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Background: The metabolic score for insulin resistance (METS-IR) is a novel and 
effective indicator for assessing insulin resistance. Previous studies have shown 
that METS-IR is positively associated with the risk of type 2 diabetes. However, 
the association between METS-IR and gestational diabetes mellitus (GDM) has 
not yet been clearly clarified. This study aims to investigate the association 
between METS-IR and GDM as well as its related adverse pregnancy outcomes 
and to evaluate its predictive value.
Methods: A total of 37,770 singleton pregnant women from three hospitals 
in China between January 2018 and June 2024 were included in the study. 
METS-IR was calculated using the formula: ln ([high-density lipoprotein 
cholesterol (HDL-C) (mg/dL)] × [2 × fasting glucose (mg/dL)] + TG (mg/
dL) × BMI (kg/m2)). Participants were divided into four groups according to 
METS-IR quartiles. Multivariable logistic regression models, smoothed curve 
fitting, and subgroup analyses were conducted to assess the associations 
between METS-IR and GDM as well as related adverse pregnancy outcomes. 
The receiver operating characteristic (ROC) curves were used to evaluate the 
predictive performance.
Results: After adjusting for potential confounders, higher METS-IR levels were 
significantly associated with an increased risk of GDM. Compared with the 
lowest quartile group (Q1), the risks of GDM in the Q2, Q3, and Q4 groups 
increased by 13% (OR = 1.13, 95% CI: 1.02–1.25), 59% (OR = 1.59, 95% CI: 1.44–
1.75), and 165% (OR = 2.65, 95% CI: 2.42–2.91), respectively. Similar associations 
were also observed between METS-IR and preterm birth, macrosomia, 
gestational diabetes mellitus (GDM) complicated with preeclampsia (GDM&PE), 
and pharmacologically treated GDM class A2 (GDMA2). Smoothed curve fitting 
suggested an approximately linear dose–response relationship between METS-
IR and GDM. Subgroup analysis indicated that the association between METS-
IR and GDM remained consistent across different age groups (interaction 
p > 0.05), with a higher GDM risk observed among women aged ≥35 years. The 
ROC analysis showed that the areas under the curve (AUCs) of METS-IR for 
predicting GDM, preterm birth, macrosomia, GDM&PE, and GDMA2 were 0.623, 
0.532, 0.640, 0.741, and 0.712, respectively.
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Conclusion: This study demonstrated that METS-IR is positively associated with 
GDM risk and its related adverse pregnancy outcomes. METS-IR may serve as 
a useful tool for risk stratification and early intervention in clinical practice for 
GDM.
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Introduction

Gestational diabetes mellitus (GDM) refers to abnormal glucose 
tolerance first detected during pregnancy and is one of the most 
common metabolic complications encountered in pregnant women 
(1). Globally, the prevalence of GDM is approximately 16.7% (2). In 
recent years, with increasing obesity rates and a rising proportion of 
advanced maternal age pregnancies, the incidence of GDM has 
continued to increase, posing significant threats to both maternal and 
fetal health (3). GDM is closely associated with multiple adverse 
pregnancy outcomes, including hypertensive disorders of pregnancy, 
preterm birth, and macrosomia (4). It also significantly increases the 
long-term risk of type 2 diabetes in mothers, as well as the likelihood 
of obesity and metabolic syndrome in offspring (5, 6). Existing 
evidence suggests that women who develop GDM exhibit enhanced 
insulin resistance (IR) and impaired β-cell compensation early in 
pregnancy (7), indicating that metabolic disturbances may occur 
before clinical diagnosis. Therefore, applying effective metabolic 
evaluation tools for risk stratification of GDM and timely intervention 
is important for improving pregnancy outcomes and interrupting the 
intergenerational transmission of metabolic disorders.

IR is one of the key pathophysiological mechanisms underlying 
the development of GDM and serves as an important marker for 
predicting and assessing GDM risk (8, 9). However, traditional 
methods for evaluating IR, such as the euglycemic-hyperinsulinemic 
clamp (EHC), although considered the gold standard, are technically 
complex and invasive, which limits their applicability in routine 
clinical screening (10). Thus, there is a pressing need to develop 
simple, non-invasive, and accurate surrogate markers for IR to 
improve early risk stratification of GDM. The metabolic score for 
insulin resistance (METS-IR), developed by the team of Professor 
Bello-Chavolla OY, is a novel cardiometabolic risk scoring model. 
This score incorporates routinely available clinical parameters, 
including glucose-related indices (fasting plasma glucose, FPG), lipid 
profiles (such as triglycerides (TG) and high-density lipoprotein 
cholesterol (HDL-C)), and obesity-related measures (such as body 
mass index (BMI)) (11). Studies have demonstrated that METS-IR 
outperforms EHC in detecting impaired insulin sensitivity (11), with 
good reproducibility and ease of calculation, making it a promising 
indirect tool for assessing IR. Some cohort studies have consistently 
shown a positive association between METS-IR and the risk of 
developing type 2 diabetes (12–15). Recent studies have demonstrated 
an association between elevated METS-IR and an increased risk of 
GDM. One study using NHANES data included 5,189 pregnant 
women (417 with GDM) and found a significant association between 
higher METS-IR and GDM, particularly among women with high 
school education or higher (16). Another cohort study in Iran 
(n = 1,845) reported that first-trimester METS-IR may predict GDM 
in Iranian women (17). While these studies support the potential of 

METS-IR as a predictive tool, they have limitations, including single-
center design, small sample size, and reliance on self-reported data, 
which may affect generalizability and accuracy. To address these 
limitations, our multicenter study with a large sample size rigorously 
controlled for confounders and applied multiple statistical methods 
to examine the association between METS-IR and both GDM and 
related adverse pregnancy outcomes. Our findings aim to provide a 
simple, practical clinical indicator for early risk stratification and 
prediction of GDM.

