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Background: Obesity isa major global health challenge, linked to cardiometabolic
and neuropsychiatric disorders through mechanisms such as inflammation
and insulin resistance. However, little is known about how adiposity and its
longitudinal changes interact with glycemic status to shape neuropsychiatric
health and brain structural vulnerability. Clarifying these relationships is of high
importance, as both obesity and dysglycemia are modifiable risk factors that
may jointly accelerate psychiatric disorder and brain aging.

Methods: Using UK Biobank data (n = 423,750, with 32,551 having brain MRI),
we examined associations between obesity indicators (body mass index [BMI],
waist circumference [WC], body fat percentage [BFP]) and changes in obesity
status with incident neuropsychiatric disorders (stroke, dementia, Parkinson'’s
disease, depression, anxiety) and brain structural measures. Participants were
stratified by glycemic status—normal glucose regulation (NGR), prediabetes
(Pre-DM), and diabetes (DM)—based on American Diabetes Association criteria.
Cox proportional hazards and linear regression models were used.

Results: Higher BMI, WC, and BFP were associated with increased risks
of depression and anxiety across all glycemic groups, particularly in NGR.
Abdominal obesity was linked to Parkinson'’s disease risk in NGR. Conversely,
BMI showed an inverse association with dementia in NGR, possibly due to
reverse causality. Persistent obesity and weight gain were associated with higher
depression and anxiety risks in NGR. In diabetes, higher BFP was strongly linked
to reduced grey matter, thalamus, and hippocampus volumes and increased
WMHSs. This association with BFP represented the most robust imaging signal,
highlighting the pronounced vulnerability of brain structure to excess adiposity
in diabetes. Similar but weaker patterns were observed in prediabetes and NGR.
Conclusion: Obesity, particularly persistent or increasing adiposity, adversely
affects neuropsychiatric health and brain structure, and these effects are
significantly modified by glycemic status. Our findings underscore the
importance of considering glucose metabolism when assessing obesity-
related brain risks, and suggest that early weight management and metabolic
control may have broad benefits for preventing neuropsychiatric disorders and
mitigating brain aging.
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Introduction

Obesity has emerged as one of the most significant global public
health challenges, with its prevalence rising steadily over recent
decades (1). It is well established that obesity contributes not only to
cardiometabolic conditions—such as type 2 diabetes, hypertension,
and cardiovascular disease—but also to adverse mental health
outcomes and neurological disorders (2, 3). Increasing evidence
suggests that excess adiposity may elevate the risk of neuropsychiatric
conditions possibly through systemic inflammation, insulin resistance,
vascular dysfunction, and neuroendocrine disturbances (4, 5).

Notably, obesity is a heterogeneous condition, varying in
distribution (e.g., general vs. abdominal adiposity) and composition
(e.g., fat vs. lean mass). Different indicators of obesity—such as body
mass index (BMI), waist circumference, and body fat percentage—
may capture distinct aspects of body composition and confer
differential health risks (6). However, the extent to which these diverse
obesity phenotypes relate to neuropsychiatric and brain structural
outcomes remains incompletely understood.

Moreover, metabolic health—particularly glycemic status—may
significantly modify the impact of obesity on the brain. Individuals
with impaired glucose regulation, such as those with prediabetes or
diabetes, often exhibit higher levels of systemic inflammation,
oxidative stress, and vascular injury, all of which are implicated in
brain aging and psychiatric vulnerability (7, 8). Despite this, few large-
scale studies have systematically explored how the relationship
between obesity and neuropsychiatric or neurostructural outcomes
varies across the glycemic spectrum. To address this gap, participants
in the present study were stratified by glycemic status according to the
American Diabetes Association: normal glucose regulation (NGR),
prediabetes (Pre-DM), and diabetes (DM).

Emerging evidence also suggests that glycemic status itself may
causally shape neuropsychiatric vulnerability and brain outcomes (9).
Chronic hyperglycemia and insulin resistance, hallmarks of
prediabetes and diabetes, can impair neuronal glucose utilization,
promote oxidative stress, and disrupt synaptic plasticity, thereby
accelerating neurodegeneration (10). These disturbances often
manifest in structural brain alterations such as reduced grey matter,
hippocampal, and thalamic volumes, as well as increased white matter
hyperintensities—markers of cerebral small vessel disease and
cognitive decline (11). In addition, hyperglycemia-driven systemic
inflammation and pro-inflammatory cytokine release (e.g., IL-6,
TNF-a) may cross the blood-brain barrier, contributing to
neuroinflammation and mood dysregulation (12). Dysregulation of
the hypothalamic-pituitary-adrenal (HPA) axis and reduced
neurotrophic factors such as brain-derived neurotrophic factor
(BDNF) further link impaired glucose metabolism with depression,
anxiety, and memory impairment (13). Importantly, these mechanisms
may operate in a graded fashion, with subtle effects present in
prediabetes and more pronounced changes in diabetes, while
individuals with normal glucose regulation may display different or
paradoxical associations (e.g., reverse causality between BMI and
dementia) (14). Given this biological rationale, stratifying analyses by
glycemic status provides a critical opportunity to disentangle how
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obesity interacts with metabolic health to influence neuropsychiatric
disorders and brain structural vulnerability.

