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Objectives: Previous research has not yet established whether and how
cardiovascular-kidney-metabolic (CKM) syndrome progression affects liver
outcomes.

Methods: This prospective study utilized data from the UK Biobank (UKB) cohort,
including 415,713 individuals without prevalent liver diseases or substance use
disorder. The CKM syndrome stages were defined according to the Presidential
Advisory from the American Heart Association. Outcomes were major adverse
liver outcomes (MALOs), including hospitalization for metabolic dysfunction-
associated steatotic liver disease (MASLD), severe liver disease (SLD), and liver-
specific mortality. Cox proportional hazards models examined the association
between CKM stages and MALOs. The CMAverse R package was used to
investigate the potential mediating effects of plasma metabolomic data.
Results: After multivariable adjustment, a higher CKM stage was associated
with elevated risks of incident MASLD hospitalization [hazard ratios (HRs) = 7.38,
95% confidence intervals (Cls): 4.34, 12.55], SLD hospitalization (HR = 3.46,
95% Cl:1.94, 6.16), and liver-specific mortality (HR = 4.35; 95% Cl: 1.38, 13.69).
CKM components were, respectively, and cumulatively associated with MALOs
(all p < 0.05). Mediation analyses indicated that tyrosine partially mediated the
associations between CKM stage and MASLD-related hospitalization (7.62%),
SLD-related hospitalization (9.46%), and liver-related death (11.19%), while
linoleic acid-to-total fatty acids ratio partially mediated MASLD hospitalization
(41.18%), SLD hospitalization (34.30%), and liver-related death (45.17%) (all
g < 0.001).

Conclusion: CKM progression elevates MALO risk, partially mediated by amino
acids and fatty acids. These findings identify high-risk patients who may benefit
from targeted liver surveillance for secondary prevention of CKM syndrome.

KEYWORDS

CKM syndrome, MASLD, major adverse liver outcomes, mortality, plasma
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1 Introduction

Chronic liver disease and its subsequent complications (cirrhosis
and liver cancer) contributed to significant economic burden and
mortality (1). Metabolic dysfunction-associated steatotic liver disease
(MASLD), renamed from non-alcoholic fatty liver disease (NAFLD),
represents the most widespread chronic liver disorder (2, 3), leading
to a rapidly rising inpatient clinical and economic burden (4). It has
emerged as the most common contributor to cirrhosis and
hepatocellular carcinoma (HCC) (2) and underlies the accelerating
trend of liver-specific mortality (5). Cardiovascular-kidney-metabolic
(CKM) syndrome is known as the multisystem dysfunction stemming
from the inter-relatedness between metabolic risk factors (including
diabetes and obesity), chronic kidney disease (CKD), and
cardiovascular disease (CVD). Its conceptualization emphasizes the
need for the multidisciplinary management of these dynamically
progressive and interactive diseases to prevent the adverse
consequences rather than focusing on individual diseases (6, 7).

MASLD and CKM syndrome share overlapping pathophysiologic
processes, including lipid toxicity, inflammation, and insulin
resistance (7, 8). In addition, CKM components, such as diabetes and
obesity, have a great impact on the development of MASLD, cirrhosis,
and HCC (8). However, previous research almost exclusively focused
on the association between individual CKM components and
MASLD (9, 10), liver complications (10, 11), and mortality (10)
rather than evaluating these components as an integrated and
progressive syndrome. It therefore remains unclear whether and how
CKM syndrome stage affects liver outcomes. Furthermore, MASLD
exhibits marked heterogeneity in progression rates and clinical
outcomes; the majority of patients exhibit stable or slow progression
without developing cirrhosis or liver-related mortality (2). Given this
heterogeneity, identifying high-risk individuals prone to progressing
to MASLD-related hospitalization is imperative to reduce healthcare
expenditures. Therefore, this study primarily focused on severe
MASLD and other liver-related outcomes requiring hospitalization.
Using a prospective longitudinal design, we examined the risk of
major adverse liver outcomes (MALOs), including MASLD
hospitalization, severe liver disease (SLD) hospitalization, and liver-
specific mortality, across different CKM syndrome stages.

Plasma metabolites, especially free fatty acids (FFAs) and amino
acids, have been identified as promising risk factors for MASLD and
adverse liver complications (12, 13). In addition, previous research
revealed that several CKM components, including diabetes and
obesity, may alter free fatty acids and branched-chain amino acids
(BCAAs) by insulin resistance and systemic inflammation (14, 15),
which were key pathological processes shared by CKM syndrome and
MALOs. Therefore, we hypothesized that these metabolites may
mediate the association between CKM stages and MALO:s.

