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Fusarium graminearum, the major causal agent of Fusarium head blight (FHB), 
produces the trichothecene mycotoxin deoxynivalenol (DON), which threatens 
food and feed safety worldwide. This review synthesizes recent advances in DON 
biosynthesis, emphasizing the TRI gene cluster and its pathway enzymes, transcriptional 
regulators, and signaling cascades. In parallel, it provides a comprehensive analysis 
of the molecular mechanisms involved in regulating DON biosynthesis, with a 
focus on the TRI cluster. In additionally, current progress in detoxification strategies 
is summarized, covering physical, chemical, and biological methods aimed at 
mitigating DON contamination in food and feed. This review further explores the 
endogenous environmental factors influencing DON synthesis and offering insights 
to the development of integrated control strategies against DON contamination. 
By integrating the current findings, this review aims to support the development 
of effective strategies, control F. graminearum and mitigate FHB.
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1 Introduction

Fusarium graminearum is the primary fungal pathogen responsible for FHBin wheat, a 
disease that threatens global grain yields and food safety (1, 2). A major concern associated 
with F. graminearum is the production of deoxynivalenol (DON) (Figure 1), or “vomitoxin,” 
a mycotoxin that contaminates wheat and other cereals, which poses risks to the human and 
animal health (3, 4). Based on the recent reports, DON is one of the most common food-
related mycotoxins in the world (5). Acetylated derivatives of deoxynivalenol (DON), mainly 
3-ADON and 15-ADON, act as DON precursors with slightly reduced toxicity, regulated by 
FgTRI8 (6). Pathogen subspeciation has diversified their production. Deoxynivalenol-3-
glucoside (D3G), a masked DON derivative, can hydrolyze in vivo to DON, intensifying 
toxicity (7). According to the Food and Agriculture Organization (FAO), approximately 25% 
of global food crops are contaminated with mycotoxins annually, which causes economic 
losses of over USD 100 billion (8, 9).

China, as one of the world’s largest wheat producers, is particularly vulnerable to FHB (10). 
The disease affects millions of hectares of wheat annually, with the outbreak potentially 
resulting in unprecedented yield losses of the nation’s wheat production (11–13). This review 
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integrates these advances to (i) map DON biosynthesis and its 
regulation from gene to environment, and (ii) compare detoxification 
strategies with an emphasis on mechanisms, limitations, and 
translational prospects for integrated FHB management.

1.1 Geographic distribution and impact

F. graminearum is widely distributed across humid and semi-
humid regions, with particularly high incidence in the temperate 
zones, including the Yangtze River Basin in China, the Great Lakes 
region of North America, and Central Europe (14–16). It infects over 
30 cereal crops, including wheat, barley, maize, and oats (17–19).

According to the Biomin Global Mycotoxin Survey (Figure 2), 
East Asia, North America, and Europe experience the highest levels 
of DON contamination (20). Across the world, FHB had caused an 
estimated loss of over $10 billion (21). Similarly, the reported 
incidence of DON contamination was very high across different 
regions, with 94% in America and China and 77% in Europe (22, 23). 
DON and its acetylated derivatives exert detrimental effects on the 
human health, which could lead to a severe FHB outbreak and 
reduced wheat yields, potentially leading to multiple cases of livestock 
poisoningfrom DON exposure (24). Contamination levels of 3-ADON 
and 15-ADON are strongly correlated, and their co-occurrence 
produces synergistic toxicity. Studies show that baking degrades DON 
acetylated derivatives (25), while Juan-García et al. (26) demonstrated 
their cytotoxicity and metabolic products in HepG2 cells. Ozone 
treatment can also degrade DON, with degradation byproducts 
exhibiting negligible toxicity (Sun et al.) (27).

In China, FHB is most prevalent in the humid and rainy region of 
Yangtze River Basin, with its distribution expanding northward (28). 
The annual yield losses in the middle and lower Yangtze River region 
typically range from 10 to 15%, with severe outbreaks reducing the 
yields by up to 50% (29, 30). One of the earliest large-scale outbreaks 
occurred in Henan Province in 1985, which affected 3 million hectares 
of wheat fields (31). Since 2000, climate change and shifts in the 
cultivation practices have intensified the spread of FHB (32). 
Approximately 80% of wheat crops across China were contaminated 
to varying degrees, causing a decline in the national grain production 
decline of >20% (31, 33, 34). This wheat-maize rotation system has 
contributed to the persistence of F. graminearum, with Henan and 
Shandong Provinces emerging as high-risk areas (35).

1.2 Disease cycle

The F. graminearum comprises of the following four key stages: 
overwintering, spore release, infection, and secondary spread (36, 37) 
(Figure 3).

Regions with recurrent high DON incidence (East Asia, North 
America, Europe) are highlighted.

