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Introduction: Approximately 49.3% of individuals living at high altitudes suffer 
from dyslipidemia. Emerging evidence indicates that gut microbiota can 
regulate lipid metabolism and cholesterol homeostasis, but the composition 
and function of gut microbiota in dyslipidemic patients from Tibetan pastoral 
regions remain unclear.
Methods: To address this, we enrolled a cohort consisting of 22 dyslipidemic 
patients and 33 healthy controls (HCs) from the Gannan Tibetan pastoral region 
(average altitude: 3,600 m). Phenotypic data, blood, and fecal samples were 
collected from all the participants for a metagenome-wide association study 
based on shotgun metagenomic sequencing.
Results: Compared with HCs, dyslipidemic patients showed a significant 
reduction in gut microbial diversity. Specifically, the abundance of beneficial 
species—including Faecalibacterium prausnitzii, Bifidobacterium adolescentis, 
Bifidobacterium longum, Bifidobacterium bifidum, and Parabacteroides 
distasonis—was significantly decreased, while opportunistic pathogens such 
as Veillonella parvula, V. tobetsuensis, Streptococcus oralis, and Streptococcus 
mitis were notably enriched. Functional prediction revealed that pathways 
involved in glycolysis, starch degradation, and biosynthesis of L-methionine, 
L-arginine, L-lysine, L-citrulline, and L-threonine were significantly 
downregulated in dyslipidemic patients, whereas pathways for the biosynthesis 
of lipopolysaccharides, fatty acids, polyamines, and (Kdo)₂-lipid A were 
enriched. Correlation analysis showed that the enriched taxa in dyslipidemic 
patients were significantly positively associated with total cholesterol (TC), total 
triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C). In contrast, 
the enriched functional pathways were significantly negatively correlated with 
TC but positively correlated with high-density lipoprotein cholesterol (HDL-C).
Discussion: These findings clarify the alterations in gut microbiota composition 
and function in plateau-dwelling dyslipidemic populations and their 
associations with blood lipid levels, suggesting potential microbial biomarkers 
for hyperlipidemia in plateau environments.
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Introduction

Dyslipidemia, a common metabolic disease characterized by 
abnormal elevations in blood lipids such as cholesterol and 
triglycerides, is a critical risk factor for cardiovascular diseases 
(1). According to the World Health Organization (WHO), 
approximately 400 million people worldwide suffer from 
hyperlipidemia, while the overall prevalence rate of dyslipidemia 
among Chinese adults has reached 35.6% and has continued to 
rise (2). This trend poses a severe threat to public health, 
emerging as a major global challenge.

The gut microbiota participates in key physiological processes 
such as metabolism, immunity, and nutrient absorption, with 
close ties to the onset and progression of various diseases. Recent 
evidence highlights its pivotal role in regulating circulating lipids 
and lipid metabolism (3), where structural and functional 
alterations correlate strongly with hyperlipidemia development 
(4, 5). For instance, an altered intestinal environment may inhibit 
beneficial bacteria (e.g., Bifidobacterium, Lactobacillus, and 
butyrate-producing species) while promoting Enterobacteria 
proliferation, triggering dyslipidemia that further exacerbates 
microbial dysbiosis (4). Mechanistically, the gut microbiota 
influences blood lipid levels by modulating bile acid metabolism 
and short-chain fatty acid production, thereby regulating lipid 
absorption and metabolism (6). Additionally, high-altitude 
environments can induce gastrointestinal disorders and 
alterations in gut microbiota composition (7). A study on Tibetan 
children at different altitudes found that higher-altitude residents 
with lower body weights exhibit reduced microbial diversity, with 
Prevotella potentially suppressing obesity in high-altitude 
settings (8).

The Gannan Tibetan Autonomous Prefecture, located in southern 
Gansu Province, is a major Tibetan settlement where residents endure 
hypoxic, cold, low-humidity, and high-solar-radiation conditions, 
alongside a unique diet rich in protein and fat but low in carbohydrates. 
This dietary pattern, coupled with relatively limited local medical 
resources, elevates the risk of plateau-related cardiovascular diseases 
among Gannan Tibetans (9), including dyslipidemia, pulmonary 
morbidities (10), and memory dysfunction (11, 12), which are leading 
causes of death in the region.

Notably, specific environments shape distinct gut microbiota, 
facilitating adaptation to local conditions. For example, a study 
conducted in Lhasa (3,660 m) revealed that Tibetan men have a higher 
prevalence of hypertriglyceridemia, while women exhibit lower 
HDL-C, and all genders face elevated hypercholesterolemia rates (13). 
Similarly, among 1,415 residents at 1,500–2,000 m on the 

Yunnan-Kweichow Plateau, 49.3% had hyperlipidemia, with 
prevalences of 23.3% (hypercholesterolemia), 34.1% 
(hypertriglyceridemia), 17.5% (low HDL-C), and 9.0% (high LDL-C) 
(14). Conversely, higher-educated individuals in high-altitude areas 
show lower hypercholesterolemia and hyperglycemia rates compared 
to low-altitude counterparts (15). Additionally, Tibetans residing above 
3,000 m for generations exhibit significantly lower plasma and intestinal 
lipopolysaccharide (LPS) levels than low-altitude Han populations 
(Tibetans: 2.65 ± 0.68 pg/mL vs. Han: 39.43 ± 7.13 pg/mL), even 
among coronary heart disease patients (5.70 ± 0.69 pg/mL vs. 
52.14 ± 9.22 pg/mL) (2). This finding suggests that Tibetans may 
possess enhanced intestinal barrier function and a unique 
microbiota structure.

