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Fusarium graminearum, the major causal agent of Fusarium head blight (FHB),
produces the trichothecene mycotoxin deoxynivalenol (DON), which threatens
food and feed safety worldwide. This review synthesizes recent advances in DON
biosynthesis, emphasizing the TR/ gene cluster and its pathway enzymes, transcriptional
regulators, and signaling cascades. In parallel, it provides a comprehensive analysis
of the molecular mechanisms involved in regulating DON biosynthesis, with a
focus on the TR/ cluster. In additionally, current progress in detoxification strategies
is summarized, covering physical, chemical, and biological methods aimed at
mitigating DON contamination in food and feed. This review further explores the
endogenous environmental factors influencing DON synthesis and offering insights
to the development of integrated control strategies against DON contamination.
By integrating the current findings, this review aims to support the development
of effective strategies, control F. graminearum and mitigate FHB.
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1 Introduction

Fusarium graminearum is the primary fungal pathogen responsible for FHBin wheat, a
disease that threatens global grain yields and food safety (1, 2). A major concern associated
with E graminearum is the production of deoxynivalenol (DON) (Figure 1), or “vomitoxin,”
a mycotoxin that contaminates wheat and other cereals, which poses risks to the human and
animal health (3, 4). Based on the recent reports, DON is one of the most common food-
related mycotoxins in the world (5). Acetylated derivatives of deoxynivalenol (DON), mainly
3-ADON and 15-ADON, act as DON precursors with slightly reduced toxicity, regulated by
FgTRI8 (6). Pathogen subspeciation has diversified their production. Deoxynivalenol-3-
glucoside (D3G), a masked DON derivative, can hydrolyze in vivo to DON, intensifying
toxicity (7). According to the Food and Agriculture Organization (FAO), approximately 25%
of global food crops are contaminated with mycotoxins annually, which causes economic
losses of over USD 100 billion (8, 9).

China, as one of the world’s largest wheat producers, is particularly vulnerable to FHB (10).
The disease affects millions of hectares of wheat annually, with the outbreak potentially
resulting in unprecedented yield losses of the nation’s wheat production (11-13). This review
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FIGURE 1

The chemical structure and stereochemical structure of DON. Key functional groups (epoxide, C9-C10 double bond) that underlie toxicity and guide

detoxification chemistry are indicated.

integrates these advances to (i) map DON biosynthesis and its
regulation from gene to environment, and (ii) compare detoxification
strategies with an emphasis on mechanisms, limitations, and
translational prospects for integrated FHB management.

1.1 Geographic distribution and impact

E graminearum is widely distributed across humid and semi-
humid regions, with particularly high incidence in the temperate
zones, including the Yangtze River Basin in China, the Great Lakes
region of North America, and Central Europe (14-16). It infects over
30 cereal crops, including wheat, barley, maize, and oats (17-19).

According to the Biomin Global Mycotoxin Survey (Figure 2),
East Asia, North America, and Europe experience the highest levels
of DON contamination (20). Across the world, FHB had caused an
estimated loss of over $10 billion (21). Similarly, the reported
incidence of DON contamination was very high across different
regions, with 94% in America and China and 77% in Europe (22, 23).
DON and its acetylated derivatives exert detrimental effects on the
human health, which could lead to a severe FHB outbreak and
reduced wheat yields, potentially leading to multiple cases of livestock
poisoningfrom DON exposure (24). Contamination levels of 3-ADON
and 15-ADON are strongly correlated, and their co-occurrence
produces synergistic toxicity. Studies show that baking degrades DON
acetylated derivatives (25), while Juan-Garcia et al. (26) demonstrated
their cytotoxicity and metabolic products in HepG2 cells. Ozone
treatment can also degrade DON, with degradation byproducts
exhibiting negligible toxicity (Sun et al.) (27).

