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Can Vitamin D supplementation
enhance the effectiveness of
exercise-induced weight loss in
overweight or obese adults?
Evidence from integrated
transcriptomic and meta-analysis

Tianhang Peng'*, Zike Zhang? Wanyuan Liang?, and
Jiayi Zhang?®

!Exercise Science School, Beijing Sport University, Beijing, China, 2College of Physical Education,
Hunan Normal University, Changsha, China, *School of Physical Education, University of Science and
Technology Beijing, Beijing, China

Objective: Obesity is a major global public health challenge, and Vitamin D
deficiency is prevalent among obese individuals. This study aimed to evaluate
whether Vitamin D supplementation enhances the effectiveness of exercise-
induced weight loss in overweight or obese adults by integrating transcriptomic
analysis and meta-analysis.

Methods: Transcriptomic data from the GEO and GTEx databases were
integrated for differential gene expression analysis, Gene Ontology (GO)/
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and Gene Set
Enrichment Analysis (GSEA). Currently, clinical transcriptomic data regarding
the effect of Vitamin D on exercise intervention outcomes in overweight/obese
adults is limited. To address this gap, this study utilized cold-induced skeletal
muscle shivering as a surrogate model to explore its potential molecular
mechanisms. A meta-analysis of eight randomized controlled trials (RCT)
involving 481 participants, was conducted to assess the combined effects of
exercise and Vitamin D supplementation on body composition and metabolic
parameters, with subgroup analyses by age and exercise type.

Results: Transcriptomic analysis revealed abnormal expression of Vitamin D
metabolism-related genes in skeletal muscle of obese individuals, with enrichment
in pathways such as lipid digestion and absorption. Post-intervention, Vitamin D
response pathways were significantly upregulated. The meta-analysis showed
that combined intervention had a significant effect on waist circumference (mean
difference [MD] = -148, 95% Cl: —2.02 to —0.94, p < 0.05). Subgroup analysis
indicated that improvements in body weight and Body Mass Index (BMI) were
more pronounced among older adults and those undergoing aerobic exercise.
Conclusion: This study, through integrated high-throughput transcriptomic
analysis and meta-analysis, systematically demonstrates that Vitamin D
supplementation may enhance skeletal muscle metabolic responsiveness to
exercise in overweight or obese adults. The effect appears especially significant
in older populations and within aerobic exercise contexts. These findings
suggest that Vitamin D supplementation could serve as a synergistic strategy in
exercise-based weight loss programs for targeted populations. Future research
should focus on individual Vitamin D status, optimization of exercise modalities,
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and validation of underlying mechanisms to support personalized and precise

interventions.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/.
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1 Introduction

Vitamin D is a fat-soluble vitamin that plays a vital role in maintaining
bone health and regulating calcium-phosphorus metabolism. It also
participates in numerous physiological functions such as immune
modulation, anti-inflammatory activity, and antioxidant defense. In
recent years, accumulating evidence has shown a close association
between Vitamin D deficiency and obesity. Obesity is frequently
associated with deficiencies in various micronutrients, with Vitamin D
deficiency being the most prevalent (1), which may be attributed to its
fat-soluble nature leading to sequestration in adipose tissue, chronic
systemic inflammation, and reduced outdoor activity. Therefore, the high
global prevalence of Vitamin D deficiency may be one of the key
contributors to the rising obesity rates worldwide (2).

Vitamin D deficiency has been linked to multiple metabolic disorders,
including dyslipidemia, insulin resistance, and type 2 diabetes (3, 4), all of
which are common complications of obesity. Systematic reviews and
meta-analyses have suggested that cholecalciferol supplementation may
reduce body mass index (BMI) and waist circumference in overweight
and obese individuals to a certain extent. However, data on more specific
body composition metrics such as body fat percentage and waist-to-hip
ratio remain limited (5).