In summary, the Gannan Tibetan population—with its special 
dietary structure, living environment, and high incidence of 
hyperlipidemia and cardiovascular diseases—offers a unique model to 
study the gut microbiota-dyslipidemia relationship. An in-depth 
exploration of the structure and function of gut microbiota in Gannan 
Tibetan dyslipidemic patients could reveal the pathogenesis of 
hyperlipidemia, provide novel strategies for local prevention and 
treatment of hyperlipidemia, and hold significant scientific and 
clinical value.

Methods and materials

Enrollment of participants

This study was approved by the Medical Ethics Committee of 
Lanzhou University Second Hospital (Approval No. 2021A-187) on 26 
April 2021. All participants voluntarily signed the informed consent 
form. The entire research was conducted in strict accordance with the 
following flowchart, which covers key steps from experimental design 
to result validation (see Figure 1).

The inclusion and exclusion criteria are shown below:

Inclusion criteria
	(1)	 Local Tibetan residents from pastoral areas in Luqu County 

(altitude >3,500 m), Gannan Tibetan Autonomous Prefecture, 
Gansu Province.

	(2)	 Residents aged 18–65 years.
	(3)	 Patients diagnosed with dyslipidemia in accordance with the 

authoritative diagnostic criteria specified in the Chinese 
Guidelines for the Prevention and Treatment of Dyslipidemia in 
Adults (2023 Edition), i.e., meeting at least one of the following 
abnormal indicators: total cholesterol (TC) ≥5.2 mmol/L, 
triglyceride (TG) ≥1.7 mmol/L, high-density lipoprotein 
cholesterol (HDL-C) <1.0 mmol/L, or low-density lipoprotein 
cholesterol (LDL-C) ≥3.4 mmol/L.

	(4)	 Patients having maintained a relatively stable lifestyle (e.g., 
dietary structure, exercise habits) and an unchanged living 
environment for at least 3 months prior to the study.

Exclusion criteria
	(1)	 Patients having used antibiotics, probiotics, prebiotics, laxatives, 

weight-loss drugs, or other medications, including 
immunosuppressants (e.g., cyclosporine), lipid-lowering agents 
(e.g., statins, fibrates, niacin, or the traditional Chinese 

Abbreviations: HLP, Dyslipidemia; HCs, Healthy controls; LPS, Lipopolysaccharides; 

TC, Total cholesterol; TG, Total triglycerides; LDL-C, Low-density lipoprotein 

cholesterol; HDL-C, High-density lipoprotein cholesterol; F. prausnitzii, 

Faecalibacterium prausnitzii; B. adolescentis, Bifidobacterium adolescentis; 

B. longum, Bifidobacterium longum; B. bifidum, Bifidobacterium bifidum; 

P. distasonis, Parabacteroides distasonis; MetaPhlAn, Metagenomic Phylogenetic 

Analysis; HUMAnN, HMP Unified Metabolic Analysis Network; PERMANOVA, 

Permutational Multivariate Analysis of Variance; MWAS, Metagenome-wide 

association study; PCoA, Principal coordinates analysis; RA, Relative abundance; 

F/B ratio, Firmicutes/Bacteroidetes ratio.
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lipid-lowering preparation Xuezhikang), glucocorticoids, 
diuretics, or antipsychotic drugs (16) that may affect gut 
microbiota structure/function or lipid metabolism within the 
past month.

	(2)	 Those suffering from acute infectious diseases (e.g., acute 
respiratory tract infections, acute gastroenteritis), or being in the 
acute attack phase of chronic diseases (e.g., acute exacerbation 
of chronic obstructive pulmonary disease, diabetic ketoacidosis).

	(3)	 Those having severe organic diseases such as severe hepatic or 
renal insufficiency, cardiopulmonary dysfunction, or 
malignant tumors.

	(4)	 Those diagnosed with autoimmune diseases (e.g., 
systemic lupus erythematosus, rheumatoid arthritis) or 
immunodeficiency diseases.

	(5)	 Those having a history of gastrointestinal surgery (e.g., subtotal 
gastrectomy, intestinal resection) or suffering from chronic 
gastrointestinal diseases (e.g., inflammatory bowel disease, 
irritable bowel syndrome, peptic ulcer).

	(6)	 Those being pregnant or lactating.
	(7)	 Those having mental disorders or cognitive impairment, 

resulting in the inability to cooperate with research-related 
questionnaires, sample collection, or follow-up.

	(8)	 Those having allergic reactions to sample collection equipment, 
testing reagents, or other materials used in the study, which 
may affect research implementation or cause additional 
adverse reactions.

	(9)	 Those with incomplete collection of fecal and blood samples, 
or phenotypic data.

FIGURE 1

Flowchart of the experiment.
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Using the aforementioned strict inclusion and exclusion criteria, a 
total of 142 local residents from pastoral areas in Luqu were recruited 
for the project. However, after rigorous screening based on these 
criteria, only 55 subjects were finally included in the study, with both 
fecal and blood samples successfully collected. Among them, 22 were 
diagnosed with dyslipidemia (HLP) and 33 were healthy controls (HCs).

