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Objective: To investigate the potential muscular benefits of an eight-week 
creatine monohydrate (CrM) supplementation in patients with Alzheimer’s 
disease (AD).
Methods: This single-arm pilot trial, conducted at the University of Kansas 
Medical Center in Kansas City, examined the intervention-associated changes 
in muscle strength, muscle size, and neuromuscular junction (NMJ) integrity 
following 8 weeks of CrM supplementation (20 g/day) in 20 participants with AD. 
All participants completed handgrip-strength measurements on the dominant 
hand (highest of three trials in kg of force). Ten participants completed lower 
body strength assessment via leg dynamometry at three velocities (1.05 rad∙s−1, 
2.10 rad∙s−1, 3.14 rad∙s−1), with peak torque (in Newton-meters) recorded over 
five repetitions. Eighteen participants completed muscle size assessment by 
ultrasound measurement of cross-sectional area (mCSA, cm2) in the rectus 
femoris and vastus medialis, as well as muscle thickness (cm) in the rectus 
femoris, vastus medialis, and vastus lateralis. NMJ integrity was assessed in 19 
participants by measuring plasma C-terminal agrin fragment (CAF) levels. All 
assessments were measured at baseline and 8 weeks.
Results: Following 8 weeks of CrM, mean hand-grip strength increased by 
1.9 kg from baseline (p = 0.02). Lower leg strength did not change for any 
velocity among the ten participants who completed leg dynamometry. mCSA 
(n = 18) increased from baseline in the rectus femoris (p = 0.03) and vastus 
medialis (p = 0.01), but muscle thickness (n = 18) did not change in the rectus 
femoris (p = 0.41), vastus medialis (p = 0.37), nor vastus lateralis (p = 0.17). 
Subcutaneous fat (n = 18) decreased in the rectus femoris region (p = 0.006) 
and vastus lateralis region (p = 0.003), with no change in the vastus medialis 
region (p = 0.52). Mean CAF (n = 19) values did not change (p = 0.46).
Conclusion: This eight-week pilot trial suggests that 20 g/day of CrM may 
provide modest skeletal muscle benefits in patients with AD. These data provide 
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preliminary evidence to warrant further investigation of the potential for CrM to 
prevent AD-related decline in muscle function.
Clinical trial registration: ClinicalTrials.gov, identifier NCT05383833.
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Alzheimer’s disease, creatine monohydrate, muscle strength, non-pharmacological 
intervention, muscle cross-sectional area, neuromuscular junction

1 Introduction

The loss of physical function is common in Alzheimer’s disease 
(AD) and often presents as diminished muscle mass and strength (1). 
Changes in muscle strength and size appears to be  not only a 
consequence of AD, limiting mobility and promoting frailty, but also 
a contributor to its risk and progression (1, 2). In an AD mouse model, 
neuromuscular dysfunction emerged before cognitive impairment (3), 
indicating that skeletal muscle changes occur early in the disease 
process and may be an underappreciated therapeutic target.

For instance, in older adults with mild cognitive impairment due 
to AD, six months of resistance training increased muscle strength and 
integrity, improved cognition, and attenuated brain amyloid burden 
and atrophy (4). In AD mouse models, direct manipulation of skeletal 
muscle (5) and stimulation of anabolic pathways that drive 
hypertrophy (6) also improved cognition, further implicating muscle 
as a modifiable node in the disease cascade. Thus, interventions that 
enhance muscle and strength may not only slow functional decline in 
AD but may also have broader disease-modifying potential, as 
suggested by preclinical studies (5, 6).

Creatine monohydrate (CrM) has substantial evidence for 
enhancing muscle strength and size (7–14), and our recent pilot trial 
suggests CrM may be associated with benefits in AD patients (7). The 
basis for these effects lies in creatine’s (Cr) role as an organic compound 
found primarily in skeletal muscle (15) that stores high-energy 
phosphates in the form of phosphocreatine (PCr) and helps maintain 
intracellular energy flux (16, 17). CrM supplementation increases 
intramuscular creatine stores, thereby expanding the capacity for PCr 
formation and ATP regeneration during high-intensity muscle 
contractions. This enhanced energy availability can support greater force 
production and facilitate the energy-demanding processes of muscle 
protein synthesis, potentially leading to improvements in muscle 
strength and size (8–13). In older adults, CrM supplementation has been 
shown to improve strength and function (12, 14); however, its effects on 
skeletal muscle have not been investigated in the context of AD.