Beyond static obesity status, dynamic changes in body
composition may offer additional prognostic insight. Weight gain,
persistent obesity, and even weight loss may reflect underlying health
trajectories that are differentially associated with mental and cognitive
outcomes. Investigating these longitudinal changes is essential for
understanding the temporal nature of obesity-related neurobiological
consequences and for informing targeted interventions.

Despite increasing recognition of the adverse impact of obesity on
brain and mental health, most prior studies have relied on static
measurements of adiposity, focusing on single time points rather than
longitudinal trajectories. This approach does not capture the dynamic
nature of obesity, where weight gain, weight loss, or persistent obesity
may reflect distinct health trajectories with potentially different
neuropsychiatric consequences. Moreover, limited evidence exists on
how these dynamic changes interact with glycemic status to influence
neuropsychiatric outcomes and brain structural alterations.
Addressing this gap is critical, as both obesity and impaired glucose
regulation are modifiable risk factors, and understanding their joint
impact may provide novel insights into prevention strategies.

Based on this rationale, we hypothesized that: (1) higher adiposity
and sustained or increasing obesity would be associated with elevated
risks of neuropsychiatric disorders and adverse brain structural
changes, whereas weight loss might also indicate unfavorable
outcomes due to underlying health conditions; and (2) these
associations would be more pronounced among individuals with
impaired glycemic status (prediabetes and diabetes) compared to
those with normal glucose regulation.

To address these gaps, we conducted a comprehensive analysis
using data from the UK Biobank, a large, prospective, population-
based cohort with extensive phenotypic and neuroimaging data. Our
study aimed to (1) examine the associations between multiple obesity
indicators and the incidence of neuropsychiatric disorders; (2) explore
how changes in obesity status relate to neuropsychiatric and structural
brain outcomes; and (3) investigate whether these associations differ
according to baseline glycemic status. By integrating anthropometric,
clinical, and imaging data, our findings provide novel insights into the
interplay between metabolic health, body composition, and
brain health.

Method
Study population

The UK Biobank' is a large, population-based cohort comprising
503,325 individuals aged 45-69 years, recruited across the

United Kingdom over a five-year period beginning in 2006 (15). The
study was approved by the National Research Ethics Service

1 www.ukbiobank.ac.uk
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Committee North West-Haydock (reference 11/NW/0382), and all
participants provided informed consent. All procedures adhered to
the ethical principles outlined in the Declaration of Helsinki. For the
present analysis, after excluding individuals with baseline
neuropsychiatric disorders (n = 69,789) and missing obesity-related
measurements (n =8,730), a total of 423,750 participants were
included, of whom 32,551 had available brain structural imaging data.

Obesity indicators

Obesity indicators included BMI, waist circumference, and body
fat percentage. Based on these, we defined three obesity types: general
obesity, abdominal obesity, and high body fat percentage. BMI was
calculated as weight in kilograms divided by height in meters squared
(kg/m?). General obesity was defined as BMI > 30 kg/m* (16);
abdominal obesity as waist circumference > 102 cm for men or >
88 cm for women (17); and high body fat percentage as > 25% for men
or > 35% for women (18). Changes in these obesity types were
categorized as: remained normal, increased, decreased, or remained
obesity (general, abdominal, or high body fat).

Neuropsychiatric disorders outcomes

Outcomes were identified through linkage with hospital inpatient
records from the Hospital Episode Statistics (HES) in England, the
Scottish Morbidity Record, and the Patient Episode Database for
Wales. These sources provided detailed data on hospital admissions
and diagnoses, coded using the International Classification of
Diseases, 10th Revision (ICD-10). The primary outcomes included
incident stroke (160-164), dementia (FO0-F05, G30-G31), Parkinson’s
disease (G20), depressive disorder (F32-F33), and anxiety disorder
(F40-F48).

Brain volume measurement

Brain structure data were obtained from magnetic resonance imaging
(MRI) starting in 2014.? Volumes of the whole brain, white matter, grey
matter, thalamus, and hippocampus were derived from T1-weighted
images, while WMHs were obtained from T2-weighted scans. Brain
volumes were normalized for head size using estimates of skull surface
from T1 images, summed across hemispheres, and then z-standardized.
WMHs volume was log-transformed prior to z-standardization due to
skewness. Neurodegeneration-related brain volumes—including total
brain, white matter, WMHs, grey matter, thalamus, and hippocampus—
served as continuous outcomes in this study.

Definitions of glucose metabolism status

Based on the criteria of the American Diabetes Association (ADA),
participants were classified into three glycemic status groups: normal

2 https://biobank.ndph.ox.ac.uk/showcase/showcase/docs/brain_mri.pdf
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glucose regulation (NGR; fasting blood glucose [FBG] < 5.6 mmol/L and
HbA1lc < 5.7%, with no use of glucose-lowering medications), prediabetes
(Pre-DM; FBG 5.6-6.9 mmol/L or HbAlc 5.7-6.4%, without medication
use), and diabetes (DM; FBG > 7.0 mmol/L, HbAlc > 6.5%, or current
use of glucose-lowering medications) (19).