Methods

Study design

This study is a multicenter retrospective cohort study conducted 
between January 2018 and June 2024. A total of 37,770 singleton 
pregnant women were enrolled from three medical centers: Obstetrics 
and Gynecology Hospital of Fudan University, Huangpu Branch 
(Center 1), Obstetrics and Gynecology Hospital of Fudan University, 
Yangpu Branch (Center 2), and the First People’s Hospital of Chenzhou 
(Center 3). Among them, 5,166 were diagnosed with GDM, and 
32,604 had normal glucose tolerance. Baseline clinical data and 
laboratory tests were collected at the first antenatal visit and obtained 
from the Hospital Information System (HIS) and Laboratory 
Information System (LIS). The inclusion criteria were as follows: (1) 
singleton pregnancy and (2) delivery at any of the participating 
hospitals. The exclusion criteria were as follows: initial measurements 
of FPG, TG, or HDL-C after 24 weeks of gestation, multiple 
pregnancies, preexisting diabetes or other endocrine disorders, 
chronic hypertension, cardiovascular disease, renal disease, or 
respiratory disease, and incomplete maternal or neonatal records. 
Figure 1 illustrates the participant inclusion process. The study was 
approved by the Ethics Committees of the Obstetrics and Gynecology 
Hospital of Fudan University and the First People’s Hospital of 
Chenzhou. All participants provided broad informed consent, and the 
study was conducted in accordance with the principles of the 
Declaration of Helsinki.

Variables and measurements

The primary exposure variable was METS-IR. Demographic and 
clinical data, including age, prepregnancy body mass index (BMI), 
history of chronic diseases (hypertension, diabetes, etc.), and 
education level, were collected by trained healthcare professionals. 
Laboratory data were obtained from the first antenatal visit before 
24 weeks of gestation. After an overnight fast of at least 8 h, venous 
blood samples were drawn and analyzed using an automatic 
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biochemical analyzer to measure FPG (mmol/L), TG (mmol/L), 
HDL-C (mmol/L), alanine aminotransferase (ALT, U/L), creatinine 
(Cr, μmol/L), and total cholesterol (TC, mmol/L). METS-IR was 
calculated as follows: ln[(2 × FPG (mg/dL) + TG (mg/dL)) × BMI 
(kg/m2)]/ln[HDL-C (mg/dL)], where BMI was calculated as 
prepregnancy weight (kg) divided by height squared (m2) (11). The 
METS-IR in this study ranged from 21.58 to 58.43 and was 
categorized into four quartiles: Q1 (<32.18), Q2 (32.18–36.10), Q3 
(36.10–40.91), and Q4 (>40.91). Maternal and neonatal clinical data 
were collected postpartum, mainly including gestational age at 
delivery and neonatal birth weight.

Based on previous literature and clinical expertise, potential 
confounding variables were selected, including age, test week, Cr, ALT, 
TC, history of hypertension, history of diabetes, tobacco use, alcohol 
consumption, in vitro fertilization (IVF), adverse pregnancy history, 
parity, and education level. Age was stratified into <35 years and 
≥35 years according to WHO guidelines (18). Adverse pregnancy 
history was defined as prior spontaneous abortion or major obstetric 
complications. Education levels were categorized into postgraduate or 
above, bachelor’s degree, associate degree, senior high school, and 
junior high school or below.

Outcomes and measurements

The primary outcome was GDM. Diagnosis was based on the 
International Association of Diabetes and Pregnancy Study Groups 
(IADPSG) criteria using a 75-g oral glucose tolerance test (OGTT) 
performed between 24 and 28 weeks of gestation. GDM was diagnosed 
if any one of the following thresholds was met: fasting glucose 
≥5.1 mmol/L, 1-h glucose ≥ 10.0 mmol/L, or 2-h glucose ≥ 
8.5 mmol/L (19).

Secondary outcomes included preterm birth, macrosomia, GDM 
complicated with preeclampsia (GDM&PE), and pharmacologically 
treated GDM (GDMA2). Preterm birth was defined as delivery 
before 37 weeks of gestation (20). Macrosomia was defined as a birth 
weight ≥ 4,000 g (21). GDM&PE was defined as the coexistence of 
GDM and preeclampsia diagnosed after 20 weeks of gestation. 
Preeclampsia was diagnosed according to the 2020 American 
College of Obstetricians and Gynecologists (ACOG) (22). For 
women with regular menstrual cycles, fetal gestational age was 
estimated based on the last menstrual period. For those with 
irregular cycles, early ultrasound findings were used for 
gestational dating.

FIGURE 1

Flowchart of study participants.
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Statistical analysis

Baseline characteristics of the study population were summarized 
across METS-IR quartiles (Q1–Q4). Continuous variables with normal 
distribution were expressed as mean ± standard deviation (SD), while 
skewed variables were presented as median (interquartile range, IQR). 
Categorical variables were described as frequency and percentage (%).

METS-IR was categorized into quartiles and used as a categorical 
variable, with the lowest quartile (Q1) serving as the reference group. 
Multivariable logistic regression models were applied to assess the 
associations between METS-IR and both the primary and secondary 
outcomes. The results were presented as odds ratios (ORs) with 95% 
confidence intervals (CIs). According to the STROBE statement (23), 
two models were constructed: Model I was unadjusted, and Model II 
was adjusted for age, test week, Cr, ALT, TC, history of hypertension, 
history of diabetes, tobacco use, alcohol consumption, IVF, adverse 
pregnancy history, parity, and education levels.

To explore potential effect modification, subgroup analyses were 
conducted by age, and multivariable logistic regression models were 
fitted accordingly. Interaction effects were assessed using likelihood ratio 
tests. A p-value of >0.05 indicated no significant interaction, whereas a 
p-value of ≤0.05 suggested possible effect modification. Additionally, 
generalized additive models with smoothing splines were employed to 
examine the dose–response relationship between METS-IR and GDM.