2 Methods
2.1 Study population

More than 500,000 participants aged 37-73 years were
prospectively recruited by the UK Biobank cohort study throughout

the UK from 2006 to 2010. The baseline visit included biological
samples, lifestyle questionnaires, physical measurements, and
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individual medical history. Plasma samples collected at baseline were
randomly selected from approximately 280,000 UK Biobank
participants for nuclear magnetic resonance (NMR) metabolomic
measurements. Written informed consent was obtained from every
participant. The UK North West Multicenter Research Ethics
Committee reviewed and approved the protocol of the UK Biobank.

The current research excluded participants who had missing
available data necessary for defining CKM syndrome stage
(n =79,482); those with prevalent MASLD, other chronic liver
diseases, or substance use disorder at baseline (n=6,137)
(International Statistical Classification of Diseases and Related Health
Problems, 10th revision (ICD-10) codes for these diseases as the
exclusion criteria are shown in Supplementary Table S3); and
participants who were lost to follow-up (n = 1,032). Finally, there
were 415,713 UK Biobank individuals included in the main analyses.
Participants with NMR metabolomic data were further included in
the mediation analysis (n = 231,082) (Figure 1).

2.2 Assessment of CKM syndrome stage

CKM syndrome was conceptualized as the multisystem
dysfunction deriving from the interrelatedness of metabolic, CKD,
and CVD risk factors (6, 7). A 5-stage system was established for
further classification: (1) stage 0: no CKM syndrome risk factors
emerge; (2) stage 1: prediabetes or obesity; (3) stage 2: the presence
of metabolic syndrome [MetS], diabetes, hypertriglyceridemia,
hypertension, or moderate to high risk for CKD; (4) stage 3: very
high risk for CKD or high risk for CVD; and (5) stage 4:
cardiovascular diseases accompanied by other CKM syndrome
risk factors.

Prediabetes was identified in individuals with a glycated
hemoglobin (HbAlc) of 5.7-6.4% (39-47 mmol/mol) or with
impaired fasting glucose (IFG, fasting glucose 6.1-7.0 mmol/L) (16).
The CKD risk was defined according to Kidney Disease: Improving
Global Outcomes (KDIGO) methods (17). An updated CKM risk
algorithm was used to calculate predicted 10-year CVD risk, which
incorporates age, sex, body mass index (BMI), blood pressure (BP),
diabetes, cholesterol, antihypertensive use, statin use, tobacco use,
and estimated glomerular filtration rate (eGFR) in the model (18, 19).
Subclinical CVD was captured based on either a > 20% 10-year CVD
risk or high CKD risk status. Detailed definitions of CKM syndrome
traits are shown in Supplementary Tables S1, S2 (20).

2.3 Assessment of outcomes

In the UK Biobank (UKB), health-related outcomes were
captured through National Health Service records. Incident
hospitalization for MASLD is defined by the first hospitalization
(UKB code 41270) owing to MASLD, according to guidance on
examining MASLD in electronic healthcare record-based research
(Supplementary Table S4) (21). Specifically, it was identified using
established ICD-10 codes (K76.0, K75.8) (21-23). Secondary
outcomes were severe liver disease (defined as the presence of at least
one of the following conditions: cirrhosis [K74.0, K74.1, K74.2,
K74.6, K70.2, K70.3, K70.4, K76.6, and 185], HCC [C22.0],
intrahepatic cholangiocarcinoma [C22.1], and other liver cancers
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502,364 UK Biobank participants

diseases(n=6,137)

416,745 participants follow up

415,713 participants included in

the longitudinal analyses

NMR metabolomics

subset(n=231,082)

FIGURE 1
Flowchart of enrollment.

85,619 participants Excluded:
Without available data on CKM syndrome(n=79,482)
With prevalent fatty liver disease or other chronic liver

Not included in NMR metabolomics measurement
(n=184,631)

[C22.2-C22.4, C22.7, and C22.9]) and liver-specific mortality (K70.2,
K70.3, K70.4, K74.0, K74.1, K74.2, K74.6, K75.8, K76.0, K76.6, 185,
C22.0, C22.1, C22.2-C22.4, C22.7, and C22.9) (23-25). Every
participant in the current study was followed from baseline until the
earliest event of death, occurrence of outcomes, or last available data
collection (20 July 2021).

2.4 Assessment of covariates and metabolic
biomarkers

The covariates in this study were included based on previous
knowledge and the directed acyclic graph (Supplementary Figure S1).
All participants in the UKB underwent verbal interviews and self-
reported touchscreen questionnaires, as well as physical
measurements to collect information on sociodemographic (sex, age,
ethnicity, and education level), area-based social deprivation
(Townsend deprivation index, TDI), and lifestyle (duration of sleep,
intensity of physical activity, food intake, smoking status, and
drinking status). Dietary risk was quantified using an established
cumulative score [cumulative dietary risk factor score (CDRES)] with
a 10-point scale, where 0 represented the most healthful dietary
characteristics and 9 signified the least healthful dietary profile. It was
derived from the intake of nine common foods (comprising meat
consumption [red meat and processed meat], spread, milk, fish,
cereal, water, salt, and vegetables, along with fruits) based on the UK
guidelines (26).