Assessment of covariates

Baseline characteristics were obtained through demographic data,
lifestyle assessments, medical history, and physical examinations.
Demographic variables included age, sex, and ethnicity. Lifestyle factors—
such as smoking status and alcohol consumption—and medical histories
of hypertension and hypercholesterolemia were collected through
questionnaires, interviews, and linked medical records. Socioeconomic
status was assessed using the Townsend Deprivation Index (TDI), a
measure derived from national census data that reflects material
deprivation (20). Physical activity was measured using the International
Physical Activity Questionnaire, and metabolic equivalent of task (MET)
scores were calculated accordingly. Sedentary behavior was defined as
time spent driving, watching television, or using a computer.

Statistical analysis

Categorical variables were summarized as frequencies and
percentages, skewed continuous variables as medians with
interquartile ranges (IQR), and normally distributed continuous
variables as means + standard deviations (SD). To estimate hazard
ratios (HRs) and 95% confidence intervals (CIs) for the associations
between obesity indicators—including changes in these indicators—
and the incidence of neuropsychiatric disorders across different
glycemic statuses, Cox proportional hazards models were employed.
These models were adjusted for age, sex, ethnicity, TDI, smoking
status, alcohol consumption, hypertension, hypercholesterolemia,
sleep duration, physical inactivity, and sedentary behavior. Linear
regression models were used to calculate § coefficients and 95% Cls
for the associations between adiposity indicators, their changes, and
brain structural measures among participants with available
neuroimaging data, stratified by glycemic status. For continuous
obesity indicators (BMI, WC, BFP), HRs were estimated per 1-unit
increase. For categorical definitions of obesity (general, abdominal,
high body fat) and for changes in obesity status (e.g., persistent,
incident, reversed), HRs were calculated with the normal group as the
reference. To control for type I error due to multiple testing, we applied
false discovery rate (FDR) correction using the Benjamini-Hochberg
method across all analyses.

All statistical analyses were conducted using R software (version
4.3.1). Two-sided p-values were reported, with statistical significance
setat p < 0.05.

Results
Baseline characteristics

The flow chart is shown in Supplementary Figure S1. A total of
423,750 participants were included in the study. Among them, 11,975
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(2.8%) were diagnosed with stroke, 8,478 (2.0%) with dementia, 2,940
(0.7%) with Parkinson’s disease, 18,037 (4.3%) with depression, and
21,631 (5.1%) with anxiety. The median age of the overall cohort was
58 years (IQR: 50-63). Participants with neurological or psychiatric
conditions were generally older, with median ages ranging from
57 years in the depression group to 65 years in the dementia group.
Individuals with neurological or psychiatric conditions had higher
proportions of prediabetes and diabetes compared to the overall
population. 15.3% of stroke patients had prediabetes and 7.9% had
diabetes, compared to 11.9 and 3.9%, respectively, in the total sample
(Supplementary Table S1).

Obesity indicators and neuropsychiatric
health in different glucose metabolic states

Among individuals with NGR, higher BMI was associated
with an increased risk of stroke (HR = 1.01, 95% CI: 1.00-1.02),

10.3389/fnut.2025.1676168

depression (HR =1.03, 95% CI: 1.03-1.04), and anxiety
(HR =1.01, 95% CI: 1.00-1.01), whereas it was inversely
associated with dementia (HR = 0.98, 95% CI: 0.97-0.99). Waist
circumference and body fat percentage showed similar trends,
with significant positive associations for stroke, depression, and
anxiety, and an inverse association between body fat percentage
and dementia (HR=0.99, 95% CI: 0.98-0.99). General,
abdominal, and high body fat-defined obesity were consistently
associated with elevated risks of depression (HRs ranging from
1.26 to 1.33) and anxiety (HRs ranging from 1.10 to 1.12).
Notably, abdominal obesity was associated with an increased risk
of Parkinson’s disease (HR = 1.11, 95% CI: 1.00-1.24; Figures 1,
2; Supplementary Table S2).

In the prediabetic group, BMI and waist circumference
remained significantly associated with elevated depression risk
(HR =1.03, 95% CI: 1.02-1.04 and HR = 1.02, 95% CI: 1.01-
1.02). General and abdominal obesity were also robustly
associated with depression (HR = 1.34, 95% CI: 1.20-1.51 and

Group Body mass index Waist circumference Body fat percentage
NGR E HR (95% CI) HR (95% CI) HR (95% CI)
Stroke = 1.01 (1.00 to 1.02) 1.00 (1.00 to 1.01) 1.00 (1.00 to 1.01)
. !
Dementia __—* 0.98 (0.97 t0 0.99) 1.00 (0.99 to 1.00) 0.99 (0.98 to 0.99)
P

Parkinson’s disease — 1.00 (0.99t0 1.02) 1.01 (1.00 to 1.01) 1.00 (1.00 to 1.01)
Depression disorder E — 1.03 (1.03 to 1.04) 1.01 (1.01 to 1.02) 1.02 (1.02 to 1.03)
Anxiety disorder .’:.: 1.01 (1.00 to 1.01) 1.01 (1.00 to 1.01) 1.01 (1.01 to 1.01)
Pre-DM 0
Stroke F- 1.02 (1.01 t0 1.03) 1.01 (1.00to 1.01) 1.01 (1.00 to 1.02)

! Group
Dementia —a— 1.00 (0.98 to 1.01) 1.00 (0.99to 1.01) 0.99 (0.98 to 1.00) M-Body mass index
Parkinson's disease —a 1.01(0.99t0 1.04) 1.01 (1.00t0 1.02) 1.01(0.99to 1.03) ™ Waist circumference

