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Introduction: This study aimed to compare serum metabolomic profiles 
between vegetarians and omnivores in a Chinese cohort and investigate their 
associations with cardiometabolic risk factors, including obesity, blood pressure, 
lipid profiles, and glucose metabolism.
Materials and methods: A cross-sectional study included 444 participants (222 
vegetarians and 222 omnivores) matched by age and sex. Serum metabolomic 
profiling was performed using ultra-performance liquid chromatography–
tandem mass spectrometry. Correlation analyses and multivariate linear 
regression models were employed to examine the associations between 
metabolites and cardiometabolic risk factors, adjusting for potential confounders 
such as age, sex, physical activity, and dietary patterns.
Results: Seventeen key differential metabolites were identified, with 11 
upregulated (e.g., maleic acid, methylcysteine, citric acid, indolepropionic acid 
[IPA]) and 6 downregulated (e.g., docosahexaenoic acid, eicosapentaenoic 
acid, creatine) in vegetarians compared to omnivores. After adjusting for 
covariates, metabolites such as methylcysteine, aconitic acid, and IPA were 
inversely associated with obesity indices (BMI, waist-to-hip ratio, body fat 
percentage), blood pressure, and lipid profiles, while creatine showed positive 
associations with obesity markers. Notably, IPA was linked to reduced systolic 
and diastolic blood pressure, and aconitic acid correlated with improved insulin 
sensitivity. Dietary analysis revealed that IPA and methylcysteine were positively 
associated with plant-based foods such as whole grains, millet, and legumes, 
while docosahexaenoic acid and eicosapentaenoic acid showed strong positive 
correlations with animal-based foods, particularly seafood.
Conclusion: Vegetarian diets are associated with unique serum metabolomic 
profiles that may improve cardiometabolic health.
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1 Introduction

Vegetarian diets, defined by the exclusion of meat and varying 
degrees of other animal products, have evolved from historical roots 
in ethics and religion to a modern dietary strategy embraced for its 
health and environmental benefits (1). Accumulating evidence 
highlights the association of vegetarian diets with reduced risks of 
cardiometabolic diseases, including obesity, type 2 diabetes, 
dyslipidemia, and cardiovascular disorders (2–4). While mechanistic 
explanations often focus on dietary fiber, antioxidants, and reduced 
saturated fat intake (5–7), emerging research underscores the 
importance of systemic metabolic adaptations in mediating these 
benefits (8). However, the specific metabolic pathways modulated by 
vegetarian diets—particularly in non-Western populations—remain 
underexplored, limiting the translation of findings into culturally 
tailored dietary recommendations.

Metabolomics, the comprehensive analysis of small-molecule 
metabolites in biological systems, has emerged as a powerful tool to 
decode the dynamic interplay between diet and physiology (9). Unlike 
other omics approaches, metabolomics captures real-time metabolic 
responses to dietary exposures, offering insights into mechanisms 
linking diet to health outcomes (10). Prior studies comparing 
vegetarians and non-vegetarians have identified distinct metabolic 
profiles, including altered levels of amino acids (e.g., essential amino 
acids), lipid species (e.g., several fatty acids), and microbiota-derived 
metabolites (e.g., short-chain fatty acids) (11–13). These findings 
suggest that vegetarian diets may modulate pathways related to energy 
metabolism, inflammation, and gut microbiome activity. However, 
few studies have systematically integrated vegetarian metabolomic 
data with detailed cardiometabolic phenotyping, hindering the 
identification of clinically actionable biomarkers.

In China, rapid urbanization and dietary transitions have 
precipitated a dual burden of undernutrition and rising 
cardiometabolic diseases (14). Traditional Chinese diets rich in plant-
based foods, are increasingly supplanted by meat-centric eating 

patterns, mirroring global trends. This shift underscores the urgency 
to understand how dietary transitions impact metabolic health in this 
population. Existing metabolomic studies in Chinese populations 
have predominantly focused on disease-specific biomarkers (e.g., 
diabetes, hypertension) (15–17) or isolated nutrient effects (e.g., 
vitamin D, ω-3 fatty acids) (18, 19), with no published research 
specifically examining serum metabolomic profiles associated with 
vegetarian diets. This gap is particularly critical given the unique 
dietary components (e.g., soy products, rice, and wheat-based foods) 
and cooking practices in Chinese cuisine, which may drive distinct 
metabolic adaptations compared to Western vegetarian diets. The 
absence of such data limits the translation of global vegetarian diet 
research into actionable insights for Chinese populations.

To address these limitations, we conducted a cross-sectional study 
to compare serum metabolomic profiles of Chinese vegetarians and 
omnivores using targeted metabolomics. Our study aims to (1) 
identify differential metabolites associated with vegetarian diets, (2) 
evaluate their associations with cardiometabolic risk factors (e.g., 
obesity indices, blood pressure, lipid profiles, glucose homeostasis), 
and (3) explore correlations between metabolites and dietary intake 
patterns. Rigorous adjustments for potential confounders, such as age, 
sex, and physical activity, were implemented to isolate diet-specific 
metabolic signatures.

2 Materials and methods

2.1 Study population

Healthy vegetarians were recruited through vegetarian 
associations and restaurants in Shanghai from March to May 2016. 
Inclusion criteria required participants to: (1) be aged 18 years or 
older; (2) have resided in Shanghai for at least 6 months; (3) have 
maintained a vegetarian diet for a minimum of 1 year; and (4) be able 
to comprehend the questionnaire content. Exclusion criteria included: 
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(1) a history of severe nutritional malabsorption or systemic diseases; 
and (2) pregnancy or breastfeeding within the previous 12 months. 
Omnivore participants were recruited from the friends and relatives 
of the vegetarians and were matched by sex and age (±1 year). In total, 
282 pairs of vegetarians and omnivores were recruited, all of whom 
reported no history of diabetes or metabolic diseases. For this serum 
metabolomics study, 222 pairs (444 subjects) with serum samples and 
complete relevant data of cardiometabolic risk factors were included 
(Figure 1). This study was approved by the Institutional Review Board 
of the Shanghai Jiao Tong University School of Medicine (No. 
2016029). Informed consent was obtained from all subjects involved 
in the study.

2.2 Demographic data and dietary 
assessment

Questionnaires were administered to participants, collecting 
demographic and individual behavioral information, such as age, 
sex, income, alcohol consumption, smoking, physical activity, 
sedentary time, sleep quality, vegetarian pattern, and vegetarian 
duration. Sleep quality was evaluated by the Chinese version of the 
Pittsburg Sleep Questionnaire Index (PSQI). Experienced dietitians 
administered a face-to-face semi-quantitative food frequency 
questionnaire (FFQ) to all participants to assess the intake amount 
and frequency of various foods over the preceding year. The 
questionnaire from the 2002 China Nutrition and Health Survey was 
adopted, encompassing 112 food categories, which were organized 
into 13 food modules: grains and tubers, beans, vegetables, fungi 
and algae, fruits, dairy, eggs, nuts, beverages, meat, oils, snacks, and 
condiments. Participants who adhered to a vegetarian diet at all 
meals daily for at least 1 year were classified as vegetarian. 
Otherwise, they were categorized as omnivores. To enhance the 

accuracy of participants’ food intake estimates, food pictures and 
models were employed. Daily nutrient intakes were calculated from 
the questionnaire using Nutrition Calculator v2.5 software, which 
was developed by the National Institute for Nutrition and Health of 
the Chinese Centre for Disease Control and Prevention, in 
collaboration with Beijing Feihua Communication Technology 
Co., LTD.

2.3 Anthropometric and biochemical 
measurements

The height, weight, waist circumference, hip circumference, body 
composition, and blood pressure of the participants were measured 
by experienced dietitians. Body mass index (BMI) was calculated 
using the formula: weight (kg) /height (m2), and the waist-to-hip 
ratio (WHR) was determined by dividing waist circumference (cm) 
by hip circumference (cm). Body composition was assessed with a 
calibrated bioimpedance device (InBody720, Biospace Inc., Korea), 
which provided the percent body fat (PBF). Systolic blood pressure 
(SBP) and diastolic blood pressure (DBP) were measured using an 
UA-774 Aiander electronic sphygmomanometer.