NMR metabolomics was quantified in randomly selected plasma
samples using a high-throughput NMR-based metabolomic platform
developed by Nightingale Health Ltd. The metabolic biomarkers of
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interest include a total of 10 types of amino acids (alanine, glutamine,
glycine, histidine, isoleucine, leucine, valine, phenylalanine, tyrosine,
and total branched-chain amino acids) and 17 types of FFA
biomarkers (total fatty acid [TFA], omega-3 fatty acid, omega-6 fatty
acid, polyunsaturated fatty acid [PUFA], monounsaturated fatty acid
[MUFA], saturated fatty acid [SFA], linoleic acid, docosahexaenoic
acid [DHA], omega-3 fatty acid-to-total fatty acid percentage
[omega-3/TFA], omega-6 fatty acid-to-TFA percentage [omega-6/
TFA], PUFA-to-TFA percentage [PUFA/TFA], MUFA-to-TFA
percentage [MUFA/TFA], SFA-to-TFA percentage [SFA/TFA],
linoleic acid-to-TFA percentage [LA/TFA], DHA-to-TFA percentage
[DHA/TFA], PUFA-to-MUFA ratio [PUFA/MUFA], and omega-6
fatty acid-to-omega-3 fatty acid ratio [omega-6/omega-3]) measured
in the
measurement and biological samples is detailed on the UKB website."

UK Biobank. Additional information on covariate

2.5 Statistical analysis

Participant baseline characteristics were reported as count
(percentage) for categorical variables, while they were reported as
mean and standard deviation (SD) for continuous variables. Baseline
characteristics across different CKM syndrome stages were compared
using the Kruskal-Wallis, chi-squared, or ANOVA test, whichever
was appropriate.

1 https://www.ukbiobank.ac.uk
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The associations between CKM stages and the risk of MALOs were
quantified using multivariate Cox proportional hazards models.
Assessment of Schoenfeld residuals detected no evidence of
proportional hazards assumption violation. For linear trend analysis,
CKM stages were modeled as an ordered categorical variable. Two
multivariate models were built. Multivariate model 1 in the current
study was adjusted for sex and age, ethnic background (white or other),
education level (higher education or other), and TDI (continuous), and
model 2 was additionally adjusted for sleep duration (< 7h,7hto <
9h, > 9h), physical activity (low, moderate, and high), CDRFS
(continuous), smoking status (never, previous, and current), and
drinking status (never, previous, and current). For variables with
missing data, categorical covariates were assigned to a separate
category, and continuous variables were imputed using sex-specific
means. The variance inflation factor test detected no evidence of
multicollinearity among different covariates. Additionally, the
associations of individual and cumulative CKM syndrome traits with
incident hospitalization for MALOs were additionally estimated using
Cox proportional hazards models. In mediation analyses, the CMAverse
R package was used to investigate a potential mediating effect of
interest metabolic biomarkers on the associations between CKM stages
and MALOs. The Benjamini-Hochberg method, which controls the
false discovery rate (FDR), was used to adjust for multiple testing, with
significance defined as an adjusted p-value (g-value) of < 0.05.

Stratified analyses were carried out by sex, age (< 60 or > 60 years),
TDI (lower and higher), physical activity (moderate, high, or other),
CDREFS (tertiles 1 to 3), sleep duration (ideal sleep duration [7 h to <
9 h] or other), smoking status (current or other), and drinking status
(current or other) to explore possible modifications of the associations
between CKM stage and study outcomes. Multiplicative interactions
were further calculated by inserting the product terms into the fully
adjusted Cox models. Stratified analysis for each stratifying variable
was performed with adjustment for all covariates except the variable
used for stratification. Sensitivity analyses were further carried out: (1)
considering death as a competing risk (in terms of liver-related
mortality, non-liver-specific mortality was treated as a competing
risk); (2) using inverse probability of treatment weighting (IPTW); (3)
using the QRISK 3 score to predict the 10-year risk of cardiovascular
disease (27); (4) eliminating individuals who suffered from incident
MALOs during the first 2 years to control reverse causation bias; (5)
extending landmark analyses by 5 and 7 years to investigate the
relationship between CKM and long-term risks of MALOs; and (6)
imputed missing covariate data with multiple imputations with
chained equation.

Stata version 18.0 and R version 4.3.2 were used in data analysis.
A two-tailed p-value of < 0.05 was considered statistically significant.

