range checks within the CAPI 
system, and double data entry for verification. The study protocol 
was approved by the Institutional Review Board of Peking 
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University (IRB00001052-11015) and adhered to the STROBE 
guidelines (19). 

In this study, physical and psychological data from Waves 1, 2, 
and 3 were used to identify trajectories of multimorbidity status, 
ADLs limitations, BRI, pain, sleep duration, depressive symptoms, 
and cognitive function. Data from Wave 4 were analyzed to 
examine the associations between these trajectories and CVD 
incidence. Exclusion criteria were as follows: (1) age <45 years in 
Wave 1; (2) incomplete follow-up from Wave 1 to Wave 4; (3) 
missing health condition data in any of Waves 1–3; (4) incomplete 
CVD data across Waves 1–4; (5) confirmed diagnosis of CVD in 
Waves 1–3; and (6) missing data in ≥20% of covariates. The final 
analytic sample included 2,512 participants. The flow of participant 
selection is shown in Figure 1. 

Assessment of health conditions 

Multimorbidity status was assessed based on self-reported 
physician diagnoses of 12 chronic conditions, including 
hypertension, diabetes, dyslipidemia, chronic lung disease, 
asthma, kidney disease, liver disease, gastrointestinal disorders, 
cancer, psychiatric disorders, memory-related conditions, and 
arthritis. Multimorbidity was defined as the presence of two or 
more chronic conditions in the same individual, has been widely 
employed in large-scale studies of Chinese middle-aged and older 
adults (20, 21). Each condition was assigned a score of 1, with 
a maximum possible score of 12, where higher scores indicate 
greater severity of multimorbidity. 

ADLs limitations are assessed through a comprehensive 
evaluation of basic activities of daily living (BADLs) and 
instrumental activities of daily living (IADLs) (22). BADLs 
include six items: dressing, bathing, eating, transferring in 
and out of bed, toileting, and managing urinary and bowel 
function. IADLs comprise five items: performing household chores, 
meal preparation, shopping, managing finances, and medication 
adherence. Each item is rated on a four-point scale: (1) no difficulty; 
(2) difficulty but manageable; (3) difficulty requiring assistance; 
and (4) inability to perform. This assessment focuses on long-term 
physical function, excluding difficulties expected to resolve within 
3 months. A score of 0 is assigned to items with no difficulty, while 
any degree of difficulty is scored as 1. The total ADLs limitations 
score is calculated by summing the scores for BADLs and IADLs. 
Participants who do not complete all items within either BADLs 
or IADLs are excluded from the calculation. The possible score 
ranges for IADLs, BADLs, and overall ADLs limitations are 0–5, 0– 
6, and 0–11, respectively; higher scores indicate greater limitations 
in physical activity. The ADL scale has been extensively applied 
in previous studies of older adults in China, demonstrating robust 
reliability and validity (23, 24). 

BRI was calculated as 364.2 − 365.5 ×  

1 − [ waist circumference (cm)/2π]2 

[0.5× height (cm)]2 (25, 26). Height was measured to 

the nearest 0.1 cm using a stadiometer with participants standing 
upright and barefoot. Waist circumference was measured to the 
nearest 0.1 cm at the level of the umbilicus at the end of normal 
expiration using a non-stretchable tape. 

Pain was assessed by asking participants to report all areas of the 
body currently experiencing pain, including the head, shoulders, 
arms, chest, abdomen, back, waist, hips, legs, knees, ankles, and 
neck (27). The total number of painful sites was calculated, ranging 
from 0 to 15, with higher counts indicating greater pain severity. 
This approach has been widely used in large-scale epidemiological 
studies in Chinese adults (28, 29). 

Nighttime sleep duration was assessed by asking, “During 
the past month, how many hours of actual sleep did you get at 
night?” Responses were recorded as integers. This question was 
adapted from the Pittsburgh Sleep Quality Index (PSQI) (30, 31), 
a validated instrument with established reliability and validity in 
prior research (32). 

Depressive symptoms were assessed using the 10-item short 
form of the Center for Epidemiologic Studies Depression Scale 
(CESD-10), a validated self-report instrument (33) widely used 
in epidemiological surveys. Participants were asked to recall their 
feelings over the past week and rate 10 items (including being 
bothered by trivial matters, having difficulty concentrating, feeling 
depressed, feeling that everything was an effort, feeling hopeful, 
feeling fearful, experiencing restless sleep, feeling happy, feeling 
lonely, and feeling unable to continue) on a scale from 0 [rarely 
or none of the time (<1 day)] to 3 [most or all of the time (5– 
7 days)]. Items 5 and 8 were reverse-scored before calculating the 
total score, which ranged from 0 to 30, with higher scores indicating 
more severe depressive symptoms. The CESD-10 has demonstrated 
good reliability and validity in older Chinese adults (34). 

The cognitive assessment was adapted from the Health and 
Retirement Study (HRS). Consistent with previous studies (35, 36), 
cognitive function was categorized into two domains: episodic 
memory and mental intactness. Episodic memory was evaluated 
using the word recall test, which included both immediate and 
delayed recall of 10 words. Each task was scored from 0 to 10 
points, yielding a total of 20 points. Mental intactness was assessed 
using items from the 10-item Telephone Interview for Cognitive 
Status (TICS-10), comprising serial subtraction of 7 from 100 up to 
five times (5 points), orientation to the current year, month, day, 
day of the week, and season (5 points), and reproduction of two 
overlapping pentagons (1 point). The global cognitive score was 
calculated as the sum of the episodic memory and mental intactness 
scores, ranging from 0 to 31, with higher scores indicating better 
cognitive function. This instrument has been shown to be a reliable 
and valid measure of cognitive function in Chinese middle-aged 
and older adults in prior research (37, 38). 