In recent years, researchers have increasingly focused on the
non-skeletal effects of Vitamin D, particularly its potential benefits on
muscle function. Vitamin D deficiency is associated with muscle
weakness, reduced exercise performance, and increased risk of falls,
whereas supplementation may enhance muscle strength, improve
repair processes, and boost endurance and overall physical function
(6). Consequently, it has been proposed that Vitamin D
supplementation may potentiate the effects of exercise interventions in
improving weight and metabolic outcomes among overweight or obese
adults, especially by synergistically optimizing body composition. At
the mechanistic level, transcriptomic technology offers new insights
into the potential synergy between Vitamin D and exercise. By
analyzing gene expression changes under different conditions,
transcriptomics can reveal how Vitamin D and exercise jointly regulate
pathways in skeletal muscle, adipose tissue, and inflammation. Previous
studies have suggested that Vitamin D may modulate signaling
pathways such as AMPK, PPARy, and NF-kB, thereby influencing lipid
metabolism, energy homeostasis, and immune function (7-11). Thus,
transcriptomics not only facilitates mechanistic understanding but may
also serve as a novel molecular biomarker tool for evaluating
intervention responses. Although existing studies provide preliminary
evidence for the potential value of Vitamin D in obesity management,
numerous unresolved issues remain, including optimal dosing,
intervention duration, and the ideal combination model with exercise.
Therefore, the current study systematically integrates transcriptomic
data and clinical trial evidence to evaluate whether Vitamin D
supplementation enhances the weight loss effects of exercise in
overweight or obese adults.
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Compared to previous studies, this review provides a more
comprehensive evaluation of the role of Vitamin D supplementation
in exercise-induced weight loss in overweight and obese populations.
Given the heterogeneity in participant age, exercise modalities, and
Vitamin D dosing across studies, we incorporated both transcriptomic
and meta-analytic approaches to enhance scientific rigor. This review
primarily focuses on the effects of Vitamin D supplementation on
body composition and metabolic health in overweight/obese
individuals, and further compares its effects on plasma
25-hydroxyvitamin D [25(OH)D] levels when combined with or
without exercise. By integrating high-throughput molecular data with
clinical evidence, we aim to provide a theoretical and practical
framework for developing personalized obesity interventions based
on a synergistic “nutrition-exercise-molecular target” strategy,
especially for individuals seeking to improve their health through
scientifically grounded methods.

2 Methods

2.1 Transcriptomic data acquisition and
analysis

The transcriptomic RNA-seq data of skeletal muscle from 30
obese adults were downloaded from the GEO database [GSE271452,
15 pre-intervention and 15 post-intervention samples, BGISEQ-500
sequencing platform, data type: TPM (Transcripts Per Million)] (12).
Additionally, RNA-seq data of 396 normal adult skeletal muscle
samples were obtained from the GTEx database'’ (Illumina
HiSeq 2000/2500 sequencing platform, data type: TPM).

RNA-Seq data were subjected to normalization, including the
removal of low-expression genes with an average expression below 1
across all samples. The Wilcoxon test was applied to compare gene
expression differences between the control and experimental groups.
Log2 fold change (logFC) and median differences were calculated,
and p-values were adjusted using the False Discovery Rate (FDR)
method, selecting genes with |logFC| > 1 and FDR < 0.05. These steps
ensured data standardization and improved the reliability and
accuracy of differential analysis results. ComBat was used to adjust
the TPM data from both groups for batch effects, followed by
Principal Component Analysis (PCA) to validate the effectiveness of
batch effect correction. Subsequently, differentially expressed genes,
metabolite abundance, and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis were conducted to extract key
data. DEGs were identified based on a fold change greater than 0.5 or
less than —0.5, with an adjusted p-value < 0.1 (13). Differential

1 https://www.gtexportal.org/home/
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expression analysis was conducted using R software (version 4.3.3),
and p-values were adjusted for multiple comparisons using the
q-value method.

2.2 Registration and public involvement

This systematic review has been registered in the International
Prospective Register of Systematic Reviews (PROSPERO) under the
registration number CRD42024589772 (14). The literature search
followed the PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) guidelines (15). As a secondary analysis
of published data, this study did not involve direct patient or
public participation.

2.3 Search strategy

A comprehensive search was conducted in the PubMed, Web of
Science, Cochrane Library, EMBASE, and Scopus databases for
RCT published up to November 2024. The reference lists of the
screened articles were examined to identify additional relevant
studies. Search terms included both controlled vocabulary and free-
text keywords related to adults, overweight/obesity, vitamin D, and
exercise (e.g., exercise, physical training, physical activity, fitness
training, aerobic training, or resistance training), and were adapted
for each individual database. Specific keywords used for the search
are provided in Supplementary Table S1, and the complete
electronic search strategies for all databases are detailed in
Supplementary Table S2.