Blood samples were collected following at least 8 h of overnight 
fasting using Gel & Clot Activator tubes for venous blood collection 
from Wenzhou GAODE Medical Instrument Co., LTD. The 
biochemical markers measured included total cholesterol (TC), 
triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-
density lipoprotein cholesterol (HDL-C), fasting blood glucose (FG), 
and fasting insulin (FI). Homeostasis model assessment of insulin 
resistance (HOMA-IR) and β-cell function (HOMA-β) were calculated 
using FG and FI (20). Biochemical analyses were performed by the 
Clinical Laboratory Center at Shanghai Xinhua Hospital.

FIGURE 1

Participants flowchart.
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2.4 Sample preparation and instrumental 
analysis

For targeted metabolomic profiling of serum samples, the Q300 
platform (Human Metabolomics Institute, Inc., China) was utilized, 
as described in previous studies with minor modification (21). The 
method was optimized for high-throughput detection and 
quantification of 306 metabolites. In brief, a 20 μL aliquot of serum 
was mixed with 120 μL methanol containing most of the internal 
standards in a 96-well plate. The mixture was vortexed for 10 min and 
then centrifuged at 4°C at 4000 g for 30 min. A 30 μL aliquot of the 
supernatant was transferred to another 96-well plate for further 
derivatization. After incubating at 30°C for 60 min, the reaction was 
terminated by adding 400 μL of a 50% methanol solution and 
centrifuged. The resulting 140 μL supernatant was transferred to a 
new 96-well plate, and 10 μL of derivatized internal standard for 
short-chain fatty acids was added, followed by mixing 
and centrifugation.

Analyses were performed using a Waters ACQUITY 
ultraperformance liquid chromatograph coupled with an XEVO TQ-S 
mass spectrometer, both controlled by MassLynx 4.1 software (Waters, 
United States). Chromatographic separation was conducted on an 
ACQUITY BEH C18 column (1.7 μm, 100 mm × 2.1 mm) (Waters). 
The mobile phase consisted of water with 0.1% formic acid (A) and 
acetonitrile/isopropanol (70:30, v/v) (B). The gradient elution program 
was as follows: 0–1 min (5% B), 1–5 min (5–30% B), 5–9 min (30–50% 
B), 9–12 min (50–78% B), 12–15 min (78–95% B), 15–16 min 
(95–100% B), 16–18 min (100% B), 18–18.1 min (100–5% B), 
18.1–20 min (5% B), with a flow rate of 0.4 mL/min. The mass 
spectrometer was operated in both positive and negative ion modes, 
with a capillary voltage of 1.2 kV for negative mode and 3.2 kV for 
positive mode, a source temperature of 150°C, a desolvation 
temperature of 550°C, and a desolvation gas flow rate of 1,200 L/h.

2.5 Metabolomic data analysis

The UPLCTQMS data were processed using a TMBQ software 
(v1.0) to perform peak integration, calibration, and quantification of 
the metabolites. Briefly, the compounds were identified via the 
molecular weight and retention time of reference standards, calibrated 
by internal standards, and quantified by the standard curve generated 
via a series of diluted reference standards solution. Missing data were 
handled by replacing undetected metabolites, assumed to be below the 
LOD, with one Nth of the minimum detected value, where N is the 
sample size. Principal component analysis (PCA), partial least square 
discriminant analysis (PLS-DA) and orthogonal partial least-squares-
discriminant analysis (OPLS-DA) were conducted based on the 
metabolite profile. The variable importance in the projection (VIP) 
values obtained from the OPLS-DA model were taken as a criterion 
for differential metabolites selection. The OPLS-DA model was further 
verified by a permutation test to avoid transition fit of the model. For 
univariate testing, either paired t-tests or Wilcoxon signed-rank tests 
were employed to compare between groups, depending on data 
normality and homoscedasticity. Differential metabolites were 
selected in the first round based on VIP > 1 and p < 0.01. In the 
second round, the selection criteria were VIP > 1.8 and p < 1e-08. The 
combined results of OPLS-DA and univariate analysis from the first 

and second rounds of screening were classified as crude and fine 
differential metabolites, respectively. The differential metabolites were 
then imported into the human hsa database of the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) for further pathway analysis.

2.6 Statistical analysis

Descriptive statistics were calculated to summarize population 
characteristics. Continuous variables were expressed as means ± 
standard deviations (SD), while categorical variables were presented 
as frequencies and percentages. Comparative analyses of population 
characteristics between vegetarians and omnivores were performed 
using appropriate statistical tests: continuous variables were analyzed 
using paired t-tests or Wilcoxon rank-sum tests based on normality 
assumptions, and categorical variables were examined using McNemar 
tests. The selection of differential metabolites and the comparison of 
these metabolites between dietary groups are described separately in 
the metabolomic data analysis section.

Spearman correlation analyses were employed to examine the 
relationships between differential metabolite concentrations and 
dietary components, including foods and nutrients, across the entire 
cohort as well as within the vegetarian and omnivore subgroups. To 
investigate the associations between differential metabolites and 
cardiometabolic risk factors, metabolite concentrations were 
log-transformed (Ln) to achieve normal distribution. Partial 
correlation analyses were first performed to assess these associations. 
Following this, multivariate linear regression was used to further 
examine these relationships. In multivariate linear regression analyses, 
participants were categorized into three groups based on tertiles of 
metabolite concentrations (low, medium, and high), with the low 
concentration group (T1) serving as the reference category. β 
coefficients and 95% confidence intervals (CIs) were calculated for the 
medium (T2) and high (T3) concentration groups. Additionally, the 
median concentration of each differential metabolite within each 
tertile was treated as a continuous variable to perform trend tests. To 
control for potential confounders in the analysis of cardiometabolic 
risk factors, adjustments were made for both partial correlation 
analysis and multivariate linear regression as follows: for obesity 
indicators, the models accounted for age, sex, exercise time, alcohol 
consumption, and dietary pattern; for other cardiometabolic risk 
factors, BMI was additionally included as a covariate. All statistical 
analyses were conducted using SPSS version 26.0 software (SPSS Inc., 
United  States) and R software version 4.2.1 (R Foundation for 
Statistical Computing, Austria), and statistical significance was 
defined as a two-sided p value of less than 0.05.

3 Results

3.1 Characteristics of the study population

This study included 444 participants, consisting of 222 vegetarians 
and 222 omnivores, who were matched by gender and age. The mean 
ages of vegetarians and omnivores were 34.88 ± 8.47 years and 
34.35 ± 8.59 years, respectively. Among the participants, 183 pairs 
(82.4%) were female. Of the 222 vegetarians, 58 (26.1%) were vegans, 
while 164 (73.9%) were lacto-ovo vegetarians. The average duration of 
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adherence to a vegetarian diet exceeded 5 years. Demographic 
characteristics and levels of cardiometabolic risk indicators are 
summarized in Table  1. Regarding demographic variables, no 
significant differences were found between vegetarians and omnivores 
in terms of education, income, smoking, exercise habits, and PSQI 
sleep scores. However, the proportion of nondrinkers was significantly 
higher in the vegetarian group compared to the omnivore group 
(p < 0.001). In terms of cardiometabolic risk factors, vegetarians 
exhibited lower BMI, WHR, PBF, SBP, TC, HDL-C, LDL-C, FG, FI, 

and HOMA-IR scores compared to omnivores (p < 0.001). However, 
there were no significant differences in DBP, TG, and HOMA-β 
between the two groups.

3.2 Serum metabolomic profiles and 
differential metabolites of vegetarians

UPLC-MS/MS detected 205 out of 306 metabolites, while the 
remaining metabolites were not identified due to their concentrations 
being below the detection limit. The relative abundance of serum 
metabolite classes in vegetarian and omnivore groups is shown in 
Table 2. The analysis revealed significant differences in amino acids, 
fatty acids, indoles, bile acids, benzene ring compounds, benzoic acids, 
and pyridines.

PCA, PLS-DA, and OPLS-DA models were constructed to assess 
the metabolic differences between the vegetarian and omnivore 
groups (Supplementary Figures 1A–C). The PCA analysis revealed 
that the first two components explained a relatively low proportion of 
the variance, suggesting some overlap in the metabolic profiles of 
these two groups. To further investigate the group separation, the 
supervised PLS-DA and OPLS-DA methods were applied to refine 
and analyze the data, confirming distinct metabolic differences 
between the two groups. The OPLS-DA model, with R2X = 0.262, 
R2Y = 0.518, and Q2Y = 0.461, indicated a moderate explanation of the 
variance in the independent variables (X) and dependent variable (Y). 
The results of the permutation test (Supplementary Figure 1D) further 
validated the effectiveness of the OPLS-DA model in discriminating 
between the two groups.