The purpose of this single-arm pilot study was to investigate our 
hypothesis that 8 weeks of CrM supplementation improves muscle 
strength, size, and neuromuscular junction integrity (NMJ) in AD.

2 Materials and methods

2.1 Creatine to augment bioenergetics in 
Alzheimer’s study and participants

The Creatine to Augment Bioenergetics in Alzheimer’s study (7, 
18) allocated 20 participants with a clinical diagnosis of probable 
AD-dementia (19) to the 20 g/day CrM intervention. As the primary 
outcome of the CABA trial was feasibility, a single-arm design was 
employed to assess tolerability, compliance, and preliminary efficacy 
signals to inform future randomized controlled trials. Participants 
were 60–90 years old, were on a stable dose of AD-related medications 
(e.g., donepezil or memantine) for at least 30 days, had a study partner, 
scored ≥17 on the Mini-Mental State Exam (MMSE) (20), spoke 
English as the primary language, and had the ability to perform leg 
strength exercises. Exclusion criteria included insulin-dependent 
diabetes, chemotherapy or radiation within the past 5 years, a recent 
cardiac event (e.g., myocardial infarction), diagnosis of another 
neurodegenerative disease, inability to undergo MRI, and participation 
in a clinical trial or investigational drug or therapy within 30 days of 
screening. Participants were encouraged to maintain regular dietary 
intake and physical activity levels during the study. The study protocol 
was approved by the University of Kansas Medical Center Institutional 
Review Board, and all participants provided informed consent in 
accordance with institutional guidelines.

2.2 CrM intervention

Participants consumed 20 g of powdered CrM (Life Extension 
Inc., United States) daily for 8 weeks, divided into two 10-gram doses, 
mixed into beverages of the participant’s choice. This two ×10 g dosing 
regimen was selected because it has been shown to be safe (21) and to 
minimize participant and study partner burden, as managing fewer 
daily doses would be  easier for patients with AD and their study 
partners. To support adherence, research dietitians contacted the 
study partner weekly, and study partners completed a daily 
CrM tracker.

2.3 Physical-activity assessment

Baseline physical activity was measured with the two-item 
Stanford Brief Activity Survey (SBAS) (20), as physical activity may 
affect muscle strength and size. Study partners selected one statement 
that best described the participant’s usual on-the-job (or daily routine) 
activity and one that best described their leisure-time activity during 
the past year, each ranging from sedentary to vigorous. Responses 
were cross-referenced on the SBAS color-coded scoring table to 

Abbreviations: AD, Alzheimer’s disease; ATP, Adenosine triphosphate; BIA, 

Bioelectrical Impedance Analysis; BMI, Body Mass Index; CABA, Creatine to 

Augment Bioenergetics in Alzheimer’s; CAF, C-terminal Agrin Fragment; Cr, 

Creatine; CrM, Creatine Monohydrate; MMSE, Mini-Mental State Examination; 

mCSA, Muscle Cross-Sectional Area; mEI, Muscle Echo Intensity; NMJ, 

Neuromuscular Junction; SBAS, Stanford Brief Activity Survey.
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classify each participant into one of five overall activity categories: 
inactive, light, moderate, hard, or very hard.

2.4 Muscle strength, size, and body 
composition acquisition

All muscular and body composition assessments were measured 
at baseline and 8 weeks.

2.4.1 Handgrip strength
Handgrip strength was measured on the participant’s dominate 

hand using a calibrated Jamar hand dynamometer, a validated method 
for assessing upper body strength (22, 23). While seated in a chair with 
their feet flat on the floor, participants squeezed the dynamometer 
with maximal effort for at least 3 seconds per trial while the study 
team provided verbal encouragement. Each participant completed 
three sets, with at least 1 minute of rest between sets. The highest force 
value (kg) recorded across the three trials was used as the participant’s 
maximal handgrip strength.