1.2.1 Overwintering
Following harvest, F. graminearum persists as a saprophyte on 

crop residues, including grains and stalks, producing both mycelia and 
perithecia that facilitate infection in subsequent seasons (19, 38, 39). 
Vegetative mycelia, which is responsible for nutrient absorption, can 
survive on the soil surface for up to 1 year or for 1–2 months when 
buried (19). Dormant perithecia remain viable at soil temperatures 
greater than −20 C (40).

1.2.2 Spore release
In spring, when temperatures reach approximately 10°C and the 

relative humidity is >80%, perithecia mature and release large 
quantities of ascospores and conidia under moist conditions (41, 42). 
Air currents and rain splash facilitate spore dispersal to wheat spikes, 
which initiate infection.

1.2.3 Infection
Upon reaching wheat spikes, F. graminearum ascospores and 

conidia, forming hyphae that initially infect the anthers before 
spreading into the glumes and spikelets (43, 44). The infected tissues 
develop water-soaked brown lesions, and the fungus colonizes the 
spike through the rachis (45). Under warmand humid conditions, the 
infected spikes turn pale-yellow or white, often displaying 
characteristic pink or brownish fungal masses (46).

1.2.4 Secondary spread
Ascospores and conidia produced on infected plants can cause 

secondary infections in late-season wheat crops or in the adjacent 
summer maize fields (47). These spores may also form perithecia on 
crop residues, allowing F. graminearum to overwinter and contribute 
to primary infections in the following planting season (48).

Under dry conditions, F. graminearum may enter a latent phase, 
temporarily halting its spread and symptom development (49). 
However, increased moisture can reactivate this disease, often causing 

FIGURE 1

The chemical structure and stereochemical structure of DON. Key functional groups (epoxide, C9–C10 double bond) that underlie toxicity and guide 
detoxification chemistry are indicated.
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FIGURE 2

Distribution of mycotoxin contamination in the world.

FIGURE 3

The cycle of Fusarium graminearum infection. Overwintering on residues, ascospore/conidial release, floret infection, and secondary spread are 
summarized with environmental triggers (temperature, humidity; cite from https://www.saskatchewan.ca/business/).
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severe epidemics (50). This observation underscores the importance 
of overwintering inoculum and perithecia formation in sustaining 
F. graminearum populations (19). The interplay between favorable 
weather conditions, abundant inoculum sources, and continuous 
wheat cultivation drives the recurrent nature of FHB outbreaks (51).

2 Biosynthesis and molecular 
mechanism of DON

The biosynthesis of DON is regulated by a coordinated enzymatic 
network encoded by the TRI family (52). All TRI involved in DON 
biosynthesis in F. graminearum have been identified, which includes 
nearly 10 core TRI, along with TRI101 and TRI1 through TRI16 
(Figure 4). The roles of these genes in DON biosynthesis have been 
largely elucidated, thereby clarifying the overall biosynthetic pathway 
(Figure 5).

Among these genes, TRI1 encodes a C-8 hydroxylase, whereas 
TRI3 encodes an acetyltransferase (53). TRI4 encodes a cytochrome 
P450 monooxygenase, and TRI5, also known as the trichodiene 
synthase gene, catalyzes the initial step in trichothecene biosynthesis 
(54). TRI6 and TRI10 function as the key regulatory genes, controlling 
both trichothecene biosynthesis and the expression of other TRI genes 
(55). Specifically, TRI6 acts as a self-regulated transcription factor that 
modulates the TRI10 expression through promoter binding (56). TRI7 
and TRI13 together determine the specific chemical type of DON 
produced (57). Meanwhile, TRI8 encodes a deacetylase, and TRI12 
encodes a transporter protein that serves as an efflux pump for 
trichothecene toxins (58, 59).

The biosynthesis process begins with the cyclization of farnesyl 
pyrophosphate (FPP) into the non-toxic intermediate trichodiene, 
catalyzed by trichodiene synthase (TRI5). This step is the first and 
most critical in DON biosynthesis. Trichodiene is subsequently 
hydroxylated at the C2 position, epoxidized between C12 and C13, 
and hydroxylated at C11 and C3 by the cytochrome P450 
monooxygenase (TRI4), resulting in the formation of the intermediate 
iso-trichotriol (60, 61).

Iso-trichotriol then undergoes two non-enzymatic isomerization 
steps, shifting the hydroxyl group from C9 to C11 (7). A covalent bond 
subsequently forms between the oxygen atoms at C2 and C11, yielding 
iso-trichodermol, the core structure of trichothecene toxins (62). 
Iso-trichodermol is then acetylated at C3 by the acetyltransferase 
TRI101, forming 3-acetyl-iso-trichodermol (63). Hydroxylation at 

C15, catalyzed by the TRI1-encoded hydroxylase, produces 
15-deacetylcalonectrin (54, 64). This intermediate product is further 
acetylated at C15 by the acetyltransferase TRI3, forming calonectrin 
(65). Additional hydroxylation at C7 and C8, followed by the 
conversion of the C8 hydroxyl group into a keto group, results in the 
formation of either 3-acetyldeoxynivalenol (3-ADON) or 15-ADON, 
depending on the substrate specificity of the TRI8-encoded 
deacetylase. The final deacetylation step yields DON (66).

