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Integrated flavoromics and
lipidomics analysis of metabolic
difference and flavor regulation
mechanisms in duck
subcutaneous adipose tissue
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Yanan Wang?, Mingli Zhai?, Yunguo Qian!, Shenggiang Ye'* and
Yu Yang'*

tAnimal Husbandry and Veterinary Research Institute, Wuhan Academy of Agricultural Sciences,
Wuhan, China, ?College of Animal Science and Technology, Huazhong Agricultural University, Wuhan,
China

Subcutaneous adipose tissues (SAT) are critical determinants of duck meat flavor
and texture. Investigating metabolic differences in SAT deposition facilitates
targeted breeding strategies for superior flavor profiles and feed formulation
optimization. This study employed flavoromics and lipidomics to systematically
compare the flavoromics and lipidomics profiles of SAT from Wugqin-10 duck
(WQ) and Cherry valley duck (CV). Flavoromics analysis identified hexadecanal
as the sole significantly upregulated differential flavor compounds in WQ ducks
(P-value < 0.05), predominantly enriched in fatty acid degradation pathways.
Lipidomics revealed 182 differential lipids (87 upregulated, 95 downregulated)
between breeds, with Carnitine C4:1-20H exhibiting 256-fold higher relative
abundance in WQ ducks. Compositional analysis demonstrated elevated
levels of long-chain triglycerides (TAGs), lysophosphatidylcholines (LPCs), and
lysophosphatidylethanolamines (LPEs) in WQ ducks, whereas CV ducks showed
higher abundance of phosphatidylserine (PS), phosphatidylethanolamine (PE),
and phosphatidylcholine (PC). These differential lipids were significantly
enriched in glycerophospholipid metabolism, GPI-anchor biosynthesis, and
polyunsaturated fatty acid metabolic pathways. Integrated multi-omics analysis
further identified significant positive correlations between flavor compounds
(n-hexadecanoic acid and hexadecanal) and glycerolipids (TG/DG). Collectively,
this work systematically elucidates substantial compositional divergences in
flavor compounds and lipids between CV and WQ ducks, while flavor
compound-lipid correlations reveal potential regulatory nodes within lipid
metabolic networks, providing crucial molecular insights into breed-specific lipid
metabolic characteristics.
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1 Introduction

The subcutaneous adipose tissue (SAT) of duck plays a central role in duck meat quality
formation, wherein its abundant lipids undergo complex thermally induced oxidative
reactions during cooking, generating key volatile organic compounds-including aldehydes,
ketones, alcohols, and esters-that constitute the characteristic aroma profile of duck
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SAT (1). For instance, oxidative degradation of unsaturated
fatty acids yields aldehyde and ketone compounds imparting
the distinctive lipid-derived aroma to duck meat (2, 3).
Concurrently, melted SAT permeates muscle tissues during
cooking, significantly enhancing water-holding capacity and
tenderness while synergistically contributing to its unique aroma
and flavor profile (1, 4, 5).

The Wugqin-10 duck (WQ duck) is a novel high-quality meat
duck variety developed through modern breeding techniques
targeting key economic traits including plumage color, SAT
deposition rate, and reproductive performance. This strain exhibits
distinguishing characteristics such as high lean meat yield (up
to 27.5%) and relatively low SAT deposition rate, coupled with
superior meat texture and flavor profiles, establishing it as an
ideal raw material for value-added duck processing (3). In
contrast, the Cherry Valley duck (CV duck)-a prominent meat
duck breed-is renowned for its rich fatty acid composition,
predominantly featuring monounsaturated fatty acids (MUFAs,
e.g., oleic acid/C18:1 n-9) and saturated fatty acids (SFAs),
alongside moderate levels of polyunsaturated fatty acids (PUFAs,
e.g., linoleic acid/C18:2 n-6) compared with Grimaud duck (6).
These fatty acids critically sustain avian physiological functions
and contribute to breed-specific meat flavor development (6-8).
Crucially, the elevated lipid content and distinctive fatty acid
profile-particularly the proportion of unsaturated fatty acids-enable
CV duck SAT to undergo extensive oxidation and degradation
during cooking (especially roasting), generating abundant volatile
flavor compounds (aldehydes, ketones, esters, etc.) that collectively
form its signature rich, meaty aroma profile (2, 9).

