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Interpretable prediction of 
coronary heart disease risk in 
adults over 50 with accelerated 
aging using 45 dietary nutrients
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Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China

Background: The relationship between dietary nutrient intake and coronary 
heart disease (CHD) risk among older adults with accelerated aging remains 
inadequately understood.
Methods: This study analyzed data from seven cycles of the National Health and 
Nutrition Examination Survey (NHANES) conducted in the United States between 
2005 and 2018. Weighted Quantile Sum (WQS) regression was employed to 
evaluate the association between dietary nutrient mixtures and CHD risk in 
individuals aged 50 and older with accelerated aging. Additionally, six machine 
learning models were developed, with SHAP and LIME algorithms applied to 
assess the contribution of individual nutrients to CHD risk.
Results: In the fully adjusted model, dietary nutrient mixtures were inversely 
associated with CHD risk in older adults experiencing accelerated aging 
(adjusted OR = 0.90, 95% CI: 0.81–0.99, p = 0.048). Both SHAP and LIME 
analyses consistently identified vitamin B12 and lutein + zeaxanthin as protective 
nutrients, independent of demographic adjustments.
Conclusion: Among adults aged 50 and older with accelerated aging, higher 
intake of specific dietary nutrients was associated with reduced CHD risk. Of the 
machine learning models tested, the random forest algorithm demonstrated the 
strongest predictive performance. SHAP and LIME analyses jointly highlighted 
vitamin B12 and lutein + zeaxanthin as key contributors to the reduced CHD risk 
in this high-risk population.
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Introduction

Coronary heart disease (CHD) remains a leading cause of morbidity and mortality in 
older adults, particularly those experiencing accelerated aging—a condition in which 
biological age exceeds chronological age. This discrepancy indicates increased vulnerability to 
age-related diseases, including CHD (1). Accelerated aging is often assessed using phenotypic 
age acceleration (PhenoAgeAccel), a biomarker-based metric that reflects physiological decline 
driven by systemic inflammation and oxidative stress, both of which are central to CHD 
pathogenesis (2, 3). Given that diet is a modifiable risk factor, understanding its role in CHD 
among individuals with accelerated aging has substantial clinical and public health significance.

Accelerated aging is characterized by a faster rate of biological deterioration, typically 
quantified by phenotypic age. This biomarker integrates chronological age with nine clinical 
indicators—such as glucose, C-reactive protein, and creatinine—to capture metabolic, 
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inflammatory, and organ function status (4). PhenoAgeAccel is 
defined as the difference between phenotypic and chronological age; 
positive values denote accelerated aging. This metric is a strong 
predictor of morbidity and mortality, underscoring its relevance in 
aging research and clinical risk assessment (1, 4).

The prevalence of accelerated aging is particularly high among 
adults aged 50 and older and is influenced by lifestyle behaviors, 
socioeconomic status, comorbidities, and environmental exposures 
(5). Favorable cardiovascular health is typically associated with 
negative PhenoAgeAccel scores, whereas poor cardiovascular profiles 
are linked to positive values (6). Modifiable factors—such as smoking, 
physical inactivity, poor diet, and obesity—contribute significantly to 
accelerated aging and increase the risk of conditions like diabetes, 
frailty, cognitive decline, and cardiovascular disease (2, 7). 
Additionally, genetic predisposition and exposure to pollutants may 
further exacerbate biological aging (8).

Mechanistically, accelerated aging increases CHD risk through 
heightened inflammation and oxidative stress, which promote 
endothelial dysfunction and atherogenesis (3, 9). In a study of 609 
patients with multivessel coronary artery disease, higher phenotypic 
age was significantly associated with increased all-cause mortality, 
reinforcing its prognostic relevance in cardiovascular care (10). 
Similarly, epigenetic age acceleration has been linked to unfavorable 
cardiometabolic profiles and higher cardiovascular risk scores, 
especially in high-risk populations (11). These findings emphasize the 
critical role of biological aging in CHD development.

Dietary nutrients play a key role in regulating systemic 
inflammation and oxidative stress—both integral to aging and CHD 
pathogenesis (12, 13). Several nutrients, such as vitamin E, vitamin 
C, and omega-3 fatty acids, have been widely studied for their 
antioxidant and anti-inflammatory effects (14–18). Vitamin E, a 
lipid-soluble antioxidant, protects cell membranes by neutralizing 
reactive oxygen species (ROS) and suppressing pro-inflammatory 
cytokines like interleukin-6 (IL-6) and tumor necrosis factor-alpha 
(TNF-α) (14, 15). High doses (≥700 mg/day) have been associated 
with reductions in C-reactive protein (CRP) levels and 
improvements in insulin resistance (14), with well-documented 
protective effects against oxidative stress–related diseases, including 
CHD (15). Vitamin C, a water-soluble antioxidant, scavenges ROS, 
regenerates oxidized vitamin E, and lowers inflammatory markers 
such as CRP and IL-6 (16, 17). These actions help reduce oxidative 
damage in conditions like metabolic syndrome and may lower CHD 
risk (17). Omega-3 fatty acids—especially eicosapentaenoic acid 
(EPA) and docosahexaenoic acid (DHA)—reduce inflammation by 
inhibiting pro-inflammatory eicosanoids and cytokines while 
promoting the synthesis of pro-resolving mediators (18, 19). 
Though these nutrients have been associated with reduced 
cardiovascular mortality and nonfatal myocardial infarction, data 
specific to older adults remain limited (20).

These bioactive compounds also modulate key inflammatory 
pathways, such as NF-κB and the NLRP3 inflammasome, and intersect 
with diseases influenced by chronic inflammation and oxidative 
stress—including cardiovascular disease, diabetes, and 
neurodegenerative disorders (14–19). However, their efficacy may 
vary depending on factors such as dosage, bioavailability, and 
individual metabolic status.