Phenotype characterization and sample 
collection

Demographic data, including age, sex, height, and weight, were 
recorded for all participants (Supplementary Table S1A). Venous 
blood samples were collected for biochemical analysis, encompassing 
measurements of HDL-C, LDL-C, TC, and TG levels.

For fecal sample collection and processing, approximately 5–10 g 
of stool samples were collected into sterile 1.8 mL tubes containing 
DNA stabilizer, immediately snap-frozen in liquid nitrogen, and 
stored at −80 °C until processing. After completion of sample 
collection, all fecal samples were transported to the laboratory on dry 
ice for metagenome extraction and metagenomic sequencing.

Shotgun metagenomic sequencing and 
analysis

Shotgun metagenomic sequencing was performed following a 
previously described protocol (17), with detailed procedures described 
as follows:

Total DNA extraction and library construction
Total genomic DNA was extracted from each sample using the 

cetyltrimethylammonium bromide (CTAB) method—a standard 
protocol for isolating high-quality DNA from complex microbial 
communities in fecal samples.

The purity and concentration of the extracted total DNA were 
determined using a NanoDrop Spectrophotometer ND-1000 (Thermo 
Fisher Scientific Inc., Waltham, MA, United States). DNA purity was 
evaluated based on the A260/A280 ratio (1.8–2.0) and the A260/A230 
ratio (2.0–2.2).

Metagenomic libraries were constructed using the TruSeq DNA 
PCR-Free Library Preparation Kit (Illumina, San Diego, CA, 
United States), a PCR-free workflow that reduced bias in microbial 
community representation. The quantity of each library was evaluated 
using a Qubit 2.0 fluorimeter (Invitrogen, Carlsbad, CA, United States) 
to ensure library concentrations met the minimum requirement 
(≥10 ng/μL) for subsequent sequencing.

Metagenomic sequencing and data filtering
Qualified libraries were subjected to paired-end sequencing on a 

BGI-SEQ500 platform with a read length of 2 × 150 bp. An average of 
≥7.75 Gbp raw data was obtained per sample (Supplementary Table S1B).

Raw reads containing ≥50% low-quality bases (quality score ≤20) 
or >5 ambiguous bases were removed using FASTP. The remaining 
high-quality sequencing reads were aligned to the human genome 
(hg19) using bowtie2 with parameters (-m 100 -× 600 -v 7 -p 6 -l 30 
-r 1 -M 4 -c 0.95), and human-matching reads were discarded. 

High-quality microbial reads were defined as clean reads and used for 
downstream analysis.

Taxonomic and functional annotation
MetaPhlAn 3.0 (MetaPhlAn, version 3.0, -input_type fastq - ignore_

viruses - nproc 6) was used to generate the taxonomic profiling, including 
phylum-, genus-, and species-level profiles from high-quality clean reads 
(18) (Supplementary Table S1C). HUMAnN 3.0 (HUMAnN, version 3.0, 
-i input_clean_data -o output -threads 10 -memoryuse maximum 
-remove-temp-output) based on Uniref50 database was used to predict 
microbiota metabolic pathways (18) (Supplementary Table S1H).

Diversity analysis
Alpha diversity was calculated using Shannon, Simpson, and 

Inverse Simpson indices in R 4.0.3 [vegan package: diversity (data, 
index = “richness/Shannon/Simpson/InSimpson”)].

Beta diversity was assessed using Bray–Curtis dissimilarity 
(vegan:vegdist) and visualized via principal coordinates analysis 
(PCoA) (ape:pcoa). Permutational multivariate analysis of variance 
[PERMANOVA; vegan:adonis (dist~phe, permutations = 1,000)] was 
performed to test the significance of group differences in 
microbial composition.

The PERMANOVA [code: R 4.0.3: adonis (dist~phe, 
permutations = 1,000)] was performed based on the gut microbial 
species/genus abundance profile to study the differences between the 
two groups.

Differential analysis

The Wilcoxon rank-sum test was applied to compare gut 
microbial taxa and predicted functional pathways between 
dyslipidemic patients and control groups. Student’s t-test was used 
to compare continuous clinical parameters (TC, TG, HDL-C, 
LDL-C, and age) between two groups, while Fisher’s exact test was 
used for the categorical variable sex.

Metagenome-wide association study

Spearman’s rank correlation analysis was used to identify 
associations between the significantly modified gut microbial species/
functional pathways and blood lipids.

Results

Significant differences in gut microbial 
composition between the two groups

A total of 22 dyslipidemic patients and 33 healthy controls 
(HCs) were enrolled, consisting of 31 women and 24 men 
(dyslipidemic group, F:M = 10:12; HCs group, F:M = 21:12). The 
overall mean body mass index (BMI) of the entire cohort was 
23.22 ± 0.99 kg/m2 (dyslipidemic group: 23.16 ± 0.93 kg/m2; HCs 
group: 23.27 ± 1.04 kg/m2), and the overall mean age was 
47.84 ± 7.33 years (dyslipidemic group: 47.95 ± 8.40 years; HCs 
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group: 47.76 ± 6.66 years). A comparative analysis between the 
two cohorts revealed a significant increase in total cholesterol 
(TC), triglyceride (TG), and low-density lipoprotein cholesterol 
(LDL-C) levels in dyslipidemia, while no statistically significant 
variations were observed in high-density lipoprotein cholesterol 
(HDL-C), age, body mass index (BMI), or sex distribution 
(Figure 2).

