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Introduction: This study aimed to compare serum metabolomic profiles
between vegetarians and omnivores in a Chinese cohort and investigate their
associations with cardiometabolic risk factors, including obesity, blood pressure,
lipid profiles, and glucose metabolism.

Materials and methods: A cross-sectional study included 444 participants (222
vegetarians and 222 omnivores) matched by age and sex. Serum metabolomic
profiling was performed using ultra-performance liquid chromatography—
tandem mass spectrometry. Correlation analyses and multivariate linear
regression models were employed to examine the associations between
metabolites and cardiometabolic risk factors, adjusting for potential confounders
such as age, sex, physical activity, and dietary patterns.

Results: Seventeen key differential metabolites were identified, with 11
upregulated (e.g., maleic acid, methylcysteine, citric acid, indolepropionic acid
[IPA]) and 6 downregulated (e.g., docosahexaenoic acid, eicosapentaenoic
acid, creatine) in vegetarians compared to omnivores. After adjusting for
covariates, metabolites such as methylcysteine, aconitic acid, and IPA were
inversely associated with obesity indices (BMI, waist-to-hip ratio, body fat
percentage), blood pressure, and lipid profiles, while creatine showed positive
associations with obesity markers. Notably, IPA was linked to reduced systolic
and diastolic blood pressure, and aconitic acid correlated with improved insulin
sensitivity. Dietary analysis revealed that IPA and methylcysteine were positively
associated with plant-based foods such as whole grains, millet, and legumes,
while docosahexaenoic acid and eicosapentaenoic acid showed strong positive
correlations with animal-based foods, particularly seafood.

Conclusion: Vegetarian diets are associated with unique serum metabolomic
profiles that may improve cardiometabolic health.
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1 Introduction

Vegetarian diets, defined by the exclusion of meat and varying
degrees of other animal products, have evolved from historical roots
in ethics and religion to a modern dietary strategy embraced for its
health and environmental benefits (1). Accumulating evidence
highlights the association of vegetarian diets with reduced risks of
cardiometabolic diseases, including obesity, type 2 diabetes,
dyslipidemia, and cardiovascular disorders (2-4). While mechanistic
explanations often focus on dietary fiber, antioxidants, and reduced
saturated fat intake (5-7), emerging research underscores the
importance of systemic metabolic adaptations in mediating these
benefits (8). However, the specific metabolic pathways modulated by
vegetarian diets—particularly in non-Western populations—remain
underexplored, limiting the translation of findings into culturally
tailored dietary recommendations.

Metabolomics, the comprehensive analysis of small-molecule
metabolites in biological systems, has emerged as a powerful tool to
decode the dynamic interplay between diet and physiology (9). Unlike
other omics approaches, metabolomics captures real-time metabolic
responses to dietary exposures, offering insights into mechanisms
linking diet to health outcomes (10). Prior studies comparing
vegetarians and non-vegetarians have identified distinct metabolic
profiles, including altered levels of amino acids (e.g., essential amino
acids), lipid species (e.g., several fatty acids), and microbiota-derived
metabolites (e.g., short-chain fatty acids) (11-13). These findings
suggest that vegetarian diets may modulate pathways related to energy
metabolism, inflammation, and gut microbiome activity. However,
few studies have systematically integrated vegetarian metabolomic
data with detailed cardiometabolic phenotyping, hindering the
identification of clinically actionable biomarkers.

In China, rapid urbanization and dietary transitions have
precipitated a dual burden of undernutrition and rising
cardiometabolic diseases (14). Traditional Chinese diets rich in plant-
based foods, are increasingly supplanted by meat-centric eating
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patterns, mirroring global trends. This shift underscores the urgency
to understand how dietary transitions impact metabolic health in this
population. Existing metabolomic studies in Chinese populations
have predominantly focused on disease-specific biomarkers (e.g.,
diabetes, hypertension) (15-17) or isolated nutrient effects (e.g.,
vitamin D, w-3 fatty acids) (18, 19), with no published research
specifically examining serum metabolomic profiles associated with
vegetarian diets. This gap is particularly critical given the unique
dietary components (e.g., soy products, rice, and wheat-based foods)
and cooking practices in Chinese cuisine, which may drive distinct
metabolic adaptations compared to Western vegetarian diets. The
absence of such data limits the translation of global vegetarian diet
research into actionable insights for Chinese populations.

To address these limitations, we conducted a cross-sectional study
to compare serum metabolomic profiles of Chinese vegetarians and
omnivores using targeted metabolomics. Our study aims to (1)
identify differential metabolites associated with vegetarian diets, (2)
evaluate their associations with cardiometabolic risk factors (e.g.,
obesity indices, blood pressure, lipid profiles, glucose homeostasis),
and (3) explore correlations between metabolites and dietary intake
patterns. Rigorous adjustments for potential confounders, such as age,
sex, and physical activity, were implemented to isolate diet-specific
metabolic signatures.

2 Materials and methods
2.1 Study population

Healthy vegetarians were recruited through vegetarian
associations and restaurants in Shanghai from March to May 2016.
Inclusion criteria required participants to: (1) be aged 18 years or
older; (2) have resided in Shanghai for at least 6 months; (3) have
maintained a vegetarian diet for a minimum of 1 year; and (4) be able
to comprehend the questionnaire content. Exclusion criteria included:
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(1) a history of severe nutritional malabsorption or systemic diseases;
and (2) pregnancy or breastfeeding within the previous 12 months.
Omnivore participants were recruited from the friends and relatives
of the vegetarians and were matched by sex and age (+1 year). In total,
282 pairs of vegetarians and omnivores were recruited, all of whom
reported no history of diabetes or metabolic diseases. For this serum
metabolomics study, 222 pairs (444 subjects) with serum samples and
complete relevant data of cardiometabolic risk factors were included
(Figure 1). This study was approved by the Institutional Review Board
of the Shanghai Jiao Tong University School of Medicine (No.
2016029). Informed consent was obtained from all subjects involved
in the study.

2.2 Demographic data and dietary
assessment

Questionnaires were administered to participants, collecting
demographic and individual behavioral information, such as age,
sex, income, alcohol consumption, smoking, physical activity,
sedentary time, sleep quality, vegetarian pattern, and vegetarian
duration. Sleep quality was evaluated by the Chinese version of the
Pittsburg Sleep Questionnaire Index (PSQI). Experienced dietitians
administered a face-to-face semi-quantitative food frequency
questionnaire (FFQ) to all participants to assess the intake amount
and frequency of various foods over the preceding year. The
questionnaire from the 2002 China Nutrition and Health Survey was
adopted, encompassing 112 food categories, which were organized
into 13 food modules: grains and tubers, beans, vegetables, fungi
and algae, fruits, dairy, eggs, nuts, beverages, meat, oils, snacks, and
condiments. Participants who adhered to a vegetarian diet at all
meals daily for at least 1year were classified as vegetarian.
Otherwise, they were categorized as omnivores. To enhance the
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accuracy of participants’ food intake estimates, food pictures and
models were employed. Daily nutrient intakes were calculated from
the questionnaire using Nutrition Calculator v2.5 software, which
was developed by the National Institute for Nutrition and Health of
the Chinese Centre for Disease Control and Prevention, in
collaboration with Beijing Feihua Communication Technology
Co., LTD.

2.3 Anthropometric and biochemical
measurements

The height, weight, waist circumference, hip circumference, body
composition, and blood pressure of the participants were measured
by experienced dietitians. Body mass index (BMI) was calculated
using the formula: weight (kg) /height (m?), and the waist-to-hip
ratio (WHR) was determined by dividing waist circumference (cm)
by hip circumference (cm). Body composition was assessed with a
calibrated bioimpedance device (InBody?720, Biospace Inc., Korea),
which provided the percent body fat (PBF). Systolic blood pressure
(SBP) and diastolic blood pressure (DBP) were measured using an
UA-774 Aiander electronic sphygmomanometer.