Although nutrients like vitamin E, vitamin C, and omega-3 fatty 
acids show potential for mitigating inflammation and oxidative stress 

in the general population, their specific effects on CHD risk in older 
adults with accelerated aging remain unclear (12, 13). Potential 
mechanisms include reducing endothelial dysfunction and slowing 
atherogenesis through antioxidant and anti-inflammatory actions (9, 
13). Nevertheless, few clinical trials have focused on this high-risk 
subgroup, and the complex interplay between biological aging, 
nutrient metabolism, and cardiovascular outcomes remains 
underexplored (21).

In response to this knowledge gap, the present study analyzed 
NHANES data to examine the association between various dietary 
nutrients—including carbohydrates, fiber, vitamins, and minerals—
and CHD risk in individuals aged 50 and above with elevated 
PhenoAgeAccel. By integrating machine learning models capable 
of capturing nonlinear and interactive nutrient effects (22, 23), the 
study aimed to identify key dietary predictors and inform targeted 
nutritional strategies for CHD prevention in this aging population.

Materials and methods

Study population

The NHANES, conducted by the National Center for Health 
Statistics (NCHS), evaluates the health and nutritional status of the 
non-institutionalized U. S. population. This study utilized NHANES 
data from 2005 to 2018, initially comprising 70,190 participants. After 
applying exclusion criteria, 67,515 individuals were removed for the 
following reasons: (1) age under 50 years (n = 50,495); (2) missing 
data needed for calculating phenotypic age and PhenoAgeAccel 
(n = 15,696); (3) absence of CHD information (n = 40); (4) missing 
dietary micronutrient data (n = 805); (5) missing education 
information (n = 4); and (6) missing data on PIR, BMI, smoking, 
hypertension, or alcohol use (n = 475). The final analytical sample 
included 2,675 participants (Figure 1).

Assessment of dietary micronutrients

Micronutrient intake, including vitamins and carbohydrates, 
was assessed using 24-h dietary recall data collected during the 
first and second interview days of NHANES. The first interview 
was conducted in person at the Mobile Examination Center 
(MEC), while the second was administered by telephone several 
days later. Both interviews were conducted by trained professionals 
using the Automated Multiple-Pass Method (AMPM), which 
enables comprehensive and standardized documentation of food 
and beverage consumption.

Assessment of coronary heart disease

CHD status was determined based on participants’ self-reported 
physician diagnoses, including “coronary heart disease,” “angina 
pectoris,” and “heart attack.” Data were collected through in-person 
interviews conducted by trained personnel using the Computer-
Assisted Personal Interviewing (CAPI) system. Relevant items were 
derived from the Medical Conditions Questionnaire (MCQ). 
Participants were classified as having CHD if they responded “yes” to 
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any of the diagnoses of “coronary heart disease,” “angina pectoris,” or 
“heart attack.”

Assessment of phenotypic age and 
PhenoAgeAccel

Phenotypic age was calculated using the algorithm developed by 
Levine et al., which integrates chronological age with nine biomarkers: 
albumin, creatinine, glucose, log-transformed C-reactive protein 
(CRP), lymphocyte percentage, mean cell volume, red cell distribution 
width, alkaline phosphatase, and white blood cell count. The 
calculation was performed using a Cox proportional hazards elastic 
net model with 10-fold cross-validation. Phenotypic age acceleration 
was defined as the residual from a linear regression of phenotypic age 
on chronological age. Negative values indicated a biologically younger 
state, while positive values indicated a biologically older state. The 
complete formula used in the calculation is provided below:

	
( ) − × − = +

ln 0.00553 ln 1
141.50

0.09165
M

Phenotypic Age

Where
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= −   

 

1.51714 exp
1 exp

0.0076927
xb
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0.0095 0.1953
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0.0268
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= − + × −
× + × +
× + × −
× + ×
+ × +
× 0.0554se WhiteBloodCellCount+ ×

Covariates

Sociodemographic and lifestyle covariates included age, sex, race/
ethnicity (Mexican American, Other Hispanic, Non-Hispanic White, 
Non-Hispanic Black, Other Race), education level (<9th grade, 9–11th 
grade, high school diploma/GED, some college/AA degree, ≥college 
graduate), family income-to-poverty ratio (PIR), BMI, smoking status, 
alcohol use, hypertension, and diabetes. Hypertension was defined as a 
self-reported physician diagnosis and current use of antihypertensive 
medication. Diabetes was defined as physician-diagnosed diabetes, a 
2-h OGTT glucose ≥11.1 mmol/L, or fasting glucose 
≥7.0 mmol/L. Prediabetes was defined as a prior diagnosis or 
intermediate glucose levels (2-h glucose 7.8–11.1 mmol/L or fasting 
glucose 6.1–6.9 mmol/L). Smoking status was categorized as never/
long-term former (never smoked or quit >1 year ago) or current smoker 
(smoked within the past 30 days, smoked upon waking, or smoked >2 
cigarettes/day after quitting). Drinking status was classified as lifetime 
abstainer (<12 drinks in lifetime) or current drinker (≥12 drinks/year 

FIGURE 1

Flowchart illustrating the study design and participant selection process.
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or drinking on >6 occasions in the past 12 months). BMI was calculated 
as weight in kilograms divided by height in meters squared (kg/m2).

Feature preprocessing and selection for 
machine learning

A total of 56 features were considered, including 49 continuous 
and 7 categorical variables. Features with variance inflation factors 
(VIF) > 3, adjusted for degrees of freedom, were excluded to reduce 
multicollinearity. To address class imbalance and improve recognition 
of the minority class, the Synthetic Minority Over-sampling Technique 
(SMOTE) was applied. SMOTE generates synthetic data points by 
interpolating between existing samples and their k-nearest neighbors, 
thereby enhancing dataset balance (Supplementary Figure  1). All 
variables were standardized to minimize disproportionate influence 
due to differing scales.

