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Interpretable prediction of
coronary heart disease risk in
adults over 50 with accelerated
aging using 45 dietary nutrients

Zhi-giang Yang® and Xiao-hong Zhang*

Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China

Background: The relationship between dietary nutrient intake and coronary
heart disease (CHD) risk among older adults with accelerated aging remains
inadequately understood.

Methods: This study analyzed data from seven cycles of the National Health and
Nutrition Examination Survey (NHANES) conducted in the United States between
2005 and 2018. Weighted Quantile Sum (WQS) regression was employed to
evaluate the association between dietary nutrient mixtures and CHD risk in
individuals aged 50 and older with accelerated aging. Additionally, six machine
learning models were developed, with SHAP and LIME algorithms applied to
assess the contribution of individual nutrients to CHD risk.

Results: In the fully adjusted model, dietary nutrient mixtures were inversely
associated with CHD risk in older adults experiencing accelerated aging
(adjusted OR = 0.90, 95% CI: 0.81-0.99, p = 0.048). Both SHAP and LIME
analyses consistently identified vitamin B12 and lutein + zeaxanthin as protective
nutrients, independent of demographic adjustments.

Conclusion: Among adults aged 50 and older with accelerated aging, higher
intake of specific dietary nutrients was associated with reduced CHD risk. Of the
machine learning models tested, the random forest algorithm demonstrated the
strongest predictive performance. SHAP and LIME analyses jointly highlighted
vitamin B12 and lutein + zeaxanthin as key contributors to the reduced CHD risk
in this high-risk population.

KEYWORDS

dietary nutrients, aging, phenotypic age acceleration, coronary heart disease, NHANES

Introduction

Coronary heart disease (CHD) remains a leading cause of morbidity and mortality in
older adults, particularly those experiencing accelerated aging—a condition in which
biological age exceeds chronological age. This discrepancy indicates increased vulnerability to
age-related diseases, including CHD (1). Accelerated aging is often assessed using phenotypic
age acceleration (PhenoAgeAccel), a biomarker-based metric that reflects physiological decline
driven by systemic inflammation and oxidative stress, both of which are central to CHD
pathogenesis (2, 3). Given that diet is a modifiable risk factor, understanding its role in CHD
among individuals with accelerated aging has substantial clinical and public health significance.

Accelerated aging is characterized by a faster rate of biological deterioration, typically
quantified by phenotypic age. This biomarker integrates chronological age with nine clinical
indicators—such as glucose, C-reactive protein, and creatinine—to capture metabolic,
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inflammatory, and organ function status (4). PhenoAgeAccel is
defined as the difference between phenotypic and chronological age;
positive values denote accelerated aging. This metric is a strong
predictor of morbidity and mortality, underscoring its relevance in
aging research and clinical risk assessment (1, 4).

The prevalence of accelerated aging is particularly high among
adults aged 50 and older and is influenced by lifestyle behaviors,
socioeconomic status, comorbidities, and environmental exposures
(5). Favorable cardiovascular health is typically associated with
negative PhenoAgeAccel scores, whereas poor cardiovascular profiles
are linked to positive values (6). Modifiable factors—such as smoking,
physical inactivity, poor diet, and obesity—contribute significantly to
accelerated aging and increase the risk of conditions like diabetes,
frailty, cognitive decline, and cardiovascular disease (2, 7).
Additionally, genetic predisposition and exposure to pollutants may
further exacerbate biological aging (8).

Mechanistically, accelerated aging increases CHD risk through
heightened inflammation and oxidative stress, which promote
endothelial dysfunction and atherogenesis (3, 9). In a study of 609
patients with multivessel coronary artery disease, higher phenotypic
age was significantly associated with increased all-cause mortality,
reinforcing its prognostic relevance in cardiovascular care (10).
Similarly, epigenetic age acceleration has been linked to unfavorable
cardiometabolic profiles and higher cardiovascular risk scores,
especially in high-risk populations (11). These findings emphasize the
critical role of biological aging in CHD development.

Dietary nutrients play a key role in regulating systemic
inflammation and oxidative stress—both integral to aging and CHD
pathogenesis (12, 13). Several nutrients, such as vitamin E, vitamin
C, and omega-3 fatty acids, have been widely studied for their
antioxidant and anti-inflammatory effects (14-18). Vitamin E, a
lipid-soluble antioxidant, protects cell membranes by neutralizing
reactive oxygen species (ROS) and suppressing pro-inflammatory
cytokines like interleukin-6 (IL-6) and tumor necrosis factor-alpha
(TNF-a) (14, 15). High doses (=700 mg/day) have been associated
with reductions in C-reactive protein (CRP) levels and
improvements in insulin resistance (14), with well-documented
protective effects against oxidative stress-related diseases, including
CHD (15). Vitamin C, a water-soluble antioxidant, scavenges ROS,
regenerates oxidized vitamin E, and lowers inflammatory markers
such as CRP and IL-6 (16, 17). These actions help reduce oxidative
damage in conditions like metabolic syndrome and may lower CHD
risk (17). Omega-3 fatty acids—especially eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA)—reduce inflammation by
inhibiting pro-inflammatory eicosanoids and cytokines while
promoting the synthesis of pro-resolving mediators (18, 19).
Though these nutrients have been associated with reduced
cardiovascular mortality and nonfatal myocardial infarction, data
specific to older adults remain limited (20).

