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Background: The link between uric acid (UA) and cardiovascular diseases 
is debated, with insulin resistance possibly affecting this relationship. The 
triglyceride-glucose (TyG) index is a recognized marker for insulin resistance. 
However, the combined effect of different levels of UA and TyG on the severity 
of coronary artery disease (CAD) remains unclear.
Methods: A cohort of 1,835 patients with newly diagnosed CAD was divided 
into single-vessel (743 patients) and multi-vessel (1,092 patients) CAD groups. 
The study utilized logistic regression, restricted cubic spline (RCS), and extreme 
gradient boosting (XGBoost) models to explore the associations between UA, 
TyG, and multi-vessel CAD. Interaction analysis assessed potential additive and 
multiplicative interactions. A mediation analysis was performed to assess the 
indirect effects of TyG and UA on the severity of CAD.
Results: The TyG > 9.33 and non-HUA group is linked to a higher risk of multi-
vessel CAD (OR 1.41, 95% CI 1.08–1.85), while the TyG ≤ 9.33 and HUA group 
shows no significant association (OR 1.08, 95% CI 0.76–1.53). The feature 
importance analysis, using the XGBoost model, demonstrated that TyG has a 
higher predictive value for multi-vessel CAD. No nonlinear correlations were 
observed for RCS. No notable additive or multiplicative interactions were 
detected between TyG and UA. Mediation analysis revealed that TyG significantly 
mediated the relationship between UA and multi-vessel CAD, with a proportion 
mediated of 18.89% (p = 0.026). In contrast, UA did not significantly mediate the 
TyG–CAD relationship (p = 0.082).
Conclusion: The TyG index correlated more strongly with multi-vessel CAD 
compared to UA. Hyperuricemia correlated with multi-vessel CAD exclusively 
at elevated TyG levels, with TyG mediating the link between uric acid and CAD 
severity.
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1 Introduction

Coronary artery disease (CAD) is a major global contributor to 
morbidity and mortality, significantly straining healthcare systems (1). 
Despite significant advances in diagnostic and therapeutic strategies, 
the complex pathophysiology of CAD continues to present challenges, 
particularly in assessing the severity of coronary artery lesions, which 
is a crucial determinant of patient outcomes (2, 3). Coronary 
angiography, though the definitive method for assessing coronary 
lesions, is not widely applicable due to its high cost and invasive 
nature, rendering it impractical for broad use, particularly among 
asymptomatic individuals. Understanding the multifactorial nature of 
CAD and its metabolic risk factors is crucial for identifying new 
prognostic markers and therapeutic targets in atherosclerotic lesion 
development and progression.

Growing evidence indicates a strong link between metabolic 
disorders like insulin resistance (IR) and hyperuricemia (HUA) and a 
heightened risk of CAD. Insulin resistance contributes to endothelial 
dysfunction, oxidative stress, and inflammation, which expedite 
atherosclerosis (4, 5). HUA contributes to cardiovascular disease 
pathogenesis by affecting endothelial function, oxidative stress, and 
inflammation (6). A recent study indicates that the combination of 
insulin resistance and hyperuricemia elevates the risk of major adverse 
cardiovascular events (MACE) in patients with glucose metabolism 
disorders (7). However, the precise mechanisms underlying the interplay 
between IR and HUA in the context of CAD remain to be fully elucidated.