As the TRI family directly controls DON biosynthesis, the 
expressions of TRI are central to the regulation of toxin production 
(67). TRI5 was the first toxin biosynthesis gene identified and cloned 
in F. graminearum. Functional studies have demonstrated that deletion 
of TRI5, which significantly reduces the pathogenicity of 
F. graminearum, while reintroducing the wild-type gene restores both 
toxin production and pathogenicity (67). These gene complementation 
experiments not only confirmed the essential role of TRI5 in the 
biosynthetic pathway but also underscored its critical position within 
the broader regulatory network (68).

The transcription factor TRI6 serves as a key regulator, functioning 
alongside TRI10 to control the expression of other TRI genes (69). 
Microarray analyses have demonstrated that the deletion of TRI6 or 
TRI10 affects the expression of > 50% of TRI genes, including TRI12, 
which encodes the toxin efflux pump (67). Beyond regulating TRI 
genes, TRI6 and TRI10 also influence genes involved in the mevalonate 
pathway, such as HMR1, which encodes 3-hydroxy-3-
methylglutaryl-CoA reductase (HMG-CoA reductase), as well as 
genes associated with isoprenoid precursor synthesis, including those 
responsible for FPP production (55). The loss of TRI6 significantly 
downregulates the expression of TRI3 and TRI4, further disrupting 
DON biosynthesis (52). In addition, TRI14 has been identified as an 
important regulatory gene influencing DON accumulation.

Although DON biosynthesis follows a stepwise process, it occurs 
within a complex metabolic network, where the sequence of individual 
reactions is not strictly linear (62, 70).

3 Regulatory mechanisms of DON 
biosynthesis

The regulation of DON biosynthesis is governed by both 
endogenous signaling pathways and external environmental factors 
(71, 72).

3.1 Regulation of DON biosynthesis by 
endogenous signaling pathways

Several cellular signaling pathways also contribute to the 
regulation of DON biosynthesis, including the mitogen-activated 
protein kinase (MAPK) pathway, the cyclic AMP-protein kinase A 
(cAMP-PKA) pathway, and the Target of Rapamycin (TOR) 
pathway (69).

The MAPK pathway regulates DON production through three 
phosphorylation cascades: Mgv1, Gpmk1, and FgHog1 (67). The 
deletion of core kinases in the Mgv1 pathway (i.e., FgBck1, 
FgMmk2, FgMgv1) severely impairs pathogenicity, restricts fungal 
spread to the initial infection site, and almost completely eliminates 
DON production (73). In the Gpmk1 pathway, the deletion of 

FIGURE 4

The core of TRI gene in Fusarium graminearum.
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FgSte11, FgSte7, or Fgpmk1 significantly reduces both the 
colonization ability and DON production in wheat spikes. Similarly, 
the disruption of the osmotic stress-pathway genes FgHOG1, 
FgPBS2, and FgSSK2 significantly inhibits DON biosynthesis (13).

The cAMP-PKA pathway regulates DON biosynthesis through the 
catalytic subunit gene FgCPK1 and the adenylate cyclase gene FgFAC1 
(74). The deletion of FgCPK1 reducesthe DON production, whereas 
the deletion of FgFAC1 completely abolishes DON biosynthesis 
(74–76).

The TOR pathway influences DON biosynthesis through 
FgTOR1/2, which encode the only kinases in this pathway and 
through the Tap42 complex genes (i.e., FgPP2A, FgSIT4, and 
FgPPG1). Among these, only the deletion of FgPPG1 could completely 
block DON biosynthesis (77, 78).

3.2 The influence of the external 
environment on DON biosynthesis

Environmental factors such as temperature, humidity, pH, carbon 
and nitrogen sources, hydrogen peroxide (H₂O₂), and light 
significantly impact the growth and metabolism of F. graminearum, 
which influence DON biosynthesis (13).

Past studies have demonstrated that F. graminearum can grow across 
a broad temperature range, with optimal DON production occurring at 
22 °C –28 °C. Toxin biosynthesis can occur at 12 °C –37 °C, and the 
production ceases at temperatures > 37° (79). The optimal water activity 
(aw) for fungal growth ranges from 0.900–0.995, whereas DON 
biosynthesis requires a narrower range of 0.950–0.995 (80). This explains 
why FHB outbreaks and DON contamination are more prevalent in 
warm and humid regions, where the environmental conditions favor 
fungal proliferation and toxin production (81, 82).