2.4 Study selection: inclusion and exclusion
Criteria

The study participants included adults who were overweight
(BMI > 25 kg/m?*) or obese (BMI > 30 kg/m?), aged over 18 years
(with no upper age limit). These individuals underwent physical
activity interventions and took Vitamin D supplements. Participants
with obesity-related comorbidities such as type 2 diabetes,
hypertension, dyslipidemia, metabolic syndrome, liver diseases (e.g.,
NAFLD/NASH), and osteoarthritis were not excluded. The
interventions included exercise training programs or other measures
designed to promote physical activity, in combination with Vitamin
D supplementation. The exercise training could be aerobic, resistance,
mixed, or high-intensity interval training, in any combination of these
types. Exercise training could be supervised, partially supervised, or
unsupervised. Vitamin D supplementation was administered in either
liquid and/or solid forms. The control groups included those who
received only exercise interventions, placebo (e.g., stretching), or
Vitamin D supplementation alone. The primary outcomes assessed
included changes in weight, BMI, body fat percentage, blood glucose
control, and lipid metabolism markers (e.g., triglycerides (TG), High-
Density Lipoprotein (HDL), Low-Density Lipoprotein (LDL)), among
other metabolic health indicators. Only RCT were included, with the
following types of studies excluded: (a) trials conducted in pregnant
women; (b) studies focusing solely on dietary patterns, single food
interventions, or exercise-only interventions; (c) studies centered on
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primary prevention of weight gain/obesity; (d) exercise interventions
combined with other treatments (e.g., medications).

2.5 Data extraction

Data were independently extracted by two reviewers using a
standardized form, including study characteristics, participant
demographics, intervention details (such as Vitamin D dosage,
regimen, and duration), and supervision information (Table 1).
Outcome measures included body composition parameters (body
weight, BMI, body fat percentage, waist circumference) and metabolic
markers (TG, fasting glucose, HDL, LDL, and 25(OH)D). In the event
of discrepancies between the two reviewers during data extraction, the
differences will first be discussed, and the original literature will
be reviewed or consulted with field experts for clarification. If
consensus cannot be reached, a third researcher with relevant
expertise will be invited to adjudicate. For cases of missing or unclear
data, the research team will proactively contact the original authors to
obtain the missing information, ensuring the completeness and
accuracy of the data.

2.6 Data synthesis and statistical analysis

Meta-analyses were performed using RevMan 5.4. Weighted mean
differences (WMDs) or standardized mean differences (SMDs) were
calculated for each outcome. Depending on heterogeneity (I* statistic),
a fixed-effect model was used for I? < 50%, and a random-effects
model for I*>50% (16). To further explore the variability in
intervention effects, we adopted 60 years as the threshold for the
elderly group (<60 years vs. >60 years), in accordance with high-
quality studies and systematic reviews. This age cutoff aligns with
international standards and effectively reflects age-related
physiological and cognitive changes (17, 18). Additionally, subgroup
analyses were conducted based on exercise types (aerobic, resistance,
and multimodal), with statistical tests performed (19). Robustness was
evaluated using one-by-one sensitivity analyses. Publication bias was
assessed through visual inspection of funnel plots, and Egger’s test was
performed if asymmetry was evident and the number of studies

exceeded 10.

2.7 Risk of bias assessment

Study quality was independently assessed by two reviewers using
the Cochrane Risk of Bias Tool (20). The evaluation covered random
sequence generation, allocation concealment, blinding, completeness

of outcome data, and selective reporting (21). Disagreements were
resolved by a third reviewer.

3 Results
3.1 Transcriptomic analysis

Due to the lack of healthy control samples in the GSE271452
dataset, transcriptomic data from skeletal muscle tissue in the GTEx
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TABLE 1 Basic characteristics of included studies.