Finally, receiver operating characteristic (ROC) curves were used 
to evaluate the predictive performance of METS-IR for GDM, preterm 
birth, macrosomia, GDM&PE, and GDMA2. The area under the 
curve (AUC) and optimal cut-off values were calculated to quantify 
the discriminative ability of METS-IR.

All statistical analyses were performed using Statistical Package 
for the Social Sciences (SPSS) software (version 21.0, IBM 
Corporation, Armonk, NY, USA) and R software (version 4.4.1, R 
Foundation for Statistical Computing). Two-sided p-values of <0.05 
were considered statistically significant.

Results

Baseline characteristics

Table 1 presents the baseline characteristics of participants stratified 
by METS-IR quartiles. A total of 37,770 participants who met the 
inclusion and exclusion criteria were evenly distributed across the four 
groups. Analysis showed that only smoking history and alcohol 
consumption differed significantly across groups (p > 0.05), while 
variables such as age, prepregnancy BMI, and gestational week at 
METS-IR measurement did not show significant differences among the 
four groups (p < 0.05). The prevalence of GDM varied from 8.70 to 
21.54% across METS-IR quartiles. Compared with the lowest METS-IR 
group, the higher METS-IR groups exhibited a significantly higher 
incidence of GDM. In addition, the incidence of macrosomia, GDM&PE, 
and GDMA2 was also markedly higher in the high METS-IR groups.

Association between METS-IR and GDM

Table 2 summarizes the associations between METS-IR and the 
primary outcome (GDM) and secondary outcomes (preterm birth, 

macrosomia, GDM&PE, and GDMA2), stratified by METS-IR 
quartiles, with the lowest quartile (Q1) serving as the reference 
group. In model I (unadjusted), the multivariable regression analysis 
revealed that, compared with Q1, participants in the higher 
METS-IR groups had significantly increased risks of GDM, 
macrosomia, and GDMA2 (p < 0.05). However, a significant increase 
in risk for preterm birth and GDM&PE was observed only in the 
highest quartile (Q4) (p < 0.05), with no significant differences in 
Q2 and Q3.

In model II (adjusted for potential confounders), all three higher 
METS-IR groups showed statistically significant increases in GDM 
risk compared with Q1. Specifically, the risk of GDM increased by 
13% in Q2 (OR = 1.13, 95% CI: 1.02–1.25), 59% in Q3 (OR = 1.59, 
95% CI: 1.44–1.75), and 165% in Q4 (OR = 2.65, 95% CI: 2.42–2.91).

The risk of preterm birth did not significantly increase in Q2 and 
Q3 but increased by 21% in Q4 (OR = 1.21, 95% CI: 1.06–1.39). The 
risk of macrosomia closely mirrored that of GDM, showing significant 
increases in all higher METS-IR groups, especially in Q4, where the 
risk increased by 272% (OR = 3.72, 95% CI: 3.30–4.20). The risk of 
GDM&PE was significantly elevated in Q3 and Q4, with a 499% 
increase in Q4 (OR = 5.99, 95% CI: 4.22–8.50). Similarly, the risk of 
GDMA2 increased significantly in Q3 and Q4, with a 458% increase 
in Q4 (OR = 5.58, 95% CI: 4.00–7.79).

Furthermore, generalized additive models with smoothing splines 
suggested a near-linear dose–response relationship between METS-IR 
levels and GDM risk (Figure  2), indicating that higher METS-IR 
values were consistently associated with increased GDM risk.

Sensitivity analysis

To further explore the association between METS-IR and GDM, 
preterm birth, macrosomia, GDM&PE, and GDMA2, subgroup 
analyses were conducted based on maternal age. Table 3 presents the 
results of these subgroup analyses. Within the same METS-IR quartile, 
the incidence of GDM was clearly higher among women aged ≥ 
35 years compared to those younger than 35 years (Q1: 7.60% vs. 
15.37%; Q2: 9.31% vs. 16.31%; Q3: 12.06% vs. 22.05%; Q4: 19.11% vs. 
30.35%). Figure 3 illustrates the dose–response relationship between 
METS-IR and GDM risk derived from smoothed curve fitting. The 
results indicated that, at the same METS-IR level, women aged 
≥35 years had a higher risk of GDM, and the overall trend of 
increasing GDM risk with rising METS-IR was consistent across 
age groups.

After adjusting for confounding factors, the association between 
METS-IR and GDM remained consistent across all quartiles in 
women younger than 35 years. Compared with Q1, the risk of GDM 
increased by 52% in Q3 (OR = 1.52, 95% CI: 1.25–1.85) and by 136% 
in Q4 (OR = 2.36, 95% CI: 1.95–2.85). Subgroup analysis for 
macrosomia yielded findings similar to those for GDM. The 
associations between METS-IR and GDM&PE or GDMA2 were 
generally consistent across age groups. For preterm birth, after 
adjustment, a significant increase in risk was observed in Q4 among 
women younger than 35 years (OR = 1.22, 95% CI: 1.05–1.43). 
However, no significant differences were found among different 
METS-IR groups in women aged ≥ 35 years. The interaction test 
showed no statistically significant differences among all the subgroups 
(interaction p > 0.05).
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TABLE 1  Baseline characteristics of participants.