Blood samples were collected following at least 8 h of overnight
fasting using Gel & Clot Activator tubes for venous blood collection
from Wenzhou GAODE Medical Instrument Co., LTD. The
biochemical markers measured included total cholesterol (TC),
triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-
density lipoprotein cholesterol (HDL-C), fasting blood glucose (FG),
and fasting insulin (FI). Homeostasis model assessment of insulin
resistance (HOMA-IR) and f-cell function (HOMA-) were calculated
using FG and FI (20). Biochemical analyses were performed by the
Clinical Laboratory Center at Shanghai Xinhua Hospital.

282 pairs of vegetarians and matched omnivores

Excluded:

-68 participants lacked serum samples for this metabolomic detection
-3 participants lacked complete relevant data

-49 participants were removed to keep pair matching

222 pairs included in this study

v

'

Targeted metabolomic data

Cardiometabolic risk factors

Food and nutrients intake

Analysis

FIGURE 1
Participants flowchart.
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2.4 Sample preparation and instrumental
analysis

For targeted metabolomic profiling of serum samples, the Q300
platform (Human Metabolomics Institute, Inc., China) was utilized,
as described in previous studies with minor modification (21). The
method was optimized for high-throughput detection and
quantification of 306 metabolites. In brief, a 20 pL aliquot of serum
was mixed with 120 pL methanol containing most of the internal
standards in a 96-well plate. The mixture was vortexed for 10 min and
then centrifuged at 4°C at 4000 g for 30 min. A 30 pL aliquot of the
supernatant was transferred to another 96-well plate for further
derivatization. After incubating at 30°C for 60 min, the reaction was
terminated by adding 400 pL of a 50% methanol solution and
centrifuged. The resulting 140 pL supernatant was transferred to a
new 96-well plate, and 10 pL of derivatized internal standard for
short-chain fatty acids was added, followed by mixing
and centrifugation.

ACQUITY

ultraperformance liquid chromatograph coupled with an XEVO TQ-S

Analyses were performed using a Waters
mass spectrometer, both controlled by MassLynx 4.1 software (Waters,
United States). Chromatographic separation was conducted on an
ACQUITY BEH C18 column (1.7 pm, 100 mm X 2.1 mm) (Waters).
The mobile phase consisted of water with 0.1% formic acid (A) and
acetonitrile/isopropanol (70:30, v/v) (B). The gradient elution program
was as follows: 0-1 min (5% B), 1-5 min (5-30% B), 5-9 min (30-50%
B), 9-12min (50-78% B), 12-15min (78-95% B), 15-16 min
(95-100% B), 16-18 min (100% B), 18-18.1 min (100-5% B),
18.1-20 min (5% B), with a flow rate of 0.4 mL/min. The mass
spectrometer was operated in both positive and negative ion modes,
with a capillary voltage of 1.2 kV for negative mode and 3.2 kV for
positive mode, a source temperature of 150°C, a desolvation
temperature of 550°C, and a desolvation gas flow rate of 1,200 L/h.

2.5 Metabolomic data analysis

The UPLCTQMS data were processed using a TMBQ software
(v1.0) to perform peak integration, calibration, and quantification of
the metabolites. Briefly, the compounds were identified via the
molecular weight and retention time of reference standards, calibrated
by internal standards, and quantified by the standard curve generated
via a series of diluted reference standards solution. Missing data were
handled by replacing undetected metabolites, assumed to be below the
LOD, with one Nth of the minimum detected value, where N is the
sample size. Principal component analysis (PCA), partial least square
discriminant analysis (PLS-DA) and orthogonal partial least-squares-
discriminant analysis (OPLS-DA) were conducted based on the
metabolite profile. The variable importance in the projection (VIP)
values obtained from the OPLS-DA model were taken as a criterion
for differential metabolites selection. The OPLS-DA model was further
verified by a permutation test to avoid transition fit of the model. For
univariate testing, either paired t-tests or Wilcoxon signed-rank tests
were employed to compare between groups, depending on data
normality and homoscedasticity. Differential metabolites were
selected in the first round based on VIP > 1 and p <0.01. In the
second round, the selection criteria were VIP > 1.8 and p < 1e-08. The
combined results of OPLS-DA and univariate analysis from the first
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and second rounds of screening were classified as crude and fine
differential metabolites, respectively. The differential metabolites were
then imported into the human hsa database of the Kyoto Encyclopedia
of Genes and Genomes (KEGG) for further pathway analysis.

2.6 Statistical analysis

Descriptive statistics were calculated to summarize population
characteristics. Continuous variables were expressed as means +
standard deviations (SD), while categorical variables were presented
as frequencies and percentages. Comparative analyses of population
characteristics between vegetarians and omnivores were performed
using appropriate statistical tests: continuous variables were analyzed
using paired f-tests or Wilcoxon rank-sum tests based on normality
assumptions, and categorical variables were examined using McNemar
tests. The selection of differential metabolites and the comparison of
these metabolites between dietary groups are described separately in
the metabolomic data analysis section.

Spearman correlation analyses were employed to examine the
relationships between differential metabolite concentrations and
dietary components, including foods and nutrients, across the entire
cohort as well as within the vegetarian and omnivore subgroups. To
investigate the associations between differential metabolites and
cardiometabolic risk factors, metabolite concentrations were
log-transformed (Ln) to achieve normal distribution. Partial
correlation analyses were first performed to assess these associations.
Following this, multivariate linear regression was used to further
examine these relationships. In multivariate linear regression analyses,
participants were categorized into three groups based on tertiles of
metabolite concentrations (low, medium, and high), with the low
concentration group (T1) serving as the reference category. S
coeflicients and 95% confidence intervals (CIs) were calculated for the
medium (T2) and high (T3) concentration groups. Additionally, the
median concentration of each differential metabolite within each
tertile was treated as a continuous variable to perform trend tests. To
control for potential confounders in the analysis of cardiometabolic
risk factors, adjustments were made for both partial correlation
analysis and multivariate linear regression as follows: for obesity
indicators, the models accounted for age, sex, exercise time, alcohol
consumption, and dietary pattern; for other cardiometabolic risk
factors, BMI was additionally included as a covariate. All statistical
analyses were conducted using SPSS version 26.0 software (SPSS Inc.,
United States) and R software version 4.2.1 (R Foundation for
Statistical Computing, Austria), and statistical significance was
defined as a two-sided p value of less than 0.05.

3 Results
3.1 Characteristics of the study population

This study included 444 participants, consisting of 222 vegetarians
and 222 omnivores, who were matched by gender and age. The mean
ages of vegetarians and omnivores were 34.88 + 8.47 years and
34.35 + 8.59 years, respectively. Among the participants, 183 pairs
(82.4%) were female. Of the 222 vegetarians, 58 (26.1%) were vegans,
while 164 (73.9%) were lacto-ovo vegetarians. The average duration of
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adherence to a vegetarian diet exceeded 5 years. Demographic
characteristics and levels of cardiometabolic risk indicators are
summarized in Table 1. Regarding demographic variables, no
significant differences were found between vegetarians and omnivores
in terms of education, income, smoking, exercise habits, and PSQI
sleep scores. However, the proportion of nondrinkers was significantly
higher in the vegetarian group compared to the omnivore group
(p <0.001). In terms of cardiometabolic risk factors, vegetarians
exhibited lower BMI, WHR, PBE, SBP, TC, HDL-C, LDL-C, FG, FI,

TABLE 1 Characteristics of vegetarians and omnivores.