Consequently, SAT quality constitutes a pivotal determinant
of the ultimate eating quality (texture, flavor, nutritional value)
of duck meat products (10). Nevertheless, the specific divergences
in metabolic signatures (metabolome) and lipid molecular
species/composition (lipidome) across duck breeds, along with
their regulatory mechanisms, remain inadequately elucidated. The
Cherry Valley duck is renowned as a fast-growing meat-type
breed, characterized by its rapid growth and high subcutaneous
and abdominal fat deposition, whereas the WQ duck, as a
high-quality meat duck hybrid line independently developed
in China, achieves a balance between growth rate and meat
quality traits. We employed integrated flavoromics and lipidomics
to systematically compare their flavor compounds and lipids
profiles. This investigation not only contributes to elucidating the
mechanisms of lipid metabolism and identifying key biomarkers,
but also provides a theoretical basis for breeding meat duck
breeds that better align with the flavor preferences and processing
requirements of the Chinese market.

Abbreviations: WQ ducks, Wugin 10 ducks; CV ducks, Cherry Valley
ducks; SAT, Subcutaneous adipose tissue; TIC, Total ion chromatograms;
TG, Triglycerides; PC, Phosphatidylcholines; PE, Glycerophospholipids;
HS-SPME, GC-MS,  Gas
Chromatography-Mass Spectrometry; SPE, Solid-phase extraction; KEGG,

Headspace solid-phase  microextraction;
Kyoto Encyclopedia of Genes and Genomes; PCA, Principal component
analysis; OPLS-DA, Orthogonal partial least squares discriminant analysis;
LPC, Lysophosphatidylcholines; LPE, lysophosphatidylethanolamines; SCFAs,

Short-chain fatty acids.
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2 Materials and methods

2.1 Experimental design and animal
management

Three-day-old Cherry Valley (CV) and Wugqin-10 (WQ)
ducklings (n = 120 per breed) with health and comparable body
weights were selected. Ducklings were divided into two groups (CV
and WQ), with each group containing 12 replicates of 10 ducklings
(with equal sex distribution). Identical husbandry management
practices were applied to both groups. Ducks had ad libitum access
to feed and water, and no antibiotics were administered during the
month preceding slaughter.

2.2 Sample collection

At 63 days of age, one duck per replicate was randomly
selected (n = 12) and fasted for 8 hours. Following slaughter, SAT
were immediately collected and snap-frozen in liquid nitrogen for
subsequent omics analyses.

2.3 Flavoromics

2.3.1 Sample preparation

Headspace solid-phase microextraction (HS-SPME): Samples
retrieved from-80 °C were pulverized in liquid nitrogen and vortex-
homogenized. Approximately 1g SAT was weighed into headspace
vials, followed by addition of 1-2mL saturated NaCl solution
for single-step ionic strength/pH adjustment and 10 pL internal
standard solution. The SPME fiber assembly was exposed to the
vial headspace for volatile flavor compound adsorption under
temperature/time-specific conditions. Simultaneous distillation-
extraction: Sample-water mixtures were loaded into one chamber
of the distillation apparatus while organic solvent was placed
in the opposing chamber. Concurrent distillation and extraction
were performed, whereby volatile flavor compounds migrated
with steam into the organic phase under thermal convection and
condensation forces. After timed extraction, the organic phase was
collected and concentrated via nitrogen-blowing.

2.3.2 Chromatography and mass spectrometry
conditions

Chromatographic conditions: The SPME injection parameters
included an aging temperature of 250 °C for 5 min, heating at 60 °C
for 10 min, adsorption time of 20 min, desorption time of 5 min,
and post-injection re-aging time of 5min. Mass spectrometry
conditions: electron bombardment ionization source with 70 eV
electron energy; scan range typically set to m/z 35-550 to cover
fragment ions of most flavor compounds; interface temperature
maintained at approximately 280 °C to prevent condensation
or decomposition during sample transfer. For sample analysis:
the extracted flavor compounds were injected into the GC-MS
system to initiate the analytical program for automated separation
and detection. Each sample was typically analyzed 2-3 times
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with averaged values taken to ensure data accuracy. The internal
standard was [2H7]-2-methylpyridine, and the chromatographic
column was DB-5MS (30 m x 0.25 mm, 0.25 jum).