These bioactive compounds also modulate key inflammatory
pathways, such as NF-kB and the NLRP3 inflammasome, and intersect
with diseases influenced by chronic inflammation and oxidative
diabetes, and
neurodegenerative disorders (14-19). However, their efficacy may

stress—including  cardiovascular  disease,
vary depending on factors such as dosage, bioavailability, and
individual metabolic status.

Although nutrients like vitamin E, vitamin C, and omega-3 fatty

acids show potential for mitigating inflammation and oxidative stress
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in the general population, their specific effects on CHD risk in older
adults with accelerated aging remain unclear (12, 13). Potential
mechanisms include reducing endothelial dysfunction and slowing
atherogenesis through antioxidant and anti-inflammatory actions (9,
13). Nevertheless, few clinical trials have focused on this high-risk
subgroup, and the complex interplay between biological aging,
nutrient metabolism, and cardiovascular outcomes remains
underexplored (21).

In response to this knowledge gap, the present study analyzed
NHANES data to examine the association between various dietary
nutrients—including carbohydrates, fiber, vitamins, and minerals—
and CHD risk in individuals aged 50 and above with elevated
PhenoAgeAccel. By integrating machine learning models capable
of capturing nonlinear and interactive nutrient effects (22, 23), the
study aimed to identify key dietary predictors and inform targeted
nutritional strategies for CHD prevention in this aging population.

Materials and methods
Study population

The NHANES, conducted by the National Center for Health
Statistics (NCHS), evaluates the health and nutritional status of the
non-institutionalized U. S. population. This study utilized NHANES
data from 2005 to 2018, initially comprising 70,190 participants. After
applying exclusion criteria, 67,515 individuals were removed for the
following reasons: (1) age under 50 years (n = 50,495); (2) missing
data needed for calculating phenotypic age and PhenoAgeAccel
(n =15,696); (3) absence of CHD information (n = 40); (4) missing
dietary micronutrient data (n=805); (5) missing education
information (n = 4); and (6) missing data on PIR, BMI, smoking,
hypertension, or alcohol use (n = 475). The final analytical sample
included 2,675 participants (Figure 1).

Assessment of dietary micronutrients

Micronutrient intake, including vitamins and carbohydrates,
was assessed using 24-h dietary recall data collected during the
first and second interview days of NHANES. The first interview
was conducted in person at the Mobile Examination Center
(MEC), while the second was administered by telephone several
days later. Both interviews were conducted by trained professionals
using the Automated Multiple-Pass Method (AMPM), which
enables comprehensive and standardized documentation of food
and beverage consumption.

Assessment of coronary heart disease

CHD status was determined based on participants’ self-reported

» <«

physician diagnoses, including “coronary heart disease,” “angina
pectoris;” and “heart attack” Data were collected through in-person
interviews conducted by trained personnel using the Computer-
Assisted Personal Interviewing (CAPI) system. Relevant items were
derived from the Medical Conditions Questionnaire (MCQ).

Participants were classified as having CHD if they responded “yes” to
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FIGURE 1
Flowchart illustrating the study design and participant selection process.
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Final inclusion of participants (n=2675)
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any of the diagnoses of “coronary heart disease,” “angina pectoris,” or
“heart attack”

Assessment of phenotypic age and
PhenoAgeAccel

Phenotypic age was calculated using the algorithm developed by
Levine et al., which integrates chronological age with nine biomarkers:
albumin, creatinine, glucose, log-transformed C-reactive protein
(CRP), lymphocyte percentage, mean cell volume, red cell distribution
width, alkaline phosphatase, and white blood cell count. The
calculation was performed using a Cox proportional hazards elastic
net model with 10-fold cross-validation. Phenotypic age acceleration
was defined as the residual from a linear regression of phenotypic age
on chronological age. Negative values indicated a biologically younger
state, while positive values indicated a biologically older state. The
complete formula used in the calculation is provided below:

In[ -0.00553xIn(1-M) |
0.09165

Phenotypic Age =141.50+

Where

—1.51714><exp(xb)]

M=1-ex
p( 0.0076927
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xb=-19.907 +0.0804 x Chronological Age —0.0336

x Albumin+0.0095x Creatinine +0.1953

xGlucose +0.0954x In(CRP) —0.0120

x LymphocytePercent +0.0268 x MeanCellVolume
+0.3306 x RedCellDistribution Width +0.00188

x AlkalinePhosphatase +0.0554 x WhiteBloodCellCount

Covariates

Sociodemographic and lifestyle covariates included age, sex, race/
ethnicity (Mexican American, Other Hispanic, Non-Hispanic White,
Non-Hispanic Black, Other Race), education level (<9th grade, 9-11th
grade, high school diploma/GED, some college/AA degree, >college
graduate), family income-to-poverty ratio (PIR), BMI, smoking status,
alcohol use, hypertension, and diabetes. Hypertension was defined as a
self-reported physician diagnosis and current use of antihypertensive
medication. Diabetes was defined as physician-diagnosed diabetes, a
2-h  OGTT glucose >11.1 mmol/L,
>7.0 mmol/L. Prediabetes was defined as a prior diagnosis or

or fasting glucose
intermediate glucose levels (2-h glucose 7.8-11.1 mmol/L or fasting
glucose 6.1-6.9 mmol/L). Smoking status was categorized as never/
long-term former (never smoked or quit >1 year ago) or current smoker
(smoked within the past 30 days, smoked upon waking, or smoked >2
cigarettes/day after quitting). Drinking status was classified as lifetime
abstainer (<12 drinks in lifetime) or current drinker (>12 drinks/year
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or drinking on >6 occasions in the past 12 months). BMI was calculated
as weight in kilograms divided by height in meters squared (kg/m?).