Assessment of CVD events 

The primary outcome was incident CVD events ascertained 
in Wave 4, including heart disease and stroke. Consistent with 
previous studies (39–41), CVD events were identified based on self-
reported physician-diagnosed in response to the questions: “Has a 
doctor ever diagnosed you with a heart attack, angina, coronary 
artery disease, heart failure, or other cardiovascular condition?” 
or “Has a doctor ever informed you that you have had a stroke?” 
Participants who reported a new diagnosis of heart disease or 
stroke during follow-up were considered to have incident CVD 
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FIGURE 1 

Participant flowchart. CHARLS, China Health and Retirement Longitudinal Study; CVD, cardiovascular disease. 

events. To ensure the accuracy of these self-reported outcomes, 
CHARLS implemented internal consistency checks during follow-
up interviews: participants who had reported heart disease or stroke 
in the previous wave were asked to reconfirm the diagnosis, and if 
they denied the prior report, the original record was retrospectively 
corrected to reduce recall bias and enhance the validity of outcome 
ascertainment (42). 

Covariates 

Covariates were assessed using data from the 2015 survey 
(Wave 3) of CHARLS. 

Sociodemographic and lifestyle variables were obtained 
through structured, face-to-face interviews conducted by trained 
interviewers. Sociodemographic variables included age, sex, 
marital status (married vs. unmarried), residence (rural vs. urban), 
and educational level (primary school or below, middle school, 
high school or above). Lifestyle factors comprised smoking status 
(current, former, or never) and drinking status (drinking >1/week, 
≤1/week, or never). 

Physical measurements were obtained following standardized 
procedures (43). Blood pressure (BP) was measured with an 
electronic sphygmomanometer (HEM-7200 Monitor) after 5 min 
of rest in the sitting position, and the mean of three BP 
measurements was used in the analyses. WC was measured 
using nonstretched tape at the navel level at minimal respiration. 
Height was measured with a 213 stadiometer with participants 
standing upright and barefoot on the floor board of the 
instrument. Weight was measured using an HN-286 scale, and 
BMI was calculated as weight in kilograms divided by height 
squared (m²). 

Laboratory measurements were based on fasting venous blood 
samples collected at township hospitals or community health 
centers using EDTA-K2 anticoagulant vacuum tubes. Samples were 
processed within 2 h of collection, with plasma and buffy coat 
separated by centrifugation, aliquoted into cryovials, and stored 
at −20◦C on site. All specimens were transported on dry ice 
via a monitored cold chain (temperature recorded every 5 min) 
to KingMed Diagnostics (Tianjin, China), a College of American 
Pathologists–and ISO 15189–accredited laboratory (44), where 
assays were performed using standardized protocols with daily 
internal quality-control runs reviewed weekly by the CHARLS 
research team. Measured biomarkers included triglycerides (TG), 
creatinine (CREA), high-density lipoprotein cholesterol (HDL-C), 
low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), 
fasting blood glucose (GLU), uric acid (UA), and C-reactive protein 
(CRP). Details of assay methods, coefficients of variation, and 
detection limits are provided in Supplementary Table S1. 

Statistical analysis 

Model fit and optimal latent class selection were evaluated using 
the Akaike Information Criterion (AIC), Bayesian Information 
Criterion (BIC), adjusted BIC (aBIC), Bootstrapped Likelihood 
Ratio Test (BLRT), Lo-Mendell-Rubin (LMR) test, and entropy. 
Statistically significant BLRT and LMR P-values (<0.05) indicated 
that the k-class model provided a better fit than the (k-1)-class 
model. The optimal model was determined by lower AIC, BIC, and 
aBIC values and higher entropy. Each latent class was required to 
include at least 5% of the sample, and clarity and interpretability of 
trajectories were also considered. After trajectory identification, a 
nominal categorical variable was generated to assign participants to 
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trajectory groups. Model fit and trajectory separation were further 
assessed by data visualization. 

To evaluate the risk of CVD, the endpoint of Wave 3 was 
set as the baseline for survival analyses. The duration from the 
baseline (2015) to the occurrence of a CVD event, death, or loss 
to follow-up was recorded as the follow-up time. Cox proportional 
hazards models were used to estimate hazard ratios (HRs) and 95% 
confidence intervals (CIs) for the association between trajectories 
of health conditions and incident CVD. Three models were 
fitted: Model 1 included no covariates; Model 2 was adjusted 
for age and gender. To further address potential confounding by 
sociodemographic factors, physical examination, and blood test 
results, Model 3 additionally adjusted for marital status, residence, 
education level, drinking status, smoking status, BMI, SBP, DBP, 
TG, CREA, HDL-C, LDL-C, TC, GLU, UA, and CRP. Subgroup 
analyses and interaction tests were also conducted to examine 
whether associations between trajectories of health conditions and 
CVD risk differed by age, gender, marital status, education level, 
residence, smoking status, drinking status, BMI, SBP, and DBP. 