2.3.3 Data processing and analysis

Data acquisition: Data acquisition was performed using a GC-
MS system, which generated total ion chromatograms (TIC) by
recording ion intensity over time. Both chromatographic and mass
spectrometric data were saved using the data acquisition software
for subsequent processing. Peak identification and integration:
Chromatographic peaks within the TIC were identified and
integrated using GC-MS data analysis software to determine their
retention times and peak areas. The peak area was used as a measure
of the relative abundance of each flavor compound. Qualitative
analysis: Mass spectral fragmentation patterns were compared
against standard reference libraries (e.g., the NIST database).
Compound identities were confirmed based on matching scores
and retention times. Flavor compounds with a fold change >2 or
fold change <0.5, P-value < 0.05 and VIP > 1 were selected.

2.4 Lipidomics

2.4.1 Sample preparation

Reference to Folch method for lipid extraction (11):
Approximately 1g of SAT sample was weighed, and a methanol-
chloroform mixture (2:1, v/v) was added at a ratio of 1:10 (w/v). The
mixture was homogenized at low temperature. The homogenate
was then transferred to a separatory funnel, followed by the
addition of 1/5 volume of 0.9% sodium chloride solution. The
mixture was shaken vigorously and allowed to separate into phases.
The lower organic phase was collected, dehydrated with anhydrous
sodium sulfate, and filtered. The filtrate was concentrated by rotary
evaporation and finally dried under a nitrogen stream to obtain the
lipid extract.

2.4.2 Lipid separation and detection

Lipid Separation by Reversed-Phase Liquid Chromatography
(RPLC): This technique employed a non-polar stationary phase and
a polar mobile phase. The non-polar moiety of lipids interacted
with the stationary phase while the polar moiety interacts with
the mobile phase. Lipids with stronger non-polar characteristics
exhibited greater retention on the stationary phase; as the polarity
of the mobile phase was increased, lipids were sequentially eluted
in decreasing order of hydrophobicity. Lipid Detection via Mass
spectrometry: Mass spectrometry was used to ionize lipid molecules
and separate/detect ions based on their mass-to-charge ratios
(m/z). In the ion source, lipid molecules absorbed energy to form
ions by gaining or losing electrons. These ions were spatially or
temporally resolved under electric and magnetic fields according
to their m/z values, ultimately being detected to generate mass
spectra. Distinctive m/z signatures and characteristic fragment ions
of different lipids enabled qualitative and quantitative analysis
through comparison with standard spectral libraries. The internal
standard were [12:0 Lyso PC, Cer (d18:1/4:0), PC (13:0/13:0), DG
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(12:0/12:0), TG (17:0/17:0/17:0)], and the chromatographic column
was (Thermo Accucore™ C30 column, i.d. 2.1 x 100 mm, 2.6 jLm).

2.4.3 Data processing and analysis

Raw data processing: The acquired raw data underwent
processing, including noise removal, baseline correction, peak
detection, and integration to enhance data quality. Lipid
identification was achieved by comparing retention times and
mass spectra with authentic standards, while quantification was
performed based on peak areas or signal intensities. Database
searches and specialized software were used to further facilitate
lipid annotation and quantitation. These lipids were functionally
annotated by mapping to biological metabolic pathways, revealing
their involvement in specific biological processes and signaling
cascades. Pathway enrichment analysis (e.g., using KEGG
database) elucidated the biological implications of lipid alterations.
The screening criteria for differential lipids are consistent
with flavoromics.

2.5 Correlation analysis between
flavoromics and lipidomics

The correlation analysis (RDA redundancy analysis) between
metabolome and lipidomics was performed by the genescloud
tools, a free online platform for data analysis (https://www.

genescloud.cn).

2.6 Data statistical analysis

The data were analyzed by Mann-Whitney U test in SPSS 24.0.
*P-value < 0.05 indicates a significant difference, **P-value <
0.01 indicates an extremely significant difference, and NS (P-value
> 0.05) indicates that there is no significant difference between
the data.