Feature preprocessing and selection for
machine learning

A total of 56 features were considered, including 49 continuous
and 7 categorical variables. Features with variance inflation factors
(VIF) > 3, adjusted for degrees of freedom, were excluded to reduce
multicollinearity. To address class imbalance and improve recognition
of the minority class, the Synthetic Minority Over-sampling Technique
(SMOTE) was applied. SMOTE generates synthetic data points by
interpolating between existing samples and their k-nearest neighbors,
thereby enhancing dataset balance (Supplementary Figure 1). All
variables were standardized to minimize disproportionate influence
due to differing scales.

Feature selection was performed using the Boruta algorithm, a
random forest-based method that evaluates feature importance over
500 iterations by comparing real features with randomized shadow
features. Only features classified as “confirmed” were retained for
model development.

Statistical analyses

All statistical procedures followed NHANES analytical

guidelines. Continuous variables were presented as
means + standard deviations (SD), and categorical variables as
frequencies and percentages. Group comparisons used chi-square
tests for categorical variables and Student’s t-tests for continuous
variables. To examine the joint effect of dietary micronutrient
mixtures on CHD in older adults with accelerated aging, Weighted
Quantile Sum (WQS) regression was employed. Weights for each
nutrient component were estimated using 1,000 bootstrap
iterations. Data were randomly split into training (60%) and
testing (40%) sets to enhance model reliability.

To avoid overfitting, a 6:4 training-validation split was
maintained throughout model construction. Six machine learning
models were developed using the MLR3 framework: Random
Forest, LightGBM, K-Nearest Neighbors (KNN), Naive Bayes,
Support Vector Machine (SVM), and XGBoost. Random Forest:
Aggregates multiple decision trees to deliver robust predictions
and is inherently resistant to overfitting. LightGBM: An efficient
gradient-boosted decision tree model optimized for speed,
memory usage, and parallel computation. K-NN: Classifies
samples based on proximity to neighbors; performs well on small
or non-linear datasets. Naive Bayes: A fast, probabilistic classifier
based on Bayes’ theorem, effective even with missing values. SVM:
Identifies optimal hyperplanes to separate classes, particularly
effective in high-dimensional data. XGBoost: A highly efficient
gradient boosting framework that balances accuracy and
computational efficiency.

Model performance was evaluated using standardized datasets
and the following six metrics: accuracy, F beta score, area under
the ROC curve (AUC-ROCQ), sensitivity, specificity, and area
under the precision-recall curve (AUC-PR). AUC-ROC was used

as the primary evaluation metric. Ten-fold cross-validation was

Frontiers in Nutrition

10.3389/fnut.2025.1666644

applied to enhance generalizability. ANOVA and Kruskal-Wallis
H tests were used to compare model performance metrics.

To enhance model interpretability, SHAP (SHapley Additive
exPlanations) and LIME (Local Interpretable Model-Agnostic
Explanations) were used. SHAP, grounded in cooperative game
theory, quantifies each feature’s contribution by considering all
feature combinations, thus offering transparent and consistent
interpretations. LIME creates interpretable local approximations
(e.g.
complex models.

linear models) to explain predictions made by
All statistical analyses were conducted using IBM SPSS
Statistics (version 24.0) and R (version 4.5.0). A two-tailed p-value

< 0.05 was considered statistically significant.

Results

Participant characteristics by coronary
heart disease status

Table 1 presents baseline characteristics of older adults aged
50 years and above with accelerated aging, stratified by CHD
status. A total of 2,675 participants from NHANES 2005-2018
were included. The mean age was 65.62 years (SD =9.38),
comprising 902 females (33.72%) and 1,773 males (66.28%).
Among them, 565 individuals were diagnosed with CHD, with a
higher mean age of 69.53 years (SD = 8.52).

Compared with participants without CHD, those with CHD
had significantly lower intakes of several dietary components,
including energy (1,831.58 vs. 2,008.67 kcal, p < 0.001), protein
(71.01 vs. 76.52 g, p = 0.002), carbohydrates (217.45 vs. 240.12 g,
p <0.001), total sugar (94.39 vs. 105.44 g, p < 0.001), dietary fiber
(14.57 vs. 15.71g, p=0.022), total fat (73.43 vs. 78.21¢g,
p =0.033), polyunsaturated fatty acids (16.38 vs. 17.68 g,
p = 0.006), alpha-carotene (319.46 vs. 352.58 pg, p = 0.039), niacin
(21.94 vs. 23.56 mg, p = 0.022), vitamin B6 (1.74 vs. 1.89 mg,
p =0.030), total folate (364.50 vs. 339.76 pg, p = 0.037), food
folate (179.48 vs. 203.16 pg, p = 0.003), phosphorus (1,180.50 vs.
1,261.34 mg, p =0.005), magnesium (254.89 vs. 275.97 mg,
p=0.001), copper (1.13 vs. 1.22mg, p=0.019), potassium
(2,392.68 vs. 2,539.28 mg, p =0.032), selenium (100.98 vs.
106.97 pg, p = 0.042), and alcohol (5.67 vs. 8.94 g, p = 0.005).