: l-Body fat percentage
Depression disorder p = 1.03 (1.02to0 1.04) 1.02 (1.01to 1.02) 1.03 (1.02 to 1.04)
Anxiety disorder - 1.00 (0.99 to 1.01) 1.00 (1.00 to 1.01) 1.00 (0.99 to 1.01)
DM
Stroke —5— 0.99 (0.98to 1.01) 1.00 (0.99 to 1.01) 0.99 (0.98 to 1.01)
Dementia :—- 1.01 (0.99 to 1.03) 1.01 (1.00 to 1.01) 1.00 (0.98 to 1.02)
Parkinson’s disease ——-— 1.02 (0.98 to 1.06) 1.01 (0.99 to 1.02) 1.01 (0.98 to 1.04)
Depression disorder E — 1.03 (1.01to 1.04) 1.01 (1.01t0 1.02) 1.02 (1.01 to 1.04)
Anxiety disorder , —a 1.03 (1.02 to 1.05) 1.02 (1.01to 1.02) 1.03 (1.02 to 1.05)

1 T 1

1

FIGURE 1
Association of obesity indicators and neuropsychiatric health in different glucose metabolic states
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HR =1.38, 95% CI: 1.23-1.55), and abdominal obesity was
associated with anxiety (HR = 1.22, 95% CI: 1.15-1.30). High
body fat percentage showed a significant association with
depression (HR = 1.26, 95% CI: 1.11-1.42) but not with anxiety
( ; ).

Among participants with diabetes, most obesity indicators
were not significantly associated with stroke, dementia, or
Parkinson’s disease. However, BMI, waist circumference, and body
fat percentage were all significantly associated with increased risks
of depression and anxiety. Specifically, BMI was associated with
depression (HR = 1.03, 95% CI: 1.01-1.04) and anxiety (HR = 1.03,
95% CI: 1.02-1.05). Abdominal obesity showed strong associations
with depression (HR =1.37, 95% CI: 1.14-1.65) and anxiety
(HR = 1.37,95% CI: 1.12-1.67). General obesity was also positively
associated with these two outcomes (depression: HR =1.27;
anxiety: HR = 1.43). High body fat percentage was significantly

associated with depression (HR =1.26, 95% CI: 1.11-1.42) and

10.3389/fnut.2025.1676168

Change in obesity status and
neuropsychiatric health outcomes in
different glucose metabolic states

The association of changes in weight with neuropsychiatric health
was shown in . Among individuals with NGR, both weight gain
and persistent obesity were significantly associated with increased
risks of depression (HR = 1.57, 95% CI: 1.29-1.90 and HR = 1.29, 95%
CI: 1.11-1.49, respectively) and anxiety (HR = 1.39, 95% CI: 1.17-1.66
and HR = 1.16, 95% CI: 1.02-1.32, respectively). Weight loss was also
associated with a significantly increased risk of depression (HR = 1.41,
95% CI: 1.10-1.79), though its effect on anxiety was not statistically
significant. For stroke, only persistent obesity showed a significant
association (HR =1.28, 95% CI: 1.05-1.56), while no significant
associations were observed for dementia or Parkinson’s disease across
all weight change groups in this subgroup.

The association of changes in abdominal obesity with

anxiety (HR=1.27, 95% CIL: 1.00-1.60; ;  neuropsychiatric health was shown in . In individuals with NGR,
). increased abdominal obesity was significantly associated with higher risks

Group General obesity  Abdominal obesity High body fat percentage
NGR E HR (95% CI) HR (95% CI) HR (95% CI)

| -—
Stroke - 1.10 (1.04 t0 1.17) 1.09 (1.03 to 1.15) 1.08 (1.04 to 1.13)
Dementia _:'_ 0.97 (0.90 to 1.04) 0.99 (0.93 to 1.06) 0.91 (0.85 to 0.96)
Parkinson’s disease [ 1.05(0.93t0 1.18) 1.11(1.00 to 1.24) 1.04 (0.94 to 1.16)
Depression disorder E E—_ 1.33(1.27t0 1.39) 1.32(1.27 t0 1.38) 1.26 (1.21 to 1.32)
Anxiety disorder E E 1.11 (1.06 to 1.16) 1.10 (1.06 to 1.15) 1.12 (1.07 to 1.16)
Pre-DM 0
Stroke [ 1.24 (1.12t01.36) 1.18 (1.05t0 1.33) 1.02 (0.90 to 1.15)

; Group
Dementia —— 1.02 (0.89to 1.17) 1.03(0.90to 1.17) 0.98 (0.85t0 1.13) @ General obesity
Parkinson’s di — 113 (0.8810 1.45) 1.19 (0.94 to 1.50) 1.25 (0.94 to 1.66) WAbdominal obesity

: -l-High body fat percentage
Depression disorder E — 1.34 (1.20to 1.51) 1.38 (1.23t0 1.55) 1.26 (1.11 to 1.42)
Anxiety disorder L. 0.99 (0.89to 1.11) 1.22 (1.15t0 1.30) 1.03 (0.93 to 1.15)
DM
Stroke —— 0.96 (0.81t0 1.13) 1.02 (0.86to 1.20) 0.88 (0.73 to 1.06)
Dementia — 1.06 (0.88t0 1.27) 1.18(0.97 to 1.43) 1.02 (0.81 to 1.28)