3 Results

3.1 Flavoromics quality control analysis

In this study, the proportion of peaks with CV < 30%
in QC samples to the total number of peaks are over
85% (Supplementary Figure S1), indicating that the instrumental
analysis system has good stability and the data can be used
for subsequent analysis. Following qualitative analysis of raw
instrument data, Figure 1A displays the total ion chromatogram
(TIC) of pooled quality control (QC) samples, representing
the continuous plot of summed ion intensities at each time
point. Flavor compound identification and quantification were
performed using the NIST database, detecting 67 flavor compounds
(Supplementary Table S1) with their respective names and relative
abundances. The QC samples, prepared by pooling random
specimens, assessed technical reproducibility under identical
processing conditions. Results demonstrated excellent repeatability
in flavor compound extraction and detection, confirming data
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FIGURE 1

Quality control assessment of flavoromics raw data. (A) Flavor compounds qualitative and quantitative analysis. (B) Quality control analysis of
samples. Overlaid total ion chromatograms (TIC) from mass spectrometry of QC samples. The high overlap of flavor compound detection TIC curves
indicates consistent retention time and peak intensity, demonstrating good signal stability across repeated instrument analyses of the same sample.
The high instrument stability ensures data repeatability and reliability. (C) Principal component analysis (PCA) of samples. (D) Hierarchical cluster
analysis of samples. X-axis: Sample names. Y-axis: All flavor compounds. Red: High abundance; Green: Low abundance.
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reliability (Figure 1B). Principal Component Analysis (PCA) of
all samples revealed distinct clustering patterns among groups,
indicating inter-group flavoromics differences (After removing
outlier sample, n = 11) (Figure 1C). Unit Variance (UV)-scaled
flavor compound abundance data underwent hierarchical cluster
analysis (HCA) via the R pheatmap package. Heatmap visualization
demonstrated group-specific accumulation patterns, exemplified
by higher relative abundances of hexanoic acid, non-anoic acid, n-
hexadecanoic acid, and n-caproic acid vinyl ester in the WQ group
vs. the CV group (Figure 1D).

3.2 Identification of differential flavor
compounds and KEGG enrichment analysis

PLS-DA score plot visualization revealed distinct separation
between CV and WQ duck SAT samples (each point representing
an individual specimen), indicating systemic flavoromics
differences between breeds. Both groups exhibited intra-group
clustering tendencies while demonstrating within-group variations

(Figure 2A). In the OPLS-DA S-plot (where each point denotes a

10.3389/fnut.2025.1671714

flavor compound), flavor compounds in the upper-right quadrant
showed significant up-regulation in WQ ducks with high model
contribution, whereas lower-left quadrant flavor compounds were
markedly down-regulated in WQ ducks with strong discriminatory
power. This plot confirmed discriminant flavor compounds
driving inter-breed differences and indicated their abundance
trends (Figure 2B). Volcano plot analysis identified 4 up-regulated
flavor compounds (hexadecanal (palmitic aldehyde), hexanoic
acid, 1-Octanol and trans-4-tert-butylcycloheptanol) in WQ vs.
CV ducks (foldchange > 2, P-value < 0.05), with zero down-
regulated and 63 non-significant flavor compounds (Figure 2C).
KEGG pathway enrichment analysis of this differential flavor
compounds exclusively highlighted the fatty acid degradation
pathway (Figure 2D).

3.3 Lipidomics quality control analysis
Lipidomics profiling identified 915 lipid species in total

Lipid  composition  exhibited
patterns with distinct subclass distributions

(Supplementary Table S2).
sample-specific
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FIGURE 2
Screening and identification of differential flavor compounds. (A) OPLS-DA score plot. (B) OPLS-DA S-Plot. (C) Screening of differential flavor
compounds. Each point in the volcano plot represents a flavor compound. X-axis: Log,foldchange in abundance between two sample groups.
Y-axis: VIP (Variable Importance in Projection) value. Larger absolute values on the X-axis indicate greater fold changes. Higher Y-axis values indicate
more statistically significant differences. Green points: Down-regulated flavor compounds; Red points: Up-regulated flavor compounds; Gray points:
Flavor compounds detected but not significantly different. (D) KEGG functional annotation and pathway enrichment analysis of differential flavor
compounds. X-axis: Rich Factor for each pathway. Y-axis: Pathway names (sorted by P-value). Point color reflects P-value (redder indicates higher
significance). Point size represents the number of enriched differential flavor compounds.
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(C) Hierarchical cluster analysis of samples.