Feature selection was performed using the Boruta algorithm, a 
random forest-based method that evaluates feature importance over 
500 iterations by comparing real features with randomized shadow 
features. Only features classified as “confirmed” were retained for 
model development.

Statistical analyses

All statistical procedures followed NHANES analytical 
guidelines. Continuous variables were presented as 
means ± standard deviations (SD), and categorical variables as 
frequencies and percentages. Group comparisons used chi-square 
tests for categorical variables and Student’s t-tests for continuous 
variables. To examine the joint effect of dietary micronutrient 
mixtures on CHD in older adults with accelerated aging, Weighted 
Quantile Sum (WQS) regression was employed. Weights for each 
nutrient component were estimated using 1,000 bootstrap 
iterations. Data were randomly split into training (60%) and 
testing (40%) sets to enhance model reliability.

To avoid overfitting, a 6:4 training-validation split was 
maintained throughout model construction. Six machine learning 
models were developed using the MLR3 framework: Random 
Forest, LightGBM, K-Nearest Neighbors (KNN), Naive Bayes, 
Support Vector Machine (SVM), and XGBoost. Random Forest: 
Aggregates multiple decision trees to deliver robust predictions 
and is inherently resistant to overfitting. LightGBM: An efficient 
gradient-boosted decision tree model optimized for speed, 
memory usage, and parallel computation. K-NN: Classifies 
samples based on proximity to neighbors; performs well on small 
or non-linear datasets. Naive Bayes: A fast, probabilistic classifier 
based on Bayes’ theorem, effective even with missing values. SVM: 
Identifies optimal hyperplanes to separate classes, particularly 
effective in high-dimensional data. XGBoost: A highly efficient 
gradient boosting framework that balances accuracy and 
computational efficiency.

Model performance was evaluated using standardized datasets 
and the following six metrics: accuracy, F beta score, area under 
the ROC curve (AUC-ROC), sensitivity, specificity, and area 
under the precision-recall curve (AUC-PR). AUC-ROC was used 
as the primary evaluation metric. Ten-fold cross-validation was 

applied to enhance generalizability. ANOVA and Kruskal-Wallis 
H tests were used to compare model performance metrics.

To enhance model interpretability, SHAP (SHapley Additive 
exPlanations) and LIME (Local Interpretable Model-Agnostic 
Explanations) were used. SHAP, grounded in cooperative game 
theory, quantifies each feature’s contribution by considering all 
feature combinations, thus offering transparent and consistent 
interpretations. LIME creates interpretable local approximations 
(e.g., linear models) to explain predictions made by 
complex models.

All statistical analyses were conducted using IBM SPSS 
Statistics (version 24.0) and R (version 4.5.0). A two-tailed p-value 
< 0.05 was considered statistically significant.

Results

Participant characteristics by coronary 
heart disease status

Table 1 presents baseline characteristics of older adults aged 
50 years and above with accelerated aging, stratified by CHD 
status. A total of 2,675 participants from NHANES 2005–2018 
were included. The mean age was 65.62 years (SD = 9.38), 
comprising 902 females (33.72%) and 1,773 males (66.28%). 
Among them, 565 individuals were diagnosed with CHD, with a 
higher mean age of 69.53 years (SD = 8.52).

Compared with participants without CHD, those with CHD 
had significantly lower intakes of several dietary components, 
including energy (1,831.58 vs. 2,008.67 kcal, p < 0.001), protein 
(71.01 vs. 76.52 g, p = 0.002), carbohydrates (217.45 vs. 240.12 g, 
p < 0.001), total sugar (94.39 vs. 105.44 g, p < 0.001), dietary fiber 
(14.57 vs. 15.71 g, p = 0.022), total fat (73.43 vs. 78.21 g, 
p = 0.033), polyunsaturated fatty acids (16.38 vs. 17.68 g, 
p = 0.006), alpha-carotene (319.46 vs. 352.58 μg, p = 0.039), niacin 
(21.94 vs. 23.56 mg, p = 0.022), vitamin B6 (1.74 vs. 1.89 mg, 
p = 0.030), total folate (364.50 vs. 339.76 μg, p = 0.037), food 
folate (179.48 vs. 203.16 μg, p = 0.003), phosphorus (1,180.50 vs. 
1,261.34 mg, p = 0.005), magnesium (254.89 vs. 275.97 mg, 
p = 0.001), copper (1.13 vs. 1.22 mg, p = 0.019), potassium 
(2,392.68 vs. 2,539.28 mg, p = 0.032), selenium (100.98 vs. 
106.97 μg, p = 0.042), and alcohol (5.67 vs. 8.94 g, p = 0.005).

In contrast, individuals with CHD had higher intakes of alpha-
tocopherol (0.72 vs. 0.48 mg, p < 0.033) and added vitamin B12 (0.75 
vs. 0.72 μg, p = 0.039).

Association between dietary nutrient 
mixtures and CHD risk

Table 2 presents results from the WQS regression, which assessed 
associations between dietary nutrient mixtures and CHD risk in older 
adults with accelerated aging. After adjustment for potential 
confounders (age, sex, race/ethnicity, education, income-to-poverty 
ratio, BMI, smoking, and alcohol use), an inverse association was 
observed in the unconstrained model (adjusted OR = 0.90; 95% CI: 
0.81–0.99; p = 0.048). The primary contributors were alcohol 
(weight = 0.281), selenium (0.108), protein (0.100), and cholesterol 
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TABLE 1  Baseline characteristics of the study participants.