<~
Parkinson’s di ———=———— 1.01(0.69t01.46) 1.33(0.91t01.94) 1.41(0.851t02.32)
Depression disorder E —— 1.27 (1.07 to 1.51) 1.37 (1.14t0 1.65) 1.26 (1.11 to 1.42)
Anxiety disorder | ——— 1.43(1.18t01.72) 1.37 (1.12t0 1.67) 1.27 (1.00 to 1.60)
T 1T 1T T T 1
08 1 12141618 2
FIGURE 2
Association of obesity types and neuropsychiatric health in different glucose metabolic states.
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o of depression (HR = 1.59, 95% CI: 1.38-1.84) and anxiety (HR = 1.21,
% 95% CI: 1.06-1.38), while reversed abdominal obesity also conferred
£ § % % § 5 § § é g elevated risks for depression (HR = 1.35, 95% CI: 1.09-1.67). Persistent
.é. abdominal obesity was linked to significantly increased risks of stroke
® (HR =1.27, 95% CI: 1.06-1.52) and depression (HR = 1.36, 95% CI:
A g3 3 $ 28 g BB 1.19-1.56), and showed a borderline association with anxiety (HR = 1.12,
il il il 95% CI: 0.99-1.26). No statistically significant associations were observed
Sl 5% |z 22% 2 §38§ with dementia or Parkinson’s disease in this subgroup. Among prediabetic
& § E 5 é § B ; ; g % % E individuals, increased abdominal obesity was significantly associated with
g’ ;E ; § z ;":’ § f E ;E § s i a higher risk of depression (HR =1.65, 95% CI: 1.02-2.68). Reversed
2 i S e abdominal obesity was also significantly linked to an increased risk of
= depression (HR=1.92, 95% CI: 1.13-3.24). In the DM group, no
] =l el o ol | < wlwlo associations were observed between changes in abdominal obesity and
% S = g 25 2 g5 any neuropsychiatric health outcomes.
- = The association of changes in body fat percentage with
2 ¢ neuropsychiatric health was shown in Table 3. While changes in body
g’_ a § g s g8 g S 23 fat percentage showed no significant association with most
8 VTl il il neuropsychiatric outcomes, increased (HR 1.36,95% CI 1.14-1.63) and
5] 5 2R% 5 =2%% 5 283 persistently high body fat (HR 1.32, 95% CI 1.15-1.51) were significantly
§ g S:L E ; g E ; % g 5 5' g associated with an elevated risk of depression in individuals with NGR.
Ml s:: 2 tsr P ozes
T == =l S| s =
& Obesity indicators and brain structure in
5 olals alele 2lals different glucose metabolic states
7 © % IEIEE 228 S
2 = In individuals with NGR, higher BMI was significantly associated
},’, = with lower grey matter volume (ff = —837.29) and total brain volume
§ 8 é § g g 5 3 % g (f = —630.32), but with increased white matter volume (f = 206.98) and
£ J N P =l = |= WMHs volume (ff = 96.51). WC was associated with a reduction in grey
5 g E E E g g E i g E. = :3: matter volume (f = —435.96) and total brain volume (= —441.04).
¢ 2235 ¢ <£2s& g 2 e 5 General, abdominal, and high body fat obesity were consistently linked to
= &8 3 = |T3E = § - % lower grey matter and total brain volumes and higher WMHs volume.
o Among individuals with prediabetes, similar patterns were observed. BMI
= was negatively associated with grey matter volume (f = —1076.42) and
qé 388 338 23 3 total brain volume (f = —1082.11), with no significant association with
2 R il R white matter volume. WC and BFP were also inversely related to both
= w2 grey matter and total brain volumes. Notably, BFP showed a significant
5 P oz g 2 o o negative association with thalamus volume (ff = —10.76). General and
£ § 3238 383 g 4s abdominal obesity remained significantly associated with reduced grey
2 MW zc3 - 2858 |- g matter and total brain volumes. High body fat percentage was associated
-§ 5\3 é ; ,,:L % é E g %T\ § i ;i E with marked reductions in grey matter (8 = —6586.42), total brain volume
2 M e g |gee (2 ee (B =—7927.99), and thalamus volume (f = —112.29). In individuals with
% - s32 3 - g - a2 diabetes, the associations were more pronounced. BMI was negatively
g o associated with grey matter (= —1330.09) and total brain volumes
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NGR, both weight gain and persistent obesity were linked to reduced grey
matter and total brain volumes, as well as increased WMHs volumes (e.g.,
persistent obesity: grey matter f = —8240.57; WMHs f§ = 1142.39). In the
prediabetic group, only persistent obesity showed significant associations,
with reduced grey matter (ff = —12288.90), reduced total brain volume
(f=—11956.18), and increased WMHs (ff = 880.52). Among those with
diabetes, persistent obesity was significantly associated with reductions in
grey matter (= —15052.73) and total brain volume (3 = —14768.87),
while weight gain was also linked to increased WMHs volume
(f =13332.76; Supplementary Table S4).