3 Results
3.1 Baseline characteristics

Baseline characteristics stratified by CKM syndrome stages are
shown in Table 1. Among 415,713 individuals aged 56.56 + 8.08 years
on average in the current study, 46.2% (191,932) of the participants
were men, 94.5% (392,741) were white, and 32.3% (134,483) had a
college or university degree. Participants at stage 4, compared with
those at stage 0, were less likely to have an ideal sleep duration (66.9%
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versus 78.0%), engage in a moderate-to-high-intensity physical
activity (31.2% versus 34.4%; 28.9% versus 35.7%), or be a current
alcohol user (87.7% versus 93.4%). Individuals at stage 4 were more
likely to be current smokers (12.8% versus 11.9%), to have a higher
CDREFS (5.09 + 1.48 versus 5.04 + 1.46), and to have a higher TDI (—
0.74 + 3.35 versus-1.30 + 3.09).

3.2 Associations between different CKM
stages and risk of major adverse liver
outcomes

During a follow-up of 14.58 years, 4,845 participants reported
incident hospitalization for MASLD, 2,626 participants were
hospitalized due to severe liver disease, and 952 participants died of
liver-related diseases. As shown in Table 2, participants at a higher CKM
stage had a higher risk of incident MASLD hospitalization, severe liver
disease hospitalization, and an elevated liver-specific mortality. After
adjusting for potential confounders, such as sex, age, ethnicity,
education level, TDI, sleep duration, physical activity intensity,
smoking status, drinking status, and CDREFS, these associations
remained significant. In model 2, in comparison with the reference
group, individuals at other stages had a higher risk of incident
MASLD hospitalization: in stage 1, hazard ratio (HR) = 2.64 (95%
confidence interval [CI]: 1.42, 4.92); in stage 2, HR = 3.54 (95% CI:
2.09, 5.98); in stage 3, HR = 5.86 (95% CI: 3.45, 9.97); and in stage 4,
HR =7.38 (95% CI: 4.34, 12.55). After full adjustment, participants
at stage 4 had a higher rate of hospitalization for severe liver disease
and higher liver-specific mortality than those at stages 0: severe liver
disease hospitalization (HR = 3.46; 95% CI: 1.94, 6.16) and liver-
specific mortality (HR = 4.35; 95% CI: 1.38, 13.69).

The 10-year cumulative incidence curves were generated
according to the reviewer’s kind advice. The 10-year cumulative
incidence of MASLD increased significantly with higher CKM stages:
stage 0 (0.16%), stage 1 (0.45%), stage 2 (0.61%), stage 3 (1.21%), and
stage 4 (1.71%) (log-rank p < 0.001) (Supplementary Figure S2).
Similarly, the highest incidence of severe liver disease and liver-
specific mortality was observed in stage 4 participants (1.19% for
0.43%  for
(Supplementary Figures 53, 54). The model for liver-specific mortality
demonstrated the highest discrimination (C-index = 0.743), followed
by the model for SLD (C-index = 0.709). The model for MASLD
progression showed more modest discrimination (C-index = 0.658).

severe  liver  disease  and mortality)

3.3 Association between individual and
cumulative CKM syndrome traits and
incident MALOs

The association between individual and cumulative CKM
syndrome traits and incident MASLD hospitalization and other
MALOs was also estimated (Figure 2). After multivariable
adjustment, individuals with clinical CVD, stage 3a-5 CKD, or MetS
were each separately associated with a heightened risk of incident
MASLD hospitalization in comparison with no individual CKM
syndrome trait, with HRs (95% CIs) of 1.89 (1.73, 2.06), 1.45 (1.24,
1.69), and 3.41 (3.22, 3.62), respectively, while the HRs of incident
MASLD hospitalization were 3.31 (3.10, 3.52), 4.67 (4.20, 5.19), and
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TABLE 1 Baseline characteristics of participants across CKM syndrome stages.