Principal coordinate analysis (PCoA) based on Bray–Curtis 
distances of genus- and species-level profiles demonstrated significant 
differences in gut microbiota composition between dyslipidemic 
patients and HCs in plateau environments (Figure 3A, genus level: 
R2 = 0.042, p = 0.032; Supplementary Figure S1A, species level: 
R2 = 0.034, p = 0.041). Alpha diversity, as measured by the Shannon, 
Simpson, and Inverse Simpson indices, was significantly reduced in 
the gut microbiota of the dyslipidemic group compared to HCs at both 
the species and genus levels (Figure  3B, p < 0.01; 
Supplementary Table S1G).

To further characterize the specific differences in the gut 
microbial composition between the two groups, we analyzed the 

most abundant taxa. At the phylum level, Firmicutes, Bacteroidetes, 
Actinobacteria, Proteobacteria, and Euryarchaeota were the top five 
phyla, with mean relative abundance (RA) of 54.74, 37.30, 4.20, 
2.36, and 1.16%, respectively (Supplementary Figure S1B and 
Supplementary Table S1D).

Among the top 20 most abundant genera—which collectively 
accounted for ~89% of the total genera in the sample set, including 
Prevotella, Faecalibacterium, Bacteroides, Eubacterium, Roseburia, 
Ruminococcus, and Bifidobacterium—the dyslipidemic group 
exhibited significantly decreased RA of Faecalibacterium, 
Bifidobacterium, and Alistipes, alongside a notable increase in 
Phascolarctobacterium (Figure 3C and Supplementary Table S1E).

At the species level, the top 20 most abundant species (collectively 
accounting for 68% of total RA) included Prevotella copri, 
Faecalibacterium prausnitzii, Eubacterium rectale, Roseburia faecis, 
Bacteroides vulgatus, Phascolarctobacterium succinatutens, Alistipes 
putredinis, and Bifidobacterium adolescentis. Among these, 
F. prausnitzii, A. putredinis, and B. adolescentis showed significantly 
reduced RA in the dyslipidemic group, whereas P. succinatutens and 

FIGURE 2

Statistical analysis of phenotypes between the hyperlipidemic patients (HLP) and healthy controls (HCs): sex distribution, age, body mass index (BMI), 
high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), and triglycerides (TG).
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FIGURE 3

The gut microbiota of dyslipidemic individuals in plateau areas is found to be significantly different from that of healthy controls (HCs). (A) The PCoA 
reveals significant dissimilarities in the composition of gut microbiota between dyslipidemic patients and HCs. (B) The alpha diversity exhibits a 
significant decrease in dyslipidemic patients compared to HCs. (C) Differential analysis of the top 20 most abundant genera between two groups. 
(D) Differential analysis of the top 20 most abundant species between two groups.
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Prevotella sp. AM42-24 were significantly increased (Figure 3D and 
Supplementary Table S1F).

Differential analysis of gut microbiota and 
their correlations with blood lipids

To further characterize the differences in gut microbiota 
composition between the two groups, we  analyzed the taxa that 
exhibited significant variations. At the species level, 27 taxa showed 
marked differences: 21 species were significantly depleted in the 
dyslipidemic group compared to HCs, including Bifidobacterium 
adolescentis, Alistipes shahii, Bifidobacterium longum, Gemmiger 
formicilis, Parabacteroides distasonis, Faecalibacterium prausnitzii, 
Ruthenibacterium lactatiformans, Alistipes indistinctus, Blautia 
wexlerae, Bacteroides caccae, Eubacterium hallii, Bacteroides 
xylanisolvens, Parabacteroides merdae, Bilophila wadsworthia, Alistipes 
putredinis, Clostridium citroniae, Bifidobacterium bifidum, Clostridium 
innocuum, Parabacteroides goldsteinii, Clostridium bolteae, and Dielma 
fastidiosa; in contrast, six species were significantly enriched in 
dyslipidemia, namely Streptococcus mitis, Streptococcus oralis, 
Veillonella parvula, Bacteroides sp. CAG:530, Prevotella sp. CAG:520, 
and Prevotella sp. AM42-24 (Figure 4A).

At the genus level, 13 genera displayed significant differences: 
10 genera were depleted in dyslipidemia relative to HCs, including 
Bifidobacterium, Alistipes, Parabacteroides, Gemmiger, 
Faecalibacterium, Ruthenibacterium, Lachnoclostridium, 
Coprococcus, Bilophila, and Dielma; whereas three genera 
(Veillonella, Streptococcus, and Clostridium) were significantly 
enriched (Figure 4C). At the phylum level, the relative abundance 
of Actinobacteria was significantly reduced in the dyslipidemic 
group (Supplementary Figure S1B).