Characteristic METS-IR tertile

Q1 (21.58, 32.18) Q2 (32.18, 36.10) Q3 (36.10, 40.91) Q4 (40.91, 58.43) p-value

Participants 9,443 9,442 9,442 9,443

Age (years) 30.76 ± 3.87 31.25 ± 3.93 31.49 ± 4.09 31.71 ± 4.22 <0.001

BMI (kg/m2) 18.73 ± 1.29 20.35 ± 1.44 21.71 ± 1.75 24.59 ± 2.66 <0.001

METS-IR test week 11.00 ± 2.49 10.87 ± 2.44 10.96 ± 2.45 10.95 ± 2.51 <0.001

METS-IR 29.57 ± 1.92 34.11 ± 1.13 38.32 ± 1.37 45.90 ± 4.16 <0.001

TG (mmol/L) 1.10 ± 0.41 1.23 ± 0.48 1.37 ± 0.57 1.61 ± 0.80 <0.001

HDL (mmol/L) 1.89 ± 0.34 1.60 ± 0.36 1.40 ± 0.36 1.23 ± 0.33 <0.001

FPG (mmol/L) 4.41 ± 0.38 4.47 ± 0.39 4.52 ± 0.43 4.62 ± 0.51 <0.001

Cr (U/L) 43.03 ± 5.87 43.17 ± 5.88 43.49 ± 6.02 44.02 ± 6.11 <0.001

ALT (U/L) 16.02 ± 13.12 17.19 ± 15.36 18.47 ± 16.17 20.79 ± 17.95 <0.001

TC (mmol/L) 4.63 ± 0.79 4.56 ± 0.78 4.54 ± 0.78 4.47 ± 0.80 <0.001

Aspirin (%) <0.001

  No 9,576 (98.67%) 9,561 (98.51%) 9,549 (98.40%) 9,483 (97.69%)

  Yes 129 (1.33%) 145 (1.49%) 155 (1.60%) 224 (2.31%)

Hypertension history (%) <0.001

  No 8,213 (86.98%) 8,148 (86.30%) 8,089 (85.69%) 7,906 (83.75%)

  Yes 1,229 (13.02%) 1,293 (13.70%) 1,351 (14.31%) 1,534 (16.25%)

Diabetes history <0.001

  No 8,985 (95.16%) 8,966 (94.97%) 8,856 (93.81%) 8,743 (92.62%)

  Yes 457 (4.84%) 475 (5.03%) 584 (6.19%) 697 (7.38%)

Tobacco (%) 0.49

  No 8,703 (98.85%) 8,725 (98.61%) 8,794 (98.73%) 8,822 (98.65%)

  Yes 101 (1.15%) 123 (1.39%) 113 (1.27%) 121 (1.35%)

Alcohol (%) 0.06

  No 8,532 (96.91%) 8,566 (96.81%) 8,640 (97.00%) 8,715 (97.45%)

  Yes 272 (3.09%) 282 (3.19%) 267 (3.00%) 228 (2.55%)

Parity (%) <0.001

  Primipara 7,516 (79.59%) 7,079 (74.97%) 6,822 (72.25%) 6,739 (71.37%)

  Multipara 1,927 (20.41%) 2,363 (25.03%) 2,620 (27.75%) 2,704 (28.63%)

IVF (%) 0.004

  No 8,958 (94.86%) 8,890 (94.15%) 8,880 (94.05%) 8,844 (93.66%)

  Yes 485 (5.14%) 552 (5.85%) 562 (5.95%) 599 (6.34%)

Adverse pregnancy history (%) <0.001

  No 9,090 (96.26%) 9,042 (95.76%) 8,987 (95.18%) 8,997 (95.28%)

  Yes 353 (3.74%) 400 (4.24%) 455 (4.82%) 446 (4.72%)

Education (%) <0.001

  Postgraduate 2,416 (27.14%) 2,245 (25.22%) 1,885 (21.31%) 1,414 (16.15%)

  Bachelor’s degree or above 4,168 (46.82%) 4,157 (46.69%) 4,261 (48.18%) 4,043 (46.18%)

  College diploma 1,536 (17.25%) 1,663 (18.68%) 1,824 (20.62%) 2,259 (25.81%)

  High school 227 (2.55%) 243 (2.73%) 282 (3.19%) 365 (4.17%)

  Less than junior high school 556 (6.25%) 595 (6.68%) 592 (6.69%) 673 (7.69%)

(Continued)
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FIGURE 2

Smooth curve fitting showing the nonlinear relationship between 
METS-IR and the risk of GDM. The red solid line represents the 
probability of GDM occurrence, and the blue dotted line indicates 
the 95% confidence interval (CI) curve. METS-IR, metabolic score for 
insulin resistance; GDM, gestational diabetes mellitus.

ROC analysis

ROC analysis was used to evaluate the predictive performance of 
METS-IR for GDM and its related adverse outcomes. As shown in 
Table 4 and Figure 4, the AUC for GDM, preterm birth, macrosomia, 
GDM&PE, and GDMA2 was 0.623 (95% CI: 0.614–0.631), 0.532 
(95% CI: 0.518–0.546), 0.640 (95% CI: 0.631–0.650), 0.741 (95% CI: 
0.715–0.767), and 0.712 (95% CI: 0.691–0.733), respectively. Using 
the Youden index, optimal cut-off values for predicting GDM, 
preterm birth, macrosomia, GDM&PE, and GDMA2 were identified 
as 38.118, 36.633, 37.992, 40.509, and 42.314, respectively. The 
corresponding specificities were 64.4, 65.0, 63.1, 73.8, and 77.2%, 
respectively, and the sensitivities were 54.0, 41.3, 58.4, 64.9, and 
54.3%, respectively.

Discussion

In this study, we  conducted a retrospective cohort analysis of 
37,770 pregnant women from three hospitals in China, aiming to 
investigate the association between METS-IR and GDM, as well as its 
related adverse pregnancy outcomes. After adjusting for potential 
confounding factors, the results demonstrated a positive correlation 
between METS-IR and the risk of GDM. Subgroup analyses stratified 
by maternal age confirmed a consistent positive association between 
METS-IR and GDM. Moreover, METS-IR exhibited good 
discriminative ability in predicting GDM and its complications. 
Notably, it showed strong predictive performance for GDM&PE and 
GDMA2, with AUC values of 0.741 (95% CI: 0.715–0.767) and 0.712 
(95% CI: 0.691–0.733), respectively. These findings indicate that 

METS-IR, as a simple and non-invasive metabolic assessment tool, 
holds potential clinical value in risk stratification and severity 
prediction of GDM.