ML comprises a variety of algorithms capable of revealing 
complex relationships among variables, making it an important 
tool for disease prediction. With advances in computational 
technology and the widespread application of large-scale datasets, 
the role of ML in health risk prediction has become increasingly 
prominent (45). In this study, the data were randomly divided 
into training and testing sets at a ratio of 8:2. Ten ML 
algorithms were used, including Logistic Regression (LR), Support 
Vector Machine (SVM), Gradient Boosting Machine (GBM), 
Neural Network (NN), Random Forest (RF), Extreme Gradient 
Boosting (XGBoost), K-Nearest Neighbors (KNN), AdaBoost, 
LightGBM, and CatBoost, to evaluate the predictive ability of four 
variable groups: sociodemographic factors, blood tests, physical 
examinations, and trajectories of health conditions for CVD risk. 
To systematically compare the predictive contributions of each 
variable group, two modeling strategies were adopted. First, in the 
model including all variable groups, each group was sequentially 
excluded to assess its impact on model performance. Second, 
independent models were constructed by including only one 
variable group to evaluate its individual predictive ability. Model 
performance was evaluated using the area under the receiver 
operating characteristic curve (AUC) to quantify the contribution 
of each variable group to CVD risk prediction. In addition, to 
enhance model interpretability, SHAP analysis was conducted on 
the optimal ML model based on trajectories of health conditions, 
and a summary plot was used to visualize the importance of each 
feature and its impact direction on the model output. 

Outliers in continuous variables were defined as values more 
than 1.5 times the interquartile range (IQR) below the first 
quartile (Q1) or above the third quartile (Q3) and were excluded 
from the analysis. Covariates with less than 20% missingness 
were subsequently imputed using the missForest algorithm, a 
nonparametric random forest–based approach capable of handling 
both continuous and categorical variables by leveraging observed 
values from other features to predict missing ones (46). For 
continuous variables with a normal distribution, data are presented 
as mean ± standard deviation (SD) and compared using analysis 
of variance (ANOVA), whereas variables with a non-normal 

distribution are presented as median (IQR) and compared using 
the Kruskal–Wallis H test. LCGM analyses were conducted using 
Mplus version 8.3, and all other analyses were performed using R 
version 4.4.2 and Python version 3.11.7. A two-sided p-value < 0.05 
was considered statistically significant. 

Results 

Identification of trajectories of health 
conditions 

To provide a more comprehensive understanding of the 
longitudinal changes in health conditions among middle-aged and 
older adults, this study applied LCGM to analyze the trajectories 
of multimorbidity status, ADLs limitations, BRI, pain, sleep 
duration, depressive symptoms, and cognitive function. The study 
population was divided into five categories (CLASS-1 to CLASS-
5), and the optimal model for each health condition was selected 
based on evaluation metrics including AIC, BIC, aBIC, entropy, 
LMR (P), and BLRT (P) (Supplementary Tables S2–S8). Ultimately, 
the optimal trajectories for the seven health conditions were 
determined (Figure 2; Supplementary Figure S1). 

The trajectories of multimorbidity status were best represented 
by a quadratic estimation class-3 model (AIC = 16,380.4; BIC 
= 16,467.9; aBIC = 16,420.2; entropy = 0.940). Under the same 
number of classes, quadratic estimation yielded lower AIC, BIC, 
and aBIC than linear and free estimation. The class-3 model 
fit significantly better than the class-2 model (BLRT and LMR, 
both P < 0.001), whereas the class-4 model offered no additional 
improvement (LMR P = 0.237), indicating that three distinct and 
well-separated classes most appropriately described the data. 

The trajectories of ADLs limitations were best captured by a 
free estimation class-2 model (AIC = 18,391.5; BIC = 18,444.0; 
aBIC = 18,415.4; entropy = 0.988). Although quadratic estimation 
achieved the lowest information criteria overall, its class-2 model 
did not pass the LMR test (P = 0.061), and its class-3 model 
contained classes with proportions below 5% (0.079/0.025/0.025), 
limiting clinical interpretability. Free estimation outperformed 
linear estimation in all information criteria, and the class-2 free 
estimation model fit significantly better than the class-1 model 
(BLRT and LMR, both P < 0.001), whereas the class-3 model 
was not significant (LMR P = 0.072). This suggests that a 
simpler two-class solution offered both statistical robustness and 
practical interpretability. 

The trajectories of BRI were best represented by a free 
estimation class-3 model (AIC = 20,429.7; BIC = 20,499.6; aBIC 
= 20,461.5; entropy = 0.851). Although quadratic estimation 
produced the lowest overall information criteria, its entropy 
was markedly lower than that of linear and free estimation. 
Free estimation yielded lower information criteria than linear 
estimation, and the class-3 model showed significant improvement 
over the class-2 model (BLRT and LMR, both P < 0.001) with 
all class proportions ≥5%, supporting its selection as the optimal 
balance between model fit and interpretability. 