Vegetarians Omnivores fo)
(n =222) (n = 222)
Female, 1 (%) 183 (82.4) 183 (82.4)
Age (years) 34.88 + 8.47 34.35 + 8.59
Vegetarian diet
543 +5.05 -

duration (years)
Education, 1 (%) 0.676
Elementary and

73 (33.3) 80 (35.6)
secondary
Undergraduate 107 (48.9) 97 (43.8)
Graduate or above 39(17.8) 45 (20.5)
Income per

0.200

month, n (%)
<3,000 42 (19.1) 56 (25.5)
3,000 ~ 5,000 40 (18.2) 36 (16.4)
5,000 ~ 8,000 55 (25.0) 59 (26.8)
>8,000 73 (33.2) 69 (31.4)
Nondrinker (%) 210 (94.6) 185 (83.3) <0.001%*
Nonsmoker (%) 196 (88.3) 202 (91.0) 0.405

Exercise time

(min/w) 119.59 + 150.96 85.27 +123.96 0.183
PSQI sleep score 2.88 +2.19 325+ 1.88 0.590
BMI (kg/m?) 21.05 +2.62 2249 +3.34 <0.001*
WHR 0.82 +0.05 0.84 +0.05 <0.001*
PBF (%) 26.17 £ 6.53 28.52 +5.95 <0.001*
SBP (mm Hg) 108.07 £ 12.76 112.41 + 14.18 <0.001*
DBP (mm Hg) 70.00 +9.52 70.57 +10.29 0.628
TC (mmol/L) 4.08 £0.76 4.63£0.83 <0.001*
TG (mmol/L) 0.96 +0.53 0.91 +0.44 0.393
HDL-C (mmol/L) 1.26 £0.26 1.37 +0.28 <0.001*
LDL-C (mmol/L) 2.55+0.59 2.97 +0.68 <0.001*
FG (mmol/L) 4.64 +0.67 4.83+0.39 <0.001*
FI (mU/L) 4.90+2.23 5.90 +3.03 <0.001*
HOMA-IR 1.03 £ 0.58 1.28 +0.70 <0.001*
HOMA-B (%) 93.28 + 44.61 94.71 + 60.12 0.672

* Statistical significance. BMI, body mass index; WHR, waist-to-hip ratio; PBE, percent body
fat; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; TG,
triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein
cholesterol; FG, fasting blood glucose; FI, fasting insulin; HOMA-IR, homeostasis model
assessment of insulin resistance; HOMA-f, homeostasis model assessment of /§ cell function.
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and HOMA-IR scores compared to omnivores (p < 0.001). However,
there were no significant differences in DBP, TG, and HOMA-f
between the two groups.

3.2 Serum metabolomic profiles and
differential metabolites of vegetarians

UPLC-MS/MS detected 205 out of 306 metabolites, while the
remaining metabolites were not identified due to their concentrations
being below the detection limit. The relative abundance of serum
metabolite classes in vegetarian and omnivore groups is shown in
Table 2. The analysis revealed significant differences in amino acids,
fatty acids, indoles, bile acids, benzene ring compounds, benzoic acids,
and pyridines.

PCA, PLS-DA, and OPLS-DA models were constructed to assess
the metabolic differences between the vegetarian and omnivore
groups (Supplementary Figures 1A-C). The PCA analysis revealed
that the first two components explained a relatively low proportion of
the variance, suggesting some overlap in the metabolic profiles of
these two groups. To further investigate the group separation, the
supervised PLS-DA and OPLS-DA methods were applied to refine
and analyze the data, confirming distinct metabolic differences
between the two groups. The OPLS-DA model, with R*X = 0.262,
R?Y =0.518, and Q*Y = 0.461, indicated a moderate explanation of the
variance in the independent variables (X) and dependent variable (Y).
The results of the permutation test (Supplementary Figure 1D) further
validated the effectiveness of the OPLS-DA model in discriminating
between the two groups.

In identifying differential metabolites, two rounds of screening
were performed using both multivariate and univariate approaches
(Figure 2). The first round used thresholds of VIP>1 (from
OPLS-DA) and p < 0.01 (from univariate analysis), leading to the
identification of 62 metabolites with VIP > 1 and 72 metabolites with
p <0.01. The union of these two sets resulted in 83 differential
metabolites (Supplementary Table 1). A second round of screening
applied stricter criteria, using VIP > 1.8 for the multivariate analysis
and p < 1e-08 for univariate analysis. This refined selection revealed
13 metabolites meeting the multivariate threshold and 9 metabolites
meeting the univariate threshold, resulting in a total of 17 key
differential metabolites associated with the vegetarian diet (Figure 3).
These metabolites were categorized into four groups: organic acids,
amino acids, fatty acids, and indoles. Compared to the omnivore
group, 11 metabolites were significantly upregulated in the vegetarian
group, including maleic acid, methylcysteine, malic acid, aconitic acid,
glutamine, citric acid, N-acetylaspartic acid, asparagine, guanidoacetic
acid, a-linolenic acid, and indolepropionic acid (IPA). Conversely, 6
metabolites were found to be downregulated in vegetarians, including
docosahexaenoic acid (DHA), a-aminobutyric acid, eicosapentaenoic
acid (EPA), creatine, 2-hydroxybutyric acid, and glycolic acid. Notably,
IPA and maleic acid were the most significantly upregulated
metabolites in vegetarians, as evidenced by univariate analysis and
OPLS-DA statistics, respectively (IPA: p = 6.75e-10; maleic acid:
VIP =2.44). DHA was the most significantly downregulated
metabolite in the vegetarian group, with both statistical tests
confirming this finding (p = 6.76e-26, VIP = 3.18).

To further interpret the biological significance of these differential
metabolites, pathway enrichment analysis revealed that these
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TABLE 2 Comparison of relative abundance of serum metabolite classes
between vegetarians and omnivores.

Class Vegetarians Omnivores p
(n = 222) (n = 222)

Carbohydrates 38.809 39.433 0.392
Organic acids 27.684 27.525 0.099
Amino acids 26.604 26.592 0.027*
Fatty acids 5.660 5.171 <0.001*
Carnitines 0.501 0.540 0.136
SCFAs 0.481 0.463 0.148
Indoles 0.061 0.065 <0.001%*
Bile acids 0.048 0.043 0.003*
Benzoic acids 0.041 0.036 0.019*
Benzenoids 0.032 0.041 0.002*
:Zzylpmpamic 0.031 0.033 0.928
Pyridines 0.022 0.032 0.001%*
Phenols 0.019 0.018 0.054
Peptides 0.008 0.008 0.417

* Statistical significance. SCFAs, short-chain fatty acids.

metabolites were primarily involved in six metabolic pathways
(p < 0.05): Alanine, Aspartate, and Glutamate Metabolism; Glyoxylate
and Dicarboxylate Metabolism; Citrate Cycle (TCA Cycle); Arginine
and Proline Metabolism; Nitrogen Metabolism; and Glycine, Serine,
and Threonine Metabolism (Supplementary Figure 2).

