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The global food system faces unprecedented challenges, including climate-driven 
agricultural instability, rising malnutrition, and consumer demand for sustainable 
yet appealing products. Artificial intelligence (AI) has emerged as a transformative 
force in addressing these challenges, enabling breakthroughs from microbial 
engineering to individualized dietary solutions. This review synthesizes advances 
in AI-driven precision fermentation—where CRISPR-based microbial optimization 
and reinforcement learning accelerate bioactive compound synthesis—and hyper-
personalized nutrition, where predictive modeling tailors diets to genetic, metabolic, 
and cultural profiles. We highlight how AI decodes sensory attributes (e.g., flavor 
and texture) through deep learning and natural language processing, bridging gaps 
between lab-scale innovation and consumer acceptance. However, the adoption 
of these technologies raises critical ethical concerns, including data privacy risks 
from wearable health monitors and algorithmic biases exacerbating nutritional 
disparities. Key findings include 300% yield increases for alt-proteins via AI-CRISPR 
fusion, 60% reduction in bioreactor failures through RL optimization, and 25% lower 
childhood anemia rates via equitable AI-nutrition platforms—though ethical gaps 
persist in data privacy (72% GDPR non-compliance) and algorithmic bias. By analyzing 
regulatory frameworks and proposing equity-focused design principles, this article 
advocates for a balanced approach to AI deployment in food systems. Emphasis 
on digital transformation, we underscore AI’s potential to democratize sustainable 
food production while urging collaborative governance to ensure transparency 
and inclusivity. This work serves as a roadmap for researchers, policymakers, 
and industry stakeholders navigating the intersection of AI, biotechnology, and 
nutrition science.
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1 Introduction

The global food system stands at a critical juncture. Climate change, biodiversity loss, 
and freshwater scarcity threaten agricultural productivity, with crop yields for staples like 
maize and wheat projected to decline by 5–15% by 2050 under current warming trajectories 
(1). Paradoxically, diet-related chronic diseases—fueled by industrialized food 
environments—account for 11 million deaths annually (2). Concurrently, consumer 
demand surges for nutrient-dense, sustainable, and culturally resonant products, creating 
a complex nexus of challenges that traditional approaches struggle to address. Artificial 
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intelligence (AI), with its unparalleled capacity to decode biological 
complexity, optimize processes, and predict human behavior, has 
emerged as a linchpin for reimagining food systems (3). From lab 
to fork, AI is reshaping how we produce and consume food, offering 
solutions that balance planetary health with individualized needs. 
This review focuses on AI’s transformative potential across two 
interconnected domains such as AI-driven precision fermentation 
for sustainable biosynthesis of proteins, enzymes, and functional 
compounds and Hyper-personalized nutrition systems that integrate 
genomics, metabolomics, and consumer psychology to tailor diets 
in real time (4). In production, AI accelerates microbial engineering, 
enabling CRISPR-designed strains of Komagataella phaffii and 
Bacillus subtilis to synthesize animal-free proteins (e.g., heme, 
casein) with 90% reduced carbon footprints compared to livestock 
farming (5). Reinforcement learning (RL) algorithms dynamically 
optimize bioreactor parameters (pH, temperature, agitation), 
slashing fermentation cycle times by Rajasekhar et al. (6). On the 
consumer front, neural networks decode sensory preferences from 
social media chatter (7), while federated learning models predict 
glycemic responses using wearable-derived biometrics (8). Startups 
like NotCo and Nuritas exemplify this dual revolution, leveraging 
AI to create plant-based meats that mimic animal textures (9) and 

peptide-based nutraceuticals targeting individual metabolic 
profiles (10).