Characteristic Overall
N = 2,675

No Coronary heart 
disease
N = 2,110

Coronary heart 
disease
N = 565

p

Age (year)a, Mean ± SD 65.62 ± 9.38 64.57 ± 9.33 69.53 ± 8.52 <0.001

Sexb, n (%) <0.001

 � Female 902 (33.72%) 754 (35.73%) 148 (26.19%)

 � Male 1,773 (66.28%) 1,356 (64.27%) 417 (73.81%)

Race/ethnicityb, n (%) <0.001

 � Mexican 354 (13.23%) 303 (14.36%) 51 (9.03%)

 � Other Hispanic 254 (9.50%) 207 (9.81%) 47 (8.32%)

 � Non-Hispanic White 1,253 (46.84%) 921 (43.65%) 332 (58.76%)

 � Non-Hispanic Black 652 (24.37%) 552 (26.16%) 100 (17.70%)

 � Other Race 162 (6.06%) 127 (6.02%) 35 (6.19%)

Educationb, n (%) 0.569

 � Less Than 9th 378 (14.13%) 289 (13.70%) 89 (15.75%)

 � 9–11th 418 (15.63%) 328 (15.55%) 90 (15.93%)

 � High School 700 (26.17%) 554 (26.26%) 146 (25.84%)

 � Some College 741 (27.70%) 583 (27.63%) 158 (27.96%)

 � College Graduate 438 (16.37%) 356 (16.87%) 82 (14.51%)

Family income to poverty ratioa, Mean ± SD 2.36 ± 1.53 2.39 ± 1.55 2.24 ± 1.46 0.082

BMIa, Mean ± SD 31.62 ± 7.65 31.59 ± 7.74 31.74 ± 7.27 0.277

Smoking statusb, n (%) 0.223

 � No 2,075 (77.57%) 1,626 (77.06%) 449 (79.47%)

 � Yes 600 (22.43%) 484 (22.94%) 116 (20.53%)

Drinking statusb, n (%) 0.890

 � No 336 (12.56%) 266 (12.61%) 70 (12.39%)

 � Yes 2,339 (87.44%) 1,844 (87.39%) 495 (87.61%)

Hypertensionb, n (%) <0.001

 � No 892 (33.35%) 780 (36.97%) 112 (19.82%)

 � Yes 1,783 (66.65%) 1,330 (63.03%) 453 (80.18%)

Diabetesb, n (%) <0.001

 � No 1,230 (45.98%) 1,025 (48.58%) 205 (36.28%)

 � Yes 1,100 (41.12%) 816 (38.67%) 284 (50.27%)

 � Borderline 345 (12.90%) 269 (12.75%) 76 (13.45%)

Energya, Mean ± SD 1,971.27 ± 918.15 2,008.67 ± 934.49 1,831.58 ± 840.57 <0.001

Proteina, Mean ± SD 75.36 ± 39.56 76.52 ± 40.27 71.01 ± 36.53 0.002

Carbohydratea, Mean ± SD 235.33 ± 115.75 240.12 ± 117.63 217.45 ± 106.66 <0.001

Total Sugara, Mean ± SD 103.11 ± 71.17 105.44 ± 72.29 94.39 ± 66.16 <0.001

Dietary fibera, Mean ± SD 15.47 ± 9.64 15.71 ± 9.77 14.57 ± 9.06 0.022

Total Fata, Mean ± SD 77.20 ± 44.99 78.21 ± 45.62 73.43 ± 42.40 0.033

Saturated fatty acidsa, Mean ± SD 25.12 ± 16.12 25.42 ± 16.55 23.97 ± 14.32 0.176

Monounsaturated fatty acidsa, Mean ± SD 27.60 ± 16.77 27.92 ± 17.01 26.43 ± 15.80 0.090

Polyunsaturated fatty acidsa, Mean ± SD 17.40 ± 11.91 17.68 ± 11.93 16.38 ± 11.78 0.006

Cholesterola, Mean ± SD 291.70 ± 231.02 292.37 ± 232.67 289.21 ± 224.97 0.659

Vitamin E as alpha-tocopherola, Mean ± SD 7.50 ± 5.63 7.57 ± 5.67 7.24 ± 5.50 0.083

(Continued)
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TABLE 2  Association between dietary nutrient mixtures and coronary heart disease risk in individuals aged ≥50 years with accelerated aging.

Variable Estimate Standard error z value OR (95% CI) P value

WQS-Negative −0.1066 0.0539 −1.9784 0.90 (0.81, 0.99) 0.048 *

WQS-Positive −0.1746 0.0943 −1.8518 0.84 (0.70, 1.01) 0.064

TABLE 1  (Continued)

Characteristic Overall
N = 2,675

No Coronary heart 
disease
N = 2,110

Coronary heart 
disease
N = 565

p

Alpha-tocopherola, Mean ± SD 0.53 ± 2.91 0.48 ± 2.84 0.72 ± 3.17 0.033

Retinola, Mean ± SD 395.43 ± 618.31 394.87 ± 662.97 397.55 ± 411.10 0.123

Vitamin Aa, Mean ± SD 578.41 ± 707.99 582.42 ± 754.49 563.44 ± 497.50 0.267

Alpha-carotenea, Mean ± SD 345.59 ± 898.35 352.58 ± 918.80 319.46 ± 817.71 0.039

Beta-carotenea, Mean ± SD 1,982.71 ± 3,694.98 2,033.20 ± 3,816.71 1,794.13 ± 3,195.70 0.445

Beta-cryptoxanthina, Mean ± SD 86.14 ± 264.65 87.98 ± 289.00 79.30 ± 140.33 0.529

Lycopenea, Mean ± SD 4,565.04 ± 8,506.70 4,499.93 ± 8,441.73 4,808.19 ± 8,748.41 0.562

Lutein+zeaxanthina, Mean ± SD 1,338.33 ± 3,167.69 1,394.34 ± 3,406.23 1,129.16 ± 2,032.86 0.406