In China, FHB is most prevalent in the humid and rainy region of
Yangtze River Basin, with its distribution expanding northward (28).
The annual yield losses in the middle and lower Yangtze River region
typically range from 10 to 15%, with severe outbreaks reducing the
yields by up to 50% (29, 30). One of the earliest large-scale outbreaks
occurred in Henan Province in 1985, which affected 3 million hectares
of wheat fields (31). Since 2000, climate change and shifts in the
cultivation practices have intensified the spread of FHB (32).
Approximately 80% of wheat crops across China were contaminated
to varying degrees, causing a decline in the national grain production
decline of >20% (31, 33, 34). This wheat-maize rotation system has
contributed to the persistence of F. graminearum, with Henan and
Shandong Provinces emerging as high-risk areas (35).
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1.2 Disease cycle

The E graminearum comprises of the following four key stages:
overwintering, spore release, infection, and secondary spread (36, 37)
(Figure 3).

Regions with recurrent high DON incidence (East Asia, North
America, Europe) are highlighted.

1.2.1 Overwintering

Following harvest, F. graminearum persists as a saprophyte on
crop residues, including grains and stalks, producing both mycelia and
perithecia that facilitate infection in subsequent seasons (19, 38, 39).
Vegetative mycelia, which is responsible for nutrient absorption, can
survive on the soil surface for up to 1 year or for 1-2 months when
buried (19). Dormant perithecia remain viable at soil temperatures
greater than —20 C (40).

1.2.2 Spore release

In spring, when temperatures reach approximately 10°C and the
relative humidity is >80%, perithecia mature and release large
quantities of ascospores and conidia under moist conditions (41, 42).
Air currents and rain splash facilitate spore dispersal to wheat spikes,
which initiate infection.

1.2.3 Infection

Upon reaching wheat spikes, E graminearum ascospores and
conidia, forming hyphae that initially infect the anthers before
spreading into the glumes and spikelets (43, 44). The infected tissues
develop water-soaked brown lesions, and the fungus colonizes the
spike through the rachis (45). Under warmand humid conditions, the
infected spikes turn pale-yellow or white, often displaying
characteristic pink or brownish fungal masses (46).

1.2.4 Secondary spread

Ascospores and conidia produced on infected plants can cause
secondary infections in late-season wheat crops or in the adjacent
summer maize fields (47). These spores may also form perithecia on
crop residues, allowing F. graminearum to overwinter and contribute
to primary infections in the following planting season (48).

Under dry conditions, F. graminearum may enter a latent phase,
temporarily halting its spread and symptom development (49).
However, increased moisture can reactivate this disease, often causing
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The latest survey compiles the results of more than 30,000 analyses to give an overview of the
main threats caused by the six main agricultural relevant mycotoxin groups including aflatoxins
(Afla), zearalenone (ZEN), deoxynivalenol (DON), T-2 toxin (T-2), fumonisins (FUM) and ochratoxin
A (OTA).

FIGURE 2
Distribution of mycotoxin contamination in the world.
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FIGURE 3
The cycle of Fusarium graminearum infection. Overwintering on residues, ascospore/conidial release, floret infection, and secondary spread are
summarized with environmental triggers (temperature, humidity; cite from https://www.saskatchewan.ca/business/).
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severe epidemics (50). This observation underscores the importance
of overwintering inoculum and perithecia formation in sustaining
E graminearum populations (19). The interplay between favorable
weather conditions, abundant inoculum sources, and continuous
wheat cultivation drives the recurrent nature of FHB outbreaks (51).

2 Biosynthesis and molecular
mechanism of DON

The biosynthesis of DON is regulated by a coordinated enzymatic
network encoded by the TRI family (52). All TRI involved in DON
biosynthesis in E graminearum have been identified, which includes
nearly 10 core TRI, along with TRII0I and TRII through TRI16
(Figure 4). The roles of these genes in DON biosynthesis have been
largely elucidated, thereby clarifying the overall biosynthetic pathway
(Figure 5).

Among these genes, TRII encodes a C-8 hydroxylase, whereas
TRI3 encodes an acetyltransferase (53). TRI4 encodes a cytochrome
P450 monooxygenase, and TRI5, also known as the trichodiene
synthase gene, catalyzes the initial step in trichothecene biosynthesis
(54). TRI6 and TRI10 function as the key regulatory genes, controlling
both trichothecene biosynthesis and the expression of other TRI genes
(55). Specifically, TRI6 acts as a self-regulated transcription factor that
modulates the TRII0 expression through promoter binding (56). TRI7
and TRI13 together determine the specific chemical type of DON
produced (57). Meanwhile, TRI8 encodes a deacetylase, and TRI12
encodes a transporter protein that serves as an efflux pump for
trichothecene toxins (58, 59).