2.4.2 Leg muscle strength
A sub-sample of the last 10 participants to participate in CABA 

completed leg strength testing as described in detail by Herda et al. (24). 
Participants performed maximal isokinetic contractions of the right leg 
extensors using a calibrated Biodex isokinetic dynamometer (Biodex 
Corp., Shirley, NY), with the hip positioned at a 90° angle. Each 
participant completed five maximal contractions at three velocities 
(1.05 rad∙s−1, 2.10 rad∙s−1, 3.14 rad∙s−1), with 5 minutes of rest between 
each velocity. Study personnel provided verbal encouragement to elicit 
maximal effort and speed during each trial. Torque, position, and 
velocity signals were recorded using the Biodex system. Dynamometer 
signals were sampled at 2000 Hz, and torque data were low-pass filtered 
with a 10 Hz cutoff. Peak torque (Newton-meters; Nm) was calculated 
as the highest 0.25 s epoch from each contraction using custom-written 
software (LabVIEW 2019, National Instruments, Austin, TX). For each 
velocity, the highest peak torque value was used for analysis.

2.4.3 Leg muscle morphology
Leg extensor morphology was assessed with B-mode 

ultrasonography (Logiq e, GE Healthcare, Chicago, IL) following 
Herda et  al. (24). With participants supine, panoramic transverse 
images were captured at standardized landmarks: rectus femoris (50% 
patella to greater trochanter distance), vastus lateralis (40% lateral-
epicondyle to anterior superior iliac spine), and vastus medialis (20% 
medial-epicondyle to anterior superior iliac spine). A custom foam-
padded probe guide ensured perpendicular sweeps while minimal 
pressure and ample gel prevented compression. ImageJ (National 
Institutes of Health, Bethesda, MD) was used to trace muscle cross-
sectional area (mCSA, cm2) and extract mean echo intensity (mEI, 
grayscale score from 0 to 255) from the same region; muscle and 
subcutaneous-fat thickness were measured with the straight-line tool, 
as per Cleary et  al. (25). Two participants did not complete this 
assessment. Figure 1 shows a representative rectus femoris image.

2.4.4 Anthropometrics and body composition
Height and weight were measured using a calibrated stadiometer 

and digital scale. Body mass index (BMI) was calculated as weight (kg) 

divided by height (m2). Waist circumference was measured using a 
standard tape measure (26). Body composition was assessed using 
bioelectrical impedance analysis (BIA) (Bodystat Quadscan 4,000) 
(27). Percent lean body mass was used as the primary measure of 
body composition.

2.5 NMJ integrity measurement

NMJ degeneration is a feature of AD (28) that can be assessed by 
measuring C-terminal agrin fragment (CAF), a biomarker that may 
also predict physical function (28). Thus, fasting plasma CAF levels 
were quantified in duplicate using an enzyme-linked immunosorbent 
assay (#ab216945, Abcam, Cambridge, United  Kingdom). Per 
manufacturer protocol, 50 μL of 4-fold diluted plasma or standard 
solution was added to pre-coated wells, followed by 50 μL of the CAF 
antibody cocktail. The plate was incubated at room temperature on a 
plate shaker set to 400 rpm for 1 hour. After incubation, the wells were 
washed three times with 1 × Wash Buffer PT. Next, 100 μL of TMB 
development solution was added, and the plate was incubated in the 
dark for 8 minutes at 400 rpm. Following this, 100 μL of stop solution 
was added, and the plate was shaken for 1 minute to ensure thorough 
mixing. Absorbance was measured at 450 nm using an MR-9600 
Accuris Smartreader 96 (Benchmark Scientific, Sayreville, NJ). CAF 
concentrations were determined by interpolating the absorbance 
values from a standard curve and adjusting for the 4-fold dilution 
factor. CAF analysis was not completed for one participant.