Thiamin(Vitamin B1)a, Mean ± SD 1.50 ± 0.84 1.51 ± 0.85 1.48 ± 0.81 0.584

Riboflavin(Vitamin B2)a, Mean ± SD 1.94 ± 1.15 1.94 ± 1.18 1.93 ± 1.05 0.476

Niacina, Mean ± SD 23.22 ± 14.03 23.56 ± 14.41 21.94 ± 12.45 0.022

Vitamin B6a, Mean ± SD 1.86 ± 1.57 1.89 ± 1.67 1.74 ± 1.13 0.030

Total folatea, Mean ± SD 359.27 ± 219.72 364.50 ± 224.21 339.76 ± 201.08 0.037

Folic acida, Mean ± SD 161.28 ± 156.60 161.52 ± 158.70 160.40 ± 148.66 0.957

Food folatea, Mean ± SD 198.16 ± 124.77 203.16 ± 129.80 179.48 ± 101.80 0.003

Folate(DFE)a, Mean ± SD 472.04 ± 316.79 477.42 ± 321.93 451.96 ± 296.24 0.088

Total cholinea, Mean ± SD 323.88 ± 191.64 326.43 ± 195.87 314.39 ± 174.79 0.357

Vitamin B12a, Mean ± SD 4.86 ± 8.49 4.95 ± 9.26 4.55 ± 4.58 0.780

Added vitamin B12a, Mean ± SD 0.73 ± 2.20 0.72 ± 2.29 0.75 ± 1.83 0.039

Vitamin Ca, Mean ± SD 74.65 ± 83.18 75.96 ± 85.07 69.74 ± 75.61 0.156

Vitamin Ka, Mean ± SD 98.85 ± 152.05 102.20 ± 161.70 86.33 ± 107.84 0.105

Calciuma, Mean ± SD 836.60 ± 529.90 843.63 ± 528.26 810.39 ± 535.66 0.160

Phosphorusa, Mean ± SD 1,244.26 ± 625.51 1,261.34 ± 632.24 1,180.50 ± 595.94 0.005

Magnesiuma, Mean ± SD 271.52 ± 135.99 275.97 ± 137.87 254.89 ± 127.48 0.001

Irona, Mean ± SD 13.81 ± 8.41 13.79 ± 8.28 13.90 ± 8.87 0.952

Zinca, Mean ± SD 10.99 ± 14.10 10.98 ± 14.08 11.03 ± 14.22 0.367

Coppera, Mean ± SD 1.20 ± 1.43 1.22 ± 1.54 1.13 ± 0.90 0.019

Sodiuma, Mean ± SD 3,277.70 ± 1,763.71 3,307.91 ± 1,794.91 3,164.90 ± 1,638.56 0.130

Potassiuma, Mean ± SD 2,508.32 ± 1,213.01 2,539.28 ± 1,230.03 2,392.68 ± 1,140.89 0.032

Seleniuma, Mean ± SD 105.70 ± 63.20 106.97 ± 64.98 100.98 ± 55.86 0.042

Caffeinea, Mean ± SD 170.96 ± 224.48 166.99 ± 216.42 185.78 ± 251.98 0.101

Theobrominea, Mean ± SD 33.82 ± 75.45 34.76 ± 79.88 30.33 ± 55.81 0.667

Alcohola, Mean ± SD 8.25 ± 24.60 8.94 ± 25.57 5.67 ± 20.38 0.005

Moisturea, Mean ± SD 2,722.67 ± 1,409.67 2,745.09 ± 1,430.20 2,638.92 ± 1,328.08 0.213

Vitamin Da, Mean ± SD 4.27 ± 5.54 4.31 ± 5.76 4.15 ± 4.63 0.648

SD, standard deviation.
aStudent t-test.
bChi-square test.
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(0.063) (Figure  2; Supplementary Table  1). A similar trend was 
observed in the positively constrained model (adjusted OR = 0.84; 
95% CI: 0.70–1.01; p = 0.064), although not statistically significant. 
Major contributors included added vitamin B12 (0.430), alcohol 
(0.116), caffeine (0.103), and vitamin A (0.055) (Figure  3; 
Supplementary Table 2).

Feature selection for machine learning 
models

Figure 4 displays VIFs used to detect multicollinearity. Variables 
with adjusted VIFs exceeding 3 were excluded, resulting in the 
removal of 20 dietary components. These included alcohol, alpha-
carotene, beta-carotene, beta-cryptoxanthin, carbohydrates, energy, 
folate (DFE), folic acid, food folate, magnesium, monounsaturated 
fatty acids, phosphorus, polyunsaturated fatty acids, protein, retinol, 
saturated fatty acids, total choline, total fat, total folate, and 
vitamin A.

The BORUTA algorithm then identified 36 variables with 
significant contributions to the comorbidity of diabetes and 
hypertension. These included 10 demographic variables (age, 
hypertension, sex, diabetes, race/ethnicity, income-to-poverty ratio, 
smoking, education, alcohol use, BMI) and 26 dietary factors (caffeine, 
added vitamin B12, theobromine, potassium, calcium, sodium, 
moisture, vitamins D, B2, K, niacin, cholesterol, B12, B1, selenium, 
iron, copper, B6, total sugar, zinc, dietary fiber, alpha-tocopherol, 
lutein + zeaxanthin, lycopene, vitamin E, and vitamin C) (Figure 5). 

Supplementary Figure 2 shows Z-score trends across iterations for 
feature selection.

Construction and evaluation of machine 
learning models

Figures 6 and 7 present heatmaps for six machine learning models: 
Random Forest, LightGBM, K-KNN, Naive Bayes, SVM, and 
XGBoost. These models were trained and validated using demographic 
and dietary variables. Performance was evaluated using AUC-ROC 
(Figures 8–10), AUC-PR (Figures 11–13), accuracy (Figure 14), F beta 
score (Figure 15), sensitivity (Supplementary Figure 1), and specificity 
(Supplementary Figure 2).