Previous studies have established that increased IR is a central 
mechanism in the development of GDM (24). The EHC technique is 
considered the gold standard for assessing insulin resistance. However, 

TABLE 1  (Continued)

Characteristic METS-IR tertile

Q1 (21.58, 32.18) Q2 (32.18, 36.10) Q3 (36.10, 40.91) Q4 (40.91, 58.43) p-value

GDM <0.001

  No 8,621 (91.30%) 8,453 (89.53%) 8,121 (86.01%) 7,409 (78.46%)

  Yes 822 (8.70%) 989 (10.47%) 1,321 (13.99%) 2034 (21.54%)

Preterm birth <0.001

  No 8,991 (95.22%) 8,988 (95.19%) 8,985 (95.16%) 8,854 (93.76%)

  Yes 451 (4.78%) 454 (4.81%) 457 (4.84%) 589 (6.24%)

Macrosomia <0.001

  No 8,996 (95.60%) 8,802 (93.52%) 8,485 (90.13%) 8,033 (85.36%)

  Yes 414 (4.40%) 610 (6.48%) 929 (9.87%) 1,378 (14.64%)

GDM&PE <0.001

  No 9,403 (99.58%) 9,401 (99.57%) 9,369 (99.23%) 9,184 (97.26%)

  Yes 40 (0.42%) 41 (0.43%) 73 (0.77%) 259 (2.74%)

GDMA2 <0.001

  No 4,912 (99.19%) 5,636 (98.76%) 6,533 (97.78%) 7,055 (94.95%)

  Yes 40 (0.81%) 71 (1.24%) 148 (2.22%) 375 (5.05%)

Mean ± SD for continuous variables: p-value was calculated by a weighted linear regression model.
% for categorical variables: p-value was calculated by a weighted chi-squared test.
METS-IR, metabolic score for insulin resistance; Q, quartile; BMI, pre-pregnancy body mass index; TG, triglycerides; HDL, high-density lipoprotein; FPG, fasting plasma glucose; Cr, 
Creatinine; ALT, alanine aminotransferase; TC, total cholesterol; IVF, in vitro fertilization; GDM, gestational diabetes mellitus; GDM&PE, gestational diabetes mellitus with preeclampsia; 
GDMA2, gestational diabetes mellitus managed with insulin therapy.
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it is complex, costly, and invasive, making it unsuitable for routine 
clinical use. As a result, several surrogate indices, including the 
Quantitative Insulin Sensitivity Check Index (QUICKI), the 
homeostasis model assessment of insulin resistance (HOMA-IR), the 
triglyceride-glucose (TyG) index, and the TG/HDL-C, have been used 
to evaluate insulin resistance and its association with GDM (25, 26). 
However, the clinical validity of these indices remains uncertain. 
METS-IR is non-invasive and easily calculated from routine clinical 
data. Evidence has shown that METS-IR demonstrates better diagnostic 
performance for insulin resistance compared to EHC (11), and it has 
been identified as an independent predictor of type 2 diabetes mellitus 
(13). Our findings indicate that, as METS-IR percentile scores increase, 
so does the risk of GDM in a graded manner. Compared with the 
lowest quartile, individuals in the highest METS-IR quartile had a 
165% higher risk of developing GDM. This observation aligns with 
previous findings in general populations. For instance, Cheng et al. (14) 
reported a significant association between elevated METS-IR and 
T2DM incidence (OR: 1.804; 95% CI: 1.720–1.891). Another 

cross-sectional study conducted in China provided similar evidence of 
a positive correlation (27), and a subsequent 6-year longitudinal study 
found that each one-standard-deviation increase in METS-IR was 
associated with an 82% higher risk of developing diabetes (28). More 
recently, a cohort study in a Japanese population showed that 
participants in the highest METS-IR quartile had a 215% higher risk of 
developing diabetes compared to those in the lowest quartile (13). 
Recent studies have reported a positive association between elevated 
METS-IR and an increased risk of GDM (16, 17). Building on these 
findings, our multicenter study with a large sample size, rigorous 
control of confounders, and comprehensive statistical analyses further 
confirms the association between METS-IR and GDM. Given the 
practicality of METS-IR measurement and its strong pathophysiological 
link to IR, its application in identifying high-risk individuals for GDM 
appears feasible. To further assess the predictive performance of 
METS-IR for GDM, we conducted ROC curve analysis, which yielded 
an AUC of 0.623 (95% CI: 0.614–0.631), with a specificity of 64.4% and 
a sensitivity of 54.0%. Although the AUC is less than 0.7, METS-IR may 

TABLE 2  The associations between METS-IR and risk of primary and secondary outcomes.