The trajectories of pain were best captured by a free estimation 
class-3 model (AIC = 28,632.0; BIC = 28,702.0; aBIC = 28,663.9; 
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FIGURE 2 

Trajectories of health conditions. BRI, body roundness index; ADLs, activities of daily living. (A) Multimorbidity status: low-ascending (blue line, low 
baseline multimorbidity scores with gradual increase; 39.5% of participants), Moderate-ascending (green line, moderate baseline scores with steady 
increase; 49.6%), High-ascending (red line, high baseline scores with further increase; 11.0%). (B) ADLs limitations: low-stable (blue line, persistently 
low limitation scores; 93.2%), High-ascending (red line, high baseline scores with progressive increase; 6.8%). (C) BRI: low-stable (blue line, low 
baseline BRI maintained over time; 44.8%), moderate-stable (green line, moderate baseline BRI remaining stable; 41.2%), high-stable (red line, high 
baseline BRI maintained over time; 14.0%). (D) Pain: low-stable (blue line, persistently low pain scores; 84.3%), moderate-ascending (green line, 
moderate baseline scores with steady increase; 10.1%), high-ascending (red line, high baseline scores with marked increase; 5.6%). (E) Sleep duration: 
low-ascending (blue line, short baseline sleep duration with gradual increase; 19.9%), high-stable (red line, long baseline sleep duration maintained 
over time; 80.1%). (F) Depressive symptoms: low-stable (blue line, low baseline depressive symptom scores maintained over time; 69.4%), 
low-ascending (green line, low baseline scores with gradual increase; 11.7%), moderate-descending (orange line, moderate baseline scores with 
gradual decrease; 13.5%), High-posterior-ascending (red line, high baseline scores with early decline followed by later increase; 5.3%). 
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entropy = 0.988). Although quadratic estimation yielded lower 
overall information criteria, its class-3 model contained a small 
class (0.083/0.030/0.887), limiting interpretability. Free estimation 
outperformed linear estimation, and the class-3 model significantly 
improved fit over the class-2 model (BLRT and LMR, both 
P < 0.001) with all class proportions ≥5%, ensuring stable 
classification accuracy. 

The trajectories of sleep duration were best represented by 
a quadratic estimation class-2 model (AIC = 28,197.2; BIC = 
28,261.3; aBIC = 28,226.4; entropy = 0.698). Quadratic estimation 
had the lowest overall information criteria, and the class-2 model 
fit significantly better than the class-1 model (BLRT and LMR, 
both P < 0.001) with all class proportions ≥5%. The class-
3 model showed further decreases in information criteria but 
reduced entropy (0.580), suggesting potential overfitting without 
substantive improvement in interpretability. 

The trajectories of depressive symptoms were best captured 
by a quadratic estimation class-4 model (AIC = 44,872.98; BIC 
= 44,983.72; aBIC = 44,923.36; entropy = 0.825). Quadratic 
estimation produced the lowest information criteria overall, and the 
class-4 model showed further decreases compared with the class-
3 model (AIC = 45,161.93; BIC = 45,249.36; aBIC = 45,201.70) 
with significant BLRT and LMR tests (both P < 0.001) and 

all class proportions ≥5%. The class-5 model yielded slightly 
lower information criteria but nonsignificant LMR (P = 0.150), 
confirming that the four-class model achieved the best trade-off 
between fit, complexity, and interpretability. 

The trajectories of cognitive function were best represented 
by a free estimation class-2 model (AIC = 41,711.24; BIC = 
41,763.70; aBIC = 41,735.10; entropy = 0.708). Although quadratic 
estimation showed the lowest overall information criteria, its 
entropy was low (0.626 for class-2, 0.615 for class-3), limiting 
stability. Free estimation yielded lower information criteria than 
linear estimation, and the class-2 model showed higher entropy 
than the class-3 model and significantly improved fit over the 
single-class model (BLRT and LMR, both P < 0.001) with all 
class proportions ≥5%, supporting the adoption of a parsimonious 
two-class solution. 

Baseline characteristics by trajectories of 
health conditions 

As shown in Figure 3, a heatmap of p-values revealed 
statistically significant differences (P < 0.05) in demographic and 

FIGURE 3 

Heatmap of P-values for participants’ characteristics stratified by trajectories of health conditions. BRI, body roundness index; ADLs, activities of daily 
living. 
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health-related characteristics across the different health condition 
trajectory groups. Specifically, individuals in the adverse health 
conditions trajectory group were older, had lower educational 
attainment, were more likely to live in rural areas, and had a 
higher proportion of females. In addition, the proportions of 
individuals who did not drink alcohol or smoke were also higher 
in this group. In terms of health, these individuals had more 
severe multimorbidity status, higher levels of ADLs limitations, 
BRI, pain, and depressive symptoms, shorter sleep duration, and 
poorer cognitive function (Supplementary Tables S9–S15). 

Baseline characteristics by incident CVD 
status 

A total of 2,512 participants were included in the final analysis. 
Baseline characteristics are presented in Table 1. The mean age 
was 60.78 ± 7.85 years; 54.62% were male, 84.28% were married, 
and 65.64% resided in rural areas. During the follow-up period, 
297 participants developed CVD. Participants who developed CVD 
were more likely to be older, smoke less, have lower education level, 
and have higher BMI, SBP, DBP, TG, and CRP. They were also more 
likely to have multimorbidity, ADLs limitations, higher BRI, greater 
pain, and more severe depressive symptoms. 

Associations between trajectories of health 
conditions and CVD risk 

In the fully adjusted model (Model 3; Figure 4), we observed 
that several trajectories of health conditions were associated with 
an increased risk of CVD, as follows: the moderate-ascending 
(HR = 1.42, 95% CI: 1.08–1.89) and high-ascending (3.01, 2.16– 
4.20) trajectories of multimorbidity status (vs. low-ascending); the 
high-ascending trajectory of ADLs limitations (2.58, 1.87–3.56; vs. 
low-stable); the high-stable trajectory of BRI (1.67, 1.03–2.70; vs. 
low-stable); the moderate-ascending (1.51, 1.07–2.12) and high-
ascending (2.28, 1.56–3.35) trajectories of pain (vs. low-stable); the 
moderate-descending (1.51, 1.09–2.10), low-ascending (1.70, 1.22– 
2.38), and high-posterior-ascending (2.54, 1.69–3.82) trajectories 
of depressive symptoms (all vs. low-stable); and the low-ascending 
trajectory of sleep duration (1.33, 1.02–1.74; vs. high-stable). 