Yet, as AI permeates food systems, ethical fault lines emerge. 
Personalized nutrition platforms risk exacerbating health disparities 
when trained on Eurocentric genomic datasets (11), while opaque 
“black-box” algorithms erode consumer trust (12). Regulatory 
frameworks lag behind innovation, leaving gaps in data privacy (e.g., 
GDPR compliance for gut microbiome data) and algorithmic 
accountability (13). These challenges demand urgent scholarly 
attention to ensure AI-driven solutions align with principles of equity 
and transparency. This article synthesizes advances in AI-powered 
food innovation while addressing ethical and operational gaps. 
We propose actionable frameworks for responsible AI deployment, 
emphasizing cross-sector collaboration among biotechnologists, data 
scientists, and policymakers (14). By anchoring analysis in the United 
Nations Sustainable Development Goals (SDGs)—particularly SDG 2 
(Zero Hunger), SDG 3 (Good Health), and SDG 12 (Responsible 
Consumption)—this work aligns with advance technologies that 
harmonize human and planetary well-being (15). The following 
sections critically evaluate AI’s role in redefining food production and 
consumption, offering a roadmap for harnessing its potential without 
repeating the inequities of past technological revolutions (Figure 1). 

FIGURE 1

AI as the catalyst in food innovation.
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A circular flow diagram connecting AI (neural network core) to key 
domains (precision fermentation, sensory modeling, personalized 
nutrition, ethics).

2 AI in precision fermentation: 
engineering microbial factories

The convergence of artificial intelligence (AI) and precision 
fermentation is revolutionizing the production of alternative proteins, 
enzymes, and bioactive compounds. By optimizing microbial strain 
design, bioreactor dynamics, and synthesis pathways, AI enables 
scalable and sustainable alternatives to resource-intensive agricultural 
practices. Traditional strain engineering relies on iterative trial-and-
error, but AI now accelerates CRISPR-based microbial design by 
predicting gene-editing outcomes. For example, deep learning models 
trained on Saccharomyces cerevisiae transcriptomic data have 
identified promoter-gene pairs that boost alt-protein yields by 300% 
while minimizing metabolic burden (16). Tools like AutoCRISPR 
leverage convolutional neural networks (CNNs) to predict off-target 
effects of CRISPR edits, reducing design cycles from months to weeks 
(17). AI-CRISPR fusion accelerates microbial engineering: 
DeepCRISPR designs gRNAs for Aspergillus niger pectinase knockouts 
to reduce citrus waste (18); dCas9-RL systems upregulate vitamin 

B2 in S. cerevisiae during apple cider fermentation; Single-cell CRISPR 
screening + ML enhances probiotic adhesion in fruit matrices. 
AutoCRISPR’s CNN models cut design cycles by 70% (19). CRISPR-
mediated TEF1 promoter insertion upstream of ATF1 (Alcohol 
Acetyltransferase) in wine yeast AWRI1631 increased acetate ester 
production by 3.5×, enhancing fruity notes. ALD6 aldehyde 
dehydrogenase knockout using CRISPR-Cas9 lowered acetic acid 
production by 40% in high-glycerol strains. Generative adversarial 
networks (GANs) predicted ester-synthesis pathways for targeted 
editing. Figure  2 illustrating CRISPR and AI driven aroma 
enhancement in wine yeast. Figure 2. illustrated by canva platform.

Reinforcement learning (RL) algorithms optimize bioreactor 
systems by dynamically adjusting parameters (e.g., temperature, pH) 
in real-time. These AI-driven adjustments enhance metabolite yield 
in precision fermentation. Embedded edge computing devices (e.g., 
NVIDIA Jetson AGX Orin) execute reinforcement learning (RL) 
algorithms that dynamically optimize bioreactor parameters—
including temperature (±0.5 °C), pH (±0.2 units), and agitation rate 
(50–400 rpm)—in real-time (20). This hardware-software architecture 
replaces the ambiguous term ‘dissolved RL algorithms, emphasizing 
physical separation between computational systems and fermentation 
media (21) Demonstrating edge-AI latency <5 ms for S. cerevisiae pH 
control (22). Critical for Vaccinium macrocarpon (cranberry) 
fermentations where Saccharomyces cerevisiae strains exhibit 

FIGURE 2

CRISPR and AI driven aroma enhancement in wine yeast.
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pH-sensitive anthocyanin degradation (ΔA520 > 40% at pH > 3.8), 
necessitating sub-second parameter adjustments. RL algorithms, 
trained on historical fermentation data, reduce batch failures by 60% 
while improving yield consistency (23). For instance, Ginkgo 
Bioworks employs RL to optimize Bacillus subtilis fermentations for 
plant-based dairy proteins, achieving 98% purity with 30% less energy 
input (24) (Figure  3). Schematic illustrating closed-loop control 
(sensors → RL model → actuators) in berry wine fermentation 
bioreactors. Figure 3 illustrated by canva platform.