The biosynthesis process begins with the cyclization of farnesyl
pyrophosphate (FPP) into the non-toxic intermediate trichodiene,
catalyzed by trichodiene synthase (TRI5). This step is the first and
most critical in DON biosynthesis. Trichodiene is subsequently
hydroxylated at the C2 position, epoxidized between C12 and C13,
and hydroxylated at C11 and C3 by the cytochrome P450
monooxygenase (TRI4), resulting in the formation of the intermediate
iso-trichotriol (60, 61).

Iso-trichotriol then undergoes two non-enzymatic isomerization
steps, shifting the hydroxyl group from C9 to C11 (7). A covalent bond
subsequently forms between the oxygen atoms at C2 and C11, yielding
iso-trichodermol, the core structure of trichothecene toxins (62).
Iso-trichodermol is then acetylated at C3 by the acetyltransferase
TRI101, forming 3-acetyl-iso-trichodermol (63). Hydroxylation at

TRI1-TRI16 Locus

Core TR/ Cluster TRI1 TRI16

> o o SEIINN 2
S QL Q@ I

TRI101 Locus
TRI101

FIGURE 4
The core of TRI gene in Fusarium graminearum.
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C15, catalyzed by the TRII-encoded hydroxylase, produces
15-deacetylcalonectrin (54, 64). This intermediate product is further
acetylated at C15 by the acetyltransferase TRI3, forming calonectrin
(65). Additional hydroxylation at C7 and C8, followed by the
conversion of the C8 hydroxyl group into a keto group, results in the
formation of either 3-acetyldeoxynivalenol (3-ADON) or 15-ADON,
depending on the substrate specificity of the TRI8-encoded
deacetylase. The final deacetylation step yields DON (66).

As the TRI family directly controls DON biosynthesis, the
expressions of TRI are central to the regulation of toxin production
(67). TRI5 was the first toxin biosynthesis gene identified and cloned
in E graminearum. Functional studies have demonstrated that deletion
of TRI5, which significantly reduces the pathogenicity of
E graminearum, while reintroducing the wild-type gene restores both
toxin production and pathogenicity (67). These gene complementation
experiments not only confirmed the essential role of TRI5 in the
biosynthetic pathway but also underscored its critical position within
the broader regulatory network (68).

The transcription factor TRI6 serves as a key regulator, functioning
alongside TRII0 to control the expression of other TRI genes (69).
Microarray analyses have demonstrated that the deletion of TRI6 or
TRIIO0 affects the expression of > 50% of TRI genes, including TRI12,
which encodes the toxin efflux pump (67). Beyond regulating TRI
genes, TRI6 and TRI10 also influence genes involved in the mevalonate
pathway, such as HMRI1, which encodes 3-hydroxy-3-
methylglutaryl-CoA reductase (HMG-CoA reductase), as well as
genes associated with isoprenoid precursor synthesis, including those
responsible for FPP production (55). The loss of TRI6 significantly
downregulates the expression of TRI3 and TRI4, further disrupting
DON biosynthesis (52). In addition, TRI14 has been identified as an
important regulatory gene influencing DON accumulation.

Although DON biosynthesis follows a stepwise process, it occurs
within a complex metabolic network, where the sequence of individual
reactions is not strictly linear (62, 70).

3 Regulatory mechanisms of DON
biosynthesis

The regulation of DON biosynthesis is governed by both
endogenous signaling pathways and external environmental factors
(71, 72).

3.1 Regulation of DON biosynthesis by
endogenous signaling pathways

Several cellular signaling pathways also contribute to the
regulation of DON biosynthesis, including the mitogen-activated
protein kinase (MAPK) pathway, the cyclic AMP-protein kinase A
(cAMP-PKA) pathway, and the Target of Rapamycin (TOR)
pathway (69).