In contrast, individuals with CHD had higher intakes of alpha-
tocopherol (0.72 vs. 0.48 mg, p < 0.033) and added vitamin B12 (0.75
vs. 0.72 pg, p = 0.039).

Association between dietary nutrient
mixtures and CHD risk

Table 2 presents results from the WQS regression, which assessed
associations between dietary nutrient mixtures and CHD risk in older
adults with accelerated aging. After adjustment for potential
confounders (age, sex, race/ethnicity, education, income-to-poverty
ratio, BMI, smoking, and alcohol use), an inverse association was
observed in the unconstrained model (adjusted OR = 0.90; 95% CI:
0.81-0.99; p =0.048). The primary contributors were alcohol
(weight = 0.281), selenium (0.108), protein (0.100), and cholesterol
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TABLE 1 Baseline characteristics of the study participants.

10.3389/fnut.2025.1666644

Characteristic Overall No Coronary heart Coronary heart
N = 2,675 disease disease
N =2,110 N = 565
Age (year)*, Mean + SD 65.62 +9.38 64.57 £ 9.33 69.53 £ 8.52 <0.001
Sex® 1 (%) <0.001
Female 902 (33.72%) 754 (35.73%) 148 (26.19%)
Male 1,773 (66.28%) 1,356 (64.27%) 417 (73.81%)
Race/ethnicity®, n (%) <0.001
Mexican 354 (13.23%) 303 (14.36%) 51 (9.03%)
Other Hispanic 254 (9.50%) 207 (9.81%) 47 (8.32%)
Non-Hispanic White 1,253 (46.84%) 921 (43.65%) 332 (58.76%)
Non-Hispanic Black 652 (24.37%) 552 (26.16%) 100 (17.70%)
Other Race 162 (6.06%) 127 (6.02%) 35 (6.19%)
Education®, n (%) 0.569
Less Than 9th 378 (14.13%) 289 (13.70%) 89 (15.75%)
9-11th 418 (15.63%) 328 (15.55%) 90 (15.93%)
High School 700 (26.17%) 554 (26.26%) 146 (25.84%)
Some College 741 (27.70%) 583 (27.63%) 158 (27.96%)
College Graduate 438 (16.37%) 356 (16.87%) 82 (14.51%)
Family income to poverty ratio®, Mean + SD 2.36 £ 1.53 2.39+1.55 224 +1.46 0.082
BMI*, Mean + SD 31.62 £ 7.65 31.59 £ 7.74 31.74+7.27 0.277
Smoking status®, n (%) 0.223
No 2,075 (77.57%) 1,626 (77.06%) 449 (79.47%)
Yes 600 (22.43%) 484 (22.94%) 116 (20.53%)
Drinking status®, n (%) 0.890
No 336 (12.56%) 266 (12.61%) 70 (12.39%)
Yes 2,339 (87.44%) 1,844 (87.39%) 495 (87.61%)
Hypertension®, n (%) <0.001
No 892 (33.35%) 780 (36.97%) 112 (19.82%)
Yes 1,783 (66.65%) 1,330 (63.03%) 453 (80.18%)
Diabetes®, n (%) <0.001
No 1,230 (45.98%) 1,025 (48.58%) 205 (36.28%)
Yes 1,100 (41.12%) 816 (38.67%) 284 (50.27%)
Borderline 345 (12.90%) 269 (12.75%) 76 (13.45%)
Energy*, Mean + SD 1,971.27 +918.15 2,008.67 +934.49 1,831.58 + 840.57 <0.001
Protein®, Mean + SD 75.36 + 39.56 76.52 + 40.27 71.01 £36.53 0.002
Carbohydrate’, Mean + SD 235.33 £115.75 240.12 £ 117.63 217.45 £ 106.66 <0.001
Total Sugar?, Mean + SD 103.11 £71.17 105.44 +£72.29 94.39 + 66.16 <0.001
Dietary fiber*, Mean + SD 15.47 £9.64 15.71 £9.77 14.57 £9.06 0.022
Total Fat®, Mean + SD 77.20 + 44.99 78.21 + 45.62 73.43 £42.40 0.033
Saturated fatty acids®, Mean + SD 25.12+16.12 2542 +16.55 23.97 £ 14.32 0.176
Monounsaturated fatty acids®, Mean + SD 27.60 + 16.77 27.92+17.01 26.43 + 15.80 0.090
Polyunsaturated fatty acids®, Mean + SD 17.40 +11.91 17.68 +11.93 16.38 +11.78 0.006
Cholesterol*, Mean + SD 291.70 £ 231.02 292.37 £232.67 289.21 £ 224.97 0.659
Vitamin E as alpha-tocopherol?, Mean + SD 7.50 + 5.63 7.57 +5.67 7.24 £5.50 0.083
(Continued)
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TABLE 1 (Continued)

10.3389/fnut.2025.1666644

Characteristic Overall No Coronary heart Coronary heart
N = 2,675 disease disease
N =2,110 N =565