Changes in waist circumference were associated with brain
structural alterations across glycemic statuses. In non-diabetic
individuals, both incident and persistent abdominal obesity were
significantly linked to lower grey and total brain volumes and greater
WMHs volumes (e.g., persistent abdominal obesity: grey matter
p=-10458.02; WMHs f=1171.27). In the prediabetic group,
persistent abdominal obesity was associated with reduced grey matter
(f=-10710.78), lower total brain volume (f=-9919.20), and
increased WMHs (8 = 1040.56). Among individuals with diabetes,
only persistent abdominal obesity showed significant associations
with reduced grey (f=-12567.31) and total brain volume
(f = —20084.49; Supplementary Table S5).

Changes in body fat percentage were associated with brain structural
differences across glycemic statuses. In non-diabetic individuals, both
increased and persistent high body fat were significantly associated with
lower grey matter volume (e.g., persistent high: # = —4131.72) and higher
WMHs volume (= 621.38). Increased body fat was also linked to smaller
thalamus and hippocampus volumes. In the prediabetic group, persistent
high body fat was associated with lower grey and total brain volumes.
Interestingly, reversed body fat in this group was related to significantly lower
white matter and total brain volumes. Among individuals with diabetes, only
persistent high body fat showed significant associations with reduced grey
(f=—12876.12), total brain (£ = —18301.25), thalamus (ff = —274.18), and
hippocampus volumes (f# = —200.14; Supplementary Table S6).

Discussion

In this large, population-based cohort study, we comprehensively
examined the associations between various obesity indicators—
including BMI, waist circumference, and body fat percentage—and
both neuropsychiatric outcomes and brain structural measures across
different glycemic statuses.

First, obesity indicators were consistently associated with higher
risks of depression and anxiety, particularly among individuals with
NGR. These associations were robust across different adiposity
measures, including general, abdominal, and high body
fat-defined obesity.

Interestingly, we also observed an inverse association between
BMI and dementia risk This

counterintuitive finding has been reported previously and may reflect

in non-diabetic individuals.
reverse causality or the influence of preclinical weight loss during the
prodromal phase of dementia (21). Specifically, several prospective
studies have shown that unintentional weight loss often precedes the
clinical onset of dementia by years, suggesting that declining BMI may
be a marker rather than a cause of disease risk (22, 23). Therefore, the
apparent protective effect of higher BMI should be interpreted with
caution, as it likely reflects the impact of prodromal disease processes
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rather than a true biological benefit. Conversely, abdominal obesity
was positively associated with Parkinson’s disease risk in non-diabetic
individuals, which may reflect a role for visceral adiposity in
neurodegeneration through chronic inflammation and oxidative stress
pathways (24).

In the prediabetic group, associations with depression and anxiety
persisted but appeared slightly attenuated. Importantly, in individuals
with diabetes, most associations with neurological outcomes (e.g.,
stroke, dementia, Parkinson’s disease) were no longer significant.
However, the associations with depression and anxiety remained
strong, suggesting that psychological burden in diabetes may be more
closely linked to metabolic control, disease burden, or inflammatory
responses than to body fat distribution alone (25, 26).

Dynamic changes in obesity status were also informative. Among
individuals with normal glucose metabolism, both weight gain and
persistent obesity were associated with increased risks of depression
and anxiety, reinforcing the notion that sustained or worsening
adiposity can negatively impact mental well-being (27). Even weight
loss was linked to an elevated depression risk, which may reflect
underlying illness or unintentional weight reduction, highlighting the
complexity of interpreting weight changes in observational data (28).

Changes in abdominal obesity showed similar patterns: both
incident and persistent abdominal obesity were associated with higher
risks of depression and anxiety, while reversed abdominal obesity was
also linked to depression. Notably, these associations were not
observed in the diabetes group, possibly due to the overriding
influence of diabetes-related comorbidities or smaller sample sizes
limiting statistical power. Overall, these results emphasize the need for
weight management strategies even among metabolically “normal”
individuals to promote neuropsychiatric health.

Our neuroimaging findings further support a detrimental impact
of obesity on brain structure, particularly on grey matter and total
brain volumes (29). These associations were most prominent in
individuals with diabetes, where higher BMI and BFP were
consistently linked to reduced brain tissue volumes and increased
white matter hyperintensities (WMHs)—markers of small vessel
disease and brain aging. Importantly, body fat percentage in diabetes
showed the most robust and consistent signal, with significant
reductions in grey matter, thalamus, and hippocampus volumes
alongside greater WMHs burden. This highlights body fat percentage
as a particularly sensitive marker of neurostructural vulnerability in
the context of hyperglycemia, and underscores the importance of
monitoring fat composition rather than relying solely on BMI.

Similar but weaker patterns were observed in prediabetic
individuals, while non-diabetics also showed reductions in grey
matter and increases in WMHs with higher adiposity. These findings
suggest that obesity may accelerate brain aging processes and
structural degeneration, with more pronounced effects in the context
of impaired glucose metabolism (30, 31). The synergistic impact of
adiposity and hyperglycemia on the brain may operate via vascular,
inflammatory, or insulin-resistance-related mechanisms (32).

Longitudinal changes in obesity status were also related to brain
structure. Persistent obesity and abdominal obesity were consistently
associated with lower grey matter and higher WMHs volumes across
glycemic strata. Weight gain and increased abdominal girth were
particularly detrimental in non-diabetic and prediabetic individuals,
while persistent high body fat percentage showed the most
pronounced associations with structural brain deficits in individuals
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TABLE 2 Association of changes in abdominal obesity with neuropsychiatric health.