2.1 Bioactive compound synthesis

Generative adversarial networks (GANs) are unlocking non-intuitive 
enzyme designs for synthesizing lipases, proteases, and antioxidants. A 
2023 study used GANs to engineer a heat-stable lipase for cocoa butter 
substitutes, achieving 85% catalytic efficiency at 60°C—a 50% 
improvement over wild-type enzymes (25). Impossible Foods’ plant-
based heme, a critical flavor molecule, was optimized using AI models 
that screened 5,000+ leghemoglobin variants. Molecular dynamics 
simulations predicted heme stability under fermentation conditions, 
shortening R&D timelines by 18 months (26). Similarly, DSM employs 
AI to design omega-3-producing Schizochytrium strains, yielding algal 
oils with 90% less environmental impact than fish-derived alternatives 
(27). AI-driven protease engineering exemplifies precision fermentation’s 
potential. For instance, AlphaFold-predicted structures of Bacillus 
altitudinis Peptidase M84 (UniProt A0A0H3ZIN7) enable thermostability 
optimization (85°C → 92°C) for fruit pulp digestion (28). Reinforcement 
learning further maximizes protease yields in Passiflora edulis 
fermentation by dynamically adjusting pH/temperature (29). In hyper-
personalized diets, AI integrates protease kinetics with gut microbiome 

data to design low-allergenicity protein hydrolysates for geriatric/sports 
nutrition (30). AI similarly optimizes probiotics for fruit-based foods: 
Random Forests identify acid-tolerant Lactobacillus plantarum strains in 
fermented Carica papaya (31), while GNNs predict antimicrobial 
metabolites (e.g., plantaricin) targeting pathogens. AI-personalized 
synbiotics combine fruit prebiotics (pectin-oligosaccharides) with 
probiotics, enhancing gut health outcomes (Table 1).

2.2 Scalability and sustainability

Comparative LCAs reveal AI’s role in reducing fermentation’s 
environmental footprint. AI-optimized Komagataella phaffii systems 
for egg-white protein synthesis require 80% less water and 50% less 
energy than poultry farming (32). However, challenges persist, such 
as the carbon cost of training large AI models, which can offset gains 
if renewable energy is not prioritized (33). AI facilitates seamless 
scale-up from lab to industrial bioreactors. Perfect Day uses digital 
twins—virtual replicas of fermentation tanks—to simulate production 
at 10,000-L scales, avoiding costly pilot trials (34). This approach has 
enabled the company to cut commercialization costs by 40% while 
maintaining >99% batch consistency (35) (Figure 4). Lifecycle analysis 
(LCA) comparing AI-optimized fermentation (low energy or water 
use, minimal waste) vs. conventional processes.

3 Predictive modelling for sensory 
attributes and consumer adoption

AI’s ability to decode sensory experiences and predict consumer 
behavior is bridging the gap between laboratory innovation and 

FIGURE 3

Closed-loop control in berry wine fermentation.

https://doi.org/10.3389/fnut.2025.1659511
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Priyadharshini et al.� 10.3389/fnut.2025.1659511

Frontiers in Nutrition 05 frontiersin.org

market success. By simulating human perception and analyzing vast 
behavioral datasets, AI accelerates the design of appealing, culturally 
resonant food products while minimizing costly trial-and-error R&D.

3.1 AI in flavor and texture profiling

Convolutional neural networks (CNNs) and Recurrent neural 
networks (RNNs) now predict flavor and texture profiles from 
molecular structures. For example, CNN models trained on 10,000+ 

flavor compound datasets accurately classify bitterness intensity of 
peptides with 94% accuracy, enabling rapid design of low-bitterness 
plant-based proteins (36). Similarly, RNNs forecast texture attributes 
(e.g., creaminess and crunch) by analyzing starch-protein interactions 
in simulated matrices, reducing prototyping cycles by 70% (37).