Outcome Number (%) Model I Model II

OR (95% CI) p-value Adjust OR (95% CI) p-value

GDM

Q1 822 (8.70%) Reference Reference

Q2 989 (10.47%) 1.23 (1.11, 1.35) <0.0001 1.13 (1.02, 1.25) 0.0199

Q3 1,321 (13.99%) 1.71 (1.56, 1.87) <0.0001 1.59 (1.44, 1.75) <0.0001

Q4 2,034 (21.54%) 2.88 (2.64, 3.14) <0.0001 2.65 (2.42, 2.91) <0.0001

Preterm birth

Q1 451 (4.78%) Reference Reference

Q2 454 (4.81%) 1.01 (0.88, 1.15) 0.9186 0.97 (0.84, 1.11) 0.6245

Q3 457 (4.84%) 1.01 (0.89, 1.16) 0.8383 0.97 (0.84, 1.12) 0.7088

Q4 589 (6.24%) 1.33 (1.17, 1.50) <0.0001 1.21 (1.06, 1.39) 0.0061

Macrosomia

Q1 414 (4.40%) Reference Reference

Q2 610 (6.48%) 1.51 (1.32, 1.71) <0.0001 1.51 (1.32, 1.73) <0.0001

Q3 929 (9.87%) 2.38 (2.11, 2.68) <0.0001 2.36 (2.09, 2.68) <0.0001

Q4 1,378 (14.64%) 3.73 (3.33, 4.18) <0.0001 3.72 (3.30, 4.20) <0.0001

GDM&PE

Q1 40 (0.42%) Reference Reference

Q2 41 (0.43%) 1.03 (0.66, 1.59) 0.9110 1.02 (0.65, 1.60) 0.9235

Q3 73 (0.77%) 1.83 (1.24, 2.70) 0.0022 1.71 (1.15, 2.56) 0.0087

Q4 259 (2.74%) 6.63 (4.75, 9.26) <0.0001 5.99 (4.22, 8.50) <0.0001

GDMA2

Q1 40 (0.81%) Reference Reference

Q2 71 (1.24%) 1.55 (1.05, 2.28) 0.0281 1.40 (0.94, 2.08) 0.0964

Q3 148 (2.22%) 2.78 (1.96, 3.95) <0.0001 2.51 (1.76, 3.58) <0.0001

Q4 375 (5.05%) 6.53 (4.70, 9.06) <0.0001 5.58 (4.00, 7.79) <0.0001

Model I: No covariates were adjusted.
Model II: Adjusted for age, test week, Cr, ALT, TC, hypertension history, diabetes history, tobacco, alcohol, IVF, adverse pregnancy history, parity, and education levels.
METS-IR, metabolic score for insulin resistance; Q, quartile; OR, odds ratio; CI, confidence interval; GDM, gestational diabetes mellitus; GDM&PE, gestational diabetes mellitus with 
preeclampsia; GDMA2, gestational diabetes mellitus managed with insulin therapy.
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TABLE 3  Subgroup analysis of the METS-IR index and primary and secondary outcomes.

Subgroup Number of 
Participants (%)

Non-
adjusted

OR (95% CI)

p-value p-value for 
interaction

Adjusted 
OR (95% CI)

p-value p-value for 
interaction

GDM 0.341 0.5156

Age < 35 years

  Q1 630 (7.69%) Reference Reference

  Q2 733 (9.31%) 1.23 (1.10, 1.38) 0.0002 1.16 (1.03, 1.30) 0.0138

  Q3 918 (12.06%) 1.65 (1.48, 1.83) <0.0001 1.60 (1.43, 1.79) <0.0001

  Q4 1,416 (19.11%) 2.84 (2.57, 3.13) <0.0001 2.74 (2.46, 3.05) <0.0001

Age ≥ 35 years

  Q1 192 (15.37%) Reference Reference

  Q2 256 (16.31%) 1.07 (0.87, 1.32) 0.5008 1.04 (0.84, 1.28) 0.7352

  Q3 403 (22.05%) 1.56 (1.29, 1.88) <0.0001 1.52 (1.25, 1.85) <0.0001

  Q4 618 (30.35%) 2.40 (2.00, 2.87) <0.0001 2.36 (1.95, 2.85) <0.0001

Preterm birth 0.995 0.9737

Age < 35 years

  Q1 371 (4.53%) Reference Reference

  Q2 352 (4.47%) 0.99 (0.85, 1.15) 0.8624 0.97 (0.83, 1.14) 0.6987

  Q3 340 (4.47%) 0.99 (0.85, 1.15) 0.8504 0.96 (0.82, 1.13) 0.6352

  Q4 426 (5.75%) 1.29 (1.11, 1.48) 0.0006 1.22 (1.05, 1.43) 0.0109

Age ≥ 35 years

  Q1 80 (6.41%) Reference Reference

  Q2 102 (6.50%) 1.02 (0.75, 1.37) 0.9216 0.95 (0.69, 1.31) 0.7695

  Q3 117 (6.40%) 1.00 (0.74, 1.34) 0.9958 0.98 (0.73, 1.33) 0.9204

  Q4 163 (8.02%) 1.27 (0.97, 1.68) 0.0873 1.17 (0.87, 1.56) 0.3048

Macrosomia 0.0795 0.1236

Age < 35 years

  Q1 = 341 (4.18%) Reference Reference

  Q2 497 (6.33%) 1.55 (1.35, 1.79) <0.0001 1.57 (1.36, 1.82) <0.0001

  Q3 716 (9.43%) 2.39 (2.09, 2.73) <0.0001 2.39 (2.08, 2.74) <0.0001

  Q4 1,077 (14.58%) 3.92 (3.45, 4.44) <0.0001 3.95 (3.45, 4.51) <0.0001

Age ≥ 35 years

  Q1 73 (5.86%) Reference Reference

  Q2 113 (7.23%) 1.25 (0.92, 1.69) 0.1501 1.26 (0.92, 1.73) 0.1431

  Q3 213 (11.69%) 2.13 (1.61, 2.80) <0.0001 2.20 (1.65, 2.92) <0.0001

  Q4 301 (14.87%) 2.80 (2.15, 3.66) <0.0001 2.90 (2.20, 3.83) <0.0001

GDM&PE 0.4601 0.6104

Age < 35 years

  Q1 30 (0.37%) Reference Reference

  Q2 32 (0.41%) 1.11 (0.67, 1.83) 0.6800 1.08 (0.64, 1.80) 0.7805

  Q3 44 (0.58%) 1.58 (0.99, 2.52) 0.0533 1.51 (0.94, 2.44) 0.0904

  Q4 168 (2.27%) 6.31 (4.28, 9.32) <0.0001 5.72 (3.82, 8.56) <0.0001

Age ≥ 35 years

  Q1 10 (0.80%) Reference Reference

  Q2 9 (0.57%) 0.71 (0.29, 1.76) 0.4655 0.87 (0.34, 2.20) 0.7658

  Q3 29 (1.59%) 2.00 (0.97, 4.11) 0.0605 2.17 (1.01, 4.66) 0.0471

(Continued)
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be  considered as a potential indicator for GDM risk stratification, 
helping to identify individuals at higher risk during early pregnancy.