Alpha-tocopherol’, Mean + SD 0.53 £2.91 0.48 £2.84 0.72 £3.17 0.033
Retinol*, Mean + SD 395.43 £ 618.31 394.87 + 662.97 397.55 £ 411.10 0.123
Vitamin A%, Mean + SD 578.41 £ 707.99 582.42 + 754.49 563.44 + 497.50 0.267
Alpha-carotene?, Mean + SD 345.59 + 898.35 352.58 +918.80 319.46 £ 817.71 0.039
Beta-carotene?, Mean + SD 1,982.71 + 3,694.98 2,033.20 + 3,816.71 1,794.13 + 3,195.70 0.445
Beta-cryptoxanthin®, Mean + SD 86.14 + 264.65 87.98 + 289.00 79.30 £ 140.33 0.529
Lycopene?, Mean + SD 4,565.04 + 8,506.70 4,499.93 + 8,441.73 4,808.19 + 8,748.41 0.562
Lutein+zeaxanthin®, Mean + SD 1,338.33 + 3,167.69 1,394.34 + 3,406.23 1,129.16 + 2,032.86 0.406
Thiamin(Vitamin B1)*, Mean + SD 1.50 + 0.84 1.51 +0.85 1.48 +0.81 0.584
Riboflavin(Vitamin B2)?, Mean + SD 1.94+1.15 1.94+1.18 1.93 +1.05 0.476
Niacin®, Mean + SD 23.22 +£14.03 23.56 + 14.41 21.94+£12.45 0.022
Vitamin B6*, Mean + SD 1.86 + 1.57 1.89 + 1.67 1.74+1.13 0.030
Total folate’, Mean + SD 359.27 £ 219.72 364.50 +224.21 339.76 £ 201.08 0.037
Folic acid?, Mean + SD 161.28 + 156.60 161.52 + 158.70 160.40 + 148.66 0.957
Food folate?, Mean + SD 198.16 + 124.77 203.16 +129.80 179.48 +101.80 0.003
Folate(DFE)*, Mean + SD 472.04 + 316.79 477.42 +321.93 451.96 +296.24 0.088
Total choline?, Mean + SD 323.88 +191.64 326.43 +195.87 314.39 £174.79 0.357
Vitamin B12%, Mean + SD 4.86 + 8.49 4.95+9.26 4.55 + 4.58 0.780
Added vitamin B12¢, Mean + SD 0.73 £2.20 0.72 +£2.29 0.75+1.83 0.039
Vitamin C*, Mean + SD 74.65 + 83.18 75.96 + 85.07 69.74 £75.61 0.156
Vitamin K% Mean + SD 98.85 + 152.05 102.20 + 161.70 86.33 +£107.84 0.105
Calcium®, Mean + SD 836.60 + 529.90 843.63 + 528.26 810.39 + 535.66 0.160
Phosphorus?, Mean + SD 1,244.26 + 625.51 1,261.34 + 632.24 1,180.50 + 595.94 0.005
Magnesium®, Mean + SD 271.52 +£135.99 275.97 £ 137.87 254.89 +127.48 0.001
Iron®, Mean + SD 13.81 +£8.41 13.79 £ 8.28 13.90 + 8.87 0.952
Zinc*, Mean + SD 10.99 + 14.10 10.98 + 14.08 11.03 + 14.22 0.367
Copper®, Mean + SD 1.20 +£1.43 1.22 +1.54 1.13 +£0.90 0.019
Sodium?, Mean + SD 3,277.70 £ 1,763.71 3,307.91 £ 1,794.91 3,164.90 + 1,638.56 0.130
Potassium®, Mean + SD 2,508.32 +1,213.01 2,539.28 +1,230.03 2,392.68 + 1,140.89 0.032
Selenium?, Mean + SD 105.70 £ 63.20 106.97 + 64.98 100.98 + 55.86 0.042
Caffeine®, Mean + SD 170.96 + 224.48 166.99 + 216.42 185.78 £ 251.98 0.101
Theobromine?, Mean + SD 33.82 +75.45 34.76 + 79.88 30.33 £ 55.81 0.667
Alcohol*, Mean + SD 8.25 + 24.60 8.94 + 25.57 5.67 +£20.38 0.005
Moisture®, Mean + SD 2,722.67 + 1,409.67 2,745.09 + 1,430.20 2,638.92 +1,328.08 0.213
Vitamin D%, Mean + SD 4.27 £5.54 4.31+5.76 4.15+4.63 0.648

SD, standard deviation.
*Student ¢-test.
Chi-square test.

TABLE 2 Association between dietary nutrient mixtures and coronary heart disease risk in individuals aged >50 years with accelerated aging.

Variable Estimate Standard error z value OR (95% Cl) P value
WQS-Negative ~0.1066 0.0539 ~1.9784 0.90 (0.81, 0.99) 0.048 *
WQS-Positive —0.1746 0.0943 ~1.8518 0.84 (0.70, 1.01) 0.064
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(0.063) (Figure 2; Supplementary Table 1). A similar trend was
observed in the positively constrained model (adjusted OR = 0.84;
95% CI: 0.70-1.01; p = 0.064), although not statistically significant.
Major contributors included added vitamin B12 (0.430), alcohol
(0.116), caffeine (0.103), and vitamin A (0.055) (Figure 3;
Supplementary Table 2).