These associations remained robust in both unadjusted and 
age- and sex-adjusted models, except that the association between 
cognitive function trajectory and CVD risk was no longer 
significant after adjustment for age and sex. 

Subgroup analysis 

We further explored these associations in prespecified 
subgroups (Supplementary Tables S16–S22). The high-ascending 
trajectory of ADLs limitations was associated with a substantially 
increased risk of CVD among participants with diastolic blood 
pressure ≥ 80 mmHg (4.27, 2.68–6.79; P for interaction = 
0.003; Supplementary Table S17). The high-ascending trajectory 
of pain was associated with a higher risk of CVD among 

current smokers (5.56, 2.69–11.51; P for interaction = 0.01; 
Supplementary Table S19). For sleep duration, the low-ascending 
trajectory was associated with a higher risk of CVD among 
unmarried participants (2.68, 1.38–5.23; P for interaction = 0.044; 
Supplementary Table S20). Among women, a high-posterior-
ascending trajectory of depressive symptoms was associated with 
a higher risk of CVD (2.93, 1.75–4.92; P for interaction = 0.027; 
Supplementary Table S21). No significant subgroup differences 
were observed for multimorbidity status, BRI, or cognitive 
function trajectories. 

Comparative predictive value of variable 
groups for CVD risk 

In this study, ten commonly used ML algorithms, including 
LR, SVM, GBM, NN, RF, XGBoost, KNN, AdaBoost, LightGBM, 
and CatBoost, were applied to evaluate the predictive ability 
of four groups of variables for CVD risk: sociodemographic 
variables, blood test variables, physical examination variables, 
and trajectories of health conditions (Supplementary Table S23). 
The results showed that when all variables were included, the 
model achieved a maximum AUC of 0.721 (95% CI: 0.655–0.787); 
after excluding blood test variables, model performance slightly 
improved (0.738, 0.678–0.798), whereas excluding trajectories of 
health conditions led to a marked decrease in performance (0.651, 
0.574–0.728); excluding physical examination or sociodemographic 
variables resulted in a smaller decrease in performance (physical 
examination: 0.710, 0.640–0.781; sociodemographic: 0.722, 0.656– 
0.787). Detailed results are provided in Supplementary Table S24. 
Further analysis showed that the model based solely on trajectories 
of health conditions achieved the highest AUC among all variable 
groups (CatBoost: AUC 0.740, 95% CI: 0.671–0.808; Figure 5), 
further confirming the incremental value of trajectories of health 
conditions for CVD risk prediction. 

Model explanation 

To further clarify the contribution of each trajectory of health 
conditions to CVD risk prediction, SHAP analysis was performed 
on the CatBoost model, which achieved the highest AUC in the 
testing set. As shown in Figure 6, multimorbidity status had the 
greatest impact on model output (35.2% of the total mean absolute 
SHAP value), followed by BRI (19.4%), ADLs limitations (13.0%), 
pain (10.2%), depressive symptoms (10.1%), sleep duration (6.3%), 
and cognitive function (5.7%). The SHAP summary plot illustrates 
the direction and magnitude of the impact of each trajectory 
category on CVD risk prediction. The high-ascending trajectory 
(red dots) of multimorbidity status markedly increased predicted 
risk, whereas the moderate-ascending trajectory (purple dots) had 
little effect or showed a weak protective effect, and the low-
ascending trajectory (blue dots) conferred a clear protective effect. 
For BRI, the high-stable trajectory (red dots) was associated 
with increased risk, the moderate-stable trajectory (purple dots) 
was close to zero with a weak impact, and the low-stable 
trajectory (blue dots) conferred a protective effect. For ADLs 
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TABLE 1 Baseline characteristics of participants. 

Characteristics Total No CVD CVD P 

N 2,512 2,215 297 

Sociodemographic factors 

Age 60.78 ± 7.85 60.53 ± 7.83 62.66 ± 7.78 <0.001 

Gender 0.129 

Female 1,140 (45.38) 993 (44.83) 147 (49.49) 

Male 1,372 (54.62) 1,222 (55.17) 150 (50.51) 

Marital status 0.530 

Married 2,117 (84.28) 1,863 (84.11) 254 (85.52) 

Unmarried 395 (15.72) 352 (15.89) 43 (14.48) 

Residence 0.900 

Rural 1,649 (65.64) 1,455 (65.69) 194 (65.32) 

Urban 863 (34.36) 760 (34.31) 103 (34.68) 

Education level 0.014 

Primary school or lower 1,491 (59.36) 1,298 (58.60) 193 (64.98) 

Middle school 685 (27.27) 625 (28.22) 60 (20.20) 

High school or above 336 (13.38) 292 (13.18) 44 (14.81) 

Drinking status 0.238 

Never drinking 1,543 (61.43) 1,348 (60.86) 195 (65.66) 

Drinking ≤1/week 448 (17.83) 398 (17.97) 50 (16.84) 

Drinking >1/week 521 (20.74) 469 (21.17) 52 (17.51) 

Smoking status 0.006 

Never smoking 1,299 (51.71) 1,139 (51.42) 160 (53.87) 