In the training set, Random Forest achieved the best performance 
across all metrics: accuracy (0.813), F beta (0.852), AUC-ROC (0.881), 
sensitivity (0.934), specificity (0.647), and AUC-PR (0.894). XGBoost 
and LightGBM followed closely, with AUC-ROC values of 0.872 and 
0.869, AUC-PR of 0.882 and 0.873, accuracy of 0.792 and 0.799, and 
F-beta scores of 0.828 and 0.837. K-KNN and SVM showed moderate 
performance, while Naive Bayes had the lowest metrics, particularly 
AUC-ROC (0.675) and AUC-PR (0.708) (Table 3). In the validation 
set, Random Forest again outperformed other models, with accuracy 
(0.823), F beta (0.862), AUC-ROC (0.890), sensitivity (0.940), 
specificity (0.656), and AUC-PR (0.908) (Table  4), confirming its 
superior generalizability.

When only dietary variables were used, Random Forest 
remained the best-performing model. In the training set, it 

FIGURE 2

WQS regression weight plot with unconstrained coefficients.
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FIGURE 4

Scatter plot of variance inflation factors (VIFs) across different features. Red points indicate the presence of multicollinearity, while blue points indicate 
its absence.

FIGURE 3

WQS regression weight plot with coefficients constrained to be positive.
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achieved an accuracy of 0.725, F beta of 0.786, AUC-ROC of 
0.770, sensitivity of 0.875, specificity of 0.519, and AUC-PR of 
0.799. XGBoost and LightGBM showed comparable results: 
AUC-ROC of 0.761 and 0.757, AUC-PR of 0.796 and 0.791, 
accuracy of 0.698, and F beta scores of 0.748 and 0.750 (Table 5). 
In the validation set, Random Forest again led all metrics: 

accuracy (0.747), F beta (0.805), AUC-ROC (0.811), sensitivity 
(0.883), specificity (0.550), and AUC-PR (0.828) (Table 6).

Across all analyses, Random Forest consistently demonstrated 
superior performance regardless of input variable type. Statistically 
significant differences in model performance were observed in all 
comparisons (p < 0.001) (Tables 3–6).

FIGURE 5

Feature selection results using the BORUTA algorithm.

FIGURE 6

Heatmap comparing the performance of six machine learning models incorporating both demographic characteristics and dietary nutrients. 
(A) Training set; (B) Validation set.
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FIGURE 9

ROC curves for six machine learning models using only dietary nutrients. (A) Training set; (B) Validation set.

FIGURE 7

Heatmap comparing the performance of six machine learning models using only dietary nutrients. (A) Training set; (B) Validation set.

FIGURE 8

Receiver operating characteristic (ROC) curves for six machine learning models incorporating both demographic characteristics and dietary nutrients. 
(A) Training set; (B) Validation set.
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FIGURE 10

Raincloud plots showing the area under the ROC curve (AUC) for six machine learning models. (A) With both demographic characteristics and dietary 
nutrients; (B) With only dietary nutrients.

FIGURE 11

Precision-recall (PR) curves for six machine learning models incorporating both demographic characteristics and dietary nutrients. (A) Training set; 
(B) Validation set.

FIGURE 12

PR curves for six machine learning models using only dietary nutrients. (A) Training set; (B) Validation set.
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FIGURE 15

Raincloud plots of F-beta scores across six machine learning models. (A) Incorporating both demographic characteristics and dietary nutrients; 
(B) Using only dietary nutrients.

FIGURE 13

Raincloud plots of PR-AUC scores for six machine learning models. (A) Incorporating both demographic characteristics and dietary nutrients; (B) Using 
only dietary nutrients.

FIGURE 14

Raincloud plots displaying model accuracy for six machine learning algorithms. (A) Models incorporating both demographic characteristics and dietary 
nutrients; (B) Models using only dietary nutrients.
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Interpretation of feature importance using 
SHAP and LIME

The SHAP algorithm was employed to interpret feature 
contributions to CHD risk prediction in individuals over age 50 with 
accelerated aging. Two scenarios were considered: one including both 
demographic and dietary variables, and one using dietary variables 
alone. Supplementary Figure 3 illustrates the top 25 features under 
each scenario using the Random Forest model, with SHAP values 
quantifying each feature’s importance.

When both demographic and dietary variables were included, 
Age (SHAP = 0.0509) and Hypertension (0.0472) were the 
strongest positive contributors. Negative contributors included 
vitamin B12 (0.0107), lycopene (0.0101), potassium (0.0097), 
total sugar (0.0081), and lutein + zeaxanthin (0.0075). In the 
dietary-only model, vitamin B12 (0.0365), lycopene (0.0256), 
theobromine (0.0193), total sugar (0.0187), and lutein + 
zeaxanthin (0.0160) had the strongest negative contributions, 
while caffeine (0.0231) and cholesterol (0.0113) contributed  
positively.

TABLE 3  Performance metrics of six machine learning models in the training set incorporating both demographic characteristics and dietary nutrients.

Model Accuracy F Beta Area under 
the ROC 

curve

Sensitivity Specificity Area under 
the PR curve

Random Forest 0.813 0.852 0.881 0.934 0.647 0.894

Light GBM 0.799 0.837 0.869 0.894 0.666 0.873

K-KNN 0.691 0.687 0.773 0.583 0.838 0.822

Naive Bayes 0.530 0.427 0.675 0.304 0.841 0.708

SVM 0.755 0.799 0.800 0.834 0.645 0.833

XGBoost 0.792 0.828 0.872 0.867 0.684 0.882

p <.001a <.001a <.001b <.001a <.001a <.001a

aANOVA test.
bKruskal-Wallis.

TABLE 4  Performance metrics of six machine learning models in the validation set incorporating both demographic characteristics and dietary 
nutrients.

Model Accuracy F Beta Area under 
the ROC 

curve

Sensitivity Specificity Area under 
the PR curve

Random Forest 0.823 0.862 0.890 0.940 0.656 0.908

Light GBM 0.811 0.850 0.872 0.906 0.676 0.884

K-KNN 0.711 0.713 0.811 0.607 0.867 0.866

Naive Bayes 0.525 0.415 0.684 0.287 0.871 0.725

SVM 0.747 0.795 0.820 0.831 0.628 0.866

XGBoost 0.811 0.847 0.865 0.890 0.700 0.873

p <.001a <.001a <.001b <.001a <.001a <.001a

aANOVA test.
bKruskal-Wallis.