Feature selection for machine learning
models

Figure 4 displays VIFs used to detect multicollinearity. Variables
with adjusted VIFs exceeding 3 were excluded, resulting in the
removal of 20 dietary components. These included alcohol, alpha-
carotene, beta-carotene, beta-cryptoxanthin, carbohydrates, energy,
folate (DFE), folic acid, food folate, magnesium, monounsaturated
fatty acids, phosphorus, polyunsaturated fatty acids, protein, retinol,
saturated fatty acids, total choline, total fat, total folate, and
vitamin A.

The BORUTA algorithm then identified 36 variables with
significant contributions to the comorbidity of diabetes and
hypertension. These included 10 demographic variables (age,
hypertension, sex, diabetes, race/ethnicity, income-to-poverty ratio,
smoking, education, alcohol use, BMI) and 26 dietary factors (caffeine,
added vitamin B12, theobromine, potassium, calcium, sodium,
moisture, vitamins D, B2, K, niacin, cholesterol, B12, B1, selenium,
iron, copper, B6, total sugar, zinc, dietary fiber, alpha-tocopherol,
lutein + zeaxanthin, lycopene, vitamin E, and vitamin C) (Figure 5).
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Supplementary Figure 2 shows Z-score trends across iterations for
feature selection.

Construction and evaluation of machine
learning models

Figures 6 and 7 present heatmaps for six machine learning models:
Random Forest, LightGBM, K-KNN, Naive Bayes, SVM, and
XGBoost. These models were trained and validated using demographic
and dietary variables. Performance was evaluated using AUC-ROC
(Figures 8-10), AUC-PR (Figures 11-13), accuracy (Figure 14), F beta
score (Figure 15), sensitivity (Supplementary Figure 1), and specificity
(Supplementary Figure 2).

In the training set, Random Forest achieved the best performance
across all metrics: accuracy (0.813), F beta (0.852), AUC-ROC (0.881),
sensitivity (0.934), specificity (0.647), and AUC-PR (0.894). XGBoost
and LightGBM followed closely, with AUC-ROC values of 0.872 and
0.869, AUC-PR of 0.882 and 0.873, accuracy of 0.792 and 0.799, and
F-beta scores of 0.828 and 0.837. K-KNN and SVM showed moderate
performance, while Naive Bayes had the lowest metrics, particularly
AUC-ROC (0.675) and AUC-PR (0.708) (Table 3). In the validation
set, Random Forest again outperformed other models, with accuracy
(0.823), F beta (0.862), AUC-ROC (0.890), sensitivity (0.940),
specificity (0.656), and AUC-PR (0.908) (Table 4), confirming its
superior generalizability.

When only dietary variables were used, Random Forest
remained the best-performing model. In the training set, it
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WQS regression weight plot with unconstrained coefficients.
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FIGURE 4
Scatter plot of variance inflation factors (VIFs) across different features. Red points indicate the presence of multicollinearity, while blue points indicate
its absence.
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Heatmap comparing the performance of six machine learning models incorporating both demographic characteristics and dietary nutrients.
(A) Training set; (B) Validation set.

achieved an accuracy of 0.725, F beta of 0.786, AUC-ROC of  accuracy (0.747), F beta (0.805), AUC-ROC (0.811), sensitivity
0.770, sensitivity of 0.875, specificity of 0.519, and AUC-PR of  (0.883), specificity (0.550), and AUC-PR (0.828) (Table 6).
0.799. XGBoost and LightGBM showed comparable results: Across all analyses, Random Forest consistently demonstrated
AUC-ROC of 0.761 and 0.757, AUC-PR of 0.796 and 0.791,  superior performance regardless of input variable type. Statistically
accuracy of 0.698, and F beta scores of 0.748 and 0.750 (Table 5).  significant differences in model performance were observed in all
In the validation set, Random Forest again led all metrics:  comparisons (p < 0.001) (Tables 3-6).
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Heatmap comparing the performance of six machine learning models using only dietary nutrients. (A) Training set; (B) Validation set.
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Raincloud plots of PR-AUC scores for six machine learning models. (A) Incorporating both demographic characteristics and dietary nutrients; (B) Using
only dietary nutrients.
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Raincloud plots displaying model accuracy for six machine learning algorithms. (A) Models incorporating both demographic characteristics and dietary
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(B) Using only dietary nutrients.
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TABLE 3 Performance metrics of six machine learning models in the training set incorporating both demographic characteristics and dietary nutrients.

Accuracy Area under Sensitivity Specificity Area under
the ROC the PR curve
curve
Random Forest 0.813 0.852 0.881 0.934 0.647 0.894
Light GBM 0.799 0.837 0.869 0.894 0.666 0.873
K-KNN 0.691 0.687 0.773 0.583 0.838 0.822
Naive Bayes 0.530 0.427 0.675 0.304 0.841 0.708
SVM 0.755 0.799 0.800 0.834 0.645 0.833
XGBoost 0.792 0.828 0.872 0.867 0.684 0.882
P <.001* <.001° <.001° <.001* <.001° <.001*
*ANOVA test.

"Kruskal-Wallis.