Former smoking 427 (17.00) 362 (16.34) 65 (21.89) 

Current smoking 786 (31.29) 714 (32.23) 72 (24.24) 

Physical examination factors 

BMI, kg/m² 23.65 ± 3.43 23.55 ± 3.40 24.43 ± 3.55 <0.001 

SBP, mmHg 127.96 ± 20.14 127.15 ± 19.84 134.06 ± 21.30 <0.001 

DBP, mmHg 75.59 ± 11.82 75.38 ± 11.87 77.13 ± 11.31 0.016 

Blood test factors 

TG, mmol/L 112.39 (82.30, 168.36) 111.50 (81.42, 167.26) 120.35 (89.38, 177.88) 0.023 

CREA, μmol/L 0.81 ± 0.23 0.81 ± 0.23 0.81 ± 0.23 0.916 

HDL-C, mmol/L 51.60 ± 11.89 51.64 ± 11.80 51.27 ± 12.63 0.618 

LDL-C, mmol/L 103.11 ± 28.44 102.82 ± 28.08 105.22 ± 30.99 0.174 

TC, mmol/L 185.04 ± 35.99 184.60 ± 35.88 188.27 ± 36.75 0.099 

GLU, mmol/L 102.06 ± 30.78 101.67 ± 30.58 104.97 ± 32.08 0.083 

UA, μmol/L 4.99 ± 1.39 4.98 ± 1.40 5.07 ± 1.29 0.262 

CRP, mg/L 1.40 (0.80, 2.50) 1.40 (0.70, 2.40) 1.60 (0.90, 3.00) <0.001 

Trajectories of health conditions factors 

Multimorbidity status <0.001 

Low-ascending 991 (39.45) 915 (41.31) 76 (25.59) 

(Continued) 
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TABLE 1 (Continued) 

Characteristics Total No CVD CVD P 

Moderate-ascending 1,245 (49.56) 1,099 (49.62) 146 (49.16) 

High-ascending 276 (10.99) 201 (9.07) 75 (25.25) 

ADLs limitations <0.001 

Low-stable 2,342 (93.23) 2,094 (94.54) 248 (83.50) 

High-ascending 170 (6.77) 121 (5.46) 49 (16.50) 

BRI <0.001 

Low-stable 1,126 (44.82) 1,028 (46.41) 98 (33.00) 

Moderate-stable 1,035 (41.20) 905 (40.86) 130 (43.77) 

High-stable 351 (13.97) 282 (12.73) 69 (23.23) 

Pain <0.001 

Low-stable 2,118 (84.32) 1,893 (85.46) 225 (75.76) 

Moderate-ascending 253 (10.07) 213 (9.62) 40 (13.47) 

High-ascending 141 (5.61) 109 (4.92) 32 (10.77) 

Sleep duration 0.032 

High-stable 2,012 (80.10) 1,788 (80.72) 224 (75.42) 

Low-ascending 500 (19.90) 427 (19.28) 73 (24.58) 

Depressive symptoms <0.001 

Low-stable 1,744 (69.43) 1,570 (70.88) 174 (58.59) 

Moderate-descending 340 (13.54) 291 (13.14) 49 (16.50) 

Low-ascending 294 (11.70) 249 (11.24) 45 (15.15) 

High-posterior-ascending 134 (5.33) 105 (4.74) 29 (9.76) 

Cognitive function 0.020 

High-stable 1,648 (65.61) 1,471 (66.41) 177 (59.60) 

Low-descending 864 (34.39) 744 (33.59) 120 (40.40) 

Data  are presented  as  the mean (± standard deviation), median (interquartile range), or frequency (percentage), as appropriate. BMI, body mass index; SBP, systolic blood pressure; DBP, 
diastolic blood pressure; TG, triglycerides; CREA, creatinine; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; GLU, glucose; UA, 
uric acid; CRP, c-reactive protein; BRI, body roundness index; ADLs, activities of daily living; CVD, cardiovascular disease. 

limitations, the high-ascending trajectory (red dots) indicated 
increased risk, while the low-stable trajectory (blue dots) indicated 
a protective association. These findings highlight that adverse 
long-term trajectories of multimorbidity status, BRI, and ADLs 
limitations are significant contributors to CVD risk and should be 
incorporated into risk stratification and early preventive strategies 
in clinical practice. 

Discussion 

In this large, prospective cohort study of middle-aged and older 
Chinese adults, we utilized multiple waves of CHARLS data to 
construct longitudinal trajectories of health conditions, including 
multimorbidity status, ADLs limitations, BRI, pain, sleep duration, 
depressive symptoms, and cognitive function. The study found 
that trajectories of multimorbidity status (moderate-ascending 
and high-ascending), ADLs limitations (high-ascending), BRI 
(high-stable), pain (moderate-ascending and high-ascending), 
depressive symptoms (moderate-descending, low-ascending, and 

high-posterior-ascending), and sleep duration (low-ascending) 
were independently associated with a significantly increased risk 
of CVD. In contrast, the association between declining cognitive 
function and CVD risk was no longer significant after adjustment 
for confounding factors. Incorporating these health condition 
trajectories into ML models significantly improved the AUC 
for CVD risk prediction. Further SHAP analysis revealed the 
importance of multimorbidity status and BRI in the model. These 
findings highlight the importance of dynamically monitoring 
health status and provide valuable insights for the precise risk 
stratification of CVD among middle-aged and older adults. 