The triglyceride-glucose (TyG) index has recently been recognized 
as a new and dependable surrogate marker for insulin resistance, 
showing a strong correlation with the euglycemic-hyperinsulinemic 
clamp, which is the gold standard for assessing insulin resistance. 
Research has shown a link between the TyG index and both the 
presence and severity of CAD (8, 9). The TyG index is a predictor of 
adverse cardiovascular events across different patient groups (10). The 
involvement of uric acid (UA) in cardiovascular diseases continues to 
be a topic of debate (11). Several studies have established a significant 
association between elevated serum UA levels and increased 
cardiovascular risk, including in patients with hypertension, where 
hyperuricemia is considered an independent risk factor for adverse 
outcomes (12, 13). For example, the uric acid right for heart health 
(Urrah) study by Muiesan et  al. (14) and Mengozzi et  al. (15) 
demonstrated that elevated UA levels were associated with increased 
cardiovascular risk in hypertensive patients, emphasizing the need for 
UA monitoring in this high-risk group. However, other studies have 
reported conflicting results, suggesting that the relationship between 
UA and cardiovascular risk may depend on other factors such as 
comorbidities, treatment regimens, and the presence of metabolic 
syndrome (16). Notably, a study combining a national cohort and 
meta-analysis confirmed an increased risk of cardiovascular mortality 
with high UA levels in diabetic patients, indicating that UA is 
inextricably linked to insulin resistance concerning cardiovascular 
disease (17).

Hence, the present study aims to investigate the combined 
effects of the TyG index and UA on the severity of coronary artery 
lesions in patients with newly diagnosed CAD. This study aims to 
offer new insights into the pathophysiological mechanisms 
connecting insulin resistance and hyperuricemia to the 
development and progression of atherosclerotic lesions by 
concentrating on this specific patient population.

2 Materials and methods

2.1 Study population

The study initially involved 2,533 patients diagnosed with CAD at 
a tertiary medical center from July 2009 to August 2011 (16). Eligible 
patients were those who had undergone coronary angiography 
without a prior history of coronary artery disease (CAD), 
percutaneous coronary intervention (PCI), or coronary artery bypass 
grafting (CABG). Participants were excluded if they had incomplete 
data for age, fasting plasma glucose (FPG), triglyceride (TG), and UA 
values (Supplementary Figure S1).

2.2 Definitions of CAD and multi-vessel 
CAD

Coronary angiographic analyses, both qualitative and quantitative, 
were conducted using established methods (16). CAD was 
characterized by the presence of at least one coronary artery stenosis 
of 50% or greater, as determined by coronary angiography (17). Multi-
vessel CAD was characterized by significant stenosis (≥50%) in two 
or more major coronary arteries, such as the left anterior descending 
(LAD), left circumflex (LCX), or right coronary artery (RCA). Lesions 
in the left main coronary artery (LMCA) were classified as multi-
vessel CAD. Patients were categorized into single-vessel CAD and 
multi-vessel CAD groups according to the number of affected vessels.

2.3 TyG index calculation

The TyG index, a dependable marker for insulin resistance, was 
derived from TG and FPG measurements. The TyG calculation is 
determined using the following formula.

TyG index = ln [FPG(mg/dl) × TG(mg/dl)/2]

2.4 TyG and UA classification

The receiver operating characteristic (ROC) curve analysis 
determined the optimal TyG index cutoff value to be  9.33 
(Supplementary Figure S2). Patients were divided into two groups 
based on TyG values: those with TyG > 9.33 and those with 
TyG ≤ 9.33. Patients were categorized into HUA and non-HUA 
groups based on diagnostic criteria, where HUA is defined by serum 
uric acid levels exceeding 7 mg/dL in men and 6 mg/dL in women 
(18). Consequently, the study population was further divided into four 
groups based on combined TyG and UA levels: TyG ≤ 9.33 and 
non-HUA, TyG > 9.33 and non-HUA, TyG ≤ 9.33 and HUA, and 
TyG > 9.33 and HUA.

2.5 Data collection

Demographic and clinical data, including age, sex, BMI, smoking 
status, and history of comorbidities like hypertension and diabetes, 
were obtained from the hospital information database. Laboratory 
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data, including FPG, TG, UA, and lipid profiles, were measured using 
standard biochemical assays. Renal function was assessed using the 
estimated glomerular filtration rate (eGFR) calculated with the 
CKD-EPI formula. Coronary angiography findings were reviewed by 
experienced cardiologists who assessed the severity and extent of 
CAD (1).