2.6 Statistical analysis

The primary objective of this study was to investigate whether 
8 weeks of CrM supplementation was associated with improvement 
in muscle strength, size, and NMJ integrity in patients with 
AD. Continuous data are expressed as mean ± standard deviations, 
and categorical data are reported as frequencies and percentages. 
We used paired sample t-tests to analyze mean changes in all measures 
from baseline to 8 weeks. We used linear mixed models, including the 
interaction of time and sex with subject ID as a random effect, to 

FIGURE 1

Ultrasonography image demonstrating measurements of muscle 
cross-sectional area (outlined in yellow), muscle thickness (yellow 
arrow), and subcutaneous adipose thickness (red arrow) of the rectus 
femoris. Tracing was performed using ImageJ software.
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explore sex-based differences in muscle strength (handgrip and leg), 
muscle ultrasonography, percent lean body mass, and CAF 
measurements. All statistical analyzes were performed using R 
software (version 4.1.1; R Foundation, Vienna, Austria). A two-sided 
p-value of less than 0.05 was considered statistically significant.

3 Results

Twenty participants diagnosed with dementia due to probable AD 
(73.1 ± 6.3 years) completed the CABA study. The CrM intervention 
was well-tolerated with no withdrawals due to adverse events and 
excellent adherence, with 19 of 20 participants (95%) achieving ≥80% 
compliance and mean self-reported dose compliance of 90.0% based 
on daily study partner tracker logs, as detailed here (7). Baseline 
demographic characteristics are presented in Table 1. All outcomes are 
presented in Table 2.

3.1 Muscle strength

Handgrip strength increased from baseline to 8 weeks 
(33.5 ± 11.6 kg vs. 35.4 ± 11.5 kg, p = 0.02). Figure 2 illustrates mean 
changes in handgrip strength from baseline to 8 weeks.

Due to mechanical issues with the leg dynamometer, only ten 
CABA participants completed leg dynamometry to measure leg 
strength. Peak torque did not change for any of the three velocities 
tested: (1.05 rad∙s−1: 83.7 ± 40.8 Nm vs. 84.3 ± 43.2 Nm, p = 0.80; 

2.10 rad∙s−1: 58.9 ± 31.7 Nm vs. 60.5 ± 30.2 Nm, p = 0.73; 3.14 rad∙s−1: 
41.7 ± 26.7 Nm vs. 42.3 ± 22.2 Nm, p = 0.90). There were no 
differences by sex for changes in either hand or leg strength, despite 
males having higher baseline strength than females.

3.2 Leg extensor ultrasonography

Eighteen CABA participants underwent ultrasonography to 
measure leg muscle size at baseline and 8 weeks. mCSA increased in 
the rectus femoris (7.6 ± 2.5 cm2 vs. 7.8 ± 2.7 cm2, p = 0.03) and vastus 
medialis (10.1 ± 3.0 cm2 vs. 10.2 ± 3.1 cm2, p = 0.01).

Muscle thickness did not change for any muscles: rectus femoris 
(1.6 ± 0.4 cm vs. 1.6 ± 0.4 cm, p = 0.41; vastus medialis 1.9 ± 0.3 cm 
vs. 1.9 ± 0.3 cm, p = 0.37; and vastus lateralis 1.5 ± 0.3 cm vs. 
1.5 ± 0.4 cm, p = 0.17). Similarly, no significant changes were observed 
in mEI (rectus femoris: 92.2 ± 33.0 cm vs. 99.0 ± 31.4 cm, p = 0.33; 
vastus medialis: 86.2 ± 25.8 cm vs. 95.3 ± 28.3 cm, p = 0.22). In 
contrast, subcutaneous fat decreased in the rectus femoris region 
(1.09 ± 0.6 cm vs. 1.05 ± 0.6 cm, p = 0.006) and vastus lateralis region 
(0.99 ± 0.6 cm vs. 0.95 ± 0.5 cm, p = 0.003). No changes were observed 
in the vastus medialis region (0.92 ± 0.5 cm vs. 0.91 ± 0.5 cm, 
p = 0.52). There were no differences by sex for changes in all 
ultrasonography measures, despite males having larger mCSA in the 
rectus femoris and vastus medialis than females.