3.3 Associations between differential
metabolites and cardiometabolic risk
factors

Partial correlation analysis was employed to explore the intricate
relationships between the 17 differential metabolites and key
cardiometabolic risk factors, as presented in Figure 4. After adjusting
for potential confounding variables, including age, sex, exercise
duration, alcohol consumption, and dietary patterns, we identified
several metabolites exhibiting distinct patterns of association with
obesity indicators. Specifically, metabolites such as methylcysteine,
aconitic acid, citric acid, N-acetylaspartic acid, asparagine, and IPA
were negatively associated with all three obesity indicators—BMI,
WHR, and PBF (p < 0.05). In contrast, creatine exhibited a positive
association with each of these obesity markers (p < 0.05). Further
refinement of the analysis, which adjusted for BMI in addition to the
aforementioned covariates, revealed that IPA was inversely associated
with both systolic and diastolic blood pressure (SBP and DBP)
(p < 0.05). Methylcysteine, in particular, demonstrated significant
negative correlations with three of the four major blood lipid
parameters—TC, HDLC, and LDLC (p<0.05). In contrast,
metabolites such as guanidoacetic acid, DHA, a-aminobutyric acid,
and creatine exhibited positive associations with at least three of the
four lipid parameters (p < 0.05). Additionally, aconitic acid was
notably inversely correlated with three of the four blood glucose-
related indicators, including FI, HOMA-f, and HOMA-IR (p < 0.05).
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The associations between these metabolites and cardiometabolic
risk factors were further evaluated in multivariate linear regression
models, with the same adjustment as partial correlation analysis.
These analyses elucidated the complex relationships between these
metabolites and obesity indicators, blood pressure, blood lipid levels,
and blood glucose markers. A significant inverse relationship was
observed between the concentration of methylcysteine and all three
obesity indicators. In the T3 group, methylcysteine was associated
with a marked reduction in BMI (= —0.886, 95% CI: —1.556,
—0.215), WHR (f = —0.013, 95% CI: —0.022, —0.003), and PBF
(= —1.625,95% CI: —2.896, —0.354), suggesting that higher levels of
this metabolite may be protective against adiposity (p < 0.05).
Although aconitic acid showed an inverse association with PBF
(f = —2.343, 95% CI: —3.622, —1.065) in the T3 group (p < 0.001), it
had a less pronounced effect on BMI and WHR. Conversely, creatine
demonstrated a positive association with these obesity markers.
Specifically, in the T3 group, creatine was linked with increased BMI
(f =1.109, 95% CI: 0.387, 1.831), WHR (f = 0.020, 95% CI: 0.009,
0.030), and PBF (f =2.326, 95% CI: 0.963, 3.689), indicating its
potential role in promoting fat accumulation (p < 0.01) (Table 3).

In terms of blood pressure, among methylcysteine, guanidoacetic
acid, and IPA, only IPA showed strong associations with both SBP and
DBP. In the T3 group, IPA was inversely related to both SBP
(= —3.838,95% CI: —6.825, —0.851) and DBP (ff = —3.579, 95% CI:
—5.805, —1.353), suggesting its potential as a regulator of blood
pressure (Table 4).

Several metabolites, such as methylcysteine, citric acid, IPA, and
DHA, were significantly associated with lipid profile markers.
Methylcysteine demonstrated a consistent inverse relationship with
TC (f =—0.329, 95% CI: —0.510, —0.148) and LDL-C (f = —0.243,
95% CI: —0.384, —0.103) in the T3 group, suggesting its potential role
in improving lipid metabolism (p <0.01). Citric acid and IPA
displayed a unique pattern, as they did not show significant
associations with TC, HDL-C, or LDL-C, but were negatively
correlated with TG in the T3 group (citric acid: f = —0.141, 95% CI:
—0.244, —0.039; IPA: f=-0.148, 95% CI: —0.257, —0.038). In
contrast, DHA exhibited positive associations with TC (f = 0.365, 95%
CI: 0.159, 0.572) and LDL-C (f =0.245, 95% CI: 0.085, 0.406),
suggesting a role in lipid regulation (p < 0.01) (Table 5).

Fewer metabolites showed association with blood glucose
markers. In the T3 group, aconitic acid was significantly associated
with reduced FI (ff = —0.927, 95% CI: —1.465, —0.388) and HOMA-IR
(f=-0.214, 95% CIL: —0.336, —0.092), indicating its potential to
improve insulin sensitivity and glucose metabolism (p < 0.01)
(Table 6).

3.4 Associations between differential
metabolites and dietary components

Figure 5 illustrates the correlation analysis between differential
metabolites and dietary foods in the entire cohort. The results
revealed that all upregulated metabolites in vegetarians were
negatively correlated with animal food intake, while all downregulated
exhibited the trend.  Additionally,
methylcysteine, aconitic acid, citric acid, and maleic acid showed

metabolites opposite

negative correlations with milk or yogurt intake. Notably, IPA
displayed a strong negative correlation with animal foods, but a mild
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FIGURE 2

Differential metabolites identified in vegetarians compared to omnivores using two rounds of screening. (A) Volcano plot for differential metabolites
identified by OPLS-DA between vegetarians and omnivores (initial screening: VIP > 1, secondary screening: VIP > 1.8). (B) Volcano plot for differential
metabolites identified by univariate analysis in vegetarians vs. omnivores (initial screening: p < 0.01, secondary screening: p < 1e-08). Significantly
increased metabolites in vegetarians (FC > 1 and p < 0.01, red dots) and significantly decreased metabolites in vegetarians (FC < 1 and p < 0.01, blue
dots). FC, fold change; VIP, variable importance in the projection.
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Differential metabolites identified in vegetarians compared to omnivores using the combined results of OPLS-DA and univariate analysis. The bar plot
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in vegetarians to X level in omnivores. Each bar representing an FC value is color-coded according to its corresponding p-value. FC values are log2-
transformed, and p-values are transformed using -In. FC, fold change; VIP, variable importance in the projection.

positive correlation with millet, coarse grains, mixed beans, and
potatoes. Figure 6 presents the correlation analysis between
differential metabolites and dietary nutrients in the entire cohort. The
upregulated metabolites, such as methylcysteine and IPA, in the
vegetarian group were significantly negatively correlated with niacin,
selenium, vitamin A, vitamin D, vitamin B2,
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vitamin D.

macronutrients. Almost all upregulated metabolites demonstrated a
significant negative correlation with niacin and selenium. Conversely,
DHA, EPA, a-aminobutyric acid, 2-hydroxybutyric acid, and
creatine, which were downregulated in the vegetarian group, showed
strong positive correlations with niacin, selenium, vitamin A, and
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FIGURE 4
Correlation between differential metabolites and cardiometabolic risk factors. For obesity indicators, the model was adjusted for age, sex, exercise
time, alcohol consumption, and dietary pattern; for other indicators, additional adjustments were made for BMI. Correlations were determined using
partial correlation analysis. The correlation coefficients are presented and color-coded from red to blue. * p < 0.05, ** p < 0.01. BMI, body mass index;
WHR, waist-to-hip ratio; PBF, body fat percentage; SBP, systolic blood pressure; DBP diastolic blood pressure; TC, total cholesterol; HDL-C, high
density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; TG, triglycerides; FG, fasting glucose; Fl, fasting insulin, HOMA-IR,
homeostasis model assessment of insulin resistance; HOMA-B, homeostasis model assessment of f-cell function; DHA, docosahexaenoic acid; EPA,
eicosapentaenoic acid.

Significant differences in food and nutrient intake were observed
between the vegetarian and omnivore groups. To further refine the
associations identified in the correlation analysis of the entire cohort,
additional analyses were conducted within the vegetarian and
omnivore groups to examine the relationships between differential
metabolites and dietary foods (Supplementary Figures 3, 4) and
nutrients (Supplementary Figures 5, 6). Notably, DHA and EPA
showed strong positive correlations with seafood, while maleic acid,
malic acid, a-linolenic acid, aconitic acid, and citric acid positively
correlated with tofu and soy products. IPA, methylcysteine,
N-acetylaspartic acid, and glutamine showed positive correlations
with cereals, rice, millet, and peanuts, all observed within the
omnivore group (p < 0.05). The major source of DHA in vegetarian
group is eggs. The significant correlations between differential
metabolites and dietary foods observed across the entire cohort,
vegetarian group (with meat foods excluded), and omnivore group
are summarized in Table 7. Notably, methylcysteine consistently
correlated negatively with yogurt intake across all three cohorts
(entire cohort: r=—0.22, vegetarians: r=—0.14, omnivores:
r=—0.15, all p < 0.05). Maleic acid, IPA, and 2-hydroxybutyric acid
consistently showed positive correlations with dried tofu, coarse
cereals, and total eggs, respectively, across all three cohorts (IPA with
coarse cereals entire cohort: r = 0.24, vegetarians: r = 0.13, omnivores:
r=0.16) (2-hydroxybutyric acid with eggs entire cohort: r = 0.25,
vegetarians: r = 0.16, omnivores: r = 0.15) (all p < 0.05). Meanwhile,
the significant correlations between differential metabolites and
dietary nutrients observed across the entire cohort and different
Table 8. DHA,
a-aminobutyric acid, and 2-hydroxybutyric acid were positively

groups are summarized in Consistently,

associated with vitamin A intake across all three cohorts. Of these,
DHA showed highest consistent correlation with vitamin A intake