2.6 Statistical analysis

Statistical analyses were performed using R software (v4.3.0) and 
Empower software (v4.1). The normality of continuous variables was 
assessed using the Kolmogorov–Smirnov test. Data that passed the 
normality test (p > 0.05) were expressed as the mean ± standard 
deviation (SD) and compared using t-tests. Data that did not meet the 
normality assumption were presented as the median ± interquartile 
range (IQR), and comparisons were made using the Mann–Whitney 
U test. Categorical variables were summarized as frequencies and 
percentages and analyzed using chi-square tests. A logistic regression 
analysis evaluated the association between the TyG index, UA, and the 
risk of multi-vessel CAD. Collinearity diagnosis was performed, 
indicating that the level of collinearity among the variables was within 
acceptable limits, as evidenced by all variance inflation factors (VIF) 
being less than 5 (Supplementary Table S1). A restricted cubic spline 
(RCS) analysis was conducted to evaluate the linearity between the 
TyG index, UA, and multi-vessel CAD. The significance of TyG and 
UA in multi-vessel CAD was evaluated using extreme gradient 
boosting (XGBoost) and Shapley additive explanations (SHAP) values. 
Interaction and mediation effects were assessed using additive and 
multiplicative interaction models and mediation analysis. Statistical 
significance was defined as a p-value less than 0.05.

3 Results

3.1 Baseline demographic and clinical 
characteristics

In this study involving 1,835 newly diagnosed CAD patients, 
notable demographic and clinical differences were found between 
individuals with single-vessel and multi-vessel CAD. The multi-
vessel CAD group had an older average age of 60.97 years, 
compared to 57.64 years in the single-vessel group (p < 0.001). 
The groups showed no significant difference in sex distribution. 
Blood pressure measurements and heart rate showed no significant 
differences. FPG levels were notably elevated in the multi-vessel 
CAD group (p < 0.001), suggesting a link between impaired 
glucose metabolism and increased severity of coronary artery 
involvement. Serum TG levels were marginally higher in the 
multi-vessel group (p = 0.049).

The multi-vessel group exhibited higher low-density lipoprotein 
cholesterol (LDL-C) levels (p = 0.016) and a significantly elevated 
TyG index (p < 0.001). The multi-vessel CAD group exhibited 
significantly elevated UA levels (p = 0.037), indicating a potential 
association between hyperuricemia and extensive coronary disease. 
Comorbidities such as heart failure (p = 0.003), hypertension 
(p = 0.048), and diabetes (p < 0.001) were more common in 
individuals with multi-vessel CAD. Patients in the multi-vessel group 

exhibited a higher incidence of ST-segment elevation myocardial 
infarction (p = 0.031), suggesting more severe clinical presentations. 
The results indicate that metabolic dysfunction, especially 
concerning glucose and lipid metabolism, combined with elevated 
UA levels, may contribute to the progression and severity of CAD 
(Table 1).

3.2 Relationship between TyG index, UA, 
and multi-vessel CAD

Logistic regression analysis revealed that both the TyG index and 
UA levels were independently associated with an increased risk of 
multi-vessel CAD. Patients with a TyG index > 9.33 had a higher risk, 
which was further elevated in those with HUA. In Model 2, patients 
with TyG > 9.33 and HUA had nearly double the risk of multi-vessel 
CAD compared to those with lower TyG and no HUA (OR 1.86, 95% 
CI 1.08–3.21; Table 2), while those with low TyG and HUA showed no 
significant difference (OR 1.08, 95% CI 0.76–1.53).

The RCS analysis demonstrated that the relationships between 
TyG, UA, and multi-vessel CAD followed a linear pattern (Figure 1). 
This indicates a continuous increase in the risk of multi-vessel CAD 
with rising TyG and UA levels, without any thresholds or inflection 
points. Subgroup analyses indicated that the relationship between 
TyG, UA, and multi-vessel CAD remained consistent across diverse 
populations, including different age groups, sexes, BMI groups, and 
clinical conditions like hypertension, diabetes, and CAD types (all P 
for interaction > 0.05, Supplementary Figure S3 and 
Supplementary Table S3). The consistency of these findings across 
diverse patient groups underscores the robustness of TyG and UA as 
predictors of CAD severity.