The MAPK pathway regulates DON production through three
phosphorylation cascades: Mgvl, Gpmkl1, and FgHogl (67). The
deletion of core kinases in the Mgvl pathway (i.e., FgBckl,
FgMmk2, FgMgv1) severely impairs pathogenicity, restricts fungal
spread to the initial infection site, and almost completely eliminates
DON production (73). In the Gpmkl1 pathway, the deletion of
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FIGURE 5
The biosynthetic pathway of DON in Fusarium graminearum.

FgStell,
colonization ability and DON production in wheat spikes. Similarly,

FgSte7, or Fgpmkl significantly reduces both the

the disruption of the osmotic stress-pathway genes FgHOGI,
FgPBS2, and FgSSK2 significantly inhibits DON biosynthesis (13).

The cAMP-PKA pathway regulates DON biosynthesis through the
catalytic subunit gene FgCPK1 and the adenylate cyclase gene FgFAC1
(74). The deletion of FgCPK1 reducesthe DON production, whereas
the deletion of FgFACI completely abolishes DON biosynthesis
(74-76).

The TOR pathway influences DON biosynthesis through
FgTOR1/2, which encode the only kinases in this pathway and
through the Tap42 complex genes (i.e., FgPP2A, FgSIT4, and
FgPPG1). Among these, only the deletion of FgPPG1 could completely
block DON biosynthesis (77, 78).

3.2 The influence of the external
environment on DON biosynthesis

Environmental factors such as temperature, humidity, pH, carbon
and light
significantly impact the growth and metabolism of E. graminearum,
which influence DON biosynthesis (13).

Past studies have demonstrated that E graminearum can grow across

and nitrogen sources, hydrogen peroxide (H,O.),

a broad temperature range, with optimal DON production occurring at
22 °C -28 °C. Toxin biosynthesis can occur at 12 °C -37 °C, and the
production ceases at temperatures > 37° (79). The optimal water activity
(aw) for fungal growth ranges from 0.900-0.995, whereas DON
biosynthesis requires a narrower range of 0.950-0.995 (80). This explains
why FHB outbreaks and DON contamination are more prevalent in
warm and humid regions, where the environmental conditions favor
fungal proliferation and toxin production (81, 82).
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Merhej et al. (83) investigated the effect of environmental pH on
E graminearum growth, DON biosynthesis, and TRI gene expression
in vitro using liquid cultures on a minimal medium. Their results
demonstrated that DON production and TRI expression were absent
at neutral pH (84). However, by the third day of cultivation, the
medium’s pH dropped sharply, triggering the expression of TRI5 and
TRI101 and initiating accumulation of DON. Further research
revealed that the transcription factor PacC, a key component of the
pH regulation system, plays a critical role in secondary metabolite
biosynthesis. In a follow-up study, Merhej et al. (85) reported found
that the deletion of the F. graminearum PacC homolog (FgPAC1) led
to earlier TRI gene induction and accelerated DON accumulation
under acidic conditions, indicating that FgPAC1 could negatively
regulates the TRI expression and DON biosynthesis (67).

Carbon and nitrogen sources, which are essential nutrients for
microbial growth, also regulate DON biosynthesis in E graminearum.
Jiao et al. (86) analyzed the effects of 12 carbon sources on DON and
3-ADON production in nine 3-ADON-producing strains of
E graminearum. Sucrose, raffinose, and stachyose significantly
enhanced trichothecene production across all tested strains. In
sucrose-based media, the expression of TRI4 and TRI5 were
significantly upregulated, whereas this effect was absent in glucose-
based media (87). Furthermore, adding glucose to sucrose-based
media did not inhibit DON accumulation, suggesting that
trichothecene biosynthesis is not regulated by carbon catabolite
repression (88). Instead, F. graminearum appears to directly recognize
sucrose molecules, activating TRI expressions and initiating the
trichothecene biosynthesis pathway (67).

In terms of nitrogen sources, guanidino-butyrate, arginine, and
ornithine strongly induce DON biosynthesis, whereas ammonium,
nitrate, leucine, and tyrosine exhibit inhibitory effects (89). The
nitrogen metabolic regulator gene FgAREA is induced under
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nitrogen-limiting conditions, which promotes secondary nitrogen
utilization and activates the expression of TRI, including TRI5, TRI6,
and TRIIO0 (90). In contrast, FgNMRI, a co-repressor involved in
nitrogen catabolite repression, inhibits FAREA under nitrogen-
sufficient conditions, thereby suppressing DON biosynthesis (91).
However, the deletion of FgNMRI alone does not significantly affect
DON production (92).