In this study, we  further evaluated the association between 
METS-IR and multiple adverse pregnancy outcomes related to 
GDM. The results showed no significant association between METS-IR 
and preterm birth, whereas significant positive correlations were 
observed between METS-IR and macrosomia, GDM&PE, and 
GDMA2. These findings suggest that METS-IR not only reflects overall 
IR in pregnant women but may also uncover underlying 
pathophysiological mechanisms of GDM-related complications. 
Emerging evidence has demonstrated that IR is closely linked to both 
GDM and its adverse perinatal outcomes. For instance, compared with 
women with normal glucose tolerance, those with GDM exhibit higher 

levels of IR accompanied by more severe metabolic disturbances and 
worse perinatal outcomes (29). Moreover, insulin resistance has been 
recognized as one of the key metabolic underpinnings of preeclampsia 
(PE) (30). However, unlike some previous studies that reported a 
significant association between IR and preterm birth (8), our study did 
not detect a statistically significant relationship between METS-IR and 
preterm birth. This inconsistency may stem from differences in 
calculation methods and clinical applicability among various IR 
assessment tools, or it could be  due to variations in population 

TABLE 3  (Continued)

Subgroup Number of 
Participants (%)

Non-
adjusted

OR (95% CI)

p-value p-value for 
interaction

Adjusted 
OR (95% CI)

p-value p-value for 
interaction

  Q4 91 (4.48%) 5.81 (3.01, 11.20) <0.0001 6.32 (3.13, 12.77) <0.0001

GDMA2 0.9731 0.9958

Age < 35 years

  Q1 29 (0.68%) Reference Reference

  Q2 49 (1.02%) 1.51 (0.95, 2.40) 0.0789 1.41 (0.88, 2.25) 0.1498

  Q3 97 (1.79%) 2.67 (1.76, 4.05) <0.0001 2.53 (1.66, 3.85) <0.0001

  Q4 239 (4.10%) 6.26 (4.25, 9.23) <0.0001 5.49 (3.71, 8.14) <0.0001

Age ≥ 35 years

  Q1 11 (1.63%) Reference Reference

  Q2 22 (2.42%) 1.49 (0.72, 3.10) 0.2812 1.34 (0.63, 2.83) 0.4480

  Q3 51 (4.04%) 2.53 (1.31, 4.90) 0.0056 2.47 (1.27, 4.81) 0.0079

  Q4 136 (8.51%) 5.60 (3.01, 10.42) <0.0001 5.56 (2.95, 10.47) <0.0001

Non-adjusted model had no adjustments. Each stratification was adjusted for age, test week, Cr, ALT, TC, hypertension history, diabetes history, tobacco, alcohol, IVF, adverse pregnancy 
history, parity, and education levels. METS-IR, metabolic score for insulin resistance; Q, quartile; OR, odds ratio; CI, confidence interval; GDM, gestational diabetes mellitus; GDM&PE, 
gestational diabetes mellitus with preeclampsia; GDMA2, gestational diabetes mellitus managed with insulin therapy.
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The dose–response relationship between METS-IR and GDM, 
stratified by age. METS-IR, metabolic score for insulin resistance; 
GDM, gestational diabetes mellitus.
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characteristics and the extent of confounding adjustment across studies. 
Notably, our findings revealed that METS-IR demonstrated good 
predictive performance for GDM&PE and GDMA2, with AUC values 
of 0.741 and 0.712, respectively, exceeding the performance of several 
traditional risk parameters. IR not only represents metabolic 
dysregulation but is also closely associated with endothelial dysfunction 
(31), and these shared mechanisms may form the basis for the 
co-occurrence of GDM and PE. Furthermore, accumulating evidence 
suggests that multiple pathological pregnancy conditions, including PE, 
GDM, and obesity, are characterized by reduced insulin signaling in the 
fetal-placental vasculature (32, 33). Therefore, as a surrogate marker of 
insulin resistance, METS-IR holds clinical value not only in identifying 
high-risk individuals for GDM but also in predicting severe GDM 
subtypes complicated by preeclampsia or requiring insulin therapy.

Given that advanced maternal age (≥35 years) is a well-established 
independent risk factor for GDM (34), we  conducted a subgroup 
analysis stratified by age. The results were consistent with expectations, 
showing a significantly higher incidence of GDM in the ≥ 35 years 
group. The positive association between METS-IR and GDM was 
largely consistent across age groups, indicating that METS-IR is a 
feasible and stable tool for risk stratification in pregnant women of 
different ages. However, within the ≥ 35 years subgroup, a significant 
association between METS-IR and GDM was observed only in Q3 and 
Q4, but not in Q2. To explain this discrepancy, we  propose the 
following possibilities: It has been documented that, with increasing 
age, pancreatic β-cell function declines, insulin sensitivity decreases, 
and glucose metabolism becomes more impaired, thereby elevating the 
risk of GDM (35, 36). Nevertheless, some older pregnant women may 
already have a certain degree of insulin resistance prior to pregnancy, 
which could potentially reduce the sensitivity of METS-IR in capturing 
changes in IR levels. Additionally, age is an important determinant of 
lipid metabolism. Studies have shown that HDL-C levels tend to 
decline with advancing age (37). Since both FPG and HDL-C are key 
components in the calculation of METS-IR, their age-related variations 
may affect the stability of the score and consequently reduce its 
accuracy in predicting GDM. Finally, as an independent risk factor for 
GDM, age may contribute to disease development through 
mechanisms not directly related to IR. Therefore, in clinical practice, 
it is essential to integrate other risk factors alongside METS-IR when 
assessing GDM risk in older pregnant women.