First Author Country Age (years), Sample size BMI (kg/m?), Intervention Duration Vitamin D = Outcome Supervision

(Year) mean + SD (Female) Mean + SD  characteristics (weeks) @ (sessions/week) dose measures
Resistance training +

2022 Fairfield (22) America 53+1 43(43) 26+ 1 12 20001U /d (006} Supervised
HMB + Vitamin D3

2022 Nazarabadi (23) Iran 53+5 46(46) 344+1 Aerobic training + Vitamin D 8 50,000 IU /w @G® Not reported
TRX training + Calcium +

2019 Bahador (24) Iran 28.1+2.7 40(40) 30+0.8 8 1,000 IU /w Supervised
Vitamin D
Resistance training + Vitamin

2020 Kallantar (25) Iran 284+3 40 (40) 27.1+1.4 b 8 1,000 IU /w @00, Unsupervised
Intermittent aerobic exercise +

2021 Heba (26) Egypt 35125 45 (45) 342+15 12 50,000 IU /w Supervised
Vitamin D
Resistance training + Vitamin

2014 Amely (27) Netherlands 63.6+5.6 94 (66) 33.6+4.4 13 Unclear Supervised
D supplement
Vitamin D-fortified protein +

2021 Robert (28) Netherlands 66.3+6.2 123 (47) 33.1+4.5 13 Unclear Supervised
lifestyle intervention
Vitamin D + Multimodal

2023 Jakub (29) Australia 60+6 50 (19) 30.6 5.7 . 12 4,000 IU /d Supervised
exercise

Primary outcome indicators:® Body weight;® Body mass index (BMI);® Body fat percentage;® Waist circumference;® Triglycerides (TG);® Fasting blood glucose;@ High-density lipoprotein (HDL);® Low-density lipoprotein (LDL);® serum 25-hydroxyvitamin D

[25(OH)D].
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database were integrated for batch effect correction and
normalization (Figures 1A,B). Differential expression analysis
identified 36 genes that were significantly differentially expressed
between obese and healthy adult skeletal muscle samples (Figure 1C).
KEGG pathway enrichment analysis revealed that these genes were
significantly enriched in several metabolism-related pathways
(Figure 1D), including fat and protein digestion and absorption,
pancreatic secretion, and fatty acid metabolism. Although these
pathways were not directly enriched in Vitamin D digestion or
absorption, their functional alterations may indirectly impair
Vitamin D metabolism and bioavailability. For example, reduced

10.3389/fnut.2025.1664960

lipid absorption efficiency could decrease the uptake of fat-soluble
vitamins such as Vitamin D, and changes in genes related to
pancreatic function and protein digestion may affect gut physiology,
further exacerbating Vitamin D deficiency. GO (Gene Ontology)
functional annotation supported this hypothesis, showing that obese
individuals exhibited significant alterations in gene expression
related to Vitamin D-associated biological processes, such as calcium
ion transport, hormone metabolism, immune response,
inflammation regulation, and cellular structural maintenance
(Figure 1E). These mechanistic alterations may collectively contribute

to impaired Vitamin D metabolism in obese populations, increasing
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enrichment of Vitamin D response genes and key signaling pathways.

Transcriptomic analysis of GSE271452 and GTEx skeletal muscle data. (A,B) Principal component analysis (PCA) of skeletal muscle transcriptomic data
from GSE271452 and GTEx before and after batch effect correction. (C) Volcano plot of differentially expressed genes in merged data (logFC > 0.5 or <
—0.5, FDR < 0.1). (D) KEGG pathway enrichment of differentially expressed genes. (E) GO enrichment highlighting Vitamin D metabolism-related
pathways and associated genes. (F,G) GSEA results of skeletal muscle transcriptomes in obese adults before and after cold exposure, showing
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the risk of metabolic syndrome and its related complications.
Therefore, Vitamin D supplementation strategies for individuals with
obesity should be tailored with consideration of their distinct
molecular expression profiles.