Other chemical compounds can also influence DON biosynthesis.
For example, H,O, has been demonstrated to enhance DON and
15-ADON production by activating the TRI expression, particularly
TRI4, TRI5, and TRI12 (93). In contrast, adding catalase to cultures
could significantly reduce TRI expression and DON accumulation.
This regulatory effect is associated with oxidative stress-responsive
transcription factors, including FgAP1, FgATF1, and FgSKN7. The
deletion of FgSKN7 significantly reduced DON biosynthesis and
impaired H,O,-induced TRI expression (94). Interestingly, the
deletion of FgAP1 increased the DON production and enhanced the
TRI expression, suggesting that the loss of FgAP1 disrupts oxidative
stress regulation and triggers abnormal TRI overexpression (95).

In addition, ferulic acid has been exhibited to suppress TRI
expression and reduce DON biosynthesis through transcriptional
regulation (96). Boutigny et al. (97) demonstrated that DON
production is inversely correlated with the initial ferulic acid
concentration in the medium, with higher concentrations exerting
stronger inhibitory effects.

4 Advances in the detoxification and
control of DON

DON is chemically stable and highly resistant to heat, acidic
conditions, and long-term storage, making its elimination difficult
through the conventional processing methods. Therefore, the
development of efficient, safe, and cost-effective detoxification
strategies deemed is critical for ensuring food and feed safety. The
current methods for mitigating DON contamination fall into three
main categories: physical, chemical, and biological approaches.

The physical methods aim to remove or inactivate DON through
techniques such as sorting, adsorption, irradiation, or thermal
processing. Chemical methods involve the use of reagents, such as
alkalis, ozone, or oxidants,to alter the molecular structure of DON and
reduce its toxicity. Biological methods rely on microorganisms,
enzymes, or plant metabolic pathways to adsorb, degrade, or
transform DON. Among these, biological strategies are particularly
promising owing to their mild operational conditions, high specificity,
environmental sustainability, and

ability to preserve the

nutritional quality.

4.1 Physical methods

4.1.1 Thermal processing

Thermal treatment is the most commonly applied physical
approach for reducing DON contamination. In general, higher
temperatures yield better detoxification efficiency. The common
techniques include steaming, baking, frying, canning, and extrusion
(7). For instance, superheated steam treatment at 185 °C for 6 min
reduced the DON levels in contaminated wheat by 52% (98, 99).
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Frying at 169-243 °C decreased DON concentrations in wheat dough
by 20-28%, whereas baking of bread led to 54% of 82% reduction
(100). Despite these promising results, the mechanisms behind DON
reduction during heating remain unclear. It remains unknown
whether DON is fully degraded or simply adsorbed onto the food
matrix. Moreover, the identity and toxicity of the resulting degradation
products are not well characterized. Advantages—well-established
technology with proven scalability; Limitations—the mechanisms of
action and the toxicity of degradation products remain incompletely
elucidated, and potential impacts on quality and nutritional attributes
cannot be excluded.

4.1.2 Irradiation

Three primary irradiation techniques have been investigated in
relation to DON degradation: gamma irradiation, electron beam
irradiation, and ultraviolet (UV) irradiation. Khaneghah et al. (101)
reported found that the efficiency of DON degradation by electron
beam irradiation increased with higher doses, which was also
influenced by the concentration of DON in the solution. Specifically,
at doses of 1-10 kGy, higher solution concentrations resulted in
greater degradation, whereas the detoxification rate of DON in the
aqueous solution was 89.13% at 20 kGy (102). Irradiation exhibited
greater effectiveness in aqueous environments, with little effect on
DON in dry materials such as wheat and corn, limiting its applicability
to solid commodities.