Stroke Dementia Parkinson'’s disease Depression Anxiety
HR P FDR HR (95%CI) P FDR HR (95%Cl) P FDR HR (95%Cl) P FDR HR P FDR
(95%Cl) adjustment adjustment P adjustment adjustment P (95%Cl) adjustment
P P P

Maintained normal 1 (reference) 1 (reference) 1 (reference) 1 (reference) 1 (reference)
wC
Increased abdominal

b 1.23(0.99-1.53) = 0.064 0.086 0.73 (0.49-1.1) 0.131 0.393 0.99 (0.59-1.67) 0.983 0.999 1.59 (1.38-1.84) <0.001 <0.001 1.21 (1.06-1.38) | 0.005 0.045
obesity
Reversed abdominal

b 1.27 (0.97-1.65) = 0.086 0.086 0.74 (0.44-1.23) 0.246 0.443 1.15 (0.63-2.09) 0.656 0.881 1.35(1.09-1.67) 0.007 0.017 0.99 (0.81-1.22) | 0.944 0.944
obesity
Persistent abdominal

b 1.27 (1.06-1.52) 0.01 0.03 0.91 (0.67-1.23) 0.523 0.672 1.11 (0.74-1.66) 0.626 0.913 1.36 (1.19-1.56) <0.001 <0.001 1.12 (0.99-1.26) | 0.067 0.184
obesity
Pre-DM
Maintained normal 1 (reference) 1 (reference) 1 (reference) 1 (reference) 1 (reference)
wC
Increased abdominal

b 0.97 (0.51-1.86) | 0.937 0.937 0.66 (0.2-2.22) 0.504 0.672 1.75 (0.47-6.48) 0.403 0.999 1.65 (1.02-2.68) 0.042 0.076 1.22(0.79-1.89) | 0.369 0.664
obesity
Reversed abdominal

b 0.76 (0.35-1.67) | 0.497 0.786 1.06 (0.36-3.1) 0.919 0.919 1.12 (0.24-5.23) 0.881 0.881 1.92 (1.13-3.24) 0.015 0.034 1.52 (0.95-2.44) = 0.082 0.184
obesity
Persistent abdominal

b 1.35(0.89-2.03) = 0.156 0.597 0.56 (0.24-1.3) 0.175 0.394 1.06 (0.37-3.09) 0.913 0.913 1.43 (0.99-2.08) 0.059 0.088 1.32 (0.97-1.8) 0.081 0.184
obesity
DM
Maintained normal 1 (reference) 1 (reference) 1 (reference) 1 (reference) 1 (reference)
wC
Increased abdominal

b 1.78 (0.74-4.27) = 0.199 0.597 3.99 (0.88-18.15) 0.073 0.328 0(0 - Inf) 0.999 0.999 1.36 (0.55-3.4) 0.506 0.545 0.64 (0.14-2.82) = 0.553 0.789
obesity
Reversed abdominal

b 1.31(0.57-3.05) = 0.524 0.786 0.81 (0.09-7.35) 0.851 0.919 1.3 (0.13-13.09) 0.824 0.881 0.7 (0.24-2.05) 0.51 0.545 0.77 (0.22-2.7) 0.682 0.789
obesity
Persistent abdominal

b 0.91 (0.46-1.79) | 0.784 0.937 3.3(1-10.88) 0.05 0.328 1.47 (0.27-7.85) 0.654 0.913 1.21 (0.66-2.23) 0.545 0.545 1.16 (0.55-2.44) = 0.701 0.789
obesity
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TABLE 3 Association of changes in body fat percentage with neuropsychiatric health.

Stroke Dementia Parkinson'’s disease Depression Anxiety
HR (95%Cl) P FDR HR (95%Cl) P FDR HR (95%Cl) P FDR HR (95%Cl) P FDR HR (95%Cl) P FDR
adjustment P adjustment P adjustment adjustment P adjustment
P P