3.3 Feature importance and impact on 
multi-vessel CAD

The analysis of feature importance in the prediction of multi-
vessel CAD, using the XGBoost model, revealed that the TyG holds 
a more substantial predictive power than UA. As shown in 
Figure  2A, TyG demonstrates a higher relative importance 
compared to UA, highlighting its stronger association with CAD 
severity. In Figure  2B, the SHAP values further support this 
finding, indicating that higher TyG values exert a more significant 
influence on model predictions. The SHAP plot visualizes the 
impact of TyG and UA on multi-vessel CAD severity, with the 
color gradient representing varying feature values, from low 
(yellow) to high (purple). This indicates that both TyG and UA 
contribute meaningfully to the model’s output, though TyG appears 
to play a more prominent role in determining multi-vessel 
CAD severity.

3.4 Interaction and mediation of TyG and 
UA

The study found no significant additive or multiplicative 
interaction effects between TyG, UA, and multi-vessel CAD. The 
synergy index (SI) suggested a potential additive interaction (SI = 1.75, 
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95% CI = 0.37–8.18, p = 0.02), whereas the relative excess risk due to 
interaction (RERI) and attributable proportion (AP) were not 
statistically significant (p = 0.25 and p = 0.22, respectively). The 

multiplicative interaction was also non-significant (p = 0.56), 
suggesting limited interaction between TyG and UA regarding multi-
vessel CAD risk (Table 3).

TABLE 1  Characteristics of study subjects grouped according to severity of coronary lesions.

Characteristics Single-vessel CAD Multi-vessel CAD SMD p-value

N 743 1,092

Age, years 57.64 (11.20) 60.97 (10.81) 0.30 (0.21, 0.40) <0.001

Sex 0.01 (−0.08, 0.11) 0.795

 � Men 252 (33.92%) 364 (33.33%)

 � Women 491 (66.08%) 728 (66.67%)

SBP, mmHg 103.32 (27.73) 101.81 (29.00) 0.05 (−0.04, 0.15) 0.266

DBP, mmHg 77.38 (11.61) 77.17 (12.24) 0.02 (−0.08, 0.11) 0.715

BMI classification 0.10 (0.01, 0.20) 0.208

 � <24 kg/m2 272 (36.61%) 398 (36.45%)

 � 24–28 kg/m2 149 (20.05%) 259 (23.72%)

 � ≥28 kg/m2 71 (9.56%) 106 (9.71%)

 � Missing data 251 (33.78%) 329 (30.13%)

Heart rate, bpm 72.32 (11.44) 72.11 (11.76) 0.02 (−0.08, 0.11) 0.714

FPG, mmol/L 5.10 (4.62–6.01) 5.30 (4.73–6.56) 0.14 (0.05, 0.24) <0.001

TG, mmol/L 1.53 (1.13–2.20) 1.65 (1.17–2.35) 0.10 (0.01, 0.20) 0.049

HDL-C, mmol/L 1.06 (0.31) 1.06 (0.31) 0.01 (−0.09, 0.10) 0.863

LDL-C, mmol/L 2.65 (0.91) 2.75 (0.95) 0.12 (0.02, 0.21) 0.016

eGFR, ml/(min·1.73 m2) 99.71 (19.68) 95.05 (18.85) 0.24 (0.15, 0.34) <0.001

UA, mg/dl 4.97 (1.50) 5.13 (1.62) 0.10 (0.01, 0.19) 0.037

TyG 8.85 (0.63) 8.96 (0.67) 0.18 (0.08, 0.27) <0.001

CAD classification 0.13 (0.03, 0.22) 0.031

 � ST-segment elevation myocardial infarction 184 (24.76%) 332 (30.40%)