DON is also sensitive to UV light. Feizollahi et al. (103)
demonstrated that UV irradiation significantly degraded DON, with
enhanced efficacy detected under longer exposure times, shorter
irradiation distances, and lower solution pHs. Shanakhat et al. (104)
performed UV irradiation at 254 nm for 15, 30, 60, and 120 min on
semolina to reduce the mycotoxin contamination. In fact, UV
irradiation has been widely explored for degrading aflatoxins, albeit
its application to DON remains limited. Moreover, the inconsistent
performance, shallow penetration depth, and the potential to damage
sensitive nutrients such as vitamins significantly constrain its practical
utility in DON detoxification. Advantages—high degradation
efficiency in aqueous systems; Limitations—poor penetration in solid
matrices, narrow parameter windows, and unfavorable effects on
sensitive nutrients.

4.1.3 Adsorption

A range of adsorbents is currently available in the market for
DON removal, including activated carbon, inorganic aluminosilicates
such as hydrated sodium calcium aluminosilicate (HSCAS), and
organic materials such as glucomannan and yeast cell walls. Activated
carbon can adsorb and remove 90.5% of DON and AFB1 (105). A
newly developed composite adsorbent of HSCAS achieved an average
DON adsorption rate of 90% (106). However, these adsorption
method has several limitations. It often requires elevated temperatures
or stringent conditions, and may non-selectively bind essential
micronutrients in the food or feed. Furthermore, if DON is only
adsorbed but not degraded, there is a risk of secondary contamination.
Considering such concerns, the European Union does not permit the
use of adsorbents for mycotoxin mitigation in animal feed. As such,
adsorption is not considered the most reliable strategy for DON
detoxification. Advantages—simple implementation and low cost;
Limitations—lack of selectivity, concomitant adsorption of nutrients,
risk of recontamination, and restricted regulatory acceptance.
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4.2 Chemical methods

Chemical degradation methods involve the breakdown of
functional groups on the DON molecule through exposure to strong
acids, bases, or oxidants, with the aim of ultimately reducing or
eliminating its toxicity. Common techniques employed for this include
alkaline hydrolysis, ammoniation, and oxidation. DON is particularly
sensitive to alkaline conditions and readily degrades in basic solutions.
Treatment of DON-contaminated wheat with sodium carbonate
(Na,CO:s) and sodium bisulfite (NaHSO3) yielded DON-reduction
rates of 83.9 and 69.9%, respectively (7). These methods are most
effective for high-moisture materials, such as silage and liquid fats, but
less suitable for solid feeds such as oilseed cakes or bulk feed ingredients.

Ozone is a powerful oxidizing agent that can rapidly cleave double
bonds in organic compounds. It exhibits excellent penetration ability
and readily decomposes into oxygen without leaving any toxic residues.
Moreover, ozone is easy to generate on-site, requires no storage or post-
treatment, and has been widely recognized by researchers globally for
its remarkable potential in practical applications. Among oxidants,
ozone has received growing attention due to its strong oxidative
potential. It targets the C9-C10 double bond in DON’s structure,
breaking it down into simpler, less toxic compounds such as acids,
aldehydes, and ketones (107, 108). As illustrated in Figure 6, ozone
reacts directly with the molecular structure of DON (109). In recent
years, ozone has emerged as a widely studied and applied technique for
controlling fungal growth and mycotoxin contamination in diverse
food products. It effectively kills harmful microbes and insects, reduces
pesticide residues, and extends the shelf life of stored grains.

Young et al. (108) demonstrated that ozone treatment effectively
degraded DON in wheat and corn, with significantly better outcomes
observed in humid ozone environments relative to that in dry ozone.
Additionally, Yang et al. (110), based on their investigation of the
degradation efficiency of ozonated water at different concentrations

10.3389/fnut.2025.1677196

on the trichothecene mycotoxins, proposed preliminary pathways for
the formation of degradation products. Their findings consistently
indicated that ozone was highly effective in degrading DON.

Obadi et al. (111) reported that ozone reacts with double bonds
in carotenoid-like compounds, resulting in the reduction of the
yellowness of flour and an increase in brightness. Ozone also reacts
with the double bonds of unsaturated fatty acids, generating free
radicals that can cause rancidity. In addition, ozone exposure was
found to alter the gelatinization properties of starch. Bamyar et al.
(112) further demonstrated that moderate ozone treatment enhanced
the dough strength of wheat flour and reduced its extensibility;
however, excessive ozone treatment led to a decrease in the ratio of
unextractable polymeric protein to extractable polymeric protein
(UPP/EP), indicating a potential degradation of the gluten quality.