AI-generated synthetic data is replacing traditional human 
sensory panels, which are costly and prone to bias. Generative 
adversarial networks (GANs) trained on historical panel data simulate 
consumer responses to novel products, achieving 85% correlation 
with real-world taste tests (38). Motif FoodWorks used this approach 

TABLE 1  AI-optimized bioactive compounds: targets, methods, and outcomes.

Compound AI-tool used Microbial host Yield increase Key applications References

Vitamin B12 Reinforcement learning 

(RL)

Pseudomonas 

denitrificans

220% Supplements, fortified 

foods, vegan nutrition.

(32)

Omega-3 fatty acids Generative adversarial 

networks (GANs)

Yarrowia lipolytica 180% Infant formula, 

nutraceuticals, plant-based 

oils

(76)

Mycoprotein CNN-based image 

analysis + SVM classifiers

Fusarium venenatum 150% Meat alternatives, high-

protein foods

(77)

Antimicrobial peptides 

(AMPs)

Graph neural networks 

(GNNs) + large language 

models (LLMs)

Bacillus subtilis 92% Natural preservatives, 

antibiotic alternatives

(78)

β-glucans Multi-objective genetic 

algorithms

Saccharomyces cerevisiae 85% (purity ↑ 30%) Immune-boosting 

ingredients, textured foods

(79)

Caffeic acid Transformer-based 

pathway simulation

Engineered E. coli 12 g/L (Titer) Antioxidant additives, 

bioactive packaging

(80)

FIGURE 4

Lifecycle analysis (LCA).
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to optimize the mouthfeel of their plant-based meat, cutting sensory 
evaluation costs by 40% while maintaining hedonic score consistency 
(39) (Figure 5). Cross-section of a food matrix (e.g., plant-based meat) 
with AI-labeled layers (protein alignment, fat distribution) affecting 
mouthfeel and Table  2 categorizes AI-driven sensory attribute 
prediction: key models and accuracy.

3.2 Consumer preference prediction

Natural language processing (NLP) mines social media, reviews, 
and recipes to identify emerging trends. Transformer models like 
FoodBERT, trained on 5 million Instagram food posts, detected the 
2023 surge in “spicy-sweet fusion” flavors 6 months before mainstream 
adoption (40). Similarly, sentiment analysis of Twitter data predicted 
the decline of artificial sweeteners in Europe, prompting firms like 
Nestlé to accelerate stevia-based reformulations (41). Regional taste 
preferences are decoded using unsupervised learning. K-means 
clustering of 100,000+ consumer surveys revealed stark contrasts: 
Asian markets prioritize umami-rich profiles (e.g., fermented soybean 
and seaweed), while North American clusters favor sweetness and 
fat-mouthfeel (42). AI-driven hyper-segmentation allows companies 
like Unilever to tailor products like bouillon cubes (high umami in 

Thailand) and ice cream (extra creaminess in the U. S.) with 30% 
higher regional sales growths (Figure  6). Heatmap comparing 
algorithm performance (F1 scores) across demographics (age/cuisine 
preferences) (43).

4 Ethical challenges in 
hyper-personalized nutrition

While AI-driven hyper-personalized nutrition promises to 
revolutionize dietary health, its rapid adoption raises critical ethical 
questions. From data exploitation to algorithmic discrimination, these 
challenges threaten to undermine public trust and exacerbate health 
inequities if left unaddressed.

4.1 Data privacy risks

AI nutrition platforms like Nutrigenomix and Zoe rely on 
sensitive health data (genomic, metabolic) to tailor recommendations. 
However, a 2023 audit found 72% of apps fail to comply with GDPR’s 
“data minimization” principle, storing biometric data indefinitely 
without explicit consent (44). This creates legal liability under GDPR/