Quality control assessment of lipidomics raw data. (A) Circular plot of lipid subclass composition. (B) Principal component analysis (PCA) of samples.

across sample types. Specifically, duck SAT comprised
30.05% triglycerides (TG), 9.62% phosphatidylcholines (PC),
8.74% ether-linked (PE-O),
and 5.90% plasmalogen phosphatidylethanolamines (PE-P)
(Figure 3A). (PCA) of all
(including QCs) demonstrated group

phosphatidylethanolamines

Principal Component Analysis
samples separation
trajectories, suggesting inter-group lipidomics divergence (After
11) (Figure 3B). Following

unit variance scaling normalization of lipid abundance data,

removing outlier sample, n

hierarchical cluster analysis (HCA) was performed using R
software (https://www.r-project.org/) to examine accumulation
patterns.

Clustering profiles differed significantly between
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groups: PS, PE, and PC lipids predominated in CV ducks,
whereas long-chain TGs, lysophosphatidylcholines (LPC), and
lysophosphatidylethanolamines (LPE) were enriched in WQ ducks
(Figure 3C).

3.4 Identification of differential lipid and
KEGG enrichment analysis

PLS-DA analysis revealed pronounced spatial separation
between WQ and CV duck SAT (Figure 4A),
demonstrating the model’s discriminative capacity to distinguish

samples
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Correlation analysis of metabolome and lipidome data

groups based on lipidomics profiles. This confirms significant
systemic differences in SAT metabolism between breeds. The
OPLS-DA S-plot highlighted core differential flavor compounds
(red points in upper-right/lower-left quadrants) with strong
discriminatory power and high correlation to group separation
(Figure 4B).
in subcutaneous adipose tissue synthesis, degradation, and

These flavor compounds potentially involved

transport pathways-represent key drivers of inter-breed
metabolic divergence. Subsequently, we identified the top 20
most differentially abundant lipids (|log, FC| > 1, P-value < 0.05).
Notably, 19 core lipids were significantly upregulated in WQ
ducks, with carnitine C4:1-20H exhibiting 256-fold enrichment
(logoFC = 8), indicating enhanced subcutaneous adipose tissue
metabolic activity (Figure 4C). Volcano plot analysis detected
261 differential lipids between breeds: 174 upregulated and 87
downregulated in WQ vs. CV ducks, alongside 654 non-significant
lipids (Figure 4D). KEGG enrichment analysis of differential lipids
revealed predominant involvement in: regulation of lipolysis in
adipocytes, glycerolipid metabolism, a-linolenic acid metabolism,
arachidonic acid metabolism and linoleic acid metabolism

(Figure 4E).
3.5 Correlation analysis between
metabolome and lipidomics

Integrated flavoromics and lipidomics analyses revealed a

highly significant difference (P-value = 0.026) in the overall
flavoromics and lipidomics profiles between WQ ducks and CV
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ducks. Furthermore, significant positive correlations were observed
in duck SAT between flavor compounds (n-hexadecanoic acid,
hexanoic acid, non-anoic acid, hexadecanal) and lipids (TGs)
(Figure 5).

4 Discussion

The distinct flavor profiles of duck sebum critically influence
consumer preferences, yet the molecular regulatory mechanisms
remain elusive due to metabolic network complexity. Substantial
evidence confirms that characteristic flavor compounds
derive primarily from lipoxygenase-catalyzed or autoxidative
decomposition of polyunsaturated fatty acids (12, 13), directly
linking volatile flavor compounds and fatty acid composition to
flavor formation (14, 15). Integrating untargeted flavoromics and
lipidomics, this study systematically deciphered the molecular basis
and pathway-driven mechanisms underlying flavor differences
between CV and WQ duck sebum.