Spearman’s rank correlation analysis was performed to explore 
associations between gut microbial composition, predicted functional 
pathways, and serum lipid levels (TC, TG, HDL-C, and LDL-C; 
Supplementary Table S1J). Several genera and species, which 
decreased in dyslipidemic patients, including Bifidobacterium, 
Alistipes, Bilophila, Lachnoclostridium, Gemmiger, Ruthenibacterium, 
Parabacteroides, C. citroniae, E. hallii, R. lactatiformans, A. shahii, 
B. adolescentis, B. bifidum, and A. putredinis, showed significant 
negative correlations with TC, TG, and LDL-C (Figures  4B,D). 
Conversely, the dyslipidemia-enriched species, such as Prevotella sp. 
AM42-24, Veillonella parvula, Bacteroides sp. CAG:530, Prevotella sp. 
CAG:520, was positively associated with TC, TG, and 
LDL-C. Specifically, Faecalibacterium and F. prausnitzii were 
significantly negatively associated with HDL-C but significantly 
positively associated with TC (p < 0.05, Figures 4B,D).

Functional disparities between two cohorts 
and their associations with serum lipid 
profiles

HUMAnN 3.0 analysis annotated a total of 411 predicted 
functional pathways, 45 of which exhibited significant differences 
between the two groups (Figure 5A and Supplementary Table S1I). In 
dyslipidemic patients, nine pathways were significantly enriched, 
including heterolactic fermentation, myo-inositol degradation I, 

superpathway of (Kdo)2-lipid A, LPS, and fatty acids biosynthesis, 
anaerobic energy metabolism, and superpathway of polyamine 
biosynthesis I/II (Figure 5A). Conversely, 36 predicted pathways were 
more abundant in HCs, encompassing Bifidobacterium shunt, 
biosynthesis of amino acids (L-lysine, L-arginine, L-citrulline, 
L-threonine, and L-methionine); carbohydrate metabolism pathways 
(starch biosynthesis and degradation V, pyruvate fermentation to 
butanoate, D-galacturonate degradation I, glycolysis III (from 
glucose), and the superpathway of β-D-glucuronoside degradation); 
the superpathway of Clostridium acetobutylicum acidogenic 
fermentation; urea cycle; poly(glycerol phosphate) wall teichoic acid 
biosynthesis; gluconeogenesis III; pyrimidine and purine metabolism; 
folate transformations; methanogenesis from acetate; anaerobic 
energy metabolism (invertebrates, cytosol), and chondroitin sulfate 
degradation I  (bacterial), as well as GDP-D-glycero-α-D-manno-
heptose biosynthesis (Figure 5A).

To further clarify the intricate interactions between gut microbiota 
and their functional roles, we  employed HUMAnN 3.0 with the 
UniProt Reference Clusters (UniRef50) database, identifying a total of 
11,126 predicted pathway-species associations. Among these, 487 
associations were significantly enriched in dyslipidemic patients, 
while 694 were more abundant in HCs (Supplementary Table S1J). 
Overall, 66 species were involved in 176 pathways, with 22 of these 
species showing significant differences between groups: six were 
enriched in dyslipidemic patients, and 16 were enriched in HCs. 
Notably, the primary contributors to the majority of predicted 
functional pathways included Parabacteroides distasonis (65 
pathways), Faecalibacterium prausnitzii (54 pathways), Bifidobacterium 
adolescentis (45 pathways), Bacteroides xylanisolvens (44 pathways), 
Bifidobacterium bifidum (40 pathways), Bifidobacterium longum (40 
pathways), and Prevotella sp. AM42-24 (33 pathways) 
(Supplementary Figures S2–S8). These species were primarily 
associated with functional pathways related to nutrient metabolism 
and energy metabolism.

In the analysis of associations between predicted functional 
pathways and blood lipids (Supplementary Table S1K), several 
pathways with reduced abundance in dyslipidemic patients—
including pyruvate fermentation to butanoate, the superpathway of 
Clostridium acetobutylicum acidogenic fermentation, D-galacturonate 
degradation I, 4-deoxy-L-threo-hex-4-enopyranuronate degradation, 
the methylerythritol phosphate pathway I, the superpathway of 
coenzyme A biosynthesis III (mammals), L-arginine biosynthesis II 
(acetyl cycle), L-arginine biosynthesis I (via L-ornithine), L-arginine 
biosynthesis IV (archaebacteria), and starch degradation V—exhibited 
negative correlations with TC. Notably, F. prausnitzii, P. distasonis, 
B. adolescentis, B. xylanisolvens, B. bifidum, B. longum, and Prevotella 
sp. AM42-24 were identified as major contributors to these pathways 
(Figure 5B).

Discussion

We employed shotgun metagenomic sequencing to investigate the 
gut microbial composition and function in high-altitude plateau 
residents with and without hyperlipidemia. Our results revealed a 
significant reduction in gut microbial diversity among dyslipidemic 
patients compared to HCs. Furthermore, individuals with 
hyperlipidemia exhibited a notable decrease in beneficial species, 
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FIGURE 4

Identification of significantly distinct species and genera between two groups and their associations with blood lipid levels. (A) Significantly different 
species between the two groups. (B) Association study between the significantly different species and blood lipid levels. (C) Significantly different 
genera between two groups. (D) Association study between the significantly different species and blood lipid levels.
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including F. prausnitzii, B. adolescentis, B. longum, B. bifidum, and 
B. pseudocatenulatum, as well as functional pathways related to 
carbohydrate metabolism and amino acid biosynthesis. Conversely, 
Prevotella sp. AM42-24 and pathways involved in the biosynthesis of 
LPS, fatty acids, and lipid A were significantly enriched in the 
dyslipidemic group. Importantly, these microbial and functional 
alterations were found to be associated with blood lipid levels.