TABLE 4 Performance metrics of six machine learning models in the validation set incorporating both demographic characteristics and dietary

nutrients.
Accuracy Area under Sensitivity Specificity Area under
the ROC the PR curve
curve
Random Forest 0.823 0.862 0.890 0.940 0.656 0.908
Light GBM 0.811 0.850 0.872 0.906 0.676 0.884
K-KNN 0.711 0713 0.811 0.607 0.867 0.866
Naive Bayes 0.525 0415 0.684 0.287 0.871 0.725
SVM 0.747 0.795 0.820 0.831 0.628 0.866
XGBoost 0.811 0.847 0.865 0.890 0.700 0.873
P <.001* <.001* <.001° <.001* <.001* <.001*
*ANOVA test.

Kruskal-Wallis.

TABLE 5 Performance metrics of six machine learning models in the training set using only dietary nutrients.

Accuracy

Area under
the ROC
curve

Area under
the PR curve

Sensitivity

Specificity

Random Forest 0.725 0.786 0.770 0.875 0.519 0.799
Light GBM 0.698 0.750 0.757 0.787 0.576 0.791
K-KNN 0.655 0.661 0.710 0.582 0.757 0.762
Naive Bayes 0.500 0.375 0.572 0.259 0.832 0.650
SVM 0.629 0.724 0.647 0.842 0.339 0.717
XGBoost 0.698 0.748 0.761 0.776 0.593 0.796
P <.001* <.001° <.001° <.001* <.001* <.001*
*ANOVA test.

"Kruskal-Wallis.

Interpretation of feature importance using
SHAP and LIME

The SHAP algorithm was employed to interpret feature
contributions to CHD risk prediction in individuals over age 50 with
accelerated aging. Two scenarios were considered: one including both
demographic and dietary variables, and one using dietary variables
alone. Supplementary Figure 3 illustrates the top 25 features under
each scenario using the Random Forest model, with SHAP values
quantifying each feature’s importance.
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When both demographic and dietary variables were included,
Age (SHAP =0.0509) and Hypertension (0.0472) were the
strongest positive contributors. Negative contributors included
vitamin B12 (0.0107), lycopene (0.0101), potassium (0.0097),
total sugar (0.0081), and lutein + zeaxanthin (0.0075). In the
dietary-only model, vitamin B12 (0.0365), lycopene (0.0256),
theobromine (0.0193), total sugar (0.0187), and lutein +
zeaxanthin (0.0160) had the strongest negative contributions,
while caffeine (0.0231) and cholesterol (0.0113) contributed
positively.
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TABLE 6 Performance metrics of six machine learning models in the validation set using only dietary nutrients.

Accuracy Area under Sensitivity Specificity Area under
the ROC the PR curve
curve
Random Forest 0.747 0.805 0.811 0.883 0.550 0.828
Light GBM 0.743 0.790 0.788 0.822 0.627 0.806
K-KNN 0.680 0.690 0.740 0.602 0.794 0.793
Naive Bayes 0.482 0.334 0.594 0.220 0.865 0.667
SVM 0.642 0.728 0.688 0.810 0.400 0.751
XGBoost 0.735 0.780 0.797 0.799 0.641 0.812
P <.001° <.001° <.001° <.001° <.001° <.001°
*ANOVA test.

"Kruskal-Wallis.

Force plots and waterfall plots (Supplementary Figures 4, 5) were
used to visualize individual-level predictions. In the combined model,
the baseline CHD prediction was 0.584, increasing to 0.889 after
accounting for feature contributions. In the dietary-only model, the
baseline was 0.593 and rose to 0.737 after feature inclusion.

SHAP interaction dependency plots further illustrated the
nonlinear relationships between key dietary nutrients and CHD
risk (Supplementary Figures 6, 7). In the fully adjusted model,
higher intakes of caffeine, lycopene, potassium, total sugar,
vitamin B12, and lutein + zeaxanthin were associated with lower
SHAP values, indicating protective effects, with notable
interactions by age, sex, and hypertension status
(Supplementary Figure 6). Similar trends were observed in the
unadjusted model using dietary variables alone, though effect
magnitudes were slightly attenuated (Supplementary Figure 7).
LIME

(Supplementary Figures 8, 9) consistently identified vitamin B6,

explanations for individual predictions
dietary fiber, zinc, vitamin B12, and lutein + zeaxanthin as key
negative contributors to CHD risk, reinforcing the robustness of

these findings across adjusted and unadjusted models.

Discussion

Using data from NHANES and multiple machine learning models,
this study explored the relationship between dietary nutrient intake
and the risk of CHD in adults aged 50 and above who exhibit signs of
accelerated aging. After adjusting for potential confounders, we found
that specific combinations of dietary nutrients were associated with a
reduced risk of CHD. Among the models evaluated, the random forest
model demonstrated superior predictive performance. Interpretation
through SHAP and LIME revealed that higher intakes of vitamin B12
and lutein + zeaxanthin were inversely associated with CHD risk.
These findings suggest that both nutrients may offer protective
benefits against CHD in older adults experiencing accelerated aging.

The inverse association between vitamin B12 and CHD risk aligns
with substantial evidence on its role in homocysteine metabolism.
Vitamin B12 deficiency can elevate homocysteine levels—a known
cardiovascular risk factor due to its effects on endothelial dysfunction
and atherosclerosis (24, 25). Huang et al. reported that vitamin B12
deficiency, commonly observed in older adults due to reduced
absorption, increases cardiovascular risk, particularly in individuals

Frontiers in Nutrition

with dietary restrictions such as vegetarians (26). A large-scale
population-based study further supported these findings by showing
that adequate vitamin B12 intake may help reduce cardiovascular
events (27). These results highlight the importance of maintaining
sufficient vitamin B12 intake for cardiovascular health, especially
among aging individuals.