3.3 Anthropometrics and body 
composition

Twenty participants completed BMI and waist circumference 
measurements at both baseline and the 8-week visit, while 19 
completed BIA. BMI did not change from baseline to 8 weeks 
(25.4 ± 3.7 kg/m2 vs. 25.2 ± 3.5 kg/m2, p = 0.25). Similarly, percent 
lean body mass showed no significant change (69.1 ± 7.9% vs. 
71.4 ± 8.5%, p = 0.10), nor did waist circumference (93.3 ± 9.1 cm vs. 
92.1 ± 9.0 cm, p = 0.20). There were no differences by sex for changes 
in percent lean body mass, despite males having greater percent lean 
body mass than females.

3.4 NMJ integrity

Nineteen participants completed CAF measurements at both 
baseline and the 8-week visit. Plasma CAF concentrations did not 
change form baseline to 8 weeks (2.5 ± 0.6 ng/mL vs. 2.6 ± 0.8 ng/mL, 
p = 0.46). There were no differences by sex for changes in CAF.

4 Discussion

Results from this pilot study suggest 8 weeks of CrM 
supplementation is associated with modest improvement in muscle 
strength and size in patients with AD. This is the first study to test 
whether CrM may benefit skeletal muscle in AD, and these 
preliminary gains justify larger, controlled trials to investigate its 
promise as a low-cost strategy for slowing AD-related decline in 
muscle health.

TABLE 1  CABA baseline demographic characteristics.

Variable n = 20

Age, years 73.1 ± 6.3a

Sex (n, %)

Female 7, 35.0%

Male 13, 65.0%

Race, ethnicity (n, %)

African American, not Hispanic 1, 5.0%

Asian, not Hispanic 1, 5.0%

White, not Hispanic 17, 85.0%

Other, Hispanic 1, 5.0%

Education (n, %)

Completed high school 2, 10.0%

Associate’s 6, 30.0%

Bachelor’s 6, 30.0%

Master’s 2, 10.0%

Doctorate, professional 4, 20.0%

Stanford brief physical activity survey

Inactive 2, 10%

Light 10, 50%

Moderate 8, 40%

Mini-Mental state exam 21.7 ± 4.4

Values are mean ± SD unless indicated as frequency (%).
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We observed associated improvements in upper body muscle 
strength following 8 weeks of CrM supplementation, with a 1.9 kg 
(~6%) increase in handgrip strength, a reliable proxy of upper body 
strength. This improvement is clinically meaningful as handgrip 
strength is associated with quality of life in older adults (29) and 
mortality in patients with AD (30). While we are the first to test CrM 
supplementation in patients with AD, similar handgrip strength 
improvements have been documented in healthy older adults (10). 
Although our leg strength data were limited to a subset of participants 
(n = 10), we  did not observe statistically significant changes in leg 
strength. These results should be interpreted with considerable caution 
due to the lack of standardized familiarization trials, which are essential 
for reliable strength measurements in older adults and may have 
resulted in underestimation of true strength or learning effects (24). 
While maintaining leg strength over 8 weeks may be clinically important 
in AD, where progressive muscle weakness is common (1), the 
methodological limitations prevent us from drawing definitive 
conclusions about CrM’s effects on lower extremity strength. 
Nevertheless, the feasibility of conducting isokinetic dynamometry in 
this population was demonstrated, suggesting potential utility for future 
studies with proper methodological controls. Together, the improvement 

in handgrip strength aligns with previous studies showing CrM benefits 
in other populations and suggest that CrM may help preserve overall 
muscle function in AD. Future studies should incorporate standardized 
familiarization protocols and consider combining CrM supplementation 
with resistance training or cognitive-motor interventions, as this 
approach improves muscle outcomes more than supplementation alone 
(8–10, 31) and may be particularly beneficial for optimizing muscle 
strength and function in patients with AD.