In identifying differential metabolites, two rounds of screening 
were performed using both multivariate and univariate approaches 
(Figure  2). The first round used thresholds of VIP > 1 (from 
OPLS-DA) and p < 0.01 (from univariate analysis), leading to the 
identification of 62 metabolites with VIP > 1 and 72 metabolites with 
p < 0.01. The union of these two sets resulted in 83 differential 
metabolites (Supplementary Table 1). A second round of screening 
applied stricter criteria, using VIP > 1.8 for the multivariate analysis 
and p < 1e-08 for univariate analysis. This refined selection revealed 
13 metabolites meeting the multivariate threshold and 9 metabolites 
meeting the univariate threshold, resulting in a total of 17 key 
differential metabolites associated with the vegetarian diet (Figure 3). 
These metabolites were categorized into four groups: organic acids, 
amino acids, fatty acids, and indoles. Compared to the omnivore 
group, 11 metabolites were significantly upregulated in the vegetarian 
group, including maleic acid, methylcysteine, malic acid, aconitic acid, 
glutamine, citric acid, N-acetylaspartic acid, asparagine, guanidoacetic 
acid, α-linolenic acid, and indolepropionic acid (IPA). Conversely, 6 
metabolites were found to be downregulated in vegetarians, including 
docosahexaenoic acid (DHA), α-aminobutyric acid, eicosapentaenoic 
acid (EPA), creatine, 2-hydroxybutyric acid, and glycolic acid. Notably, 
IPA and maleic acid were the most significantly upregulated 
metabolites in vegetarians, as evidenced by univariate analysis and 
OPLS-DA statistics, respectively (IPA: p = 6.75e-10; maleic acid: 
VIP = 2.44). DHA was the most significantly downregulated 
metabolite in the vegetarian group, with both statistical tests 
confirming this finding (p = 6.76e-26, VIP = 3.18).

To further interpret the biological significance of these differential 
metabolites, pathway enrichment analysis revealed that these 

TABLE 1  Characteristics of vegetarians and omnivores.

Vegetarians 
(n = 222)

Omnivores 
(n = 222)

p

Female, n (%) 183 (82.4) 183 (82.4)

Age (years) 34.88 ± 8.47 34.35 ± 8.59

Vegetarian diet 

duration (years)
5.43 ± 5.05 –

Education, n (%) 0.676

Elementary and 

secondary
73 (33.3) 80 (35.6)

Undergraduate 107 (48.9) 97 (43.8)

Graduate or above 39 (17.8) 45 (20.5)

Income per 

month, n (%)
0.200

<3,000 42 (19.1) 56 (25.5)

3,000 ~ 5,000 40 (18.2) 36 (16.4)

5,000 ~ 8,000 55 (25.0) 59 (26.8)

>8,000 73 (33.2) 69 (31.4)

Nondrinker (%) 210 (94.6) 185 (83.3) <0.001*

Nonsmoker (%) 196 (88.3) 202 (91.0) 0.405

Exercise time 

(min/w)
119.59 ± 150.96 85.27 ± 123.96 0.183

PSQI sleep score 2.88 ± 2.19 3.25 ± 1.88 0.590

BMI (kg/m2) 21.05 ± 2.62 22.49 ± 3.34 <0.001*

WHR 0.82 ± 0.05 0.84 ± 0.05 <0.001*

PBF (%) 26.17 ± 6.53 28.52 ± 5.95 <0.001*

SBP (mm Hg) 108.07 ± 12.76 112.41 ± 14.18 <0.001*

DBP (mm Hg) 70.00 ± 9.52 70.57 ± 10.29 0.628

TC (mmol/L) 4.08 ± 0.76 4.63 ± 0.83 <0.001*

TG (mmol/L) 0.96 ± 0.53 0.91 ± 0.44 0.393

HDL-C (mmol/L) 1.26 ± 0.26 1.37 ± 0.28 <0.001*

LDL-C (mmol/L) 2.55 ± 0.59 2.97 ± 0.68 <0.001*

FG (mmol/L) 4.64 ± 0.67 4.83 ± 0.39 <0.001*

FI (mU/L) 4.90 ± 2.23 5.90 ± 3.03 <0.001*

HOMA-IR 1.03 ± 0.58 1.28 ± 0.70 <0.001*

HOMA-β (%) 93.28 ± 44.61 94.71 ± 60.12 0.672

* Statistical significance. BMI, body mass index; WHR, waist-to-hip ratio; PBF, percent body 
fat; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; TG, 
triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein 
cholesterol; FG, fasting blood glucose; FI, fasting insulin; HOMA-IR, homeostasis model 
assessment of insulin resistance; HOMA-β, homeostasis model assessment of β cell function.
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metabolites were primarily involved in six metabolic pathways 
(p < 0.05): Alanine, Aspartate, and Glutamate Metabolism; Glyoxylate 
and Dicarboxylate Metabolism; Citrate Cycle (TCA Cycle); Arginine 
and Proline Metabolism; Nitrogen Metabolism; and Glycine, Serine, 
and Threonine Metabolism (Supplementary Figure 2).

3.3 Associations between differential 
metabolites and cardiometabolic risk 
factors

Partial correlation analysis was employed to explore the intricate 
relationships between the 17 differential metabolites and key 
cardiometabolic risk factors, as presented in Figure 4. After adjusting 
for potential confounding variables, including age, sex, exercise 
duration, alcohol consumption, and dietary patterns, we identified 
several metabolites exhibiting distinct patterns of association with 
obesity indicators. Specifically, metabolites such as methylcysteine, 
aconitic acid, citric acid, N-acetylaspartic acid, asparagine, and IPA 
were negatively associated with all three obesity indicators—BMI, 
WHR, and PBF (p < 0.05). In contrast, creatine exhibited a positive 
association with each of these obesity markers (p < 0.05). Further 
refinement of the analysis, which adjusted for BMI in addition to the 
aforementioned covariates, revealed that IPA was inversely associated 
with both systolic and diastolic blood pressure (SBP and DBP) 
(p < 0.05). Methylcysteine, in particular, demonstrated significant 
negative correlations with three of the four major blood lipid 
parameters—TC, HDLC, and LDLC (p < 0.05). In contrast, 
metabolites such as guanidoacetic acid, DHA, α-aminobutyric acid, 
and creatine exhibited positive associations with at least three of the 
four lipid parameters (p < 0.05). Additionally, aconitic acid was 
notably inversely correlated with three of the four blood glucose-
related indicators, including FI, HOMA-β, and HOMA-IR (p < 0.05).

The associations between these metabolites and cardiometabolic 
risk factors were further evaluated in multivariate linear regression 
models, with the same adjustment as partial correlation analysis. 
These analyses elucidated the complex relationships between these 
metabolites and obesity indicators, blood pressure, blood lipid levels, 
and blood glucose markers. A significant inverse relationship was 
observed between the concentration of methylcysteine and all three 
obesity indicators. In the T3 group, methylcysteine was associated 
with a marked reduction in BMI (β = −0.886, 95% CI: −1.556, 
−0.215), WHR (β = −0.013, 95% CI: −0.022, −0.003), and PBF 
(β = −1.625, 95% CI: −2.896, −0.354), suggesting that higher levels of 
this metabolite may be  protective against adiposity (p < 0.05). 
Although aconitic acid showed an inverse association with PBF 
(β = −2.343, 95% CI: −3.622, −1.065) in the T3 group (p < 0.001), it 
had a less pronounced effect on BMI and WHR. Conversely, creatine 
demonstrated a positive association with these obesity markers. 
Specifically, in the T3 group, creatine was linked with increased BMI 
(β = 1.109, 95% CI: 0.387, 1.831), WHR (β = 0.020, 95% CI: 0.009, 
0.030), and PBF (β = 2.326, 95% CI: 0.963, 3.689), indicating its 
potential role in promoting fat accumulation (p < 0.01) (Table 3).