Furthermore, clinical transcriptomic data addressing the key
question of whether Vitamin D enhances the effects of exercise
interventions remain scarce. To explore potential molecular
mechanisms, we employed cold-induced skeletal muscle shivering as
a surrogate model. Previous studies have shown that cold exposure
can stimulate low-intensity muscle contractions, elevate energy
expenditure, and improve obesity-related metabolic outcomes. GSEA
(Gene Set Enrichment Analysis) was performed on skeletal muscle
transcriptomic data from obese adults before and after cold exposure.
The results showed significant enrichment of Vitamin D-responsive
genes post-intervention, alongside activation of several KEGG
pathways, including calcium signaling, cytokine-cytokine receptor
interaction, p53 signaling, and TGF-f signaling (Figures 15,G). These
findings suggest that cold-induced muscle activity may upregulate
Vitamin D response genes and downstream pathways, thereby
improving skeletal muscle metabolic function, enhancing lipid
metabolism, and promoting tissue repair. This provides an important
molecular clue for further investigations into how Vitamin D may
synergize with exercise interventions to improve metabolic health in
obese individuals.

10.3389/fnut.2025.1664960

3.2 Meta-analysis results

3.2.1 Literature search

A total of 851 potentially eligible records were identified through
systematic database searching. After removing 158 duplicates, full-text
screening was conducted for 10 articles to determine eligibility. Of
these, 8 studies met the inclusion criteria and were incorporated into
both the systematic review and the meta-analysis (22-29). Figure 2
illustrates the flowchart of the study’s search and selection process.

3.2.2 Characteristics and risk of bias of included
studies

Table | summarizes the key characteristics of the eight included
studies, published between 2011 and 2023, encompassing a total of
481 participants. Sample sizes ranged from 40 to 123; the proportion
of female participants ranged from 38 to 100%. The average age of
participants varied from 28 to 66 years, with baseline BMI ranging
from 26.1 to 34.2 kg/m”’. Exercise interventions lasted between 8 and
13 weeks, conducted three times per week. Vitamin D supplementation
dosages varied substantially across studies. Interventions included
aerobic, resistance, and multimodal training, most of which were
supervised. Additionally, in studies by Fairfield (22) and Heba (26), all
participants were Vitamin D deficient at baseline. Detailed risk of bias
assessments are illustrated in Figure 3.

Identified through database
searching (n=851) *

Identified through other sources
(n=0)

l

After removing duplicates (n=693)

}

Full-text articles assessed for eligibility (n=10)

Excluded articles (n=683)

Titles and abstracts of 10 studies were screened

After full-text review, 2 studies

were excluded

Final RCT included in the analysis (n=8)

FIGURE 2

Cochrane Library (n = 160), Scopus (n = 454), and Embase (n = 109).

PRISMA flowchart of study selection. The number of studies retrieved from each database was as follows: PubMed (n = 38), Web of Science (n = 90),
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FIGURE 3
Risk of bias assessment for included studies. All eight included studies were judged to have adequate randomization procedures. Three studies
provided details on allocation concealment. Four studies adopted double-blinding, and four described blinded outcome assessments. Most studies
reported complete outcome data and showed no evidence of selective reporting.

3.2.3 Effects of exercise combined with Vitamin D
supplementation on body composition in
overweight/obese adults

Five studies assessed changes in body weight. The random-effects
meta-analysis showed that Vitamin D supplementation did not
significantly enhance the overall weight reduction effect of exercise
[MD = —1.84, 95% CI (—4.85, 1.18)]. However, subgroup analysis
revealed that in participants undergoing aerobic exercise, Vitamin D
supplementation significantly enhanced weight loss [MD = —2.15,
95% CI (—2.91, —1.38)]. Similar benefits were observed in individuals
aged >60 years [MD = —2.09, 95% CI (—2.85, —1.33)]. For BMI, the
meta-analysis of six studies also showed no overall significant effect
[MD = —0.45, 95% CI (—1.54, 0.65)]. Nevertheless, subgroup analysis
indicated that Vitamin D supplementation significantly improved
BMI reduction when combined with multimodal exercise
[MD = —-0.50, 95% CI (—0.73, —0.28)], with a similar effect observed
in older adults [MD = —0.50, 95% CI (—0.73, —0.28)]. For body fat

Frontiers in Nutrition 07

percentage, results from four studies indicated no significant additive
effect of Vitamin D on the reduction induced by exercise [MD = —0.35,
95% CI (—3.33, 2.64)]. In contrast, for waist circumference, data from
four studies using a fixed-effects model showed a significant additional
reduction with Vitamin D supplementation [MD = —1.48, 95% CI
(=2.02, —0.94)] (see Table 2).