Characteristics

CKM syndrome stage

10.3389/fnut.2025.1675899

Stage 1 Stage 2 Stage 3 Stage 4
Participants 415,713 5,172 4,313 340,528 38,505 27,195
Men, n (%) 191,932 (46.2) 1,308 (25.3) 1,437 (33.3) 149,143 (43.8) 21,726 (56.4) 18,318 (67.4)
Age, mean (SD) 56.56 (8.08) 52.07 (7.97) 53.65 (8.08) 55.67 (7.98) 61.75 (6.59) 61.56 (6.29)
Townsend deprivation index, mean (SD) —1.34 (3.07) —1.30 (3.09) —1.11 (3.18) —1.40 (3.03) —1.26 (3.10) —0.74 (3.35)
Ethnicity (%)
White 392,741 (94.5) 4,929 (95.3) 3,948 (91.5) 321,695 (94.5) 36,397 (94.5) 25,772 (94.8)
Non-white 21,565 (5.2) 221 (4.3) 350 (8.1) 17,724 (5.2) 1,949 (5.1) 1,321 (4.9)
Missing 1,407 (0.3) 22(0.4) 15 (0.3) 1,109 (0.3) 159 (0.4) 102 (0.4)
Education (%)
College or university degree 134,483 (32.3) 2,341 (45.3) 1,529 (35.5) 114,927 (33.7) 9,833 (25.5) 5,853 (21.5)
Other degree 276,912 (66.6) 2,795 (54.0) 2,749 (63.7) 222,330 (65.3) 28,138 (73.1) 20,900 (76.9)
Missing 4,318 (1.0) 36 (0.7) 35(0.8) 3,271 (1.0) 534 (1.4) 442 (1.6)
Sleep duration, n (%)
N<7h 101,768 (24.5) 1,064 (20.6) 1,175 (27.2) 82,810 (24.3) 9,067 (23.5) 7,652 (28.1)
7h>=N>=9h 304,117 (73.2) 4,036 (78.0) 3,043 (70.6) 2,50,758 (73.6) 28,099 (73.0) 18,181 (66.9)
N>9h 7,359 (1.8) 56 (1.1) 74 (1.7) 5,113 (1.5) 1,043 (2.7) 1,073 (3.9)
Missing 2,469 (0.6) 16 (0.3) 21(0.5) 1847 (0.5) 296 (0.8) 289 (1.1)
Physical activity, n (%)
Low 63,056 (15.2) 712 (13.8) 670 (15.5) 50,710 (14.9) 6,011 (15.6) 4,953 (18.2)
Moderate 1,37,269 (33.0) 1,777 (34.4) 1,465 (34.0) 1,13,137 (33.2) 12,403 (32.2) 8,487 (31.2)
High 1,36,416 (32.8) 1,847 (35.7) 1,374 (31.9) 1,13,335 (33.3) 11,988 (31.1) 7,872 (28.9)
Missing 78,972 (19.0) 836 (16.2) 804 (18.6) 63,346 (18.6) 8,103 (21.0) 5,883 (21.6)
Smoking status, 7 (%)
Never 2,27,733 (54.8) 3,178 (61.4) 2,498 (57.9) 1,97,893 (58.1) 13,424 (34.9) 10,740 (39.5)
Previous 1,44,384 (34.7) 1,381 (26.7) 1,309 (30.4) 1,08,092 (31.7) 20,615 (53.5) 12,987 (47.8)
Current 43,596 (10.5) 613 (11.9) 506 (11.7) 34,543 (10.1) 4,466 (11.6) 3,468 (12.8)
Drinking status, 1 (%)
Never 18,023 (4.3) 175 (3.4) 216 (5.0) 14,495 (4.3) 1,585 (4.1) 1,552 (5.7)
Previous 14,270 (3.4) 157 (3.0) 137 (3.2) 10,622 (3.1) 1,603 (4.2) 1,751 (6.4)
Current 382,977 (92.1) 4,833 (93.4) 3,955 (91.7) 315,082 (92.5) 35,263 (91.6) 23,844 (87.7)
Missing 443 (0.1) 7(0.1) 5(0.1) 329 (0.1) 54 (0.1) 48(0.2)
CDRPS, [mean (SD)] 5.08 (1.49) 5.04 (1.46) 5.18 (1.47) 5.07 (1.49) 5.18 (1.47) 5.09 (1.48)

Higher education indicates college and university degree, university, National Vocational Qualification, Higher National Diploma, Higher National Certificates, or equivalent; SD, standard

deviation. CDRFS, cumulative dietary risk factor score.

7.27 (5.46, 9.70), respectively, for those with 1, 2, and 3 CKM
syndrome traits compared to those without. Additionally, analogous
associations appeared in severe liver disease hospitalization and liver-
specific mortality outcomes (Figure 2).

3.4 Mediation analyses of amino acids and
free fatty acids with CKM-MALOs
association

In the mediation analyses, there were 9 types of amino acids and
12 types of FFA biomarkers playing a mediating role in the
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CKM-MASLD association (Figure 3). The strongest amino acid
mediator was valine (proportion of mediation [prop.] =12.27%;
q<0.001), and the strongest fatty acid biomarker was LA/TFA
(prop = 41.18%; g < 0.001). Similarly, a total of 5 amino acids and 12
FFAs biomarkers were identified as significant mediators in terms of
CKM-SLD association (Figure 3). The ratios of LA/TFA, PUFA/
MUFA, MUFA/TFA, PUFA/TFA, omega-6/TFA, and tyrosine
accounted for 34.30, 24.60, 21.10, 21.00, 19.70, and 9.46% of the
association between CKM stage and SLD, respectively (all g < 0.001).

Additionally, there were five types of amino acids mediators, in
which alanine was the strongest mediator and accounted for 17.92%
of the CKM-liver-specific mortality association (Figure 3). In 10 types
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TABLE 2 HRs for major adverse liver outcomes by CKM syndrome stage.