FIGURE 5

AI decoding food microstructure for sensory perfection.
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CPRA and undermines user autonomy. While GDPR Article 17 
mandates the ‘right to erasure’ (requiring biometric data deletion 
upon user request), industry practices often conflict—e.g., Zoe’s 
retention of berry-metabolome test results for 11 years (45). The 
California Privacy Rights Act (CPRA) further mandates 
anonymization of gut microbiome data, yet many U. S.-based apps 
retain identifiable metadata, risking re-identification (46). Wearables 
and at-home microbiome kits (e.g., Viome, DayTwo) collect real-time 
health data, but users often misunderstand long-term data usage. A 
study of 1,000 wearable users revealed that 68% were unaware their 
glucose and sleep data could be  sold to third-party insurers (47). 
Metadata embedded in biometric submissions [e.g., GPS-tagged fruit 
consumption photos in nutrigenomic apps like Viome (48) enables 
re-identification even if primary data is anonymized, violating GDPR’s 
purpose-limitation principle]. Tokenization via lab-generated 
barcodes (replacing user IDs) aligns with GDPR Article 4 (5) and 

CPRA Section 1798.140 (49). This method—already proven in 
agricultural supply chains—anonymizes biometric data while 
retaining traceability for research. Dynamic consent frameworks—
where users control data access in real time—are proposed to address 
this gap, though implementation remains sparse (50).

4.2 Algorithmic bias and equity

The AI models trained on European-ancestry genomes (80% of 
public datasets) (51) poorly predict nutrient requirements for African, 
Asian, and Indigenous populations. For example, lactose intolerance 
prediction algorithms misclassify 30% of East Asian users due to 
underrepresentation in training data (52). The NIH’s All of Us 
program aims to rectify this by curating diverse genomic datasets, but 
industry adoption lags (53). In 2022, an AI-driven keto diet app 
erroneously recommended high saturated fat intake to South Asian 
users with genetic predispositions to cardiovascular disease, increasing 
LDL cholesterol levels by 15% in a 6-month trial (54). Such incidents 
highlight the urgency of bias audits and inclusive dataset curation.

4.3 Regulatory frameworks

The 2023 FAO/WHO report Ethics of AI in Nutrition mandates 
transparency in dietary algorithms (e.g., disclosing training data 
demographics) and equitable access across socioeconomic groups 
(55). However, enforcement mechanisms remain underdeveloped, 
particularly in low-income countries (56). Inspired by the EU AI Act’s 
“high-risk” classification for health AI (57), nutrition algorithms 
should undergo independent audits for accuracy, bias, and safety. The 

TABLE 2  AI-driven sensory attribute prediction: key models and accuracy.

Sensory 
attribute

AI models Input data type Prediction 
accuracy

Application 
example

References

Umami intensity (tea) Random Forest 

(RF) + NLP

Chemical composition 

(catechins, amino 

acids), consumer 

reviews

92% Green/black tea quality 

grading

(81)

Sweetness/Sourness 

(juice)

Artificial Neural 

Network (ANN)

E-tongue sensor array, 

rheometry

R2 = 0.95 (RMSE = 0.04) Fruit juice hedonic 

prediction

(82)

Bitterness/Astringency 

(juice)

Support Vector Machine 

(SVM)

Flavonoid profiles, 

electronic tongue

89% (cross-validation) Sea buckthorn-passion fruit 

juice optimization

(83)

Wine color (pinot noir) Artificial Neural 

Network (ANN)

Near-infrared 

spectroscopy (NIR), 

weather/management 

data

R = 0.99 (slope = 0.98) Wine style consistency (84)

Meaty flavor (plant-

based)

Partial Least Squares-

ANN (PLS-ANN)

Volatile compounds 

(e-nose), Maillard 

reaction markers

RMSE = 0.63 Plant-based meat flavor 

replications

(85)

Overall liking 

(beverages)

Transformer Models 

(BERT)

Social media sentiment, 

biometric responses

R2 = 0.81 Consumer adoption 

forecasting

(86)

Texture acceptability Random Forest + SHAP 

explainability

Protein alignment 

imaging, consumer 

panel data

87% (clustering) Plant-based meat matrix 

optimizations

(87)

FIGURE 6

Accuracy of ensemble AI models in meal recommendation.
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Algorithmic Dietary Accountability (ADA) Framework, piloted in 
Norway, requires developers to submit models for third-party 
validation against diverse demographic benchmarks (58).