We observed modest but statistically significant associated 
improvements in mCSA in the rectus femoris (+0.2 cm2) and vastus 
medialis (+0.1 cm2), muscle groups where larger mCSA are generally 
associated with greater leg strength (32). However, we did not observe 
corresponding leg strength improvements in our limited sample. Our 
findings align with well-documented benefits of CrM for muscle size 
in other populations (8, 9, 11–13). In addition to these changes in 
mCSA, we  also noted a localized decrease in subcutaneous fat 
thickness in the rectus femoris and vastus lateralis, despite stable 
overall body weight and composition. This localized decrease in 
subcutaneous fat thickness, occurring alongside increases in muscle 
size, suggests that CrM supplementation may promote favorable 
changes in muscle-to-fat ratio at the tissue level, independent of overall 

TABLE 2  Effects of 8 weeks of CrM supplementation on muscle strength, muscle ultrasonography, neuromuscular junction integrity, and body 
composition.

Variable Baseline 8 weeks p-value

Muscle strength measuresa

Handgrip strength (kg) 33.5 ± 11.6 35.4 ± 11.5 0.02

Peak torque 60 degrees per secondb (Nm) 83.7 ± 40.8c 84.3 ± 43.2 0.80

Peak torque 120 degrees per secondb (Nm) 58.9 ± 31.7 60.5 ± 30.2 0.73

Peak torque 180 degrees per secondb (Nm) 41.7 ± 26.7 42.3 ± 22.2 0.90

Ultrasonography measuresd

Rectus femoris mCSA (cm2) 7.6 ± 2.5 7.8 ± 2.7 0.03

Vastus medialis mCSA (cm2) 10.1 ± 3.0 10.2 ± 3.1 0.01

Rectus femoris muscle thickness (cm) 1.6 ± 0.4 1.6 ± 0.4 0.41

Vastus medialis muscle thickness (cm) 1.9 ± 0.3 1.9 ± 0.3 0.37

Vastus lateralis muscle thickness (cm) 1.5 ± 0.3 1.5 ± 0.4 0.17

Rectus femoris mEI 92.2 ± 33.0 99.0 ± 31.4 0.33

Vastus medialis mEI 86.2 ± 25.8 95.3 ± 28.3 0.22

Rectus femoris region subcutaneous fat (cm) 1.09 ± 0.6 1.05 ± 0.6 0.006

Vastus medialis region subcutaneous fat (cm) 0.92 ± 0.5 0.91 ± 0.5 0.52

Vastus lateralis region subcutaneous fat (cm) 0.99 ± 0.6 0.95 ± 0.5 0.003

NMJ integritye

Plasma CAF (ng/mL) 2.5 ± 0.6 2.6 ± 0.8 0.46

Anthropometric and body composition measures

BMI (kg/m2) 25.4 ± 3.7 25.2 ± 3.5 0.25

Percent lean body masse 69.1 ± 7.9 71.4 ± 8.5 0.10

Waist circumference (cm) 93.3 ± 9.1 92.1 ± 9.0 0.20

aMean Baseline and 8 weeks differences were assessed using a paired samples t-test. Significance was set at p < 0.05.
bn = 10.
cMean ± SD – all such values.
dn = 18.
en = 19.
CrM, creatine monohydrate; NMJ, neuromuscular junction; Nm, Newton-meter; mCSA, muscle cross-sectional area; mEI, muscle echo intensity; CAF, C-terminal agrin fragment; BMI, body 
mass index.
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body composition changes. Although the mCSA increases were small, 
they may still be clinically relevant as they represent preservation/gains 
that could help offset the 1–2% annual age-related muscle loss typically 
seen in older adults (33), which may be accelerated in AD (1). Modest 
gains in muscle size can improve functional capacity (34) and glucose 
metabolism (35), which is perturbed in AD (36). Moreover, since 
mCSA captures only a portion of total muscle volume, a 0.2 cm2 
increase could reflect a more substantial hypertrophic response. While 
we cannot rule out that some mCSA increase is due to CrM-related 
muscle hydration (37), the concurrent improvement in handgrip 
strength supports that the increases in mCSA may have functional 
implications. Taken together, these findings, though based on a brief, 
eight-week trial, suggest that CrM supplementation may help preserve 
muscle size and support functional improvements in individuals with 
AD, a population particularly vulnerable to muscle loss (38–40).