10.3389/fnut.2025.1675899

CKM syndrome stage P for trend

Stage O Stage 1 Stage 2
MASLD
Events/subjects 14/5,172 34/4,313 3448/340,528 691/38,505 658/27,195
Model 1 1 2.75(1.48, 5.13) 3.63 (2.14,6.13) 6.45 (3.79, 10.96) 8.34 (4.90, 14.18) <0.001
Model 2 1 2.64 (1.42,4.92) 3.54 (2.09, 5.98) 5.86 (3.45,9.97) 7.38 (4.34, 12.55) <0.001
Severe liver disease
Events/subjects 12/5172 23/4313 1647/340528 515/38505 429/27195
Model 1 1 2.02 (1.01, 4.06) 1.64 (0.93, 2.89) 3.47 (1.95,6.17) 3.79 (2.13,6.75) <0.001
Model 2 1 1.96 (0.97, 3.94) 1.63 (0.93, 2.88) 3.20 (1.80, 5.69) 3.46 (1.94, 6.16) <0.001
Liver-specific mortality
Events/subjects 3/5,172 4/4,313 578/340,528 206/38,505 161/27,195
Model 1 1 1.37 (0.31, 6.13) 2.13 (0.69, 6.63) 4.62 (1.47, 14.49) 4.78 (152, 15.04) <0.001
Model 2 1 1.31(0.29, 5.87) 213 (0.68, 6.62) 4.13 (132, 12.96) 435 (1.38, 13.69) <0.001

Model 1 was adjusted for age, gender, ethnic background, education, and TDI. Model 2 was additionally adjusted for sleep duration, physical activity, CDRFS, smoking status, and drinking status.

of FFA mediators, the ratios of LA/TFA, PUFA/TFA, MUFA/TFA,
omega-6/TFA, and LA explained 45.17, 27.36, 25.09, 24.44, and
24.43% of the association between CKM stage and liver-specific
mortality, respectively (all g < 0.001) (Figure 3).

3.5 Subgroup and sensitivity analyses

As shown in Supplementary Figure S5, the association between
CKM stage and incident MASLD hospitalization was modified by age
and cumulative dietary risk (both p-interaction < 0.05). In addition,
the association between CKM stage and severe liver disease
hospitalization was significantly modified by age and drinking status
(Supplementary Figure S6) (both p-interaction < 0.05). Of note,
current drinkers exhibited a lower risk of severe liver disease
hospitalization. Similarly, never and previous smokers had a higher
risk of liver-specific ~mortality than current smokers
(Supplementary Figure S7) (HR = 5.27, 95% CI:1.30, 21.38 versus
HR = 2.75,95% CI: 0.36, 20.28). These findings should be interpreted
cautiously due to potential residual confounding and survivor bias.
The findings of this study remained consistent across a series of
sensitivity analyses (Supplementary Figures S7-5S15).

4 Discussion

Several meaningful findings were observed in the current
research. First, progressive CKM syndrome stage was associated with
heightened risks of incident hospitalization for MASLD and severe
liver disease, as well as an increased liver-specific mortality. After
multiple adjustments for confounding factors, including sex, age,
ethnicity, education level, TDI, sleep duration, physical activity
intensity, smoking status, drinking status, and CDRFS, these
associations were significant. Second, CKM syndrome traits were
differentially and cumulatively associated with the risks of incident
MASLD hospitalization and other MALOs. Third, amino acids and
FFAs partially mediated the association between CKM and incident
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hospitalization for MASLD, severe liver disease, and liver-specific
mortality, with tyrosine and alanine identified as the major amino
acid mediators and the linoleic acid-to-total fatty acid percentage as
the strongest fatty acid biomarker. Fourth, after sensitivity analyses,
the associations between CKM stage and incident MALOs
remained robust.