In our study, Firmicutes and Bacteroidetes stood out as the two 
most abundant bacterial phyla in plateau-dwelling individuals. The 
phylum Firmicutes excels at degrading dietary fiber and fats, while the 
phylum Bacteroides specializes in breaking down animal proteins 
(19). Notably, studies have reported that Bacteroides species in 
Tibetans exhibit higher expression levels of fatty acid oxidase genes, 
which enables them to efficiently metabolize the saturated fats 
abundant in yak meat—a staple in the traditional Tibetan diet—
thereby mitigating intestinal barrier damage that would otherwise 
result from fat accumulation (20). Specifically, the Firmicutes/
Bacteroidetes (F/B) ratio was determined to be  1.31  in HCs and 
1.61 in patients with dyslipidemia, suggesting a significant correlation 
between hyperlipidemia and the F/B ratio. Notably, an elevated F/B 
ratio is commonly associated with obesity, while a decreased ratio is 
linked to inflammatory bowel disease (21). Furthermore, research has 
documented an increased F/B ratio in both humans with 
hyperlipidemia (22) and experimental animals with the condition 
(23). Additionally, our study observed a significant reduction in the 
abundance of Actinobacteria among plateau residents with 

dyslipidemia. This phylum is well recognized for its exceptional 
metabolic versatility and its role as a major source of clinically used 
antibiotics (24). The enrichment of the gram-negative gut bacterial 
phylum Bacteroidetes (relative abundance: dyslipidemic patients vs. 
HCs = 40:35), coupled with reduced levels of the gram-positive phyla 
Firmicutes (relative abundance: dyslipidemic patients vs. HCs = 52:56) 
and Actinobacteria in dyslipidemic patients, suggests that the gut 
microbiota in these individuals may produce increased amounts of 
lipopolysaccharide (LPS). This elevation in LPS could potentially 
disrupt the intestinal barrier.

In plateau-dwelling patients with dyslipidemia, the abundance 
of opportunistic bacteria was found to be increased. Prevotella was 
identified as the most prevalent genus among plateau residents, 
with no significant differences in its overall abundance between 
dyslipidemic patients and HCs. Prevotella plays a crucial role in the 
metabolism of carbohydrates, lipids, and amino acids in the host, 
and its relative abundance was significantly associated with the 
growth performance of livestock (25). Oral intake of Prevotella can 
ameliorate the lipid metabolism of laying hens and this beneficial 
effect of Prevotella is consistent across different species (26). 
However, our study revealed a significant elevation in two specific 
strains—Prevotella sp. AM42-24 and Prevotella sp. CAG:520—in 
plateau dyslipidemic patients, both of which are involved in 
numerous microbial functional pathways. The genus Prevotella 
comprises over 50 characterized species that inhabit diverse natural 
environments, with most species associated with humans (27). 

FIGURE 5

Predicted functional pathways analysis and their association with blood lipid levels. (A) There are significantly different predicted functional pathways 
between the two groups. (B) Association analysis between the significantly different functional pathways and blood lipid levels.
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While generally regarded as harmless commensals, these strains 
possess various virulence factors, including adhesins, hemolysins, 
secretion systems, exopolysaccharides, LPS, proteases, quorum-
sensing molecules, and antibiotic resistance mechanisms. These 
factors enable them to evolve into well-adapted pathogens capable 
of successfully infecting and proliferating within host tissues (28). 
Additionally, other opportunistic pathogens were found to 
be  increased in plateau dyslipidemic patients, including 
Streptococcus oralis (29), S. mitis (30), Veillonella spp., and 
Clostridium. Streptococcus is a risk factor for lipoprotein metabolism 
disorders, and Streptococcus anginosus could induce TG metabolism 
disorders by impairing the utilization of dietary triglycerides.1 The 
genus Veillonella includes 16 characterized species, eight of which 
are commonly found in the human oral cavity (31). Veillonella spp. 
are involved in certain human infections, and their antibiotic 
susceptibility and biofilm-forming ability play important roles in 
oral biofilm ecology (32). For instance, V. tobetsuensis is an 
anaerobic, gram-negative coccus isolated from human tongue 
biofilms (33), while V. parvula promotes intestinal inflammation by 
activating macrophages via the LPS-TLR4 pathway (34). Recent 
studies have indicated that gut Veillonella promotes human 
homeostasis by producing beneficial metabolites, specifically short-
chain fatty acids (SCFAs), by lactate fermentation (35). Clostridium 
can break down the complex polysaccharides in highland barley to 
generate short-chain fatty acids (SCFA), such as butyric acid, which 
can promote the repair of the intestinal barrier. Notably, these 
hyperlipidemia-enriched bacterial species showed a significant 
positive correlation with the levels of TC, TG, and HDL-C.

In plateau-dwelling patients with dyslipidemia, the abundance of 
beneficial gut bacterial species was significantly reduced. Notably, 
Faecalibacterium (the second most prevalent genus) and its species 
F. prausnitzii (the second most abundant species) were both markedly 
decreased in these patients. As a next-generation probiotic, 
F. prausnitzii is known to produce butyrate and promote the growth 
of short-chain fatty acid (SCFA)-producing bacteria (36). It is also 
recognized as an anti-inflammatory commensal bacterium, identified 
through the gut microbiota analysis of Crohn’s disease patients (37). 
Moreover, F. prausnitzii has been reported to improve lipid metabolism 
disorder and insulin resistance in type 2 diabetic mice (38), and 
F. prausnitzii treatment improves hepatic health and reduces adipose 
tissue inflammation in high-fat-fed mice (39). Thus, its reduction may 
potentially contribute to the development of hyperlipidemia in high-
altitude residents.