3.2.4 Effects of exercise combined with Vitamin D
supplementation on metabolic markers

In terms of metabolic parameters, meta-analysis of three studies
showed that Vitamin D supplementation did not significantly enhance
the effect of exercise in reducing triglyceride (TG) levels [MD = 0.52,
95% CI (—0.28, 1.41)]. Likewise, no significant difference was found
for fasting glucose [MD = —0.53, 95% CI (—1.51, 0.44)]. HDL and
LDL analyses were based on two studies. The results showed no
significant improvement in HDL [MD = —6.35, 95% CI (—13.83,
1.14)] or reduction in LDL [MD = 1.89, 95% CI (—18.13, 21.91)] with
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TABLE 2 Meta-analysis results on the effects of exercise combined with Vitamin D supplementation in overweight or obese adults.

Outcome
measure

Sample size

12(%)

Heterogeneity

p-value

Effect model Meta-analysis result

MD (95%Cl) p-value

Body weight 307 71 <0.05 Random —1.84 (—4.85,1.18) 0.23
A 173 0 0.85 Fixed —2.1(=2.91,-1.38) <0.05
R 134 0 0.85 Fixed —1.18 (-7.68, 5.32) 0.72
>60 267 0 0.39 Fixed —2.09 (—2.85, —1.33) <0.05
<60 40 92 <0.05 Random —2.70 (—11.03, 5.63) 0.52
BMI 337 78 <0.05 Random —0.45 (—1.54, 0.65) 0.42
M 173 0 0.49 Fixed —0.50 (—0.73,-0.28) <0.05
R 134 87 <0.05 Random —0.35 (—2.50, 1.79) 0.75
>60 267 0 0.78 Fixed —0.50 (—0.73, —0.28) <0.05
<60 70 93 <0.05 Random —0.31 (—3.54, —2.92) 0.85
Body fat percentage 184 84 <0.05 Random —0.35 (—3.33,2.64) 0.82
Waist circumference 290 35 0.2 Fixed —1.48 (—2.02, —0.94) <0.05
TG 93 74 <0.05 Random 0.52(—0.28, 1.41) 0.26
Fasting glucose 196 88 <0.05 Random —0.53 (=1.51, —0.44) 0.28
HDL 70 0 0.66 Fixed —6.35(—13.83, 1.14) 0.1

LDL 70 0 0.48 Fixed 1.89 (—18.13,21.91) 0.85
25(0OH)D 50 79 <0.05 Random 2.36 (—0.61, 5.32) 0.12

A, Aerobic exercise; R, Resistance exercise; M, Multimodal exercise (a combination of different types of exercise such as aerobic exercise, resistance training, and flexibility training within the
intervention program); >60: Participants aged 60 years and above; <60: Participants aged below 60 years.

combined intervention. Regarding Vitamin D status, two studies
assessed 25(OH)D concentrations. Meta-analysis showed that exercise
combined with supplementation did not significantly increase 25(OH)
D levels compared to supplementation alone [MD = 2.36, 95% CI
(—0.61, 5.32)] (Table 2).

3.2.5 Publication bias assessment

Funnel plots were used to assess publication bias across all
outcome variables. No evidence of publication bias was observe
(Supplementary Figures S1-S9).