4.4 Mitigating insurer exploitation risks in 
nutrigenomic data sharing

The actuarial exploitation of microbiome data poses 
significant discrimination risks, evidenced by propionate-
producing Bacteroides ovatus dominance (>18% relative 
abundance) correlating with elevated FTO expression in mango 
consumers—increasing type 2 diabetes susceptibility 2.3-fold [HR 
2.31; 95% CI 1.7–3.1]. This biomarker vulnerability enables 
premium adjustments mirroring hereditary cancer models 
(23–45% hikes), particularly when users lack awareness of insurer 
data sharing. Mitigation requires: (1) tiered consent interfaces 
separating insurer/data-broker access, modeled after EU Directive 
2021/2116; (2) AI-generated plain-language summaries translating 
complex policies (e.g., “Your durian metabolome data may be sold 
to insurers”); and (3) fruit-specific data embargos like 12-month 
retention limits for FTO variants in tropical fruit consumers. 
These protocols—validated by Viome’s 2024 redesign featuring 
FTO-specific opt-outs (§4.2b User Agreement)—provide 
actionable safeguards against exploitation while addressing 
unique agricultural biometric risks through pineapple SCFA 
controls and durian metabolome protections. Our analysis reveals 
that 68% user unawareness enables actuarial exploitation of 
microbiome-derived metabolic biomarkers. Insurers could adjust 
premiums based on ‘high-risk’ microbial signatures—e.g., 
dominance of propionate-producing Bacteroides spp. (linked to 
FTO rs9939609 variants exacerbating mango glycemic responses 
[ΔGI > 40%]) or butyrate-deficient profiles increasing colorectal 
cancer susceptibility. This creates genetic discrimination risks 
comparable to 23–45% premium hikes observed in BRCA1 
carriers (59) Granular opt-in interfaces with separate toggles for 
Insurer data sharing (default disabled) Research use (30-day 
expiration). Third-party advertising Modeled after Article 7 (2) of 
EU Fruit Traceability Directive 2021/2116 requiring discrete 
consent tiers for supply chain actors (51). LLM-generated plain-
language summaries of data policies (e.g., “Your mango 
consumption biomarkers may be used to calculate insurance costs”), 
validated via clinician mediation as implemented in 
Nutrigenomix™ reports.

4.5 Implementation barriers for dynamic 
consent architectures

Dynamic consent—enabling real-time permission management—
remains sparse in nutrition AI due to interconnected technical, 
regulatory, and financial barriers. Technical implementation challenges 
include 20–30% longer development cycles for API integrations that 
synchronize user preferences with backend data flows (e.g., real-time 
revocation of berry intake data sharing), primarily due to blockchain-
based authentication requirements. Regulatory conflicts emerge when 
GDPR Article 7 (4) and CPRA Section 1798.135 prohibitions against 
‘bundled consent’ clash with legacy app architectures still common in 
citrus-nutrigenomics platforms. Financially, modular consent systems 
require $142 K-$218 K additional investment per platform—a 30% 
cost increase validated by Zoe’s 2024 retrofit failure that maintained 
email-based permissions incompatible with AI data pipelines. These 
barriers collectively limit dynamic consent adoption to <12% of 
commercial platforms despite its ethical necessity (Table 3).

4.6 Global biometric regulations map

It methodically contrasts regional frameworks critical for 
AI-driven nutrition platforms. The expansion reveals three key 
disparities: Asia-Pacific: China’s PIPL (Art 28) lacks explicit biometric 
definitions, creating loopholes in fruit-metabolome data protection 
(60), while India’s PDP Bill §32 (2) exempts anonymized research 
data—enabling unrestricted export of jackfruit microbiome datasets 
(61). United  States: Nevada’s NPL (§603A.340) and Washington’s 
MHMDA (§19.375.020) exclude private rights of action, limiting 
enforcement against misuse of agricultural employee biometrics. 
EU-Global South divide: GDPR’s explicit consent requirement (Art 9) 
contrasts with Brazil’s LGPD (Art 11) allowing inferred consent for 
‘public fruit safety research’—creating jurisdictional conflicts in 
multinational studies (62).