Maintained 1 (reference) 1 (reference) 1 (reference) 1 (reference) 1 (reference)
normal
Increased 1.05 (0.83-1.34) 0.684 0.77 0.78 (0.51-1.19) 0.245 0.4 0.84 (0.48-1.46) 0.533 0.998 1.36 (1.14-1.63) 0.001 0.002 1.13 (0.97-1.32) 0.111 0.333
Reversed 1(0.71-1.42) 0.982 0.982 1.51 (0.97-2.36) 0.068 0.378 1.06 (0.52-2.15) 0.878 0.999 0.99 (0.74-1.33) 0.935 0.909 0.79 (0.61-1.03) 0.08 0.333
Persistent High 1.08 (0.91-1.29) 0.387 0.619 1.02 (0.77-1.34) 0914 0.914 0.91 (0.62-1.34) 0.639 0.873 1.32 (1.15-1.51) <0.001 0.001 1.06 (0.94-1.19) 0.334 0.752
Pre-DM
Maintained 1 (reference) 1 (reference) 1 (reference) 1 (reference) 1 (reference)
normal
Increased 1.65 (0.87-3.13) 0.127 0.572 1.26 (0.38-4.21) 0.705 0.793 0 (0 - Inf) 0.998 0.998 1.21 (0.62-2.34) 0.576 0.718 0.93 (0.55-1.58) 0.797 0.945
Reversed 1.43 (0.61-3.35) 0.413 0.619 2.72 (0.87-8.43) 0.084 0.378 0 (0 - Inf) 0.998 0.999 1.22 (0.53-2.81) 0.638 0.718 1.05 (0.54-2.02) 0.893 0.945
Persistent High 1.27 (0.77-2.1) 0.34 0.619 0.73 (0.3-1.81) 0.499 0.642 0.56 (0.2-1.55) 0.264 0.792 1.53 (0.98-2.39) 0.062 0.186 1.03 (0.72-1.47) 0.879 0.945
DM
Maintained 1 (reference) 1 (reference) 1 (reference) 1 (reference) 1 (reference)
normal
Increased 1.27 (0.48-3.39) 0.633 0.77 5.62 (0.56-56.18) 0.142 0.4 1.86 (0.11-30.72) 0.665 0.998 0.56 (0.12-2.69) 0.472 0.714 0.81 (0.16-4.09) 0.797 0.945
Reversed 0.49 (0.13-1.86) 0.294 0.619 4.6 (0.41-51.75) 0.217 0.4 0 (0 - Inf) 0.999 0.999 2.38 (0.79-7.15) 0.123 0.277 2.82(0.86-9.32) 0.089 0.333
Persistent High 0.51(0.23-1.13) 0.096 0.572 3.23 (0.41-25.49) 0.267 0.4 1.2 (0.12-11.66) 0.873 0.873 1.35(0.59-3.12) 0.476 0.714 1.04 (0.38-2.79) 0.945 0.945
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with diabetes. These results suggest that both the presence and
persistence of excess adiposity contribute to neurodegenerative
changes and emphasize the importance of long-term weight
management for brain health preservation.

All of these associations may be explained by several interrelated
biological mechanisms: (1) Obesity, particularly visceral fat
accumulation, is known to promote a pro-inflammatory state. Adipose
tissue secretes cytokines such as IL-6, TNF-a, and CRP, which can cross
the blood-brain barrier and contribute to neuroinflammation (33). This
inflammatory environment may impair neurogenesis, accelerate
neurodegeneration, and alter neurotransmitter systems involved in
mood regulation, thereby increasing the risk of depression and anxiety
(34). (2) In both prediabetes and diabetes, insulin resistance compromises
glucose delivery to neurons, potentially leading to brain energy deficits,
oxidative stress, and synaptic dysfunction (35). These metabolic
disturbances may explain the stronger associations observed between
adiposity and brain atrophy or white matter lesions in hyperglycemic
populations. (3) Obesity is a well-established risk factor for hypertension,
dyslipidemia, and atherosclerosis, all of which contribute to cerebral
small vessel disease (36). This is supported by our finding that high
adiposity is associated with increased WMH volumes, a marker of
microvascular brain injury and cognitive decline. (4) Adiposity may also
alter HPA axis function, leading to chronic cortisol elevation (37). This
hormonal imbalance can negatively affect mood and hippocampal
integrity, contributing to both depression and structural brain changes
(38). (5) Lower levels of BDNE often observed in individuals with
obesity and metabolic syndrome, may also mediate the link between
adiposity and brain atrophy; especially in regions critical for cognition
and emotion (39). Future research integrating inflammatory biomarker
profiles, advanced neuroimaging, and longitudinal neuropsychiatric
assessments will be essential to elucidate the mediating role of
neuroinflammation in the complex interplay among adiposity, glycemic
status, and brain health outcomes.

Overall, our findings suggest that obesity—particularly persistent
or increasing adiposity—adversely affects both mental health and
brain structure, and these associations are modified by glycemic
status. Early and sustained interventions targeting weight management
may play a critical role in preventing neuropsychiatric disorders and
mitigating brain aging, especially in individuals at risk of or living with
metabolic dysfunction.

The strengths of our study include a large, well-characterized
cohort, prospective design, rich covariate adjustment, and high-
quality MRI data. However, several limitations merit consideration.
First, the observational nature of the study precludes causal inference.
Second, residual confounding and measurement errors cannot be fully
excluded. Third, as 95% of participants in the UK Biobank are White
and middle-aged, the findings may not be generalizable to younger
individuals or more ethnically diverse populations. This limitation is
particularly important given the global burden of obesity and diabetes,
and the fact that adiposity distribution, metabolic risk, and
susceptibility to neuropsychiatric disorders differ across ethnic
groups. Future studies in more ethnically diverse cohorts are
warranted to determine whether these associations hold across
different genetic and sociocultural contexts. Fourth, the neuroimaging
analyses were based on cross-sectional MRI data, and the absence of
longitudinal imaging precludes assessment of temporal changes in
brain structure. Future studies with repeated neuroimaging measures
are warranted to clarify the trajectory of structural alterations
associated with adiposity and glycemic status.
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Conclusion

Our findings suggest that higher and sustained adiposity,
particularly in the context of impaired glucose metabolism, adversely
affects both mental health and brain structure. These effects may
be driven by a combination of inflammatory, metabolic, vascular, and
neuroendocrine mechanisms. Preventive strategies aimed at
controlling weight and metabolic risk may have broader benefits for
preserving neuropsychiatric and cognitive health across the lifespan.
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