We assessed NMJ integrity using CAF as a biomarker of NMJ 
degeneration but found no statistically significant changes after 8 weeks 
of CrM supplementation. This lack of change may reflect that the eight-
week intervention duration was too short to observe meaningful changes 
in NMJ biomarker; NMJ remodeling and regeneration are complex 
processes that may require months rather than weeks to manifest 
detectable changes in circulating biomarkers (41). Our patients also 
showed relatively preserved NMJ integrity compared to other AD 

cohorts (28) and age-matched healthy controls (42), which may have 
limited the room for improvement. Additionally, CAF may have 
inherent variability and sensitivity limitations (43), and CAF levels may 
be  influenced by factors beyond creatine supplementation, such as 
physical activity, inflammation, or disease progression rates, which could 
mask potential treatment effects in a heterogeneous AD population. 
Investigating CrM’s effects on NMJ integrity may require longer 
intervention periods, larger sample sizes, and more sensitive biomarkers 
or complementary assessments such as electromyography to capture 
subtle neuromuscular changes that circulating biomarkers might miss.

Although our study did not directly investigate mechanisms, 
several pathways may explain CrM’s association with improved 
muscle outcomes. The ATP deficits documented in both skeletal 
muscle (44) and neurons (36) in AD patients may make this 
population especially responsive to Cr′s bioenergetic support. 
Beyond the basic energy metabolism pathways, the concurrent 
improvements in both muscle size and strength in study suggest 
activation of anabolic signaling by upregulating muscle protein 
synthesis (45), downregulating growth-inhibiting proteins such as 
myostatin (46), and enhancing anabolic signaling through the 
mammalian target of rapamycin pathway (47) and insulin-like 
growth factor (48). The antioxidant properties of Cr (49, 50) may 
be particularly beneficial in AD, where oxidative stress drives both 

FIGURE 2

Time point comparisons and individual changes in handgrip strength after 8 weeks of creatine monohydrate supplementation. Boxplots display 
strength values at baseline and after 8 weeks, with individual trajectories overlaid. Line color reflects baseline physical activity level: orange for inactive, 
green for light-intensity, and purple for moderate-intensity. Solid lines with circular markers represent male participants, while dashed lines with 
triangular markers represent female participants. * p < 0.05.
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muscle deterioration and neurodegeneration (51, 52), potentially 
explaining the muscle preservation we observed. Together, these 
mechanisms may underlie the gains in muscle strength and size 
observed in this study, though mechanistic studies are needed to 
determine which pathways are most relevant to CrM’s effects in 
AD populations.

Our pilot trial suggests that CrM may offer valuable benefits 
for AD-related functional decline in patients with AD; however, 
as a single-arm pilot study with limited racial and sex diversity 
and designed to generate preliminary data rather than provide 
definitive evidence, these findings should be  interpreted 
cautiously. The lack of a control group, small sample size, and 
short eight-week duration all limit the strength of our conclusions. 
Additionally, our leg strength assessment was limited by 
mechanical issues with the dynamometer, requiring mid-study 
protocol changes that reduced our sample size and prevented 
standardized familiarization trials, which are essential for reliable 
leg strength data in older adults (24). Finally, ultrasonography 
assessments were conducted without standardized participant 
hydration protocols, which can affect measurements of mCSA and 
muscle thickness, and without assessor blinding to participant 
identity and time point, potentially introducing measurement 
bias. Future randomized, placebo-controlled trials with larger 
sample sizes, longer intervention durations of 12–24 weeks, and 
standardized protocols are needed to confirm these preliminary 
findings and capture more robust muscle and neuromuscular  
adaptations.

5 Conclusion

Although our study is limited by its single-arm nature, our study 
provides preliminary evidence that CrM supplementation is associated 
with improvements in upper body strength and lower body muscle 
size in patients with AD. Enhancing skeletal muscle strength and size 
may help prevent AD-related decline in physical function, potentially 
slowing functional decline and improving quality of life. As a cost-
effective, well-tolerated intervention, CrM represents a promising 
adjuvant therapeutic strategy that warrants investigation in larger 
randomized controlled trials to establish its efficacy for preserving 
physical function in patients with AD.
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