4 Discussion

Our targeted metabolomic analysis identified 17 key
differential metabolites associated with the vegetarian diet, with a
particularly notable upregulation of metabolites involved in the
TCA cycle, including citric acid, malic acid, maleic acid, aconitic
acid, fumaric acid, succinic acid, and isocitric acid. These
metabolites play crucial roles in mitochondrial energy production.
Although there is no direct evidence linking vegetarian diets to
TCA cycle intermediate accumulation (anaplerosis), studies on
ketogenic diets—metabolically opposite to plant-based diets—
suggest that such diets inhibit anaplerosis (22, 23). This hints at the
possibility that vegetarian diets, which rely heavily on
carbohydrates, may promote anaplerosis by increasing TCA cycle
intermediates. The vegetarian diet, rich in plant-based
carbohydrates from fruits, vegetables, and grains, provides a
significant carbohydrate source, which supports efficient energy
production through mitochondrial processes. Additionally,
metabolites like malic acid and citric acid are important for
buffering reactive oxygen species (ROS) produced during
mitochondrial respiration. This buffering capacity may help
explain the reduced oxidative stress observed in vegetarians (24,
25), potentially contributing to their protection against chronic
diseases like cardiovascular disease and diabetes. Our findings
contrast with a study on high-fat-diet-induced insulin-resistant
mice, which reported distinct changes in TCA cycle metabolites
associated with metabolic dysfunction and insulin resistance (26).
In high-fat-diet-fed mice, serum concentrations of TCA cycle
intermediates were significantly reduced. In contrast, the
upregulation of these intermediates in vegetarians underscores a
clear divergence in metabolic outcomes, highlighting the opposing

(entire cohort: r=—0.46, vegetarians: r=—0.31, omnivores: effects of plant-based and high-fat diets on mitochondrial
r=—0.18) (all p < 0.05). efficiency. Furthermore, a clinical study on women with obesity
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TABLE 3 Associations between differential metabolites and obesity indicators.

Differential metabolites (pmol/L)

P (95%Cl) of obesity indicators

WHR

Methylcysteine

T1 (1.478 ~ 4.735)

Ref

Ref

Ref

T2 (4.745 ~ 7.189)

—0.727 (-1.381, —0.072)*

—0.008 (—0.017, 0.001)

—0.905 (—2.145, 0.336)

T3 (7.208 ~ 27.961)

—0.886 (—1.556, —0.215)**

—0.013 (=0.022, —0.003)**

—1.625 (—2.896, —0.354)*

Prrena 0.012 0.008 0.013
Aconitic acid
T1 (25.955 ~ 53.423) Ref Ref Ref

T2 (53.446 ~ 67.249)

—0.775 (—1.436, —0.114)*

—0.012 (—0.021, —0.003)**

—1.610 (—2.850, —0.370)*

T3 (67.296 ~ 147.972)

—0.624 (—1.305, 0.057)

—0.023 (—0.032, —0.013)**

—2.343 (=3.622, —1.065)**

Prrena 0.066 <0.001 <0.001
Citric acid
T1 (42.435 ~ 117.497) Ref Ref Ref

T2 (117.643 ~ 145.447)

—0.444 (~1.099, 0.211)

—0.008 (—0.017, 0.001)

—1.120 (—2.355,0.114)

T3 (145.862 ~ 291.268)

—0.546 (—1.217, 0.124)

—0.018 (—0.028, —0.009)**

—1.626 (—2.890, —0.362)*

- 0.113 <0.001 0.013
N-acetylaspartic acid
T1(0.217 ~ 0.592) Ref Ref Ref

T2 (0.594 ~ 0.698)

—0.916 (—1.565, —0.268)**

—0.011 (—0.020, —0.002)*

—1.671 (—2.900, —0.442)**

T3 (0.7 ~ 1.432)

—0.877 (=1.539, —0.215)%*

—0.014 (—0.023, —0.005)**

—1.542 (-2.796, —0.288)*

P 0.015 0.005 0.025
Asparagine
T1 (26377 ~ 59.244) Ref Ref Ref

T2 (59.489 ~ 70.604)

~0.359 (—1.016, 0.299)

~0.010 (—0.019, —0.001)

—1.034 (—2.276, 0.209)

T3 (70.695 ~ 146.187)

—0.261 (—0.941, 0.419)

—0.004 (—0.014, 0.005)

~0.296 (—1.581, 0.989)

Prrend 0.460 0.391 0.694
Guanidoacetic acid
T1 (0.805 ~ 2.897) Ref Ref Ref

T2 (2.9 ~ 3.734)

—0.059 (—0.711, 0.594)

~0.001 (—0.010, 0.008)

—0.129 (—1.364, 1.106)

T3 (3.736 ~9.951)

~0.513 (—1.203, 0.177)

~0.011 (—0.021, —0.002)*

—1.059 (—2.365, 0.247)

Prrend 0.147 0.024 0.120
IPA
T1 (0.008 ~ 1.366) Ref Ref Ref

T2 (1.388 ~2.98)

—0.357 (—1.046, 0.331)

—0.004 (—0.014, 0.006)

—0.674 (—1.979, 0.632)

T3 (2.991 ~ 19.593)

—0.652 (—1.364, 0.059)

—0.011 (—0.021, —0.001)*

—1.208 (—2.557, 0.141)

Prrend 0.072 0.027 0.078
Creatine

T1 (11.047 ~ 31.003) Ref Ref Ref

T2 (31.065 ~ 48.027) 0.700 (0.035, 1.365)* 0.010 (0.001, 0.019)* 1.114 (—0.142, 2.370)

T3 (48.067 ~ 116.182)

1.109 (0.387, 1.831)**

0.020 (0.009, 0.030)**

2.326 (0.963, 3.689)**

P trend

0.003

<0.001

0.001

Multivariate linear regression analysis adjusted for age, sex, exercise time, alcohol drink, and diet pattern. T1, low concentration group as reference; T2, medium concentration group; T3, high
concentration group. /3 coefficients and 95% confidence intervals are provided. * p < 0.05, ** p < 0.01. Ref, reference; BMI, body mass index; WHR, waist-to-hip ratio; PBE body fat percentage;
IPA, indolepropionic acid.
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TABLE 4 Associations between differential metabolites and blood pressure.

Differential metabolites (umol/L)

10.3389/fnut.2025.1672143

P (95%Cl) of blood pressure

Methylcysteine

T1(1.478 ~ 4.735)

Ref Ref

T2 (4.745 ~ 7.189)

—1.693 (—4.473, 1.087)

—1.989 (—4.063, 0.085)

T3 (7.208 ~ 27.961)

—0.396 (—3.251, 2.459)

—1.905 (—4.035, 0.225)

Prrena 0.852 0.095
Guanidoacetic acid
T1 (0.805 ~ 2.897) Ref Ref

T2 (2.900 ~ 3.734)

—2.214 (—4.952, 0.524)

—2.377 (—4.421, —0.334)*

T3 (3.736 ~9.951)

—1.757 (—4.660, 1.145)

—1.109 (-3.276, 1.057)

Prrend 0.227 0.299
IPA
T1 (0.008 ~ 1.366) Ref Ref

T2 (1.388 ~2.98)

—1.431 (-4.314, 1.452)

—2.301 (—4.449, —0.152)*

T3 (2.991 ~ 19.593)

—3.838 (=6.825, —0.851)*

—3.579 (—5.805, —1.353)%*

Prena

0.012

0.002

Multivariate linear regression analysis adjusted for age, sex, exercise time, alcohol drink, diet pattern, and BMI. T1, low concentration group as reference; T2, medium concentration group; T3,
high concentration group. § coefficients and 95% confidence intervals are provided. * p < 0.05, ** p < 0.01. Ref, reference; SBP, systolic blood pressure; DBP, diastolic blood pressure; IPA,

indolepropionic acid.

showed that combining exercise with a low-calorie diet elevated
TCA cycle intermediate, suggesting that such interventions can
enhance mitochondrial function (27).