In terms of blood pressure, among methylcysteine, guanidoacetic 
acid, and IPA, only IPA showed strong associations with both SBP and 
DBP. In the T3 group, IPA was inversely related to both SBP 
(β = −3.838, 95% CI: −6.825, −0.851) and DBP (β = −3.579, 95% CI: 
−5.805, −1.353), suggesting its potential as a regulator of blood 
pressure (Table 4).

Several metabolites, such as methylcysteine, citric acid, IPA, and 
DHA, were significantly associated with lipid profile markers. 
Methylcysteine demonstrated a consistent inverse relationship with 
TC (β = −0.329, 95% CI: −0.510, −0.148) and LDL-C (β = −0.243, 
95% CI: −0.384, −0.103) in the T3 group, suggesting its potential role 
in improving lipid metabolism (p < 0.01). Citric acid and IPA 
displayed a unique pattern, as they did not show significant 
associations with TC, HDL-C, or LDL-C, but were negatively 
correlated with TG in the T3 group (citric acid: β = −0.141, 95% CI: 
−0.244, −0.039; IPA: β = −0.148, 95% CI: −0.257, −0.038). In 
contrast, DHA exhibited positive associations with TC (β = 0.365, 95% 
CI: 0.159, 0.572) and LDL-C (β = 0.245, 95% CI: 0.085, 0.406), 
suggesting a role in lipid regulation (p < 0.01) (Table 5).

Fewer metabolites showed association with blood glucose 
markers. In the T3 group, aconitic acid was significantly associated 
with reduced FI (β = −0.927, 95% CI: −1.465, −0.388) and HOMA-IR 
(β = −0.214, 95% CI: −0.336, −0.092), indicating its potential to 
improve insulin sensitivity and glucose metabolism (p < 0.01) 
(Table 6).

3.4 Associations between differential 
metabolites and dietary components

Figure 5 illustrates the correlation analysis between differential 
metabolites and dietary foods in the entire cohort. The results 
revealed that all upregulated metabolites in vegetarians were 
negatively correlated with animal food intake, while all downregulated 
metabolites exhibited the opposite trend. Additionally, 
methylcysteine, aconitic acid, citric acid, and maleic acid showed 
negative correlations with milk or yogurt intake. Notably, IPA 
displayed a strong negative correlation with animal foods, but a mild 

TABLE 2  Comparison of relative abundance of serum metabolite classes 
between vegetarians and omnivores.

Class Vegetarians 
(n = 222)

Omnivores 
(n = 222)

p

Carbohydrates 38.809 39.433 0.392

Organic acids 27.684 27.525 0.099

Amino acids 26.604 26.592 0.027*

Fatty acids 5.660 5.171 <0.001*

Carnitines 0.501 0.540 0.136

SCFAs 0.481 0.463 0.148

Indoles 0.061 0.065 <0.001*

Bile acids 0.048 0.043 0.003*

Benzoic acids 0.041 0.036 0.019*

Benzenoids 0.032 0.041 0.002*

Phenylpropanoic 

acids
0.031 0.033 0.928

Pyridines 0.022 0.032 0.001*

Phenols 0.019 0.018 0.054

Peptides 0.008 0.008 0.417

* Statistical significance. SCFAs, short-chain fatty acids.
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positive correlation with millet, coarse grains, mixed beans, and 
potatoes. Figure  6 presents the correlation analysis between 
differential metabolites and dietary nutrients in the entire cohort. The 
upregulated metabolites, such as methylcysteine and IPA, in the 
vegetarian group were significantly negatively correlated with niacin, 
selenium, vitamin A, vitamin D, vitamin B2, and several 

macronutrients. Almost all upregulated metabolites demonstrated a 
significant negative correlation with niacin and selenium. Conversely, 
DHA, EPA, α-aminobutyric acid, 2-hydroxybutyric acid, and 
creatine, which were downregulated in the vegetarian group, showed 
strong positive correlations with niacin, selenium, vitamin A, and 
vitamin D.

FIGURE 2

Differential metabolites identified in vegetarians compared to omnivores using two rounds of screening. (A) Volcano plot for differential metabolites 
identified by OPLS-DA between vegetarians and omnivores (initial screening: VIP > 1, secondary screening: VIP > 1.8). (B) Volcano plot for differential 
metabolites identified by univariate analysis in vegetarians vs. omnivores (initial screening: p < 0.01, secondary screening: p < 1e-08). Significantly 
increased metabolites in vegetarians (FC > 1 and p < 0.01, red dots) and significantly decreased metabolites in vegetarians (FC < 1 and p < 0.01, blue 
dots). FC, fold change; VIP, variable importance in the projection.

FIGURE 3

Differential metabolites identified in vegetarians compared to omnivores using the combined results of OPLS-DA and univariate analysis. The bar plot 
displays metabolite changes, with metabolites ranked by VIP scores from OPLS-DA. FC value for each metabolite (X) is calculated as the ratio of X level 
in vegetarians to X level in omnivores. Each bar representing an FC value is color-coded according to its corresponding p-value. FC values are log2-
transformed, and p-values are transformed using -ln. FC, fold change; VIP, variable importance in the projection.
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Significant differences in food and nutrient intake were observed 
between the vegetarian and omnivore groups. To further refine the 
associations identified in the correlation analysis of the entire cohort, 
additional analyses were conducted within the vegetarian and 
omnivore groups to examine the relationships between differential 
metabolites and dietary foods (Supplementary Figures  3, 4) and 
nutrients (Supplementary Figures  5, 6). Notably, DHA and EPA 
showed strong positive correlations with seafood, while maleic acid, 
malic acid, α-linolenic acid, aconitic acid, and citric acid positively 
correlated with tofu and soy products. IPA, methylcysteine, 
N-acetylaspartic acid, and glutamine showed positive correlations 
with cereals, rice, millet, and peanuts, all observed within the 
omnivore group (p < 0.05). The major source of DHA in vegetarian 
group is eggs. The significant correlations between differential 
metabolites and dietary foods observed across the entire cohort, 
vegetarian group (with meat foods excluded), and omnivore group 
are summarized in Table  7. Notably, methylcysteine consistently 
correlated negatively with yogurt intake across all three cohorts 
(entire cohort: r = −0.22, vegetarians: r = −0.14, omnivores: 
r = −0.15, all p < 0.05). Maleic acid, IPA, and 2-hydroxybutyric acid 
consistently showed positive correlations with dried tofu, coarse 
cereals, and total eggs, respectively, across all three cohorts (IPA with 
coarse cereals entire cohort: r = 0.24, vegetarians: r = 0.13, omnivores: 
r = 0.16) (2-hydroxybutyric acid with eggs entire cohort: r = 0.25, 
vegetarians: r = 0.16, omnivores: r = 0.15) (all p < 0.05). Meanwhile, 
the significant correlations between differential metabolites and 
dietary nutrients observed across the entire cohort and different 
groups are summarized in Table  8. Consistently, DHA, 
α-aminobutyric acid, and 2-hydroxybutyric acid were positively 
associated with vitamin A intake across all three cohorts. Of these, 
DHA showed highest consistent correlation with vitamin A intake 
(entire cohort: r = −0.46, vegetarians: r = −0.31, omnivores: 
r = −0.18) (all p < 0.05).