In addition, compared to HCs, dyslipidemic patients showed 
significantly lower RA of Bifidobacterium and Alistipes. 
Bifidobacterium and Roseburia are butyrate producers that can 
provide energy for intestinal epithelial cells to promote the repair of 
tight junctions (40). Our study detected a notable decrease in 
B. adolescentis, B. longum, B. bifidum, and Bifidobacterium 
pseudocatenulatum among plateau dyslipidemic patients. The genus 
Bifidobacterium is characterized by its early colonization of the 
human gastrointestinal tract and potential health-promoting effects 
on the host—properties that have led to its inclusion as an active 
ingredient in various functional foods (41), and Bifidobacterium was 

1  https://www.researchsquare.com/article/rs-7055704/v1

reported to participate in lipid metabolism by regulating intestinal 
flora, producing SCFAs and bile salt hydrolase (BSH) (42). Among 
these species, B. adolescentis, a key member of the human gut 
microbiota involved in GABA production (43) and a potential 
modulator of gut–brain axis interactions, exhibited significantly 
reduced abundance in plateau dyslipidemic patients. B. bifidum 
species, meanwhile, display distinct physiological and genetic traits, 
including epithelial adhesion and metabolism of host-derived glycans 
(44). Additionally, B. longum, a recognized probiotic with reported 
protective effects against inflammatory bowel disease (45), was also 
significantly diminished in plateau hyperlipidemia patients. 
Interestingly, our study observed a significant reduction in Alistipes 
putredinis, A. indistinctus, and A. shahii in plateau dyslipidemic 
patients. The genus Alistipes comprises 13 species, predominantly 
found in the human gut microbiome (46, 47). While certain studies 
suggest that specific Alistipes species may act as pathogens in 
conditions like colorectal cancer and depressive symptoms, 
conflicting evidence indicates their potential protective roles against 
liver fibrosis, colitis, cancer immunotherapy resistance, and 
cardiovascular disease (46). This duality implies that reduced Alistipes 
abundance could contribute to the development of liver-
related disorders.

Beyond the aforementioned species belonging to Faecalibacterium, 
Bifidobacterium, and Alistipes, we also observed other bacterial shifts 
in dyslipidemic patients. Among these, the saccharolytic bacterium 
Parabacteroides distasonis exhibited a significant reduction in 
abundance in plateau-dwelling dyslipidemic patients and was involved 
in the biosynthesis of ribonucleotides and amino acids. P. distasonis is 
capable of metabolizing carbohydrates such as mannose and raffinose 
to produce SCFAs, including acetate, propionate, and succinate, to 
serve as energy sources for intestinal epithelial cells and shape 
microbial interactions (63). Notably, it can potentially improve insulin 
resistance by activating intestinal GPR109a (48). Additionally, 
P. distasonis modulates host metabolism and alleviates obesity and 
metabolic dysfunctions through the production of succinate and 
secondary bile acids (49). Another bacterium, Bacteroides 
xylanisolvens, showed a significant decrease in abundance among 
plateau individuals with hyperlipidemia. B. xylanisolvens produced 
certain beneficial metabolites, including γ-aminobutyric acid, SCFAs, 
and tryptophan metabolites, to enhance host health (50). Studies have 
demonstrated that oral administration of live B. xylanisolvens reduces 
hepatic steatosis and enhances folate-mediated signaling pathways in 
mice, while knockout of the folate biosynthetic gene folP in 
B. xylanisolvens abolishes its folate production and the associated 
beneficial effects. These findings confirm the therapeutic potential of 
B. xylanisolvens in alleviating non-alcoholic hepatic steatosis and 
provide evidence for the beneficial role of the gut Bacteroides-folate-
liver axis (51).

Significant functional differences in gut microbiota were 
observed between the two groups. Notably, in plateau dyslipidemic 
patients, pathways such as polyamine biosynthesis, heterolactic 
fermentation, anaerobic energy metabolism (invertebrate 
mitochondrial), the superpathway of fatty acid/LPS/(Kdo)₂-lipid A 
biosynthesis, and myo-inositol degradation were significantly 
enriched. Polyamines play a critical role in energy metabolism, with 
particular relevance to the regulation of lipid metabolism, making 
them a key focus for research into obesity and related disorders 
(52). Polyamine biosynthesis was primarily driven by microbial 
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species, including Escherichia coli, Klebsiella pneumoniae, Klebsiella 
variicola, Mitsuokella jalaludinii, Mitsuokella multacida, and 
Raoultella planticola, all of which showed no significant differences 
between the two groups. Heterolactic metabolism primarily 
produces lactate, acetate, or ethanol as metabolites (53). (Kdo)₂-
lipid A (3-deoxy-d-manno-octulosonic acid-lipid A) is an essential 
component of lipopolysaccharide (LPS) in most Gram-negative 
bacteria and represents the minimal structural unit required for 
bacterial viability. It acts as the active moiety of LPS, triggering 
robust host immune responses through interactions with the Toll-
like receptor 4 (TLR4)-myeloid differentiation protein 2 complex 
(54). Both heterolactic fermentation and (Kdo)₂-lipid A biosynthesis 
were participated by E. coli and K. pneumoniae. Fatty acid 
biosynthesis initiation was participated by dyslipidemia-abundant 
species, including Veillonella atypica, Veillonella infantium, 
V. parvula, F. prausnitzii, Lactobacillus delbrueckii, Streptococcus 
vestibularis, and other species, including E. coli. Interestingly, the 
superpathway of lipopolysaccharide biosynthesis is significantly 
increased in dyslipidemic patients and is participated by E. coli. 
Lipopolysaccharides (LPSs) are bacterial surface glycolipids, 
produced by Gram-negative bacteria, which are known to 
determine acute inflammatory reactions and trigger chronic 
inflammation (55).