Regarding amino acid metabolism, the elevated levels of
glutamine and asparagine in vegetarians suggest alterations in
nitrogen metabolism and amino acid catabolism. Glutamine, a key
amino acid involved in protein synthesis, immune function, and acid-
base balance (28), showed increased concentrations in the vegetarian
group. This could indicate an upregulation of protein turnover or
enhanced catabolism of non-essential amino acids in vegetarians.
Similarly, asparagine, essential for protein synthesis and cellular
function (29), showed higher concentrations as well, which also might
be related to an increased catabolism of non-essential amino acids.
These findings suggest a shift in energy metabolism towards greater
dependence on the oxidation of carbohydrates and non-essential
amino acids in vegetarians. Furthermore, the downregulation of
metabolites such as 2-hydroxybutyric acid and a-aminobutyric acid,
which are derived from the metabolism of methionine, threonine, and
leucine (30, 31), indicates a decreased reliance on the breakdown of
essential amino acids. Notably, our findings align with a previous
study that identified 2-hydroxybutyric acid as an early biomarker of
insulin resistance and glucose intolerance in a non-diabetic population
(30). In our study, the reduced levels of 2-hydroxybutyric acid in
vegetarians hint at a potential protective effect, which could reduce the
risk of insulin resistance or glucose intolerance.

DHA and EPA are essential long-chain @-3 polyunsaturated fatty
acids predominantly found in animal-based foods, particularly fish
and seafood. As such, the exclusion of meat and seafood from the diet
can significantly impact the intake of these crucial fatty acids. The
observed lower levels of these metabolites in vegetarians likely reflect
areduced dietary intake of animal- derived -3 fatty acids, which are
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vital for maintaining cardiovascular health and modulating
inflammatory responses (32). This finding aligns with existing
literature, which consistently demonstrates that vegetarians generally
exhibit lower levels of DHA and EPA compared to omnivores (33, 34).
However, vegetarians often compensate for this reduced intake of
DHA and EPA by increasing their consumption of plant-based -3
fatty acids. One of our findings of this study is the elevated levels of
a-linolenic acid in the serum of vegetarians. a-linolenic acid, an
essential -3 fatty acid, is primarily sourced from plant oils like
flaxseed, hemp, and soybean oils (35). These oils are rich in a-linolenic
acid, which likely accounts for the higher concentrations observed in
individuals following plant-based diets. In contrast, omnivorous diets,
which often contain a higher proportion of animal-derived fats, tend
to provide lower amounts of this specific fatty acid. Our results align
with previous studies, which have also reported increased a-linolenic
acid levels in the serum of vegetarians (36). That being said, it is
important to note that the conversion efficiency of a-linolenic acid
into longer-chain polyunsaturated fatty acids, such as DHA and EPA,
can be inadequate to fully compensate for their deficiency in
vegetarians (37). For this reason, it is important to emphasize the
intake of ALA-rich food to overcome the low conversion efficiency.
Another noteworthy finding was the reduced concentration of
creatine in the serum of vegetarians. Creatine, a compound primarily
derived from red meat and fish, plays a critical role in energy
metabolism, particularly in tissues with high energy demands like
muscles and the brain (38, 39). The lower creatine levels in vegetarians
are likely attributed to their limited intake of animal products, which
are the main dietary sources of this compound. Multiple clinical
studies have demonstrated that creatine supplementation can benefit
vegetarian athletes by replenishing their creatine levels, boosting
energy metabolism, and thereby enhancing overall athletic
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TABLE 5 Associations between differential metabolites and blood lipid indicators.

Differential metabolites (pmol/L)

B (95%Cl) of blood lipid indicators

HDL-C

LDL-C

10.

3389/fnut.2025.1672143

Methylcysteine

T1 (1.478 ~ 4.735)

Ref

Ref

Ref

Ref

T2 (4.745 ~ 7.189)

—0.157 (—0.333, 0.019)

—0.017 (=0.075, 0.040)

—0.130 (—0.266, 0.007)

—0.033 (—0.135, 0.069)

T3 (7.208 ~ 27.961)

—0.329 (-0.510, —0.148)**

—0.059 (—0.118, 0.001)

—0.243 (—0.384, —0.103)**

—0.043 (—0.148, 0.062)

Pona <0.001 0.047 0.001 0.432
Citric acid
T1 (42.435 ~ 117.497) Ref Ref Ref Ref

T2 (117.643 ~ 145.447)

0.038 (—0.139, 0.214)

0.086 (0.029, 0.143)**

—0.038 (—0.175, 0.099)

0.165 (—0.265, —0.065)**

T3 (145.862 ~ 291.268)

—0.094 (—0.275, 0.087)

0.058 (0.001, 0.117)*

—0.122 (-0.262, 0.018)

0.141 (—0.244, —0.039)**

Prrend 0.297 0.057 0.087 0.009
Guanidoacetic acid
T1 (0.805 ~ 2.897) Ref Ref Ref Ref

T2 (2.900 ~ 3.734)

0.078 (—0.097, 0.252)

0.037 (—0.019, 0.094)

0.033 (—0.103, 0.168)

—0.042 (~0.142, 0.059)

T3 (3.736 ~9.951)

0.272 (0.087, 0.457)**

0.081 (0.021, 0.141)**

0.180 (0.037, 0.324)*

—0.009 (—0.116, 0.098)

Prrena 0.004 0.008 0.015 0.854
IPA
T1 (0.008 ~ 1.366) Ref Ref Ref Ref

T2 (1.388 ~2.98)

—0.051 (—0.237, 0.134)

0.007 (—0.053, 0.067)

—0.045 (—0.189, 0.099)

—0.120 (—0.225, —0.014)*

T3 (2.991 ~ 19.593)

—0.158 (—0.351, 0.034)

0.016 (—0.046, 0.079)

—0.133 (—0.282, 0.016)

0.148 (—0.257, —0.038)**

Pirena 0.108 0.615 0.082 0.008
DHA
T1(0.393 ~ 3.043) Ref Ref Ref Ref

T2 (3.049 ~ 5.479)

0.222 (0.041, 0.403)*

0.029 (—0.030, 0.088)

0.161 (0.021, 0.302)*

0.135 (0.031, 0.239)*

T3 (5.516 ~ 23.145)

0.365 (0.159, 0.572)**

0.066 (—0.002, 0.133)

0.245 (0.085, 0.406)**

0.132 (0.014, 0.251)*

P 0.001 0.057 0.003 0.031
a-aminobutyric acid
T1(6.813 ~ 21.436) Ref Ref Ref Ref

T2 (21.484 ~ 30.511)

0.177 (—0.006, 0.360)

0.011 (—0.048, 0.070)

0.161 (0.019, 0.303)*

—0.023 (—0.128, 0.082)

T3 (30.539 ~ 79.344)

0.277 (0.088, 0.467)**

0.072 (0.010, 0.134)*

0.209 (0.062, 0.356)%*

~0.080 (—0.189, 0.029)

Pirena 0.004 0.022 0.005 0.149
EPA
T1(0.224 ~ 0.723) Ref Ref Ref Ref

T2 (0.724 ~ 0.986)

0.081 (—0.094, 0.256)

~0.029 (—0.086, 0.029)

0.074 (—0.063, 0.210)

0.076 (—0.026, 0.178)

T3 (0.989 ~ 5.919)

0.382 (0.198, 0.566)**

0.059 (—0.001, 0.120)

0.275 (0.131, 0.418)%*

0.042 (—0.065, 0.149)

Prrend <0.001 0.039 <0.001 0.490
Creatine
T1 (11.047 ~ 31.003) Ref Ref Ref Ref

T2 (31.065 ~ 48.027)

0.143 (—0.036, 0.322)

0.057 (—0.002, 0.116)

0.047 (—0.093, 0.186)