The association between METS-IR and GDM may involve 
multiple interacting pathophysiological mechanisms. IR is a central 
mechanism in the development of GDM. During normal pregnancy, 
a progressive increase in IR serves as an adaptive response to meet the 
growing energy demands of both mother and fetus (38). However, 
when IR becomes excessively elevated, it can lead to inadequate β-cell 

compensation, resulting in glucose metabolic imbalance and increased 
risk of GDM (39, 40). As a composite indicator of insulin resistance, 
elevated METS-IR reflects increased IR and thus holds potential value 
in identifying individuals at higher risk. Dyslipidemia also plays a 
significant role in GDM progression. Studies have shown that, 
compared with women with normal pregnancies, those with GDM 
often exhibit lower HDL-C levels and higher levels of TG, TC, and 
LDL-C (41, 42). Since METS-IR incorporates both TG and HDL-C 
into its scoring system, it partially reflects the degree of lipid metabolic 
disturbance. Chronic inflammation is another key link connecting 
insulin resistance and GDM. Pro-inflammatory cytokines such as IL-6 
can suppress lipoprotein lipase activity, promote TG accumulation, 
and exacerbate IR (43). In addition, inflammatory mediators, such as 
IL-1β, can activate multiple signaling pathways and directly impair 
pancreatic β-cell function (44, 45). C-reactive protein (CRP) further 
contributes to systemic inflammation and worsens insulin action 
defects (46). Previous studies have demonstrated a positive correlation 
between METS-IR and inflammatory markers, such as CRP and IL-6 
(47). Oxidative stress also contributes to insulin resistance by activating 
the NF-κB pathway, leading to endothelial dysfunction and impaired 
IR (48). Moreover, lifestyle factors such as dietary patterns and physical 
activity levels significantly influence insulin sensitivity and thereby 
modulate the risk of developing GDM. In summary, the relationship 
between METS-IR and GDM likely results from the complex interplay 
of multiple metabolic, inflammatory, and oxidative stress mechanisms.

The main strengths of this study lie in its multicenter design and 
large sample size, which effectively reduced bias caused by small 
sample sizes and enhanced statistical power, thereby improving the 
generalizability and applicability of the findings. Moreover, METS-IR 
is a simple, non-invasive, and easily obtainable metabolic index with 
good clinical feasibility, making it suitable for widespread application 
in routine clinical practice and highlighting its important clinical 
value. Despite these strengths, several limitations should 
be  acknowledged. First, this study was based only on baseline 
measurements before 24 weeks of gestation. Since METS-IR may vary 
dynamically across gestation, future prospective studies with multiple 
time points are needed to explore longitudinal changes in METS-IR 
and their association with GDM. Second, all participants were from 
China. Given potential differences in genetic background, lifestyle, 
and metabolic profiles across populations, future studies in 
multiethnic and multicenter settings are necessary to confirm the 
generalizability of our findings. Finally, as a retrospective cohort study, 
our analysis excluded some patients due to incomplete clinical data. 
Additionally, information on exercise, dietary interventions, and 
insulin use was not collected. Although we  adjusted for multiple 
confounders, potential selection bias may still influence the results.

TABLE 4  Results of ROC analysis of the METS-IR index used to predict the development of primary and secondary outcomes.

Outcomes AUC (95% CI) Sensitivity Specificity PPV NPV Best threshold

GDM 0.623 (0.614, 0.631) 0.540 0.644 0.194 0.898 38.118

Preterm birth 0.532 (0.518, 0.546) 0.413 0.650 0.060 0.953 38.633

Macrosomia 0.640 (0.631, 0.650) 0.584 0.631 0.133 0.940 37.992

GDM&PE 0.741 (0.715, 0.767) 0.649 0.738 0.027 0.995 40.509

GDMA2 0.712 (0.691, 0.733) 0.543 0.772 0.059 0.985 42.314

ROC, receiver operating characteristic; AUC, area under the curve; METS-IR, metabolic score for insulin resistance; PPV, positive p-value; NPV, negative p-value; GDM, gestational diabetes 
mellitus; GDM&PE, gestational diabetes mellitus with preeclampsia; GDMA2, gestational diabetes mellitus managed with insulin therapy.
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Conclusion

Our findings demonstrate that the METS-IR score is positively 
associated with the risk of GDM and has a certain predictive value for 
GDM occurrence, particularly in identifying severe subtypes such as 
GDM&PE or GDMA2. As a novel, simple, and easily accessible 
marker of insulin resistance, METS-IR holds promise for use in risk 
stratification and early intervention strategies for GDM, offering 
valuable clinical insights with strong practical implications.
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Glossary

GDM - Gestational diabetes mellitus

IR - Insulin resistance

EHC - Euglycemic-hyperinsulinemic clamp

METS-IR - Metabolic score for insulin resistance

FPG - Fasting plasma glucose

TG - Triglycerides

HDL-C - High-density lipoprotein cholesterol

BMI - Body mass index

ALT - Alanine aminotransferase

Cr - Creatinine

TC - Total cholesterol

IVF - In vitro fertilization

OGTT - Oral glucose tolerance test

GDM&PE - GDM complicated with preeclampsia

GDMA2 - Pharmacologically treated GDM

Q - Quartile

SD - Standard deviation

OR - Odds ratio

CI - Confidence intervals

ROC - Receiver operating characteristic

AUC - Area under the curve
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