With advancing age, higher trajectories of multimorbidity 
status, ADLs limitations, and BRI are associated with an increased 
risk of CVD, consistent with findings from previous cohort studies 
(47, 48). The continuous accumulation of multimorbidity status 
is closely associated with the decline in functional status, and 
the risk of transitioning from independence to limitation in 
ADLs increases accordingly (49). Moreover, abdominal obesity, as 
indicated by a moderate or high level of BRI, has been associated 
with greater disease burden and functional deterioration (50), 
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FIGURE 4 

The relationship between trajectories of health condition and CVD risk. Model 1 was a univariate model. Model 2 was adjusted for age and gender. 
Model 3 was based on model 2, with additional adjustments for marital status, residence, education level, drinking status, smoking status, body mass 
index, systolic blood pressure, diastolic blood pressure, triglycerides, creatinine, high-density lipoprotein, low-density lipoprotein, total cholesterol,  
glucose, uric acid, and C-reactive protein. CVD, cardiovascular disease; BRI, body roundness index; ADLs, activities of daily living. 

as well as a higher prevalence of CVD (51). The combined 
effects of these adverse trajectories of health conditions may 
further increase the risk of CVD. Mechanistically, these trajectories 
mainly result from physiological changes related to aging. As age 
increases, the functions of multiple organ systems and the immune 
system gradually decline, leading to reduced immune responses to 
pathogens and a tendency toward chronic low-grade inflammation, 
which is a key driver of the onset and progression of CVD (52, 
53). At the same time, cardiac function, vascular structure, and 
integrity also decline with age, further increasing susceptibility 
to CVD (54, 55). Abdominal obesity, especially increased visceral 
fat, further promotes this process by enhancing the secretion of 
pro-inflammatory cytokines, increasing oxidative stress (56), and 
causing direct myocardial damage (57). Chronic inflammation, 
immunosenescence, and physiological deterioration form a vicious 
cycle, significantly amplifying the susceptibility of older adults 
to CVD. 

Among middle-aged and older adults with moderate-ascending 
and high-ascending trajectories of pain, the risk of CVD is 
significantly increased. Previous cross-sectional and cohort studies 
have shown that chronic pain is associated with an increased 
risk of CVD (58, 59). Activation of the sympathetic nervous 
system is considered a potential physiological mechanism by which 
pain influences the development of CVD (60), and two-sample 
Mendelian randomization studies have also found that widespread 
chronic pain may be an important determinant of coronary artery 
disease (61). In addition, smoking has a significant impact on 
both pain trajectories and CVD risk. Although short-term nicotine 
exposure exhibits certain analgesic effects (62), smokers report pain 

in multiple anatomical sites more frequently than non-smokers 
(63, 64). Cigarette smoke can affect the regulation of various 
hormones and alter nociceptive pathways, thereby enhancing pain 
sensitivity and perception (65). Studies have also indicated a 
bidirectional relationship between tobacco use and persistent pain 
(66), and smoking is also an important contributor to CVD risk 
(67). These findings suggest that the interactions among pain, 
smoking, and CVD risk may be realized through multiple biological 
and behavioral pathways. Further research is needed to explore 
these mechanisms. 

We observed that middle-aged and older adults with a 
low-ascending trajectory of sleep duration had a significantly 
increased risk of CVD. This association is consistent with 
findings from the UK Biobank, a large-scale prospective cohort 
study, which demonstrated that short sleep duration is associated 
with an increased risk of CVD incidence and mortality (68). 
Mechanistically, insufficient sleep duration may promote the 
development and progression of cardiovascular disease through 
multiple pathways, including activation of the sympathetic 
nervous system, exacerbation of chronic inflammation, and 
metabolic dysregulation (69–71). Further analysis indicated 
that marital status plays an important moderating role in 
the relationship between the trajectory of sleep duration and 
CVD risk. Married individuals are more likely to develop 
healthy sleep behaviors due to spousal support, while unmarried 
individuals are more prone to psychological stress, which 
may indirectly increase the risk of CVD (72, 73). These 
findings suggest that integrating the trajectory characteristics 
of sleep duration and relevant social behavioral factors may 
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FIGURE 5 

ROC curves for the ten ML models. (A) Sociodemographic variables only. (B) Blood test variables only. (C) Physical examination variables only. (D) 
Trajectories of health conditions variables only. ML, machine learning; LR, logistic regression; SVM, support vector machine; GBM, gradient boosting 
machine; NN, neural network; RF, random forest; XGBoost, extreme gradient boosting; KNN, k-nearest neighbors; AdaBoost, adaptive boosting; 
LightGBM, light gradient boosting machine; CatBoost, categorical boosting. 

help optimize cardiovascular disease risk stratification and 
intervention strategies. 