0.044 (—0.059, 0.147)

T3 (48.067 ~ 116.182)

0.357 (0.161, 0.552)**

0.047 (—0.017, 0.111)

0.240 (0.088, 0.392)**

0.145 (0.033, 0.258)*

Pirona <0.001 0.160 0.002 0.011
2-hydroxybutyric acid
T1 (32.239 ~ 114.988) Ref Ref Ref Ref

T2 (115.157 ~ 167.29)

0.185 (0.009, 0.362)*

0.048 (—0.010, 0.105)

0.138 (0.001, 0.275)*

—0.029 (-0.131, 0.072)
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TABLE 5 (Continued)

Differential metabolites (umol/L)

10.3389/fnut.2025.1672143

B (95%Cl) of blood lipid indicators

T3 (167.734 ~ 545.478) 0.180 (—0.002, 0.362)

HDL-C LDL-C

0.055 (—0.004, 0.114) 0.125 (-0.016, 0.266) —0.054 (—0.159, 0.051) ‘

0.050

Pirena

0.065 0.078

0.310 ‘

Multivariate linear regression analysis adjusted for age, sex, exercise time, alcohol drink, diet pattern, and BMIL. T1, low concentration group as reference; T2, medium concentration group; T3,
high concentration group. # coefficients and 95% confidence intervals are provided. * p < 0.05, ** p < 0.01. Ref, reference; TC, total cholesterol; HDL-C, high density lipoprotein cholesterol;
LDL-GC, low density lipoprotein cholesterol; TG, triglycerides; IPA, indolepropionic acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid.

TABLE 6 Associations between differential metabolites and blood glucose-related indicators.

Differential metabolites (umol/L)

B (95%Cl) of blood glucose-related indicators

HOMA-IR HOMA-B

Aconitic acid

T1 (25.955 ~ 53.423) Ref

Ref Ref

T2 (53.446 ~ 67.249) —0.591 (—1.114,-0.068)*

—0.131 (-0.250, —0.012)* —10.010 (—21.331, 1.311)

T3 (67.296 ~ 147.972) —0.927 (—1.465, —0.388)**

—0.214 (—0.336, —0.092)** —11.003 (—22.651, 0.644)

Prowa 0.001 0.001 0.062
Creatine
T1 (11.047 ~ 31.003) Ref Ref Ref

T2 (31.065 ~ 48.027) 0.185 (—0.345, 0.714)

0.037 (—0.083, 0.158) 2.660 (—8.802, 14.121)

T3 (48.067 ~ 116.182) 0.845 (0.267, 1.423)**

0.187 (0.055, 0.318)** 7.533 (—4.976, 20.041)

Pirena 0.004

0.005 0.236

Multivariate linear regression analysis adjusted for age, sex, exercise time, alcohol drink, diet pattern, and BMI. T1, low concentration group as reference; T2, medium concentration group; T3,
high concentration group. § coefficients and 95% confidence intervals are provided. * p < 0.05, ** p < 0.01. Ref, reference; FI, fasting insulin; HOMA-IR, homeostasis model assessment of

insulin resistance; HOMA-f, homeostasis model assessment of f-cell function.

performance (40). However, an elevation of guanidoacetic acid— a
direct precursor to creatine— was observed in vegetarians (41). This
suggests that while vegetarians are capable of synthesizing
guanidoacetic acid, they may face challenges in efficiently converting
it into creatine. This inefliciency in creatine synthesis could be linked
to a reduction in methylation processes. The methylation process
depends on methyl donors derived from nutrients such as methionine,
with S-adenosylmethionine serving as the key molecule for
methylation reactions (42). In vegetarians, the lower availability of
methionine in their diet, combined with potential vitamin B12
deficiency—a critical cofactor for methionine synthesis and
homocysteine metabolism—may lead to a partial impairment of
methylation capacity.

In our cohort, vegetarians demonstrated significantly lower BMI,
WHR, and PBF compared to omnivores, which is consistent with
previous research linking plant-based diets to lower obesity prevalence
(43, 44). Further metabolic analysis revealed that methylcysteine and
N-acetylaspartic acid were inversely associated with BMI, WHR, and
PBE, suggesting their potential role in mitigating fat accumulation.
Additionally, aconitic acid and citric acid showed a negative
correlation with WHR and PBE. Another noteworthy finding was the
inverse relationship between IPA and both SBP and DBP among
vegetarians, indicating a potential protective effect of plant-based diets
against hypertension (43, 45). Vegetarians also exhibited significantly
improved lipid profiles and glucose regulation compared to
omnivores, aligning with previous studies associating plant-based
diets with better metabolic indices (43, 44). Our metabolomic analysis
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further revealed that methylcysteine and guanidoacetic acid were
significantly correlated with lipid markers. However, it is important to
note that the lipid-lowering effects of vegetarianism may come at the
expense of reduced bioavailability of DHA and EPA, key w-3
polyunsaturated fatty acids (46). In terms of glucose metabolism,
aconitic acid was strongly inversely correlated with both FI and
HOMA-IR. Integrating these findings, we identified aconitic acid,
citric acid, methylcysteine, and IPA as key serum biomarkers strongly
inversely associated with cardiometabolic risk in vegetarians
compared to omnivores.

Aconitic acid and citric acid, key intermediates in the TCA cycle,
play a crucial role in energy metabolism. A clinical study demonstrated
that higher serum levels of both aconitic acid and citric acid were
associated with improved insulin sensitivity in adipose tissue (47).
Animal studies have shown that serum concentrations of TCA
intermediates were significantly reduced in high-fat diet-induced
insulin-resistant mice (26). However, there is ongoing debate
regarding the beneficial effects of TCA intermediates on metabolic
and cardiovascular health, with some studies presenting opposing
views (48). Despite these conflicting perspectives, our results indicated
that higher serum levels of aconitic acid and citric acid were positively
correlated with favorable metabolic outcomes in vegetarians. Further
research is needed to fully understand the complex roles of TCA
intermediates and their impact on health.

Methylcysteine and its derivatives play a vital role in promoting
metabolic health through their potent anti-inflammatory and
antioxidant properties. These compounds effectively combat oxidative
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Heatmap of the correlations between differential metabolites and dietary foods in entire cohort. Correlations were determined using Spearman
correlation analysis. The colors from red to blue represent the correlation coefficients. DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; IPA,
indolepropionic acid. * p < 0.05, f p < 0.01.

stress in mice by enhancing glutathione synthesis, reducing the  insulin resistance while attenuating metabolic syndrome, inflammation,
accumulation of ROS, and modulating key inflammatory pathways (49).  and oxidative stress in rats fed with fructose rich diet (50). In particular,
Additionally, oral treatment of methylcysteine is effective in improving  certain derivatives have been shown to activate NRF2 signaling, a pivotal
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regulator of cellular antioxidant defenses, while concurrently inhibiting
NF-xB and NLRP3 inflammasome activation, thereby enhancing their
protective effects against oxidative stress and inflammation (51).

IPA, a gut microbiota-derived metabolite of tryptophan, serves as
a key mediator of the interactions between vegetarian diets and the
microbiota-host environment (52). Epidemiological studies conducted
in Finland, have demonstrated positive correlations between circulating
IPA levels and dietary fiber intake, particularly from whole grains (53).
In our study, vegetarians exhibited higher serum IPA levels, which were
significantly associated with increased cereals, grain, and millet
consumption. Growing evidence highlights the relevance of IPA in
metabolic diseases, with studies linking its levels to the risk of obesity
(54), type 2 diabetes (53), metabolic-associated fatty liver disease (55),
and hyperlipidemia (56). Mechanistically, IPA may modulate these
metabolic conditions through its involvement in glucose metabolism,

Frontiers in Nutrition

insulin sensitivity, lipid homeostasis, inflammatory pathways, and gut
microbiota dynamics (57). Additionally, animal studies have
demonstrated that IPA exerts beneficial effects on heart function and
enhances mitochondrial energy production (58). These findings
underscore the potential role of IPA as a critical mediator of the
cardiometabolic benefits associated with vegetarian diets.