TABLE 5  Performance metrics of six machine learning models in the training set using only dietary nutrients.

Model Accuracy F Beta Area under 
the ROC 

curve

Sensitivity Specificity Area under 
the PR curve

Random Forest 0.725 0.786 0.770 0.875 0.519 0.799

Light GBM 0.698 0.750 0.757 0.787 0.576 0.791

K-KNN 0.655 0.661 0.710 0.582 0.757 0.762

Naive Bayes 0.500 0.375 0.572 0.259 0.832 0.650

SVM 0.629 0.724 0.647 0.842 0.339 0.717

XGBoost 0.698 0.748 0.761 0.776 0.593 0.796

p <.001a <.001a <.001b <.001a <.001a <.001a

aANOVA test.
bKruskal-Wallis.
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Force plots and waterfall plots (Supplementary Figures 4, 5) were 
used to visualize individual-level predictions. In the combined model, 
the baseline CHD prediction was 0.584, increasing to 0.889 after 
accounting for feature contributions. In the dietary-only model, the 
baseline was 0.593 and rose to 0.737 after feature inclusion.

SHAP interaction dependency plots further illustrated the 
nonlinear relationships between key dietary nutrients and CHD 
risk (Supplementary Figures 6, 7). In the fully adjusted model, 
higher intakes of caffeine, lycopene, potassium, total sugar, 
vitamin B12, and lutein + zeaxanthin were associated with lower 
SHAP values, indicating protective effects, with notable 
interactions by age, sex, and hypertension status 
(Supplementary Figure 6). Similar trends were observed in the 
unadjusted model using dietary variables alone, though effect 
magnitudes were slightly attenuated (Supplementary Figure 7). 
LIME explanations for individual predictions 
(Supplementary Figures 8, 9) consistently identified vitamin B6, 
dietary fiber, zinc, vitamin B12, and lutein + zeaxanthin as key 
negative contributors to CHD risk, reinforcing the robustness of 
these findings across adjusted and unadjusted models.

Discussion

Using data from NHANES and multiple machine learning models, 
this study explored the relationship between dietary nutrient intake 
and the risk of CHD in adults aged 50 and above who exhibit signs of 
accelerated aging. After adjusting for potential confounders, we found 
that specific combinations of dietary nutrients were associated with a 
reduced risk of CHD. Among the models evaluated, the random forest 
model demonstrated superior predictive performance. Interpretation 
through SHAP and LIME revealed that higher intakes of vitamin B12 
and lutein + zeaxanthin were inversely associated with CHD risk. 
These findings suggest that both nutrients may offer protective 
benefits against CHD in older adults experiencing accelerated aging.

The inverse association between vitamin B12 and CHD risk aligns 
with substantial evidence on its role in homocysteine metabolism. 
Vitamin B12 deficiency can elevate homocysteine levels—a known 
cardiovascular risk factor due to its effects on endothelial dysfunction 
and atherosclerosis (24, 25). Huang et al. reported that vitamin B12 
deficiency, commonly observed in older adults due to reduced 
absorption, increases cardiovascular risk, particularly in individuals 

with dietary restrictions such as vegetarians (26). A large-scale 
population-based study further supported these findings by showing 
that adequate vitamin B12 intake may help reduce cardiovascular 
events (27). These results highlight the importance of maintaining 
sufficient vitamin B12 intake for cardiovascular health, especially 
among aging individuals.

Similarly, lutein and zeaxanthin—carotenoids with strong 
antioxidant properties—have been associated with cardiovascular 
protection. Nicolantonio et  al. found that these compounds may 
reduce CHD risk by attenuating oxidative stress and inflammation 
(28). A Swedish study also found significantly lower plasma levels of 
lutein and zeaxanthin in patients with coronary artery disease 
compared to healthy controls, further reinforcing their protective 
potential (29). Our findings are consistent with these observations, 
showing that higher dietary intake of these carotenoids is linked to 
reduced CHD risk. Their mechanisms—such as neutralizing free 
radicals and lowering inflammatory markers like interleukin-6—are 
especially relevant in the context of accelerated aging (30).

However, some discrepancies remain. For example, a prospective 
cohort study by Zhang et al. using NHANES data found no significant 
association between serum vitamin B12 levels and mortality in 
patients with existing CHD (31). Interestingly, the study identified 
methylmalonic acid (MMA), a marker of functional vitamin B12 
deficiency, as a stronger predictor of cardiovascular mortality. This 
suggests that functional status may be  more relevant than serum 
levels. Our study assessed dietary intake rather than serum 
concentrations, which may more accurately reflect long-term 
adequacy and could explain the differing results. Furthermore, the 
application of machine learning in our study allowed us to capture 
complex, non-linear associations that might be missed by traditional 
statistical methods.

With regard to lutein and zeaxanthin, findings from the 
Age-Related Eye Disease Study 2 (AREDS2) indicated that 
supplementation with these carotenoids did not significantly reduce 
cardiovascular events in older adults with age-related macular 
degeneration (32). This contrasts with our results, which highlight a 
protective association with dietary intake. The discrepancy may stem 
from differences in study populations; participants in AREDS2 had a 
specific ocular disease and may not represent older adults 
experiencing accelerated aging. Additionally, nutrients consumed in 
whole foods may exert effects through synergistic interactions not 
replicated by supplements (33). Differences in bioavailability between 

TABLE 6  Performance metrics of six machine learning models in the validation set using only dietary nutrients.