4 Discussion

Vitamin D is widely used in weight management among obese
populations due to its role in chronic disease prevention and metabolic
regulation (30). Exercise, as a safe and multifaceted intervention, can
improve energy metabolism, mood states, and disease risk (31-33). In
recent years, increasing research has attempted to incorporate Vitamin
D supplementation into exercise programs to enhance their
intervention effects. Transcriptomic analysis provides molecular-level
evidence for this hypothesis. By integrating data from GSE271452 and
GTEx skeletal muscle samples, 36 differentially expressed genes were
identified, and enrichment analysis indicated that Vitamin D
metabolic disturbances in obesity are primarily mediated through
pathways related to lipid digestion and absorption, pancreatic
secretion, calcium ion transport, and hormone metabolism. These
disturbances may affect nutrient absorption in the gut and exacerbate
Vitamin D deficiency. In selecting the experimental model, this study
used cold-induced muscle shivering to simulate exercise intervention.
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Although this approach offers advantages in terms of ethics and
control, its physiological mechanisms differ from those of real exercise
interventions. Cold-induced energy metabolism regulation involves
two mechanisms: shivering thermogenesis through muscle shivering
and non-shivering thermogenesis mediated by brown adipose tissue
(34, 35). In contrast, voluntary exercise is a more complex
physiological adaptation process, involving active muscle contraction,
cardiovascular system responses, and long-term metabolic
reprogramming (36). The cold-induced muscle shivering model
showed that, after intervention, genes related to Vitamin D response
in the skeletal muscle of obese participants were significantly
upregulated, activating metabolic pathways such as p53, TGF-f, and
calcium signaling. This suggests that Vitamin D may be involved in
energy metabolism regulation by modulating muscle remodeling and
mitochondrial function. These findings are consistent with previous
studies on Vitamin D’s role in regulating muscle synthesis, lipid
metabolism, and insulin sensitivity (37-43), further supporting its
potential mechanistic role in combined interventions. Although this
model offers some insights, the indirect connection to actual exercise
physiology needs further clarification in future studies, particularly
concerning how Vitamin D might regulate muscle remodeling (44—
46), mitochondrial function (47-49), and calcium signaling (50, 51)
in the context of energy metabolism. Such explanations may help
better understand the mechanisms underlying the role of Vitamin D
in exercise interventions.

The results of the meta-analysis showed that, although Vitamin D
combined with exercise did not demonstrate consistent improvements
in weight, BMI, or body fat percentage, it did show certain advantages
in reducing waist circumference (30). Subgroup analysis further
revealed that the combined intervention was more effective in
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controlling weight and BMI in older adults (>60 years) and in
participants engaging in aerobic exercise, suggesting that individual
characteristics and exercise modalities may modulate intervention
effects. Additionally, previous studies have indicated that Vitamin D
deficiency is strongly associated with obesity, metabolic syndrome,
and cardiovascular disease, particularly in women and individuals
with abdominal obesity (2, 52). Although calcitriol supplementation
can modestly reduce BMI and waist circumference (53), its direct
impact on weight remains limited. Combined interventions may work
through multiple mechanisms, such as enhancing Vitamin D receptor
(VDR) expression (54), modulating leptin levels (55), and improving
gut microbiota and bile acid metabolism (40), thereby synergistically
promoting fat metabolism. However, the results on whether exercise
significantly elevates serum 25(OH)D levels remain inconsistent.
Some studies suggest that endurance or mixed training may
be effective, while resistance training alone has limited effects (56-59).
Given that Vitamin D in obese populations is primarily stored in
adipose tissue with limited bioavailability (60), combined
interventions may be of greater clinical significance for this group (22,
26, 61). At the same time, Vitamin D levels are influenced by various
factors such as diet, supplement intake, skin color, and sun exposure
(62, 63). Therefore, future research should focus on variables such as
VDR expression, baseline Vitamin D status, exercise intensity, and
intervention duration, and use standardized, long-term follow-up
RCT to further clarify the adaptability and mechanistic basis of
“Vitamin D + exercise” interventions in different populations.

Moreover, in this study’s meta-analysis, we observed high I* values
for some outcome measures, suggesting significant heterogeneity
across studies. This heterogeneity may stem from differences in
demographic characteristics such as age, gender distribution, baseline
Vitamin D status, and methodological differences such as exercise
modalities (e.g., aerobic, resistance, or multimodal training),
intervention duration, frequency, and supplementation doses (ranging
from 1,000 IU/d to 50,000 IU/w). Higher doses of Vitamin D may
have a more significant impact on muscle function and fat metabolism,
but this was not consistently reflected in the current analysis (29, 64,
65). To reduce bias due to heterogeneity, we used a random-effects
model for the summary estimate and further explored the moderating
effects of individual characteristics and intervention modalities
through subgroup analysis. Notably, subgroup results showed that
Vitamin D combined with exercise had a more significant impact on
weight and BMI improvement in older adults (>60 years) and those
participating in aerobic exercise, suggesting that age has a clear
physiological boundary, which is often used in previous studies to
distinguish populations with significant differences in metabolic
sensitivity. However, the studies included in the current analysis used
multiple different serum 25(OH)D cutoffs (25 nmol/L, 50 nmol/L, and
75 nmol/L), and some studies cited multiple thresholds within the
same paper (29), which limited the feasibility of this subgroup
analysis. Although theoretically, both interventions may synergistically
affect fat generation, reduce inflammation, and show potential in
improving metabolic indicators, high-quality RCT are currently
lacking to confirm their advantages in weight or body fat reduction
(66-68). As such studies increase, especially with standardized
reporting of Vitamin D status, this suggestion will have significant
potential to refine target populations and intervention strategies.