This study found that individuals with moderate-descending, 
low-ascending, and high-posterior-ascending trajectories of 
depressive symptoms had a significantly increased risk of CVD. 
Extensive epidemiological evidence has clearly demonstrated 
that higher levels of depressive symptoms are independently 
associated with an increased risk of cardiovascular disease 
(10, 74, 75). The relationship between depression and CVD 

is highly complex, involving mechanisms such as autonomic 
nervous system imbalance, chronic inflammation, unhealthy 
lifestyle behaviors, and various adverse metabolic factors (76–78). 
Further analysis suggested sex differences in the association 
between depressive symptoms and CVD. Previous research 
indicates that this association is present in both men and 
women, but appears stronger in women (79, 80). The stronger 
association between depressive symptoms and CVD observed in 
women may be explained by several interrelated mechanisms. 
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FIGURE 6 

SHAP summary plot. The plot displays the relative importance and SHAP value distribution for each health condition trajectory (categorical variable) 
in the CatBoost model. The x-axis shows SHAP values. Colors correspond to distinct trajectory categories for each health condition: multimorbidity 
status (blue = low-ascending, purple = moderate-ascending, red = high-ascending), ADLs limitations (blue = low-stable, red = high-ascending), BRI 
(blue = low-stable, purple = moderate-stable, red = high-stable), pain (blue = low-stable, purple = moderate-ascending, red = high-ascending), 
sleep duration (blue = low-ascending, red = high-stable), depressive symptoms (blue = low-stable, light purple = moderate-descending, purple = 
low-ascending, red = high-posterior-ascending), cognitive function (blue = low-decreasing, red = high-stable). SHAP, SHapley Additive 
exPlanations; CatBoost, categorical boosting; BRI, body roundness index; ADLs, activities of daily living. 

Women often demonstrate greater hypothalamic–pituitary– 
adrenal axis and autonomic reactivity to psychosocial stress, 
which can amplify endothelial dysfunction and inflammatory 
activation in the setting of depression (81). Sex hormones, 
particularly estrogen, modulate vascular tone, lipid metabolism, 
and platelet function; their decline after menopause may 
exacerbate the cardiovascular impact of depression (82). In 
addition, sex chromosome–linked genetic and epigenetic 
factors may further contribute to differential susceptibility, 
potentially interacting with depression to accelerate CVD 
development (83). 

After adjusting for covariates, this study found no significant 
association between the low-decreasing trajectory of cognitive 
function and CVD risk. Although some studies based on single 
measurements have shown an association between cognitive 
decline and CVD risk (11), single-point assessments are easily 
influenced by short-term factors such as acute health conditions 
and mood fluctuations, making it difficult to capture the long-
term evolution of cognitive function. In addition, confounding 
factors such as depression and social support are often insufficiently 
controlled, which may lead to an overestimation of the association. 
The results of this study suggest that this discrepancy may 
also be related to differences in analytical methods, follow-up 
duration, and sample characteristics. Furthermore, longitudinal 
neuroimaging evidence indicates that vascular injury, metabolic 
disturbances, and systemic inflammation are shared biological 
pathways linking cognitive decline and CVD, and that variation in 
these mechanisms across populations and study designs may partly 
account for inconsistent findings (84). Future studies should rely on 
multicenter, long-term cohort data to further clarify the potential 
association between changes in cognitive function and CVD risk, 

in order to facilitate more accurate identification and intervention 
of cardiovascular risk. 

Given that CVD often has a prolonged preclinical phase, there 
is an urgent need for effective tools to enable early identification 
of high-risk individuals. In this study, we developed a CVD risk 
prediction model that integrates trajectories of seven physiological 
and psychological health conditions. Compared to traditional 
models that include only sociodemographic, blood test, and 
physical examination variables, the inclusion of health condition 
trajectories significantly improved the model’s predictive ability. By 
dynamically integrating multidimensional health data, this model 
can more comprehensively capture long-term changes in both 
physiological and psychological health, providing a new perspective 
for the early identification and intervention of CVD risk. Compared 
with models that rely on coronary angiography, cardiac magnetic 
resonance imaging, or multi-omics technologies (85–87), our 
model demonstrates greater accessibility and broader application 
prospects. All relevant information can be conveniently obtained 
through standardized questionnaires, physical examinations, and 
routine blood tests, making it particularly suitable for screening 
high-risk individuals for CVD in community populations. In 
addition, this approach relies on low-cost and easily accessible 
data, which is especially valuable for implementation in resource-
limited settings. 

The major strength of this study lies in its ability to identify 
distinct trajectories of multimorbidity status, ADLs limitations, 
BRI, pain, sleep duration, depressive symptoms, and cognitive 
function, and to systematically elucidate their associations with 
the risk of incident CVD as well as their predictive value. 
However, this study also has several limitations. First, the study 
population was limited to Chinese individuals, which restricts the 
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external generalizability of the findings. Second, the assessments 
of CVD and multimorbidity status were based on self-reported 
physician-diagnosed conditions, without standardized diagnostic 
verification, which may introduce recall or misclassification bias. 
In addition, ADLs limitations, pain, sleep duration, depressive 
symptoms, and cognitive function were all measured using self-
reported methods, which, although commonly employed in large-
scale epidemiological studies, may still lead to subjective bias. 
Third, while the SHAP method improved model interpretability, 
its analytical results only reflect associations between variables 
and cannot be used for causal inference. Finally, there may still 
be unmeasured or residual confounding factors. Future research 
should validate these findings in multi-center and multi-ethnic 
populations to enhance generalizability, incorporate more objective 
assessment tools to reduce subjective bias, and link survey data 
with clinical or health insurance records to enable outcome 
validation, thereby strengthening the robustness and applicability 
of the conclusions. 

Conclusion 

This study demonstrates that the long-term deterioration 
of health conditions, including multimorbidity status, ADLs 
limitations, BRI, pain, sleep duration, and depressive symptoms, is 
associated with an increased risk of CVD in middle-aged and older 
adults. The ML model based on trajectories of health condition 
significantly improves the accuracy of CVD risk prediction, 
providing an efficient and cost-effective tool for early screening and 
intervention, with significant clinical applicability. 
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