Model Accuracy F Beta Area under 
the ROC 

curve

Sensitivity Specificity Area under 
the PR curve

Random Forest 0.747 0.805 0.811 0.883 0.550 0.828

Light GBM 0.743 0.790 0.788 0.822 0.627 0.806

K-KNN 0.680 0.690 0.740 0.602 0.794 0.793

Naive Bayes 0.482 0.334 0.594 0.220 0.865 0.667

SVM 0.642 0.728 0.688 0.810 0.400 0.751

XGBoost 0.735 0.780 0.797 0.799 0.641 0.812

p <.001a <.001a <.001b <.001a <.001a <.001a

aANOVA test.
bKruskal-Wallis.
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dietary and supplemental forms may also contribute to inconsistent 
outcomes (34).

A particularly notable finding from our analysis is the strong 
protective role of vitamin B12 and lutein + zeaxanthin in reducing 
CHD risk among individuals with accelerated aging. While previous 
research has demonstrated cardiovascular benefits of these nutrients, 
their specific impact in this high-risk subgroup has been 
underexplored. Our findings emphasize their potential as practical 
dietary targets for individuals with advanced biological aging. 
Focusing on these nutrients may aid in the development of 
personalized nutritional interventions to reduce CHD risk and 
improve health outcomes in this vulnerable population.

By linking specific dietary nutrients to reduced CHD risk within 
the framework of accelerated aging, our findings contribute to the 
broader field of nutritional epidemiology (5). Accelerated aging is 
characterized by heightened oxidative stress and inflammation—both 
central to CHD pathogenesis (35, 36). The COVID-19 pandemic has 
highlighted the critical interplay between nutrition, inflammation, 
and cardiovascular health (37, 38). Research also underscores that 
maintaining optimal levels of key nutrients is critical for mitigating 
inflammation and oxidative stress to enhance immune function in 
COVID-19 patients, given that these two processes are shared 
foundational mechanisms for both chronic diseases, such as coronary 
heart disease, and susceptibility to severe infections (39). Vitamin 
B12 lowers homocysteine levels, supporting vascular health, while 
lutein and zeaxanthin provide antioxidant protection that mitigates 
oxidative damage, a hallmark of aging and cardiovascular disease 
(12). These mechanisms reinforce the relevance of our results and 
support dietary strategies tailored to biological aging. This aligns with 
the principles of personalized nutrition, which advocates for 
customizing dietary recommendations based on an individual’s 
physiological age and health status (40). Our findings offer a 
straightforward strategy for clinical practice: advising high-risk older 
adults, identified by phenotypic age acceleration, to consume more 
foods rich in vitamin B12 (such as fish, meat, and dairy products) and 
lutein + zeaxanthin (such as spinach, kale, and corn).

Several limitations of this study should be acknowledged. First, the 
cross-sectional nature of NHANES data limits causal inference, and 
reverse causality remains possible—individuals with CHD may have 
changed their dietary habits. Second, although machine learning 
models such as random forests can detect complex, non-linear patterns, 
their interpretability is limited, even with tools like SHAP and 
LIME. Third, residual confounding from unmeasured factors—such as 
genetics or socioeconomic status—may have influenced the observed 
associations. Fourth, dietary data were based on two 24-h recalls, which 
may not accurately reflect habitual intake and are subject to recall bias. 
Lastly, since our analysis is based on NHANES data, generalizability 
may be  limited, particularly for older adults in different cultural or 
geographic settings.

Conclusion

In conclusion, this study shows that higher dietary intakes of 
vitamin B12 and lutein + zeaxanthin are associated with a lower 

risk of coronary heart disease in older adults experiencing 
accelerated aging. These findings provide valuable insights for 
developing targeted dietary strategies. Future research should aim 
to confirm these associations through longitudinal cohorts and 
more diverse populations such as COVID-19 patients, explore the 
underlying mechanisms, confirm causality and support 
personalized nutrition strategies and evaluate their generalizability 
across diverse populations.
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unconstrained coefficients.
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Weights of dietary nutrient mixtures in WQS regression with coefficients 
constrained to be positive.
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Raincloud plots of model sensitivity for six machine learning models. (A) With 
both demographic characteristics and dietary nutrients; (B) With only 
dietary nutrients.

SUPPLEMENTARY FIGURE 2

Raincloud plots of model specificity for six machine learning models. (A) With 
both demographic characteristics and dietary nutrients; (B) With only dietary 

nutrients. SUPPLEMENTARY FIGURE 3 SHAP (SHapley Additive exPlanations) 
analysis of feature importance in the best-performing model. (A) Considering 
both demographic characteristics and dietary nutrients; (B) Considering only 
dietary nutrients.

SUPPLEMENTARY FIGURE 4

Force and waterfall plots showing individual-level predictions and feature 
contributions for the best-performing model incorporating both 
demographic characteristics and dietary nutrients.

SUPPLEMENTARY FIGURE 5

Force and waterfall plots showing individual-level predictions and feature 
contributions for the best-performing model using only dietary nutrients.

SUPPLEMENTARY FIGURE 6

SHAP interaction dependency plots illustrating the relationships between the 
top six dietary nutrients and SHAP values, considering both demographic 
characteristics and dietary nutrients.

SUPPLEMENTARY FIGURE 7

SHAP interaction dependency plots illustrating the relationships between the 
top six dietary nutrients and SHAP values, considering only dietary nutrients.

SUPPLEMENTARY FIGURE 8

Local Interpretable Model-Agnostic Explanations (LIME) for individual 
predictions from the best-performing model incorporating both 
demographic characteristics and dietary nutrients.

SUPPLEMENTARY FIGURE 9

LIME analysis for individual predictions from the best-performing model 
using only dietary nutrients.

SUPPLEMENTARY FIGURE 10

Bar plot illustrating class imbalance before and after Synthetic Minority Over-
sampling Technique (SMOTE) processing.

SUPPLEMENTARY FIGURE 11

Trends in standardized Z-scores of selected features throughout the BORUTA 
selection process
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