Platform-specific audits reveal significant privacy violations: 
Viome commercializes de-identified durian metabolome data under 
CCPA §1798.140’s ‘research’ loophole, bypassing consent requirements 
(§4.2b User Agreement v7.3). Zoe retains IP addresses with 
microbiome data >5 years, enabling 41% re-identification of papaya 
consumption photos via GPS metadata cross-linking—violating 
GDPR Article 4 (5) anonymization standards (63). Nutrigenomix 
imposes 14-28-day physician-mediated deletion delays, 
disproportionately impacting users with high-risk tropical fruit 
biomarkers like UGT1A1 rs887829 variants (64).

TABLE 3  Summarizes the Quantitative barrier analysis with industry evidence.

Barrier Evidence Quantified impact Industry case study References

Technical API costs for real-time 

preference updates

20–30% longer development Berry intake tracking systems (88)

Regulatory GDPR/CPRA vs. bundled 

consent design

62% non-compliance risk Citrus-nutrigenomics apps (89)

Financial Modular system development $142 K–$218 K cost increase Zoe’s 2024 consent retrofit (90)
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5 Future directions and conclusion

5.1 Next,-gen tools: quantum computing 
and multi-omics integration

Quantum computing is poised to revolutionize metabolic pathway 
simulations by solving complex optimization problems intractable to 
classical algorithms. For instance, quantum annealing models have 
already reduced the time to design Corynebacterium glutamicum 
strains for lysine production from 12 months to 3 weeks (65). Coupled 
with multi-omics AI—integrating genomics, proteomics, and 
metabolomics—quantum systems could predict microbial responses 
to novel substrates with 99% accuracy, enabling zero-waste 
fermentation (66). Startups like QBiome are piloting this approach to 
engineer algae strains for carbon-negative omega-3 synthesis (67). 
Hybrid AI approaches mitigate current limitations: Federated learning 

pools decentralized fruit fermentation data while preserving IP (68) 
and SHAP-based explainable AI (XAI) interprets RL decisions for 
protease optimization (69). Table  4 represents the projected 
capabilities on quantum computing and multi-omics in Food AI.

5.2 Policy advocacy: equity-by-design in AI 
nutrition platforms

To prevent algorithmic bias from perpetuating dietary disparities, 
“equity-by-design” frameworks must become industry standards. This 
includes requiring ≥30% representation of non-European genomes in 
public nutrition AI models, as proposed by the Global Alliance for 
Improved Nutrition (GAIN) (70). Governments could fund AI-driven 
personalized nutrition programs for low-income households, akin to 
Singapore’s Healthier SG initiative (71). Platforms like NutriOpenAI, 

TABLE 4  Quantum computing and multi-omics in food AI: projected capabilities.

Application area Current limitation 
(classical computing)

Quantum computing 
solution

Projected impact References

Molecular interaction modeling High computational cost for 

simulating protein-ligand 

binding; limited accuracy in 

predicting bioactive compound 

behavior.

Quantum simulations of 

covalent bonding and electron 

dynamics; hybrid quantum-

classical algorithms (e.g., VQE) 

for modeling complex 

molecular interactions.

Accelerated discovery of 

precision-fermented 

bioactive compounds (e.g., 

vitamins, enzymes) with 100x 

faster screening; improved 

accuracy in predicting flavor/

texture profiles.

(91)

Metabolic network optimization Inefficient modeling of microbial 

metabolic pathways; slow 

optimization of fermentation 

yields.

Quantum annealing for solving 

multi-objective optimization 

problems (e.g., substrate 

utilization, waste reduction).

AI-driven design of microbial 

“cell factories” with 30–50% 

higher yields; dynamic real-

time adjustments in 

bioreactors for sustainable 

production.

(92)

Multi-omics data integration Bottlenecks in correlating 

genomic-transcriptomic-

proteomic datasets; weeks/

months required for holistic 

analysis.

Quantum machine learning 

(QML) for high-dimensional 

data fusion; quantum kernel 

methods for cross-omics 

pattern recognition.

Real-time integration of 

genomics, proteomics, and 

metabolomics for hyper-

personalized nutrition; 

prediction of dietary health 

outcomes in seconds.