 � Non-ST-segment elevation myocardial infarction 487 (65.55%) 664 (60.81%)

 � Stable CAD 72 (9.69%) 96 (8.79%)

Location of diseased coronary artery

 � LMCA 0 (0.00%) 59 (5.40%) 0.34 (0.24, 0.43) <0.001

 � LAD 532 (71.60%) 988 (90.48%) 0.50 (0.40, 0.59) <0.001

 � LCX 93 (12.52%) 788 (72.16%) 1.53 (1.42, 1.63) <0.001

 � RCA 118 (15.88%) 766 (70.15%) 1.31 (1.21, 1.41) <0.001

History of disease

 � Heart failure 66 (8.91%) 147 (13.47%) 0.15 (0.05, 0.24) 0.003

 � Atrial fibrillation 12 (1.62%) 23 (2.11%) 0.04 (−0.06, 0.13) 0.45

 � Cardiac shock 1 (0.13%) 2 (0.18%) 0.01 (−0.08, 0.11) 0.999

 � COPD 6 (0.81%) 12 (1.10%) 0.03 (−0.06, 0.12) 0.534

 � Stroke 35 (4.71%) 59 (5.40%) 0.03 (−0.06, 0.12) 0.509

 � Hypertension 421 (56.74%) 670 (61.36%) 0.09 (0.00, 0.19) 0.048

 � Diabetes 206 (27.76%) 423 (38.74%) 0.23 (0.14, 0.33) <0.001

Smoking 229 (30.82%) 364 (33.33%) 0.05 (−0.04, 0.15) 0.259

Data are expressed as mean (SD), median (IQR) or n (%).
CAD, coronary artery disease; SMD, standardized mean difference; SD, standard deviation; IQR, interquartile range; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body 
mass index; FPG, fasting plasma glucose; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; eGFR, estimated glomerular filtration rate; 
UA, uric acid; TyG, triglyceride glucose index; LAD, left anterior descending; LCX, left circumflex; RCA, right coronary artery. LMCA, lesions in the left main coronary artery; COPD, chronic 
obstructive pulmonary disease.
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The UA did not significantly mediate the TyG and multi-vessel 
CAD relationship (10.54% mediated, p = 0.082). However, TyG 
significantly mediated the relationship between UA and multi-vessel 
CAD, with a proportion mediated of 18.89% (p = 0.026), indicating 
that TyG explains the effect of UA on multi-vessel CAD risk (Figure 3 
and Supplementary Table S2).

4 Discussion

This study aimed to explore the associations between the TyG 
index, UA, and CAD severity in a Chinese cohort. Our study identifies 
strong correlations between a high TyG index, elevated UA levels, and 
an increased risk of multi-vessel CAD. Our findings indicate that the 
TyG index mediates the impact of UA on CAD severity, offering new 
insights into the intricate relationship between these metabolic 
markers and cardiovascular risk.

The study indicates a significant correlation between elevated 
TyG levels and a heightened risk of multi-vessel CAD, with each 
unit increase in the TyG index corresponding to an odds ratio of 
1.27 (95% CI 1.08–1.50). This finding is consistent with recent 
research emphasizing the TyG index as an indicator of insulin 
resistance and its potential in forecasting cardiovascular events. For 
instance, a large-scale study by Xiong et al. (19). A study involving 
1,007 individuals demonstrated that a higher TyG index correlates 
with an increased SYNTAX score in acute coronary syndrome 
patients. Similarly, Liang et al. (10) a meta-analysis of studies found 
that an elevated TyG index independently correlates with an 
increased risk of CAD and more severe coronary lesions. Various 
mechanisms may account for the observed link between the TyG 
index and multi-vessel CAD. The TyG index serves as a surrogate 
marker for insulin resistance, indicating disruptions in glucose and 
lipid metabolism. Insulin resistance has been shown to promote 
endothelial dysfunction, vascular inflammation, and the 
progression of atherosclerosis (5). Li et al. (20) conducted a recent 
study. An elevated TyG index was linked to increased arterial 

stiffness, with lipids and inflammation partially mediating 
this relationship.