4 Discussion

Our targeted metabolomic analysis identified 17 key 
differential metabolites associated with the vegetarian diet, with a 
particularly notable upregulation of metabolites involved in the 
TCA cycle, including citric acid, malic acid, maleic acid, aconitic 
acid, fumaric acid, succinic acid, and isocitric acid. These 
metabolites play crucial roles in mitochondrial energy production. 
Although there is no direct evidence linking vegetarian diets to 
TCA cycle intermediate accumulation (anaplerosis), studies on 
ketogenic diets—metabolically opposite to plant-based diets—
suggest that such diets inhibit anaplerosis (22, 23). This hints at the 
possibility that vegetarian diets, which rely heavily on 
carbohydrates, may promote anaplerosis by increasing TCA cycle 
intermediates. The vegetarian diet, rich in plant-based 
carbohydrates from fruits, vegetables, and grains, provides a 
significant carbohydrate source, which supports efficient energy 
production through mitochondrial processes. Additionally, 
metabolites like malic acid and citric acid are important for 
buffering reactive oxygen species (ROS) produced during 
mitochondrial respiration. This buffering capacity may help 
explain the reduced oxidative stress observed in vegetarians (24, 
25), potentially contributing to their protection against chronic 
diseases like cardiovascular disease and diabetes. Our findings 
contrast with a study on high-fat-diet-induced insulin-resistant 
mice, which reported distinct changes in TCA cycle metabolites 
associated with metabolic dysfunction and insulin resistance (26). 
In high-fat-diet-fed mice, serum concentrations of TCA cycle 
intermediates were significantly reduced. In contrast, the 
upregulation of these intermediates in vegetarians underscores a 
clear divergence in metabolic outcomes, highlighting the opposing 
effects of plant-based and high-fat diets on mitochondrial 
efficiency. Furthermore, a clinical study on women with obesity 

FIGURE 4

Correlation between differential metabolites and cardiometabolic risk factors. For obesity indicators, the model was adjusted for age, sex, exercise 
time, alcohol consumption, and dietary pattern; for other indicators, additional adjustments were made for BMI. Correlations were determined using 
partial correlation analysis. The correlation coefficients are presented and color-coded from red to blue. * p < 0.05, ** p < 0.01. BMI, body mass index; 
WHR, waist-to-hip ratio; PBF, body fat percentage; SBP, systolic blood pressure; DBP diastolic blood pressure; TC, total cholesterol; HDL-C, high 
density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; TG, triglycerides; FG, fasting glucose; FI, fasting insulin; HOMA-IR, 
homeostasis model assessment of insulin resistance; HOMA-β, homeostasis model assessment of β-cell function; DHA, docosahexaenoic acid; EPA, 
eicosapentaenoic acid.

https://doi.org/10.3389/fnut.2025.1672143
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Yao et al.� 10.3389/fnut.2025.1672143

Frontiers in Nutrition 09 frontiersin.org

TABLE 3  Associations between differential metabolites and obesity indicators.

Differential metabolites (μmol/L) β (95%CI) of obesity indicators

BMI WHR PBF

Methylcysteine

T1 (1.478 ~ 4.735) Ref Ref Ref

T2 (4.745 ~ 7.189) −0.727 (−1.381, −0.072)* −0.008 (−0.017, 0.001) −0.905 (−2.145, 0.336)

T3 (7.208 ~ 27.961) −0.886 (−1.556, −0.215)** −0.013 (−0.022, −0.003)** −1.625 (−2.896, −0.354)*

Ptrend 0.012 0.008 0.013

Aconitic acid

T1 (25.955 ~ 53.423) Ref Ref Ref

T2 (53.446 ~ 67.249) −0.775 (−1.436, −0.114)* −0.012 (−0.021, −0.003)** −1.610 (−2.850, −0.370)*

T3 (67.296 ~ 147.972) −0.624 (−1.305, 0.057) −0.023 (−0.032, −0.013)** −2.343 (−3.622, −1.065)**

Ptrend 0.066 <0.001 <0.001

Citric acid

T1 (42.435 ~ 117.497) Ref Ref Ref

T2 (117.643 ~ 145.447) −0.444 (−1.099, 0.211) −0.008 (−0.017, 0.001) −1.120 (−2.355, 0.114)

T3 (145.862 ~ 291.268) −0.546 (−1.217, 0.124) −0.018 (−0.028, −0.009)** −1.626 (−2.890, −0.362)*

Ptrend 0.113 <0.001 0.013

N-acetylaspartic acid

T1 (0.217 ~ 0.592) Ref Ref Ref

T2 (0.594 ~ 0.698) −0.916 (−1.565, −0.268)** −0.011 (−0.020, −0.002)* −1.671 (−2.900, −0.442)**

T3 (0.7 ~ 1.432) −0.877 (−1.539, −0.215)** −0.014 (−0.023, −0.005)** −1.542 (−2.796, −0.288)*

Ptrend 0.015 0.005 0.025

Asparagine

T1 (26.377 ~ 59.244) Ref Ref Ref

T2 (59.489 ~ 70.604) −0.359 (−1.016, 0.299) −0.010 (−0.019, −0.001) −1.034 (−2.276, 0.209)

T3 (70.695 ~ 146.187) −0.261 (−0.941, 0.419) −0.004 (−0.014, 0.005) −0.296 (−1.581, 0.989)

Ptrend 0.460 0.391 0.694

Guanidoacetic acid

T1 (0.805 ~ 2.897) Ref Ref Ref

T2 (2.9 ~ 3.734) −0.059 (−0.711, 0.594) −0.001 (−0.010, 0.008) −0.129 (−1.364, 1.106)

T3 (3.736 ~ 9.951) −0.513 (−1.203, 0.177) −0.011 (−0.021, −0.002)* −1.059 (−2.365, 0.247)

Ptrend 0.147 0.024 0.120

IPA

T1 (0.008 ~ 1.366) Ref Ref Ref

T2 (1.388 ~ 2.98) −0.357 (−1.046, 0.331) −0.004 (−0.014, 0.006) −0.674 (−1.979, 0.632)

T3 (2.991 ~ 19.593) −0.652 (−1.364, 0.059) −0.011 (−0.021, −0.001)* −1.208 (−2.557, 0.141)

Ptrend 0.072 0.027 0.078

Creatine

T1 (11.047 ~ 31.003) Ref Ref Ref

T2 (31.065 ~ 48.027) 0.700 (0.035, 1.365)* 0.010 (0.001, 0.019)* 1.114 (−0.142, 2.370)

T3 (48.067 ~ 116.182) 1.109 (0.387, 1.831)** 0.020 (0.009, 0.030)** 2.326 (0.963, 3.689)**

Ptrend 0.003 <0.001 0.001

Multivariate linear regression analysis adjusted for age, sex, exercise time, alcohol drink, and diet pattern. T1, low concentration group as reference; T2, medium concentration group; T3, high 
concentration group. β coefficients and 95% confidence intervals are provided. * p < 0.05, ** p < 0.01. Ref, reference; BMI, body mass index; WHR, waist-to-hip ratio; PBF, body fat percentage; 
IPA, indolepropionic acid.
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showed that combining exercise with a low-calorie diet elevated 
TCA cycle intermediate, suggesting that such interventions can 
enhance mitochondrial function (27).

Regarding amino acid metabolism, the elevated levels of 
glutamine and asparagine in vegetarians suggest alterations in 
nitrogen metabolism and amino acid catabolism. Glutamine, a key 
amino acid involved in protein synthesis, immune function, and acid–
base balance (28), showed increased concentrations in the vegetarian 
group. This could indicate an upregulation of protein turnover or 
enhanced catabolism of non-essential amino acids in vegetarians. 
Similarly, asparagine, essential for protein synthesis and cellular 
function (29), showed higher concentrations as well, which also might 
be related to an increased catabolism of non-essential amino acids. 
These findings suggest a shift in energy metabolism towards greater 
dependence on the oxidation of carbohydrates and non-essential 
amino acids in vegetarians. Furthermore, the downregulation of 
metabolites such as 2-hydroxybutyric acid and α-aminobutyric acid, 
which are derived from the metabolism of methionine, threonine, and 
leucine (30, 31), indicates a decreased reliance on the breakdown of 
essential amino acids. Notably, our findings align with a previous 
study that identified 2-hydroxybutyric acid as an early biomarker of 
insulin resistance and glucose intolerance in a non-diabetic population 
(30). In our study, the reduced levels of 2-hydroxybutyric acid in 
vegetarians hint at a potential protective effect, which could reduce the 
risk of insulin resistance or glucose intolerance.

DHA and EPA are essential long-chain ω-3 polyunsaturated fatty 
acids predominantly found in animal-based foods, particularly fish 
and seafood. As such, the exclusion of meat and seafood from the diet 
can significantly impact the intake of these crucial fatty acids. The 
observed lower levels of these metabolites in vegetarians likely reflect 
a reduced dietary intake of animal- derived ω-3 fatty acids, which are 

vital for maintaining cardiovascular health and modulating 
inflammatory responses (32). This finding aligns with existing 
literature, which consistently demonstrates that vegetarians generally 
exhibit lower levels of DHA and EPA compared to omnivores (33, 34).