Therefore, when applying ozone technology to degrade
mycotoxins, it is essential to evaluate its impact on the nutritional
value and the processing quality of grains. Presently, studies assessing
the nutritional properties of major DON-contaminated commodities
such as wheat and corn after ozone treatment remain limited. This
lack of a comprehensive quality-evaluation system for ozone-treated
raw materials directly restricts the broader application and
commercialization of ozone detoxification technologies. Advantages—
high efficiency with in situ generation, well-defined reactivity toward
double bonds; Limitations—requires careful evaluation of impacts on
dough rheology, lipid oxidation, color, and other quality parameters.

4.3 Biological methods

Despite the limited reports, recent studies both domestically and
internation-ally, have demonstrated a significant progress in the
biological degradation of DON. Microorganisms can secrete
extracellular enzymes that catalyze various chemical reactions—such
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as de-epoxidation, deacetylation, hydroxylation, hydrolysis, and
glycosylation—to convert DON into less toxic metabolites.

For example, Wang et al. (113) isolated a bacterial strain from
soil that could use DON as its sole carbon source, which achieved
a degradation efficiency of 63%. Liu et al. (114) screened and
identified an effective DON-degrading Bacillus strain, which, when
added to animal feed, reduced the DON levels by up to 50.69%.

Enzymatic degradation methods, particularly, offer high
specificity and efficiency by exploiting the unique substrate affinity of
enzymes to catalyze mycotoxin breakdown. These methods prevent
toxin regeneration and are highly selective. Chen et al. (115)
demonstrated that enzymes produced by Gordonia hydrophobica
HAU421 could cleave the epoxide ring of trichothecenes, thereby
significantly reducing the toxicity of DON.

Despite these advantages, the existing biological methods face
several limitations. Their economic feasibility is low, and the inherent
microbial activity fluctuates with the environmental conditions. The
degradation process is typically slow, and it is challenging to apply
these methods to solid matrices. Furthermore, the safety and
composition of microbial metabolites are often difficult to evaluate. As
a result, the presently known practical application of biological
detoxification strategies for DON remains limited. Advantages—high
mild
biotransformation; Limitations—ladaptation to solid matrices and

specificity, conditions, and potential for selective
industrial-scale application remain challenging, and the safety of

metabolic products requires systematic evaluation.

5 Conclusion

This review consolidates mechanistic insights into DON biosynthesis
and its regulation, emphasizing the TRI cluster, transcriptional control,
signaling cross-talk, and environmental modulation. While pathway
enzymes and key regulators are increasingly well mapped, context-
dependent TRI expression and matrix-specific detoxification efficacy
remain major sources of variability.

Currently, chemical fungicides are widely being used to manage
FHB during agricultural production. However, concerns regarding
chemical residues and environmental contamination underscore the
urgent need for eco-friendly control strategies. A deeper understanding
of the biosynthetic and regulatory mechanisms governing DON
production in E graminearum provides a crucial foundation for
developing more sustainable disease management approaches.

Each detoxification strategy presents unique strengths and
limitations. The known physical methods are scalable but may leave
toxic residues. Chemical approaches are effective but can damage
product quality or pose safety risks. Biological methods offer
specificity and sustainability but are constrained by process complexity
and scalability. Therefore, the choice of detoxification method should
consider not only efficacy but also safety, regulatory compliance, and
compatibility with food/feed matrices.

6 Prospects

Future research should focus on leveraging gene editing
technologies to enhance the endogenous resistance to DON and
breeding new wheat cultivars with both FHB resistance and reduced
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toxin accumulation. In parallel, the hybrid methods, such as
combining physical, chemical, and biological techniques, to maximize
the detoxification efficiency. Innovations in enzyme engineering and
microbial synthetic biology may yield more robust strains and
catalytic tools. Moreover, regulatory frameworks must evolve to
evaluate detoxification products comprehensively and guide the safe
implementation of biological methods in the food industry.

These advancements of advancements in gene editing, enzyme
engineering, and hybrid detoxification methods could offer promising
solutions for mitigating FHB outbreaks and ensuring global food security.
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