Our study identified a significant link between high UA levels and 
a heightened risk of multi-vessel CAD. This relationship has been 
corroborated by recent research, including a Mendelian randomization 
study by Zhang et al. (21). The study, involving 343,836 participants, 
revealed a dose–response relationship between serum UA levels and 
CAD risk (21). The mechanisms linking UA to CAD progression are 
multifaceted and include promoting oxidative stress, endothelial 
dysfunction, and vascular inflammation (22).

Our findings indicate that the TyG index and UA may play 
complementary roles in evaluating cardiovascular risk. While both 
markers were independently associated with multi-vessel CAD, their 
combined presence further amplified the risk. This synergistic effect 
underscores the importance of considering multiple metabolic 
parameters when evaluating cardiovascular risk. A recent study by Wu 
et al. (7) found that the combination of elevated TyG index and UA 
levels was associated with a higher risk of adverse cardiovascular 
outcomes in patients receiving CABG, supporting our observations. 
The potential mechanisms linking the TyG index and UA to CAD 
severity extend beyond their individual effects. Both markers are 
closely related to metabolic dysfunction and insulin resistance. Recent 
studies indicate that insulin resistance may intensify the 
pro-inflammatory and pro-oxidative impacts of UA (23). 
Hyperuricemia can lead to insulin resistance by disrupting insulin 
signaling and glucose uptake in skeletal muscle (24).

Our analysis found no significant additive or multiplicative 
interactions between the TyG index and UA concerning multi-
vessel CAD risk. While this suggests that the effects of these 
markers on CAD risk may be largely independent, the observed 
significant synergy index (SI) value of 0.02 warrants further 
consideration. This seemingly contradictory finding—where SI is 
significant but relative excess risk due to interaction (RERI) and 
attributable proportion (AP) are not—could be attributed to the 
complex interplay between insulin resistance and hyperuricemia in 
the pathogenesis of CAD. It is possible that the lack of significant 

TABLE 2  Logistic regression analysis for multi-vessel CAD.

Variables
OR (95%CI)

Crude model Model 1 Model 2

TyG (per unit) 1.31 (1.13 ~ 1.51) 1.41 (1.22 ~ 1.64) 1.27 (1.08 ~ 1.5)

TyG (per SD) 1.19 (1.08 ~ 1.31) 1.26 (1.14 ~ 1.39) 1.17 (1.05 ~ 1.31)

TyG ≤ 9.33 Reference Reference Reference

TyG > 9.33 1.57 (1.25 ~ 1.97) 1.69 (1.34 ~ 2.13) 1.47 (1.14 ~ 1.89)

UA (per unit) 1.07 (1 ~ 1.13) 1.06 (1 ~ 1.13) 1.08 (1.01 ~ 1.15)

UA (per SD) 1.11 (1.01 ~ 1.22) 1.1 (1 ~ 1.22) 1.12 (1.01 ~ 1.24)

Non-HUA Reference Reference Reference

HUA 1.27 (0.95 ~ 1.7) 1.21 (0.9 ~ 1.63) 1.19 (0.88 ~ 1.6)

TyG ≤ 9.33 and Non-HUA Reference Reference Reference

TyG > 9.33 and Non-HUA 1.54 (1.2 ~ 1.97) 1.65 (1.28 ~ 2.12) 1.41 (1.08 ~ 1.85)

TyG ≤ 9.33 and HUA 1.2 (0.85 ~ 1.68) 1.12 (0.79 ~ 1.59) 1.08 (0.76 ~ 1.53)

TyG > 9.33 and HUA 2 (1.18 ~ 3.38) 2.05 (1.2 ~ 3.5) 1.86 (1.08 ~ 3.21)

Model 1: adjusted for age and sex.
Model 2: adjusted for Model 1, SBP, DBP, BMI, CAD classification, heart failure, atrial fibrillation, COPD, stroke, diabetes, and smoking.
OR odds ratio, CI confidence interval, HUA hyperuricemia, other abbreviations can be found in Table 1.
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interaction reflects the limitations in capturing the full scope of 
biological and clinical interactions, particularly given the absence 
of data on drug use that might affect UA levels or insulin sensitivity. 