However, vegetarians often compensate for this reduced intake of 
DHA and EPA by increasing their consumption of plant-based ω-3 
fatty acids. One of our findings of this study is the elevated levels of 
α-linolenic acid in the serum of vegetarians. α-linolenic acid, an 
essential ω-3 fatty acid, is primarily sourced from plant oils like 
flaxseed, hemp, and soybean oils (35). These oils are rich in α-linolenic 
acid, which likely accounts for the higher concentrations observed in 
individuals following plant-based diets. In contrast, omnivorous diets, 
which often contain a higher proportion of animal-derived fats, tend 
to provide lower amounts of this specific fatty acid. Our results align 
with previous studies, which have also reported increased α-linolenic 
acid levels in the serum of vegetarians (36). That being said, it is 
important to note that the conversion efficiency of α-linolenic acid 
into longer-chain polyunsaturated fatty acids, such as DHA and EPA, 
can be  inadequate to fully compensate for their deficiency in 
vegetarians (37). For this reason, it is important to emphasize the 
intake of ALA-rich food to overcome the low conversion efficiency.

Another noteworthy finding was the reduced concentration of 
creatine in the serum of vegetarians. Creatine, a compound primarily 
derived from red meat and fish, plays a critical role in energy 
metabolism, particularly in tissues with high energy demands like 
muscles and the brain (38, 39). The lower creatine levels in vegetarians 
are likely attributed to their limited intake of animal products, which 
are the main dietary sources of this compound. Multiple clinical 
studies have demonstrated that creatine supplementation can benefit 
vegetarian athletes by replenishing their creatine levels, boosting 
energy metabolism, and thereby enhancing overall athletic 

TABLE 4  Associations between differential metabolites and blood pressure.

Differential metabolites (μmol/L) β (95%CI) of blood pressure

SBP DBP

Methylcysteine

T1 (1.478 ~ 4.735) Ref Ref

T2 (4.745 ~ 7.189) −1.693 (−4.473, 1.087) −1.989 (−4.063, 0.085)

T3 (7.208 ~ 27.961) −0.396 (−3.251, 2.459) −1.905 (−4.035, 0.225)

Ptrend 0.852 0.095

Guanidoacetic acid

T1 (0.805 ~ 2.897) Ref Ref

T2 (2.900 ~ 3.734) −2.214 (−4.952, 0.524) −2.377 (−4.421, −0.334)*

T3 (3.736 ~ 9.951) −1.757 (−4.660, 1.145) −1.109 (−3.276, 1.057)

Ptrend 0.227 0.299

IPA

T1 (0.008 ~ 1.366) Ref Ref

T2 (1.388 ~ 2.98) −1.431 (−4.314, 1.452) −2.301 (−4.449, −0.152)*

T3 (2.991 ~ 19.593) −3.838 (−6.825, −0.851)* −3.579 (−5.805, −1.353)**

Ptrend 0.012 0.002

Multivariate linear regression analysis adjusted for age, sex, exercise time, alcohol drink, diet pattern, and BMI. T1, low concentration group as reference; T2, medium concentration group; T3, 
high concentration group. β coefficients and 95% confidence intervals are provided. * p < 0.05, ** p < 0.01. Ref, reference; SBP, systolic blood pressure; DBP, diastolic blood pressure; IPA, 
indolepropionic acid.
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TABLE 5  Associations between differential metabolites and blood lipid indicators.

Differential metabolites (μmol/L) β (95%CI) of blood lipid indicators

TC HDL-C LDL-C TG

Methylcysteine

T1 (1.478 ~ 4.735) Ref Ref Ref Ref

T2 (4.745 ~ 7.189) −0.157 (−0.333, 0.019) −0.017 (−0.075, 0.040) −0.130 (−0.266, 0.007) −0.033 (−0.135, 0.069)

T3 (7.208 ~ 27.961) −0.329 (−0.510, −0.148)** −0.059 (−0.118, 0.001) −0.243 (−0.384, −0.103)** −0.043 (−0.148, 0.062)

Ptrend <0.001 0.047 0.001 0.432

Citric acid

T1 (42.435 ~ 117.497) Ref Ref Ref Ref

T2 (117.643 ~ 145.447) 0.038 (−0.139, 0.214) 0.086 (0.029, 0.143)** −0.038 (−0.175, 0.099) −0.165 (−0.265, −0.065)**

T3 (145.862 ~ 291.268) −0.094 (−0.275, 0.087) 0.058 (0.001, 0.117)* −0.122 (−0.262, 0.018) −0.141 (−0.244, −0.039)**

Ptrend 0.297 0.057 0.087 0.009

Guanidoacetic acid

T1 (0.805 ~ 2.897) Ref Ref Ref Ref

T2 (2.900 ~ 3.734) 0.078 (−0.097, 0.252) 0.037 (−0.019, 0.094) 0.033 (−0.103, 0.168) −0.042 (−0.142, 0.059)

T3 (3.736 ~ 9.951) 0.272 (0.087, 0.457)** 0.081 (0.021, 0.141)** 0.180 (0.037, 0.324)* −0.009 (−0.116, 0.098)

Ptrend 0.004 0.008 0.015 0.854

IPA

T1 (0.008 ~ 1.366) Ref Ref Ref Ref

T2 (1.388 ~ 2.98) −0.051 (−0.237, 0.134) 0.007 (−0.053, 0.067) −0.045 (−0.189, 0.099) −0.120 (−0.225, −0.014)*

T3 (2.991 ~ 19.593) −0.158 (−0.351, 0.034) 0.016 (−0.046, 0.079) −0.133 (−0.282, 0.016) −0.148 (−0.257, −0.038)**

Ptrend 0.108 0.615 0.082 0.008

DHA

T1 (0.393 ~ 3.043) Ref Ref Ref Ref

T2 (3.049 ~ 5.479) 0.222 (0.041, 0.403)* 0.029 (−0.030, 0.088) 0.161 (0.021, 0.302)* 0.135 (0.031, 0.239)*

T3 (5.516 ~ 23.145) 0.365 (0.159, 0.572)** 0.066 (−0.002, 0.133) 0.245 (0.085, 0.406)** 0.132 (0.014, 0.251)*

Ptrend 0.001 0.057 0.003 0.031

α-aminobutyric acid

T1 (6.813 ~ 21.436) Ref Ref Ref Ref

T2 (21.484 ~ 30.511) 0.177 (−0.006, 0.360) 0.011 (−0.048, 0.070) 0.161 (0.019, 0.303)* −0.023 (−0.128, 0.082)

T3 (30.539 ~ 79.344) 0.277 (0.088, 0.467)** 0.072 (0.010, 0.134)* 0.209 (0.062, 0.356)** −0.080 (−0.189, 0.029)

Ptrend 0.004 0.022 0.005 0.149

EPA

T1 (0.224 ~ 0.723) Ref Ref Ref Ref

T2 (0.724 ~ 0.986) 0.081 (−0.094, 0.256) −0.029 (−0.086, 0.029) 0.074 (−0.063, 0.210) 0.076 (−0.026, 0.178)

T3 (0.989 ~ 5.919) 0.382 (0.198, 0.566)** 0.059 (−0.001, 0.120) 0.275 (0.131, 0.418)** 0.042 (−0.065, 0.149)

Ptrend <0.001 0.039 <0.001 0.490

Creatine

T1 (11.047 ~ 31.003) Ref Ref Ref Ref

T2 (31.065 ~ 48.027) 0.143 (−0.036, 0.322) 0.057 (−0.002, 0.116) 0.047 (−0.093, 0.186) 0.044 (−0.059, 0.147)

T3 (48.067 ~ 116.182) 0.357 (0.161, 0.552)** 0.047 (−0.017, 0.111) 0.240 (0.088, 0.392)** 0.145 (0.033, 0.258)*

Ptrend <0.001 0.160 0.002 0.011

2-hydroxybutyric acid

T1 (32.239 ~ 114.988) Ref Ref Ref Ref

T2 (115.157 ~ 167.29) 0.185 (0.009, 0.362)* 0.048 (−0.010, 0.105) 0.138 (0.001, 0.275)* −0.029 (−0.131, 0.072)

(Continued)
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performance (40). However, an elevation of guanidoacetic acid— a 
direct precursor to creatine— was observed in vegetarians (41). This 
suggests that while vegetarians are capable of synthesizing 
guanidoacetic acid, they may face challenges in efficiently converting 
it into creatine. This inefficiency in creatine synthesis could be linked 
to a reduction in methylation processes. The methylation process 
depends on methyl donors derived from nutrients such as methionine, 
with S-adenosylmethionine serving as the key molecule for 
methylation reactions (42). In vegetarians, the lower availability of 
methionine in their diet, combined with potential vitamin B12 
deficiency—a critical cofactor for methionine synthesis and 
homocysteine metabolism—may lead to a partial impairment of 
methylation capacity.