Flavoromics  analysis revealed pronounced oxidative
metabolism in WQ duck sebum, where hexadecanal (palmitic
aldehyde), 1-Octanol and

butylcycloheptanol-the  significantly upregulated differential

hexanoic  acid, trans-4-tert-
flavor compounds (Figure 2C) enriched in fatty acid degradation
pathways-directly reflects accumulated lipid oxidation end-
products (16). As a characteristic B-oxidation product of
n-hexadecanoic acid (17, 18), it imparts grassy and waxy
undertones, molecularly explaining WQ’s intensified lipidic aroma
(19, 20). Notably, aldehydes serve as core flavor contributors:
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hexanal (linoleate oxidation) presents fresh-green notes;
octanal and non-anal (oleate-derived) contribute fruity/fatty
and floral/fatty aromas, respectively (21, 22). Medium-chain
fatty acids (hexanoic/non-anoic acid) directly participate in
flavor perception while serving as aldehyde/ketone precursors
(23, 24). Quality control data and clustering patterns collectively
validated metabolic reliability, indicating active lipolysis-oxidation
equilibrium in WQ duck SAT.

Lipidomics highlighted fundamental inter-breed differences:
(PS/PE/PC)
wQ
(TG)

establishing  “hydrolysis-

CV  ducks prioritized structural phospholipids
(25-27),
significantly enriched long-chain
(LPC/LPE),
oxidation coupled dynamics” that liberate unsaturated free fatty

maintaining membrane whereas
ducks

and lysophospholipids

integrity
triglycerides

acids for flavor transformation (28, 29). Thermal oxidation of these
unsaturated fatty acids generates peroxides decomposing into
flavor-critical volatile compounds (2, 30, 31). This metabolic
C4:1-20H (sic),
which transports free fatty acids (e.g., oleic/palmitic acid) to

landscape was reinforced by Carnitine
mitochondria for f-oxidation (reducing greasiness) (32), while
scavenging free radicals to suppress rancid aldehyde generation
(33). KEGG enrichment further corroborated activation of
glycerophospholipid metabolism (membrane hydrolysis) and
arachidonic acid metabolism (oxidative stress response) jointly
provisioning flavor precursors (34, 35).

Integrated analysis established a cascade mechanism: TG
hydrolysis releases n-hexadecanoic acid that undergoes p-oxidation
into hexadecanal, contributing foundational “unctuousness” to
heated duck skin though excess causes unpleasant odors (36, 37).
Hexadecanal’s exclusive enrichment in fatty acid degradation
pathways forms a WQ-specific “high TG hydrolysis-FFA
elevated aldehydes” cascade
aroma (2). Conversely, CV ducks’ structural lipid dominance

accumulation- shaping robust
likely constrains TG hydrolysis efficiency. This synergy between
lipid composition (substrate reservoir) and enzyme activity
(conversion capacity) drives flavor divergence, while aldehyde
accumulation thresholds warrant vigilance against rancidity in
WQ ducks (33).

The gut microbiota plays a central role as a “metabolic
regulator” in the deposition of subcutaneous fat in ducks,
extending far beyond auxiliary digestion to deeply participate
in the process through multiple mechanisms. By fermenting
dietary fibers that are difficult for ducks to digest on their
own, gut microbes produce short-chain fatty acids (SCFAs,
such as acetate, propionate, and butyrate). These SCFAs
serve not only as direct substrates for fat synthesis and are
transported to adipose tissue but also act as signaling molecules
that activate or inhibit host metabolic pathways—including
the AMPK pathway—thereby regulating the balance between
fat synthesis and breakdown and ultimately influencing the
efficiency of subcutaneous fat deposition. In the future, we
plan to investigate the gut microbiota-liver-subcutaneous fat
axis in ducks. A deeper understanding of the mechanisms
behind this axis holds significant theoretical and practical
implications for optimizing duck production performance,
health status, and product quality-particularly fat content and
composition-through nutritional interventions such as modulating
microbial communities.
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5 Conclusion

In this study, although the number of differential flavor
compounds detected by flavoromics was limited (hexadecanal
(palmitic aldehyde), hexanoic acid, 1-octanol, and trans-4-tert-
butylcycloheptanol), lipidomics analysis revealed significant
enrichment of Carmirine C4:1-20H and long-chain TGs in the
SAT of WQ ducks. These differential molecules primarily involved
key pathways such as fatty acid degradation, glycerophospholipid
metabolism, and unsaturated fatty acid metabolism. Strong
correlations between flavor compounds and lipids further
suggested potential regulatory nodes within the SAT metabolic
network. These findings provide critical insights for understanding
the metabolic characteristics and molecular basis of SAT across

duck breeds.
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