The lack of a significant interaction in our study contrasts with 
previous research, such as that by Wu et al. (7), who identified a 
significant interaction between TyG and UA in predicting adverse 
cardiovascular outcomes in patients undergoing coronary artery 
bypass grafting (CABG). Differences in study populations, such as 
the presence of comorbidities or treatment regimens, and variations 
in outcomes of interest, may explain these conflicting results. 
Furthermore, the statistical power in our study might have been 
insufficient to detect subtle interactions, particularly given the large 
sample size and the complexity of the potential interactions. 
Therefore, while our findings suggest no significant additive or 
multiplicative interactions, it is essential to interpret this result 
within the context of the study’s limitations, including the lack of 
direct measurement of drug effects.

Despite the lack of significant interaction, our mediation 
analysis revealed a crucial finding: the TyG index significantly 
mediates the relationship between UA and multi-vessel CAD, with 
a proportion mediated of 18.89% (p = 0.026). This novel observation 
suggests that a substantial portion of the effect of UA on CAD 
severity may be  explained by its influence on glucose and lipid 
metabolism, as reflected by the TyG index. Research in Xinjiang, 
China, revealed that patients undergoing percutaneous coronary 

FIGURE 1

Restricted cubic spline curve of TyG, UA, and multi-vessel CAD. (A) TyG, (B) UA. Adjusted for all covariates in model 2.

FIGURE 2

Impact of TyG and UA on multi-vessel CAD based on XGBoost 
model. Panel (A) illustrates the relative importance of the features in 
predicting multi-vessel CAD using the XGBoost model. Panel 
(B) presents the SHAP values.

TABLE 3  Interaction analysis of TyG, UA, and multi-vessel CAD.

Parameters Value (95% CI) p-value

Additive interaction

 � RERI 0.37 (−0.73 ~ 1.47) 0.25

 � AP 0.2 (−0.3 ~ 0.7) 0.22

 � SI 1.75 (0.37 ~ 8.18) 0.02

Multiplicative interaction 1.22 (0.62 ~ 2.4) 0.56

CI, confidence interval; RERI, relative excess risk interacting; AP, attributable proportion due 
to interaction; SI, synergy index, other abbreviations can be found in Table 1.
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intervention (PCI) exhibited significantly elevated UA levels 
compared to individuals with normal coronary angiograms (25). 
This study concluded that while UA was not an independent risk 
factor for CAD severity, it was linked to other cardiometabolic risk 
factors like cholesterol and triglycerides, supporting our findings. 
The role of TyG as a mediator in the UA-CAD pathway is crucial for 
understanding how metabolic dysfunction connects to 
cardiovascular disease. It suggests that, at least partially, UA may 
exert its pro-atherogenic effects by promoting insulin resistance and 
dyslipidemia. Recent experimental studies support this finding. Zhu 
et al. (26) demonstrated that UA can induce insulin resistance in 
adipocytes by activating the NLRP3 inflammasome, leading to 
impaired insulin signaling and reduced glucose uptake. 
Furthermore, Lanaspa et  al. (27) UA has been demonstrated to 
enhance hepatic lipogenesis and elevate triglyceride production by 
activating the carbohydrate-responsive element-binding protein. 
Identifying TyG as a mediator in the UA-CAD relationship provides 
new insights into potential therapeutic targets. Interventions to 
improve insulin sensitivity and lipid metabolism may be particularly 
effective in mitigating the cardiovascular risk associated with 
hyperuricemia. Recent clinical trials support this concept. Zhao 
et al. (28) conducted a meta-analysis of 62 randomized controlled 
trials with 34,941 participants, revealing that sodium-glucose 
cotransporter 2 (SGLT2) inhibitors enhance glycemic control and 
lower serum uric acid levels in type 2 diabetes patients. SGLT2 
inhibitors may partly improve endothelial function by lowering UA 
levels to reduce insulin resistance (29).