In terms of transcriptomic analysis, although batch effects
between the GSE and GTEx databases were corrected using the

Frontiers in Nutrition

10.3389/fnut.2025.1664960

ComBat algorithm, and the comparability of the integrated data was
verified through PCA, there remain certain differences in sample size
and individual characteristics (such as BMI levels, gender composition,
etc.), which may influence the robust identification of differentially
expressed genes. Particularly in the exploration of mechanisms using
cold-induced muscle shivering as a model for exercise intervention,
while this model does not fully replicate the metabolic activation
mechanisms of voluntary exercise, it offers a certain degree of
substitutability in terms of controllability, ethical applicability, and
biological energy mobilization. Therefore, it can serve as an
approximate research tool to study the involvement of Vitamin D in
skeletal muscle metabolic remodeling. It is also worth noting that
some of the included studies did not provide detailed information on
Vitamin D formulation, bioavailability, intervention duration, or
adherence to supplementation, limiting the in-depth analysis of the
dose-response relationship. Furthermore, the lack of baseline 25(OH)
D status reports restricts the evaluation of sensitivity in Vitamin D
deficiency subgroups. Future research should focus on intervention
stratification based on individual nutritional status, particularly in
individuals with low or deficient Vitamin D levels, by combining
multimodal exercise interventions (i.e., composite regimens involving
various types of exercise). This approach could enhance the
comparability and external validity of intervention outcomes.

The clinical significance of this study lies in the finding that
Vitamin D supplementation can amplify the weight loss effects
induced by exercise, particularly in improving waist circumference
and promoting reductions in weight and BMI. These benefits are
especially pronounced in older adults and overweight or obese
individuals undergoing aerobic exercise interventions. Our findings
suggest that combining exercise with Vitamin D supplementation may
represent an effective strategy for optimizing weight management and
metabolic health. Therefore, future studies should further define the
optimal exercise protocols, explore the ideal dosage and duration of
Vitamin D supplementation, and examine its effects on other
metabolic markers, such as blood glucose and lipid profiles, to
enhance its clinical efficacy in improving body composition and
metabolic health. Additionally, the integration of multi-omics data
and nutritional behavior monitoring technologies to systematically
elucidate the mechanisms underlying the combined effects of Vitamin
D and exercise, as well as individual response differences, will provide
stronger empirical support for the development of precise and
effective exercise-nutrition combined interventions.

5 Conclusion

This study systematically evaluated the effects of Vitamin D
supplementation on exercise-based interventions in overweight and
obese adults, and explored potential underlying mechanisms using
transcriptomic data. Transcriptomic analysis revealed that Vitamin
D-related gene expression in skeletal muscle is significantly altered
in individuals with obesity, primarily through pathways involving
fat absorption, pancreatic function, calcium transport, and hormone
metabolism. Additionally, a cold-induced muscle shivering model
indicated significant enrichment of Vitamin D-responsive genes and
their downstream pathways following intervention, suggesting a
potential role in muscle metabolic regulation. Meta-analysis results
showed that combining exercise with Vitamin D supplementation
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significantly improved waist circumference reduction, with more
pronounced effects on weight and BMI observed in older adults and
those engaging in aerobic training—supporting a possible
synergistic effect. However, no significant enhancements were
observed in glucose or lipid metabolism, which may be due to
individual differences in Vitamin D metabolism, baseline levels, or
intervention protocols. In summary, Vitamin D supplementation
may enhance exercise-induced benefits by improving skeletal muscle
metabolism and adaptive responses, thereby synergistically
supporting weight-loss interventions. Future research should focus
on personalized Vitamin D status, intervention intensity and
duration, and molecular validation, aiming to develop more precise
and effective nutrition-exercise strategies for overweight and
obese populations.
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