To the best of our knowledge, the present study is the first
population-based prospective longitudinal research to quantify
associations between different CKM syndrome stages and incident
MASLD hospitalization, using a new staging structure rather than
individual diseases in isolation. Existing studies have primarily
demonstrated bidirectional relationships between individual diseases
or risk factors (including diabetes, obesity, and CVD) and MASLD. On
the one hand, obesity and diabetes are among the most significant
drivers of MASLD development; approximately 65% of diabetes
patients and up to 80% of obese individuals have MASLD (2, 8, 9). In
addition, the existence of diabetes or CVD risk factors heightens
MASLD risk (9, 28). A previous study demonstrated that Framingham
Heart Study participants with certain baseline conditions had an
elevated risk of developing fatty liver, including hypertension
(OR = 3.34; 95% CI: 2.04, 5.49), MetS (OR = 4.63; 95% CL: 2.87, 7.47),
IFG (OR = 2.92; 95% CI: 1.76, 4.82), and diabetes (OR = 4.15; 95% CI:
1.19, 14.46) (28), which is in line with our additional analyses. On the
other hand, MASLD can increase the risks of diabetes, CVD, and CKD
(29-32). Pooled data from 129 studies established that, compared to
the general population, persons suffering from MASLD had increased
rates of diabetes mellitus (HR = 2.56; 95% CI: 2.10, 3.13, p < 0.01),
CKD (HR = 1.38,95% CI: 1.27, 1.50, p < 0.01), and CVD (HR = 1.43,
95% CI:1.27, 1.60, p < 0.01) (31). In addition, a current cross-sectional
survey based on NHANES data indicated that persons with MASLD
showed a heightened prevalence of CKM stage 2 and stage 3
(p<0.001) compared to the general population; no significant
difference was observed in those with CKM stage 4 (p = 0.12) (33).
However, existing studies have either focused solely on the
relationships between individual diseases and MASLD or failed to
establish temporal associations between CKM stages and future liver
outcomes. To address these gaps, we used the novel CKM staging
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FIGURE 2
The association of individual and cumulative CKM disease numbers with incident MASLD, severe liver disease, and liver-specific mortality. CKM,
cardiovascular-kidney-metabolic syndrome; MASLD, metabolic dysfunction-associated fatty liver disease; HR, hazard ratio; Cl, confidence interval;
CVD, cardiovascular disease; CKD, chronic kidney disease; MetS, metabolic syndrome.

system to capture integrated risk rather than individual diseases. With
a larger sample size and prospective design, the current study focused
on severe MASLD requiring hospitalization and expanded on this
finding by demonstrating the longitudinal association between higher
CKM stage and an increased risk of incident MASLD hospitalization.

Furthermore, this study is the first to reveal the positive
associations between CKM stage and severe liver disease
hospitalization and liver-specific mortality. Emerging evidence has
shown that the presence of diabetes and other MetS traits is
associated with elevated risks of liver cirrhosis and liver cancer (9,
34, 35). Additionally, persons with the coexistence of diabetes or
other metabolic risk factors, such as CKD and CVD, have 2.27-fold
and 1.95-fold higher risks of mortality, respectively, than persons
with diabetes alone (35). Furthermore, another prospective study
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revealed that the incidence of adverse liver outcomes increases with
a greater number of MetS traits (HR = 1.28, 95% CI: 1.23, 1.33)
(36). In line with previous studies, we also found that CKM
components were individually and cumulatively associated with the
risks of severe liver disease and liver-specific mortality. However,
those
cardiometabolic risk factors, lacking a more comprehensive

studies concentrated on individual or combined
evaluation of CKM stage progression. Utilizing the CKM syndrome
stage framework outlined in the Presidential Advisory from the
American Heart Association, this study demonstrated a positive
association between CKM progression and risks of severe liver
disease and liver-specific mortality.

There are some biologically plausible mechanisms underlying the

association between CKM syndrome and MASLD hospitalization and
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FIGURE 3

The mediation effect of plasma free fatty acids and amino acids on the association between CKM stage and different outcomes. *Indicates the
proportion of mediation. 'indicates Benjamini—Hochberg adjusted g-value. TFA, total fatty acid; PUFA, polyunsaturated fatty acid; MUFA,
monounsaturated fatty acid; SFA, saturated fatty acid; DHA, docosahexaenoic acid; omega-3, omega-3 fatty acid; omega-6, omega-6 fatty acid.

other major adverse liver outcomes. These may be partly due to
overlapping pathophysiological mechanisms, including lipid toxicity,
oxidative stress, insulin resistance, and inflammation (7, 8). CKM
syndrome stems from excess or dysfunctional adipose tissue and
obesity, which are among the most important factors in the natural
history of MASLD (7, 8). The pro-inflammatory and pro-oxidative
products secreted by dysfunctional adipose tissue can interfere with
both extracellular and intracellular metabolism, particularly lipid
metabolism (5). The resulting excess of free fatty acids inhibits liver
insulin sensitivity and facilitates lipogenesis, causing steatosis and
cirrhosis (37). This process further worsens inflammation, oxidative
stress, and insulin resistance, which then damage the arterial, cardiac,
and kidney tissues, ultimately resulting in the progression of CKM
syndrome (7). Furthermore, the connections between these
mechanisms are complex and multifaceted. For instance, infiltration
of visceral adipose tissue by pro-inflammatory macrophages
establishes a feed-forward cycle wherein adipose tissue inflammation
exacerbates systemic insulin resistance (7, 38), while this metabolic
dysfunction, particularly in insulin-sensitive organs (adipose tissue
and pancreas), potentiates hepatic gluconeogenesis, subsequently
fueling hepatic inflammatory responses and fibrotic progression (39).
Finally, all these mechanisms bridge the association between CKM
syndrome and MASLD and other liver outcomes.