In our cohort, vegetarians demonstrated significantly lower BMI, 
WHR, and PBF compared to omnivores, which is consistent with 
previous research linking plant-based diets to lower obesity prevalence 
(43, 44). Further metabolic analysis revealed that methylcysteine and 
N-acetylaspartic acid were inversely associated with BMI, WHR, and 
PBF, suggesting their potential role in mitigating fat accumulation. 
Additionally, aconitic acid and citric acid showed a negative 
correlation with WHR and PBF. Another noteworthy finding was the 
inverse relationship between IPA and both SBP and DBP among 
vegetarians, indicating a potential protective effect of plant-based diets 
against hypertension (43, 45). Vegetarians also exhibited significantly 
improved lipid profiles and glucose regulation compared to 
omnivores, aligning with previous studies associating plant-based 
diets with better metabolic indices (43, 44). Our metabolomic analysis 

further revealed that methylcysteine and guanidoacetic acid were 
significantly correlated with lipid markers. However, it is important to 
note that the lipid-lowering effects of vegetarianism may come at the 
expense of reduced bioavailability of DHA and EPA, key ω-3 
polyunsaturated fatty acids (46). In terms of glucose metabolism, 
aconitic acid was strongly inversely correlated with both FI and 
HOMA-IR. Integrating these findings, we identified aconitic acid, 
citric acid, methylcysteine, and IPA as key serum biomarkers strongly 
inversely associated with cardiometabolic risk in vegetarians 
compared to omnivores.

Aconitic acid and citric acid, key intermediates in the TCA cycle, 
play a crucial role in energy metabolism. A clinical study demonstrated 
that higher serum levels of both aconitic acid and citric acid were 
associated with improved insulin sensitivity in adipose tissue (47). 
Animal studies have shown that serum concentrations of TCA 
intermediates were significantly reduced in high-fat diet-induced 
insulin-resistant mice (26). However, there is ongoing debate 
regarding the beneficial effects of TCA intermediates on metabolic 
and cardiovascular health, with some studies presenting opposing 
views (48). Despite these conflicting perspectives, our results indicated 
that higher serum levels of aconitic acid and citric acid were positively 
correlated with favorable metabolic outcomes in vegetarians. Further 
research is needed to fully understand the complex roles of TCA 
intermediates and their impact on health.

Methylcysteine and its derivatives play a vital role in promoting 
metabolic health through their potent anti-inflammatory and 
antioxidant properties. These compounds effectively combat oxidative 

TABLE 5  (Continued)

Differential metabolites (μmol/L) β (95%CI) of blood lipid indicators

TC HDL-C LDL-C TG

T3 (167.734 ~ 545.478) 0.180 (−0.002, 0.362) 0.055 (−0.004, 0.114) 0.125 (−0.016, 0.266) −0.054 (−0.159, 0.051)

Ptrend 0.050 0.065 0.078 0.310

Multivariate linear regression analysis adjusted for age, sex, exercise time, alcohol drink, diet pattern, and BMI. T1, low concentration group as reference; T2, medium concentration group; T3, 
high concentration group. β coefficients and 95% confidence intervals are provided. * p < 0.05, ** p < 0.01. Ref, reference; TC, total cholesterol; HDL-C, high density lipoprotein cholesterol; 
LDL-C, low density lipoprotein cholesterol; TG, triglycerides; IPA, indolepropionic acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid.

TABLE 6  Associations between differential metabolites and blood glucose-related indicators.

Differential metabolites (μmol/L) β (95%CI) of blood glucose-related indicators

FI HOMA-IR HOMA-β

Aconitic acid

T1 (25.955 ~ 53.423) Ref Ref Ref

T2 (53.446 ~ 67.249) −0.591 (−1.114,-0.068)* −0.131 (−0.250, −0.012)* −10.010 (−21.331, 1.311)

T3 (67.296 ~ 147.972) −0.927 (−1.465, −0.388)** −0.214 (−0.336, −0.092)** −11.003 (−22.651, 0.644)

Ptrend 0.001 0.001 0.062

Creatine

T1 (11.047 ~ 31.003) Ref Ref Ref

T2 (31.065 ~ 48.027) 0.185 (−0.345, 0.714) 0.037 (−0.083, 0.158) 2.660 (−8.802, 14.121)

T3 (48.067 ~ 116.182) 0.845 (0.267, 1.423)** 0.187 (0.055, 0.318)** 7.533 (−4.976, 20.041)

Ptrend 0.004 0.005 0.236

Multivariate linear regression analysis adjusted for age, sex, exercise time, alcohol drink, diet pattern, and BMI. T1, low concentration group as reference; T2, medium concentration group; T3, 
high concentration group. β coefficients and 95% confidence intervals are provided. * p < 0.05, ** p < 0.01. Ref, reference; FI, fasting insulin; HOMA-IR, homeostasis model assessment of 
insulin resistance; HOMA-β, homeostasis model assessment of β-cell function.
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stress in mice by enhancing glutathione synthesis, reducing the 
accumulation of ROS, and modulating key inflammatory pathways (49). 
Additionally, oral treatment of methylcysteine is effective in improving 

insulin resistance while attenuating metabolic syndrome, inflammation, 
and oxidative stress in rats fed with fructose rich diet (50). In particular, 
certain derivatives have been shown to activate NRF2 signaling, a pivotal 

FIGURE 5

Heatmap of the correlations between differential metabolites and dietary foods in entire cohort. Correlations were determined using Spearman 
correlation analysis. The colors from red to blue represent the correlation coefficients. DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; IPA, 
indolepropionic acid. * p < 0.05, † p < 0.01.
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regulator of cellular antioxidant defenses, while concurrently inhibiting 
NF-κB and NLRP3 inflammasome activation, thereby enhancing their 
protective effects against oxidative stress and inflammation (51).

IPA, a gut microbiota-derived metabolite of tryptophan, serves as 
a key mediator of the interactions between vegetarian diets and the 
microbiota-host environment (52). Epidemiological studies conducted 
in Finland, have demonstrated positive correlations between circulating 
IPA levels and dietary fiber intake, particularly from whole grains (53). 
In our study, vegetarians exhibited higher serum IPA levels, which were 
significantly associated with increased cereals, grain, and millet 
consumption. Growing evidence highlights the relevance of IPA in 
metabolic diseases, with studies linking its levels to the risk of obesity 
(54), type 2 diabetes (53), metabolic-associated fatty liver disease (55), 
and hyperlipidemia (56). Mechanistically, IPA may modulate these 
metabolic conditions through its involvement in glucose metabolism, 

insulin sensitivity, lipid homeostasis, inflammatory pathways, and gut 
microbiota dynamics (57). Additionally, animal studies have 
demonstrated that IPA exerts beneficial effects on heart function and 
enhances mitochondrial energy production (58). These findings 
underscore the potential role of IPA as a critical mediator of the 
cardiometabolic benefits associated with vegetarian diets.

Our study also explored the relationship between dietary 
components and metabolite profiles. Notably, metabolites such as 
methylcysteine, IPA, and maleic acid showed significant correlations 
with the intake of specific plant-based foods. Methylcysteine, primarily 
found in foods such as cruciferous vegetables (e.g., broccoli and 
cabbage) and seeds (e.g., bean and legume) (59, 60), was negatively 
correlated with animal food intake, which is consistent with its higher 
concentration in vegetarians. Similarly, IPA, a compound primarily 
produced by the gut microbiota from dietary tryptophan, was 

FIGURE 6

Heatmap of the correlations between differential metabolites and dietary nutrients in entire cohort. Correlations were determined using Spearman 
correlation analysis. The colors from red to blue represent the correlation coefficients. DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; IPA, 
indolepropionic acid. * p < 0.05, † p < 0.01.
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negatively correlated with animal foods but positively correlated with 
millet, coarse grains, mixed beans, and potatoes, which are staples in 
vegetarian diets (61, 62). These findings reinforce the idea that plant-
based diets, rich in whole grains, legumes, and vegetables, have a 
distinct metabolic signature that influences health outcomes. In 
contrast, metabolites like DHA and EPA, which are predominantly 
found in aquatic foods (particularly fish), were strongly correlated with 

the intake of these foods (63, 64). This highlights the potential dietary 
shortfall in vegetarians with respect to ω-3 fatty acids. In terms of 
nutrients, the differential metabolites between vegetarians and 
omnivores were found to be correlated with niacin, selenium, vitamin 
A, and vitamin D. This indicates that vegetarians may have a lower 
intake of certain micronutrients, especially those that are 
predominantly found in animal-based foods.