Our findings have some significant clinical implications. The 
TyG index’s significant link to multi-vessel CAD and its 
intermediary function in the UA-CAD pathway underscore its 
potential as an efficient and economical tool for CAD risk 

assessment. Recent research highlights the TyG index’s enhanced 
contribution to cardiovascular risk prediction models. For instance, 
Pang et al. (30) incorporating the TyG index into the GRACE Score 
significantly improved its predictive accuracy for future 
cardiovascular events. The combined TyG index and UA levels 
assessment offers a more comprehensive approach to identifying 
high-risk individuals. Our findings suggest that individuals with 
elevated TyG and UA levels face a heightened risk of multi-vessel 
CAD, supporting the trend toward multi-marker strategies in 
cardiovascular risk evaluation (31). These insights may influence 
patient management and prevention strategies by emphasizing the 
importance of addressing insulin resistance and metabolic 
dysfunction in CAD prevention. Lifestyle interventions targeting 
insulin sensitivity and pharmacological interventions that improve 
insulin sensitivity or lower UA levels may be particularly beneficial 
in reducing cardiovascular risk.

Despite its strengths, our study has several limitations. The cross-
sectional design precludes the establishment of causal relationships 
between the TyG index, UA, and multi-vessel CAD. Our mediation 
analysis indicates a possible causal pathway, but longitudinal studies 
are necessary to validate these relationships and determine the 
temporal sequence of events. Residual confounding may persist even 
after adjusting for various factors. Unconsidered variables like 
proteinuria, albumin-creatinine ratio, dietary habits, physical activity, 
and genetic predisposition may affect both metabolic markers and 
CAD risk. The lack of information on medication use, particularly 
drugs affecting UA levels or insulin sensitivity, is another limitation. 
Further research is needed to determine if our findings apply to other 
populations. Recent studies across various ethnic groups suggest that 
the biological mechanisms linking the TyG index, UA, and CAD are 
likely applicable to other populations (32–34).

FIGURE 3

Analysis of the mediating role of TyG and UA. Panels (A,C) based on Crude model, (B,D) based on Model 2.
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5 Conclusion

In conclusion, insulin resistance significantly influences the 
association of UA with the severity of CAD in a Chinese population. 
The discovery that the TyG index mediates the impact of UA on CAD 
severity offers fresh insights into the intricate relationship between 
these metabolic markers and cardiovascular risk.
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Glossary

AP - attributable proportion

BMI - body mass index

CAD - coronary artery disease

CABG - coronary artery bypass grafting

CI - confidence interval

COPD - chronic obstructive pulmonary disease

DBP - diastolic blood pressure

eGFR - estimated glomerular filtration rate

FPG - fasting plasma glucose

HDL-C - high-density Lipoprotein Cholesterol

HUA - hyperuricemia

IQR - interquartile range

LDL-C - low-density Lipoprotein Cholesterol

MACE - major adverse cardiovascular events

NLRP3 - NOD-like receptor protein 3

OR - odds ratio

PCI - percutaneous coronary intervention

RCS - restricted cubic spline

RERI - relative excess risk due to interaction

SBP - systolic blood pressure

SD - standard deviation

SGLT2 - sodium-glucose cotransporter 2

SHAP - Shapley additive explanations

SI - synergy index

SMD - standardized mean difference

SYNTAX - synergy between PCI with Taxus and cardiac surgery

TG - triglyceride

TyG - triglyceride-glucose

UA - uric acid

Urrah - uric acid right for heart health

XGBoost - extreme gradient boosting
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