Similarly, lutein and zeaxanthin—carotenoids with strong
antioxidant properties—have been associated with cardiovascular
protection. Nicolantonio et al. found that these compounds may
reduce CHD risk by attenuating oxidative stress and inflammation
(28). A Swedish study also found significantly lower plasma levels of
lutein and zeaxanthin in patients with coronary artery disease
compared to healthy controls, further reinforcing their protective
potential (29). Our findings are consistent with these observations,
showing that higher dietary intake of these carotenoids is linked to
reduced CHD risk. Their mechanisms—such as neutralizing free
radicals and lowering inflammatory markers like interleukin-6—are
especially relevant in the context of accelerated aging (30).

However, some discrepancies remain. For example, a prospective
cohort study by Zhang et al. using NHANES data found no significant
association between serum vitamin B12 levels and mortality in
patients with existing CHD (31). Interestingly, the study identified
methylmalonic acid (MMA), a marker of functional vitamin B12
deficiency, as a stronger predictor of cardiovascular mortality. This
suggests that functional status may be more relevant than serum
levels. Our study assessed dietary intake rather than serum
concentrations, which may more accurately reflect long-term
adequacy and could explain the differing results. Furthermore, the
application of machine learning in our study allowed us to capture
complex, non-linear associations that might be missed by traditional
statistical methods.

With regard to lutein and zeaxanthin, findings from the
Age-Related Eye Disease Study 2 (AREDS2) indicated that
supplementation with these carotenoids did not significantly reduce
cardiovascular events in older adults with age-related macular
degeneration (32). This contrasts with our results, which highlight a
protective association with dietary intake. The discrepancy may stem
from differences in study populations; participants in AREDS2 had a
specific ocular disease and may not represent older adults
experiencing accelerated aging. Additionally, nutrients consumed in
whole foods may exert effects through synergistic interactions not
replicated by supplements (33). Differences in bioavailability between
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dietary and supplemental forms may also contribute to inconsistent
outcomes (34).

A particularly notable finding from our analysis is the strong
protective role of vitamin B12 and lutein + zeaxanthin in reducing
CHD risk among individuals with accelerated aging. While previous
research has demonstrated cardiovascular benefits of these nutrients,
their specific impact in this high-risk subgroup has been
underexplored. Our findings emphasize their potential as practical
dietary targets for individuals with advanced biological aging.
Focusing on these nutrients may aid in the development of
personalized nutritional interventions to reduce CHD risk and
improve health outcomes in this vulnerable population.

By linking specific dietary nutrients to reduced CHD risk within
the framework of accelerated aging, our findings contribute to the
broader field of nutritional epidemiology (5). Accelerated aging is
characterized by heightened oxidative stress and inflammation—both
central to CHD pathogenesis (35, 36). The COVID-19 pandemic has
highlighted the critical interplay between nutrition, inflammation,
and cardiovascular health (37, 38). Research also underscores that
maintaining optimal levels of key nutrients is critical for mitigating
inflammation and oxidative stress to enhance immune function in
COVID-19 patients, given that these two processes are shared
foundational mechanisms for both chronic diseases, such as coronary
heart disease, and susceptibility to severe infections (39). Vitamin
B12 lowers homocysteine levels, supporting vascular health, while
lutein and zeaxanthin provide antioxidant protection that mitigates
oxidative damage, a hallmark of aging and cardiovascular disease
(12). These mechanisms reinforce the relevance of our results and
support dietary strategies tailored to biological aging. This aligns with
the principles of personalized nutrition, which advocates for
customizing dietary recommendations based on an individual’s
physiological age and health status (40). Our findings offer a
straightforward strategy for clinical practice: advising high-risk older
adults, identified by phenotypic age acceleration, to consume more
foods rich in vitamin B12 (such as fish, meat, and dairy products) and
lutein + zeaxanthin (such as spinach, kale, and corn).

Several limitations of this study should be acknowledged. First, the
cross-sectional nature of NHANES data limits causal inference, and
reverse causality remains possible—individuals with CHD may have
changed their dietary habits. Second, although machine learning
models such as random forests can detect complex, non-linear patterns,
their interpretability is limited, even with tools like SHAP and
LIME. Third, residual confounding from unmeasured factors—such as
genetics or socioeconomic status—may have influenced the observed
associations. Fourth, dietary data were based on two 24-h recalls, which
may not accurately reflect habitual intake and are subject to recall bias.
Lastly, since our analysis is based on NHANES data, generalizability
may be limited, particularly for older adults in different cultural or
geographic settings.

Conclusion

In conclusion, this study shows that higher dietary intakes of
vitamin B12 and lutein + zeaxanthin are associated with a lower
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risk of coronary heart disease in older adults experiencing
accelerated aging. These findings provide valuable insights for
developing targeted dietary strategies. Future research should aim
to confirm these associations through longitudinal cohorts and
more diverse populations such as COVID-19 patients, explore the
underlying mechanisms, confirm causality and support
personalized nutrition strategies and evaluate their generalizability

across diverse populations.
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