TABLE 7  Summary list of correlations between differential metabolites and dietary foods.

Differential 
metabolites

Associated nutrients r

Entire cohort Vegetarian group Omnivore group

Maleic acid Dried Tofu 0.26 0.2 0.19

Methylcysteine

Fresh Frozen Beef −0.27 / −0.17

Fresh Frozen Lamb −0.27 / −0.18

Yogurt −0.22 −0.14 −0.15

Aconitic acid

Total Animal Foods −0.27 / −0.13

Fresh Frozen Lamb −0.25 / −0.14

Cola −0.21 −0.14 −0.18

Glutamine

Crabs −0.27 / −0.21

Total Animal Foods −0.24 / −0.14

Total Livestock and Poultry −0.24 / −0.13

Shrimps −0.24 / −0.16

Meat Products −0.21 / −0.14

Citric acid
Total Animal Foods −0.26 / −0.15

Fresh Frozen Lamb −0.25 / −0.15

N-Acetylaspartic acid

Total Animal Foods −0.25 / −0.15

Crabs −0.22 / −0.14

Coffee −0.17 −0.14 −0.13

Guanidoacetic acid Shrimps −0.26 / −0.17

IPA Coarse Cereals Total 0.24 0.13 0.16

DHA

Total Aquatic Foods 0.44 / 0.25

Total Animal Foods 0.42 / 0.16

Crabs 0.4 / 0.17

Shrimps 0.39 / 0.15

Mollusks 0.38 / 0.2

Pork Kidney 0.26 / 0.21

α-Aminobutyric acid

Total Livestock and Poultry 0.4 / 0.14

Total Eggs 0.33 / 0.14

Pork Liver 0.32 / 0.15

EPA

Total Aquatic Foods 0.56 / 0.26

Total Animal Foods 0.55 / 0.18

Shrimps 0.52 / 0.13

Crabs 0.5 / 0.2

Mollusks 0.49 / 0.18

Pork Kidney 0.3 / 0.2

Creatine Crabs 0.41 / 0.14

2-Hydroxybutyric acid Total Eggs 0.25 0.16 0.15

Correlations listed in the table were all statistically significant with p < 0.05. Spearman’s correlation coefficients (r) are provided. IPA, indolepropionic acid; DHA, docosahexaenoic acid; EPA, 
eicosapentaenoic acid.
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The findings of this study suggest that vegetarian diets are 
associated with distinct serum metabolomic profiles, which contribute 
to improved cardiometabolic health, as shown in previous research 
(65). However, the observed downregulation of ω-3 fatty acids and 
certain fat-soluble vitamins, such as vitamin A and D, in vegetarians 
highlights the importance of personalized dietary recommendations 
(32). For vegetarians, especially those adhering to a strict plant-based 
diet, supplementation with ω-3 fatty acids, like algal oil, and careful 
monitoring of fat-soluble vitamin levels may be necessary to ensure a 
well-rounded nutrient intake that supports long-term health (33, 66).

Despite the robust findings, this study has several limitations. First, 
the cross-sectional design limits the ability to establish causal 
relationships between diet and metabolic health, and the dietary intake 
data collected through FFQ are subject to potential biases such as recall 
errors and inaccuracies in portion estimation (67–69). Therefore, while 
these findings provide clues for food- and nutrient-related biomarkers, 
the observed correlations alone cannot establish a direct causal 
relationship between metabolite changes and specific food or nutrient 
intake. Longitudinal studies are needed to assess the long-term effects of 
vegetarian diets on cardiometabolic risk factors and their potential role 
in disease prevention. Second, we  utilized the Q300 commercial 
metabolomics platform to detect 305 metabolites, which did not include 
trimethylamine-N-oxide and its associated choline—substances closely 
linked to vegetarian diets and cardiometabolic diseases. Future studies 
should incorporate these metabolites to gain a more comprehensive 
understanding of their potential impact on cardiometabolic health in 
relation to diet. Third, while this study was conducted in a Chinese 
cohort, it is important to acknowledge that dietary patterns and 
metabolic responses to vegetarian diets may vary across different 
populations. Further studies in diverse populations are needed to explore 
the generalizability of our findings and determine how cultural and 
environmental factors influence the metabolic effects of vegetarian diets.

5 Conclusion

This study identified distinct serum metabolomic profiles associated 
with vegetarian diets in a Chinese cohort, which may contribute to a 
more favorable cardiometabolic risk factor profile. Furthermore, by 
elucidating differential metabolites linked to dietary intake and metabolic 
health, our findings provide valuable insights for the development of 
personalized and culturally appropriate dietary recommendations. 
We  anticipate that this study will deepen the understanding of the 
metabolic mechanisms underlying the health benefits of vegetarian diets.
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SUPPLEMENTARY FIGURE 1

Multivariate analysis of serum metabolomic profiles for the discrimination 
between vegetarians and omnivores. (A) PCA score plot with principal 
component boxplot. (B) PLS-DA score plot with principal component 
boxplot. (C) OPLS-DA score plot. (D) Permutation test results showing 
correlation coefficients.

SUPPLEMENTARY FIGURE 2

Bubble plot of metabolic pathway analysis based on hsa database. The node 
color is based on its p value and the node radius is determined based on their 
pathway impact values.

SUPPLEMENTARY FIGURE 3

Heatmap of the correlations between differential metabolites and dietary 
foods in vegetarian group. Correlations were determined using Spearman 
correlation analysis. The colors from red to blue represent the correlation 
coefficients. DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; IPA, 
indolepropionic acid. * p < 0.05, † p < 0.01.

SUPPLEMENTARY FIGURE 4

Heatmap of the correlations between differential metabolites and dietary 
foods in omnivore group. Correlations were determined using Spearman 
correlation analysis. The colors from red to blue represent the correlation 
coefficients. DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; IPA, 
indolepropionic acid. * p < 0.05, † p < 0.01.

SUPPLEMENTARY FIGURE 5

Heatmap of the correlations between differential metabolites and dietary 
nutrients in vegetarian group. Correlations were determined using Spearman 
correlation analysis. The colors from red to blue represent the correlation 
coefficients. DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; IPA, 
indolepropionic acid. * p < 0.05, † p < 0.01.

SUPPLEMENTARY FIGURE 6

Heatmap of the correlations between differential metabolites and dietary 
nutrients in omnivore group. Correlations were determined using Spearman 
correlation analysis. The colors from red to blue represent the correlation 
coefficients. DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; IPA, 
indolepropionic acid. * p < 0.05, † p < 0.01.
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Glossary

BMI - Body mass index

WHR - Waist-to-hip ratio

PBF - Percent body fat

SBP - Systolic blood pressure

DBP - Diastolic blood pressure

TC - Total cholesterol

TG - Triglycerides

LDL-C - Low-density lipoprotein cholesterol

HDL-C - High-density lipoprotein cholesterol

FG - Fasting glucose

FI - Fasting insulin

HOMA-IR - Homeostasis model assessment of insulin resistance

HOMA-β - Homeostasis model assessment of β-cell function

UPLC-MS/MS - Ultra-performance liquid chromatography–tandem 
mass spectrometry

FFQ - Food frequency questionnaire

PCA - Principal component analysis

PLS-DA - Partial least squares-discriminant analysis

OPLS-DA - Orthogonal partial least squares-discriminant analysis

VIP - Variable importance in projection

KEGG - Kyoto encyclopedia of genes and genomes

TCA Cycle - Tricarboxylic acid cycle

DHA - Docosahexaenoic acid

EPA - Eicosapentaenoic acid

IPA - Indolepropionic acid

ROS - Reactive oxygen species
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