Our study also explored the relationship between dietary
components and metabolite profiles. Notably, metabolites such as
methylcysteine, IPA, and maleic acid showed significant correlations
with the intake of specific plant-based foods. Methylcysteine, primarily
found in foods such as cruciferous vegetables (e.g., broccoli and
cabbage) and seeds (e.g., bean and legume) (59, 60), was negatively
correlated with animal food intake, which is consistent with its higher
concentration in vegetarians. Similarly, IPA, a compound primarily
produced by the gut microbiota from dietary tryptophan, was
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TABLE 7 Summary list of correlations between differential metabolites and dietary foods.

Differential
metabolites

Associated nutrients

Entire cohort

r

Vegetarian group

10.3389/fnut.2025.1672143

Omnivore group

Maleic acid Dried Tofu 0.26 0.2 0.19
Fresh Frozen Beef -0.27 / -0.17
Methylcysteine Fresh Frozen Lamb -0.27 / —-0.18
Yogurt —0.22 —0.14 —-0.15
Total Animal Foods -0.27 / -0.13
Aconitic acid Fresh Frozen Lamb —0.25 / —0.14
Cola —0.21 —0.14 —-0.18
Crabs —0.27 / —-0.21
Total Animal Foods —0.24 / —0.14
Glutamine Total Livestock and Poultry —0.24 / —-0.13
Shrimps —0.24 / —-0.16
Meat Products —0.21 / —0.14
Total Animal Foods —0.26 / —-0.15
Citric acid
Fresh Frozen Lamb —0.25 / —-0.15
Total Animal Foods —0.25 / —-0.15
N-Acetylaspartic acid Crabs —0.22 / —0.14
Coffee —0.17 —0.14 —0.13
Guanidoacetic acid Shrimps —0.26 / —-0.17
IPA Coarse Cereals Total 0.24 0.13 0.16
Total Aquatic Foods 0.44 / 0.25
Total Animal Foods 0.42 / 0.16
Crabs 0.4 / 0.17
DHA
Shrimps 0.39 / 0.15
Mollusks 0.38 / 0.2
Pork Kidney 0.26 / 0.21
Total Livestock and Poultry 0.4 / 0.14
a-Aminobutyric acid Total Eggs 0.33 / 0.14
Pork Liver 0.32 / 0.15
Total Aquatic Foods 0.56 / 0.26
Total Animal Foods 0.55 / 0.18
Shrimps 0.52 / 0.13
EPA
Crabs 0.5 / 0.2
Mollusks 0.49 / 0.18
Pork Kidney 0.3 / 0.2
Creatine Crabs 0.41 / 0.14
2-Hydroxybutyric acid Total Eggs 0.25 0.16 0.15

Correlations listed in the table were all statistically significant with p < 0.05. Spearman’s correlation coefficients (r) are provided. IPA, indolepropionic acid; DHA, docosahexaenoic acid; EPA,

eicosapentaenoic acid.

negatively correlated with animal foods but positively correlated with
millet, coarse grains, mixed beans, and potatoes, which are staples in
vegetarian diets (61, 62). These findings reinforce the idea that plant-
based diets, rich in whole grains, legumes, and vegetables, have a
distinct metabolic signature that influences health outcomes. In
contrast, metabolites like DHA and EPA, which are predominantly
found in aquatic foods (particularly fish), were strongly correlated with

Frontiers in Nutrition

the intake of these foods (63, 64). This highlights the potential dietary
shortfall in vegetarians with respect to w-3 fatty acids. In terms of
nutrients, the differential metabolites between vegetarians and
omnivores were found to be correlated with niacin, selenium, vitamin
A, and vitamin D. This indicates that vegetarians may have a lower
intake of certain micronutrients, especially those that are
predominantly found in animal-based foods.
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TABLE 8 Summary list of correlations between differential metabolites and dietary nutrients.

Differential Associated nutrients r

metabolites .
Entire cohort

Vegetarian group

Omnivore group

Glutamine Todine 0.13 0.14 0.17
Vitamin A 0.46 0.31 0.18
DHA Selenium 0.39 0.14 0.15
Vitamin B, 0.21 0.15 0.13
a-Aminobutyric acid Vitamin A 0.38 0.24 0.18
2-Hydroxybutyric acid Vitamin A 0.31 0.17 0.2

Correlations listed in the table were all statistically significant with p < 0.05. Spearman’s correlation coefficients (r) are provided. DHA, docosahexaenoic acid.

The findings of this study suggest that vegetarian diets are
associated with distinct serum metabolomic profiles, which contribute
to improved cardiometabolic health, as shown in previous research
(65). However, the observed downregulation of w-3 fatty acids and
certain fat-soluble vitamins, such as vitamin A and D, in vegetarians
highlights the importance of personalized dietary recommendations
(32). For vegetarians, especially those adhering to a strict plant-based
diet, supplementation with «-3 fatty acids, like algal oil, and careful
monitoring of fat-soluble vitamin levels may be necessary to ensure a
well-rounded nutrient intake that supports long-term health (33, 66).

Despite the robust findings, this study has several limitations. First,
the cross-sectional design limits the ability to establish causal
relationships between diet and metabolic health, and the dietary intake
data collected through FFQ are subject to potential biases such as recall
errors and inaccuracies in portion estimation (67-69). Therefore, while
these findings provide clues for food- and nutrient-related biomarkers,
the observed correlations alone cannot establish a direct causal
relationship between metabolite changes and specific food or nutrient
intake. Longitudinal studies are needed to assess the long-term effects of
vegetarian diets on cardiometabolic risk factors and their potential role
in disease prevention. Second, we utilized the Q300 commercial
metabolomics platform to detect 305 metabolites, which did not include
trimethylamine-N-oxide and its associated choline—substances closely
linked to vegetarian diets and cardiometabolic diseases. Future studies
should incorporate these metabolites to gain a more comprehensive
understanding of their potential impact on cardiometabolic health in
relation to diet. Third, while this study was conducted in a Chinese
cohort, it is important to acknowledge that dietary patterns and
metabolic responses to vegetarian diets may vary across different
populations. Further studies in diverse populations are needed to explore
the generalizability of our findings and determine how cultural and
environmental factors influence the metabolic effects of vegetarian diets.

5 Conclusion

This study identified distinct serum metabolomic profiles associated
with vegetarian diets in a Chinese cohort, which may contribute to a
more favorable cardiometabolic risk factor profile. Furthermore, by
elucidating differential metabolites linked to dietary intake and metabolic
health, our findings provide valuable insights for the development of
personalized and culturally appropriate dietary recommendations.
We anticipate that this study will deepen the understanding of the
metabolic mechanisms underlying the health benefits of vegetarian diets.
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Glossary

BMI - Body mass index

WHR - Waist-to-hip ratio

PBF - Percent body fat

SBP - Systolic blood pressure

DBP - Diastolic blood pressure

TC - Total cholesterol

TG - Triglycerides

LDL-C - Low-density lipoprotein cholesterol
HDL-C - High-density lipoprotein cholesterol
FG - Fasting glucose

FI - Fasting insulin

HOMA-IR - Homeostasis model assessment of insulin resistance
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HOMA-p - Homeostasis model assessment of -cell function

UPLC-MS/MS - Ultra-performance liquid chromatography-tandem
mass spectrometry

FFQ - Food frequency questionnaire

PCA - Principal component analysis

PLS-DA - Partial least squares-discriminant analysis

OPLS-DA - Orthogonal partial least squares-discriminant analysis
VIP - Variable importance in projection

KEGG - Kyoto encyclopedia of genes and genomes

TCA Cycle - Tricarboxylic acid cycle

DHA - Docosahexaenoic acid

EPA - Eicosapentaenoic acid

IPA - Indolepropionic acid

ROS - Reactive oxygen species
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