Conversely, other functional pathways—including 
gluconeogenesis, glycolysis, starch degradation, pyruvate fermentation 
to butanoate, and the biosynthesis of L-arginine, L-lysine, L-citrulline, 
L-threonine, and L-methionine—were downregulated in plateau 
dyslipidemic patients. These pathways were primarily associated with 
HC-enriched species, including Alistipes shahii, A. putredinis, 
A. indistinctus, Alistipes Finegoldii, Anaerostipes hadrus, Coprococcus 
catus, F. prausnitzii, Bifidobacterium bifidum, B. adolescentis, 
B. angulatum, B. catenulatum, Parabacteroides distasonis, P. merdae, 
Catenibacterium mitsuokai, Dorea longicatena, Gemmiger formicilis, 
Ruthenibacterium lactatiformans, Blautia wexlerae, Eubacterium hallii, 
Blautia obeum, Bacteroides thetaiotaomicron, B. fragilis, and 
Lactococcus lactis. Interestingly, these pathways showed a significant 
positive correlation with HDL-C and a negative correlation with 
TC. Accumulating experimental and clinical evidence suggests that 
L-arginine supplementation may aid in managing metabolic 
disturbances in obesity, regulating arterial blood pressure, or 
alleviating symptoms of type 2 diabetes, though the underlying 
mechanisms remain incompletely understood and are currently under 
investigation (56). Metabolites of the lysine pathway have also been 
linked to the risk of type 2 diabetes and cardiovascular disease (57). 
L-citrulline, a neutral α-amino acid abundant in watermelon, is 
synthesized by mitochondrial enzymes and serves as a substrate for 
L-arginine recycling (58). Supplementation with L-citrulline has 
shown potential as an intervention to lower blood pressure (59). In 
hyperlipidemic rats fed a high-fat diet, L-threonine levels in adipose 
tissues were elevated following the consumption of hawthorn ethanol 
extracts (60). Additionally, L-threonine has been found to extend 
health span in Caenorhabditis elegans by accelerating the ferritin-
dependent inhibition of ferroptosis (61). Regarding methionine, 
supplementation has been associated with oxidative stress and 
proteasome dysfunction, leading to hepatotoxicity and hepatic 
inflammation in rats. However, the relationships between methionine, 

oxidative stress, proteasome function, and liver injury require further 
clarification (62).

Our study identified unique gut microbial community structures 
and functional pathways in dyslipidemic patients residing in high-
altitude pastoral areas, with these microbial features being associated 
with either host lipid metabolism or intestinal barrier impairment. 
While this study yielded valuable and insightful findings, several 
limitations warrant consideration in future research endeavors. First, 
considering the high prevalence of dyslipidemia in high-altitude 
regions, the sample size employed in the current study is relatively 
small, which may restrict the statistical power and generalizability of 
the results. Second, the study samples were solely collected from two 
pastoral areas within the Gannan Tibetan Autonomous Prefecture, 
leading to potential geographic bias and limiting the extrapolation of 
conclusions to other Tibetan pastoral populations. In subsequent 
studies, we plan to expand the sample cohort by collecting additional 
specimens from multiple Tibetan pastoral areas. This expansion will 
help validate the current findings, enhance the robustness of our 
conclusions and ultimately provide a more solid theoretical 
foundation for the application of gut microbiota in the diagnosis and 
treatment of dyslipidemia among Tibetan pastoralists.

Conclusion

In conclusion, we identified significant changes in gut microbiota 
composition and function, and their associations with blood lipid levels, 
in plateau-dwelling dyslipidemic patients. Beneficial species (e.g., 
B. adolescentis, F. prausnitzii, B. longum, and B. bifidum) were reduced, 
while opportunistic pathogens (Prevotella sp. AM42-24, V. parvula, 
V. tobetsuensis, S. oralis, and S. mitis) increased significantly. Dyslipidemic 
patients showed enriched functional pathways for biosynthesis of LPS, 
fatty acids, polyamines, and (Kdo)₂-lipid A, whereas healthy controls had 
enriched carbohydrate metabolism and biosynthesis of L-arginine, 
L-citrulline, L-lysine, L-threonine, and L-methionine. These findings not 
only address the research gap in lipid metabolism and gut microbiota 
under the conditions of “special populations + special environments” but 
also provide a reference for metabolic studies on populations residing in 
extreme environments worldwide and lay a scientific foundation for the 
precise prevention and control of hyperlipidemia in pastoral areas.
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