Frontiers in Nutrition

Of note, this study revealed that a series of amino acids and FFAs
partially mediated the associations between CKM stages and MALO
risks. This finding suggests that these plasma metabolites may
represent a critical biological pathway linking CKM syndrome to
hepatic pathology. However, no consistent conclusion has been
reached regarding the association between circulating metabolites and
MASLD (12, 13, 40, 41). Interestingly, a previous study observed
contradictory results in observational analysis and Mendelian
randomization (MR) analysis, in which the observational analysis
indicated a significant association with MASLD, while the MR analysis
did not support a causal role for BCAAs or tyrosine on MASLD (13).
This discrepancy could be explained by the fact that the observational
study was confounded by factors such as insulin resistance, increased
dietary protein intake, and protein catabolism (13, 40). Even so, the
observed mediation effects are still biologically plausible due to multi-
directional mechanisms. As noted, pathophysiologic processes such
as lipotoxicity and insulin resistance—the core drivers of CKM
syndrome (6, 7)—have been known to alter plasma metabolism
(especially FFAs) (42) and facilitate MASLD pathogenesis (37, 42).
Meanwhile, specific metabolites like FFAs can activate different
pathways in various liver cells, aggravate lipotoxicity, and promote
insulin resistance (37), forming a feedback cycle similar to that
mentioned above.
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The key strengths of our research include the application of
updated CVD risk prediction equations, a prospective study design, a
nationally representative sample of UK adults, a substantial sample
size, prolonged follow-up, the assessment of an extensive set of
potential confounding factors, and the examination of mediation by
plasma metabolites. Nevertheless, several limitations should be noted.
First, potential reverse causality might exist in the current study.
However, a 2-year landmark analysis was used in the sensitivity
analyses to investigate the robustness of the results. Second, this study
focused on severe MASLD requiring hospitalization due to its marked
heterogeneity in progression rates and outcomes, which could
introduce potential selection bias. Further research involving all
MASLD patients would help improve generalizability. Third,
participants without CKM syndrome were excluded, which may affect
the generalization of our conclusions to some extent. Fourth, this
study could not explain how dynamic changes in the CKM syndrome
stage affect MALO risk, despite the association between baseline CKM
MALO
(Supplementary Tables S13, S14). Further trajectory analyses

and risk  remaining  significant over time
incorporating dynamic information will help validate our results.
Fifth, the inability to incorporate insulin resistance-related biomarkers
as covariates-either because they were unavailable in the UK Biobank
(e.g., homeostasis model assessment of insulin resistance) or were
excluded to avoid multicollinearity (e.g., triglyceride-glucose
index)-may introduce residual confounding. Sixth, 94.5% of
participants in this cohort study were white, and our results may not
be generalizable to other ethnic groups. Seventh, within subgroup
analyses, never and previous smokers exhibited a higher liver-specific
mortality risk than current smokers. Similarly, current drinkers
showed a lower risk of severe liver disease. These findings should
be interpreted with caution due to potential residual confounding
(including dose-effect relationship, years of consumption, and reasons
for quitting) and survivor bias, as high-risk current users may have

already died from competing causes such as lung cancer.

5 Conclusion

This study provides longitudinal evidence on positive associations
between CKM syndrome stage and MASLD hospitalization, as well as
other major adverse liver outcomes. FFAs and amino acids partially
mediate these associations. Given these findings, patients at advanced
CKM stages may represent a high-risk group who could benefit from
enhanced vigilance for liver disease, facilitating secondary
prevention efforts.
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Glossa ry CRP - C-reactive protein

CKM syndrome - cardiovascular-kidney-metabolic syndrome AST - aspartate aminotransferase

MASLD - metabolic dysfunction-associated fatty liver disease ALT - alanine aminotransferase

HCC - hepatocellular carcinoma eGFR - estimated glomerular filtration rate

CKD - chronic kidney disease MASH - metabolic dysfunction-associated steatohepatitis

CVD - cardiovascular disease CDREFS - cumulative dietary risk factor score

MALOs - major adverse liver outcomes NVQ - National Vocational Qualification

FEAs - free fatty acids HND - Higher National Diploma

BCAAs - branched-chai i id!
$ 7 Pranchiec-chaiil aiiino acles HNC - Higher National Certificates

NMR - nuclear magnetic resonance
TFA - total fatty acid

MetS - metabolic syndrome
PUFA - polyunsaturated fatty acid

HbAIc - glycated hemoglobin
MUFA - monounsaturated fatty acid

KDIGO - Kidney Disease Improving Global Outcomes
SFA - saturated fatty acid

UKB - UK Biobank
DHA - docosahexaenoic acid

ICD-10 - International Statistical Classification of Diseases and

Related Health Problems Apo A - apolipoprotein A
10th revision Apo B - apolipoprotein B
TDI - Townsend deprivation index SLD - severe liver disease
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