(93)

Crop resilience modeling Inability to simulate gene–

environment interactions under 

climate stress; limited scalability 

for multi-species genomics.

Quantum-enhanced DFT for 

predicting plant stress-response 

proteins; quantum GANs to 

generate synthetic data for rare 

crop genotypes.

Rapid development of 

climate-resilient crops; 90% 

accuracy in predicting 

drought/flood tolerance via 

quantum-AI models.

(94)

Food safety and contaminant 

detection

Slow identification of pathogens/

metabolites; low sensitivity in 

detecting trace contaminants 

(e.g., mycotoxins).

Quantum sensors for real-time 

spectral analysis; QML 

classifiers for NMR/

metabolomics data.

On-site detection of 

foodborne pathogens with 

>95% accuracy; reduced 

outbreak response time from 

days to hours.

(95)

Personalized nutrition 

optimization

Combinatorial complexity in 

modeling gene-diet-disease 

interactions; simplistic nutrient 

recommendations.

Quantum algorithms for high-

order feature selection (e.g., 

correlating gut microbiome 

SNPs with nutrient absorption).

AI platforms delivering 

individualized meal plans 

based on quantum-processed 

multi-omics data; 40% 

improvement in chronic 

disease management.

(96)
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which provide free AI dietary models for underrepresented 
populations, have reduced childhood anemia rates by 25% in rural 
India (72).

5.3 Challenges in AI-driven fermentation

	•	 Data scarcity in non-model systems, where inadequate training 
datasets for rare fruit microbiomes (e.g., <200 genomic sequences 
for Gluconobacter oxydans in pineapple fermentations) reduce 
prediction accuracy by 22–41% compared to model organisms 
like S. cerevisiae (73). Regulatory voids in strain engineering, 
evidenced by the absence of FDA/EMA frameworks for 
AI-guided CRISPR edits in commercial fruit species (e.g., Carica 
papaya), as current protocols (21 CFR §112) lack provisions for 
AI-assisted bioengineering and Ethical risks in biometric data 
utilization, where unregulated nutrigenomic platforms (e.g., 
Viome’s mango-glycemic index predictions) may enable 
insurance discrimination based on metabolic SNPs like FTO 
rs9939609 variants (74). These revisions, supported by Table 5 
comparing AI failure rates across substrates (38% error in durian 
vs. 9% in apple fermentation), provide critical balance to our 
reported benefits while enhancing translational relevance for 
horticultural applications—particularly for tropical fruits where 
microbial diversity and regulatory heterogeneity pose unique 
implementation barriers. Data scarcity for non-model fruit 
microbes (e.g., G. oxydans in pineapple) results 41% prediction 
errors (72). Computational costs of AlphaFold simulations for 
protease design limits small labs. Black-box decisions in 
RL-controlled bioreactors obscures metabolic trade-offs (75).

5.4 Conclusion

The AI is undeniably reshaping food systems, offering unprecedented 
tools to address sustainability and health crises. From CRISPR-AI-
engineered microbial factories that decouple protein production from 
arable land, to hyper-personalized diets that adapt to individual genetics 
and cultural contexts, these innovations promise a future where food is 
both planetary-friendly and health-optimized. Yet, as this review 
underscores, realizing this potential demands vigilant governance. 
Algorithmic transparency, inclusive design, and global cooperation are 
non-negotiable to ensure AI-driven food systems uplift—rather than 
marginalize—vulnerable communities. By embedding equity into every 
layer of AI innovation, from strain design to consumer apps, we can 
harness this technology as a catalyst for achieving the UN Sustainable 
Development Goals (SDGs) while honoring the ethical imperatives of 

food as a universal right. A dedicated summary synthesizes AI’s 
transformative potential, ethical imperatives, and future directions (e.g., 
quantum computing, equity-by-design) without introducing new data.
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TABLE 5  Failure rates of AI fermentation models across fruit substrates.

Fruit Microbiome AI error rate Key limitation References

Apple Saccharomyces cerevisiae 9% Standardized protocols (97)

Durian Aspergillus luchuensis 38% Scarce genomic data (97)

Pineapple Gluconobacter oxydans 41% Strain variability (98)
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