Merhej et al. (83) investigated the effect of environmental pH on 
F. graminearum growth, DON biosynthesis, and TRI gene expression 
in vitro using liquid cultures on a minimal medium. Their results 
demonstrated that DON production and TRI expression were absent 
at neutral pH (84). However, by the third day of cultivation, the 
medium’s pH dropped sharply, triggering the expression of TRI5 and 
TRI101 and initiating accumulation of DON. Further research 
revealed that the transcription factor PacC, a key component of the 
pH regulation system, plays a critical role in secondary metabolite 
biosynthesis. In a follow-up study, Merhej et al. (85) reported found 
that the deletion of the F. graminearum PacC homolog (FgPAC1) led 
to earlier TRI gene induction and accelerated DON accumulation 
under acidic conditions, indicating that FgPAC1 could negatively 
regulates the TRI expression and DON biosynthesis (67).

Carbon and nitrogen sources, which are essential nutrients for 
microbial growth, also regulate DON biosynthesis in F. graminearum. 
Jiao et al. (86) analyzed the effects of 12 carbon sources on DON and 
3-ADON production in nine 3-ADON-producing strains of 
F. graminearum. Sucrose, raffinose, and stachyose significantly 
enhanced trichothecene production across all tested strains. In 
sucrose-based media, the expression of TRI4 and TRI5 were 
significantly upregulated, whereas this effect was absent in glucose-
based media (87). Furthermore, adding glucose to sucrose-based 
media did not inhibit DON accumulation, suggesting that 
trichothecene biosynthesis is not regulated by carbon catabolite 
repression (88). Instead, F. graminearum appears to directly recognize 
sucrose molecules, activating TRI expressions and initiating the 
trichothecene biosynthesis pathway (67).

In terms of nitrogen sources, guanidino-butyrate, arginine, and 
ornithine strongly induce DON biosynthesis, whereas ammonium, 
nitrate, leucine, and tyrosine exhibit inhibitory effects (89). The 
nitrogen metabolic regulator gene FgAREA is induced under 

FIGURE 5

The biosynthetic pathway of DON in Fusarium graminearum.
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nitrogen-limiting conditions, which promotes secondary nitrogen 
utilization and activates the expression of TRI, including TRI5, TRI6, 
and TRI10 (90). In contrast, FgNMR1, a co-repressor involved in 
nitrogen catabolite repression, inhibits FgAREA under nitrogen-
sufficient conditions, thereby suppressing DON biosynthesis (91). 
However, the deletion of FgNMR1 alone does not significantly affect 
DON production (92).

Other chemical compounds can also influence DON biosynthesis. 
For example, H₂O₂ has been demonstrated to enhance DON and 
15-ADON production by activating the TRI expression, particularly 
TRI4, TRI5, and TRI12 (93). In contrast, adding catalase to cultures 
could significantly reduce TRI expression and DON accumulation. 
This regulatory effect is associated with oxidative stress-responsive 
transcription factors, including FgAP1, FgATF1, and FgSKN7. The 
deletion of FgSKN7 significantly reduced DON biosynthesis and 
impaired H₂O₂-induced TRI expression (94). Interestingly, the 
deletion of FgAP1 increased the DON production and enhanced the 
TRI expression, suggesting that the loss of FgAP1 disrupts oxidative 
stress regulation and triggers abnormal TRI overexpression (95).

In addition, ferulic acid has been exhibited to suppress TRI 
expression and reduce DON biosynthesis through transcriptional 
regulation (96). Boutigny et  al. (97) demonstrated that DON 
production is inversely correlated with the initial ferulic acid 
concentration in the medium, with higher concentrations exerting 
stronger inhibitory effects.

4 Advances in the detoxification and 
control of DON

DON is chemically stable and highly resistant to heat, acidic 
conditions, and long-term storage, making its elimination difficult 
through the conventional processing methods. Therefore, the 
development of efficient, safe, and cost-effective detoxification 
strategies deemed is critical for ensuring food and feed safety. The 
current methods for mitigating DON contamination fall into three 
main categories: physical, chemical, and biological approaches.

The physical methods aim to remove or inactivate DON through 
techniques such as sorting, adsorption, irradiation, or thermal 
processing. Chemical methods involve the use of reagents, such as 
alkalis, ozone, or oxidants,to alter the molecular structure of DON and 
reduce its toxicity. Biological methods rely on microorganisms, 
enzymes, or plant metabolic pathways to adsorb, degrade, or 
transform DON. Among these, biological strategies are particularly 
promising owing to their mild operational conditions, high specificity, 
environmental sustainability, and ability to preserve the 
nutritional quality.

4.1 Physical methods

4.1.1 Thermal processing
Thermal treatment is the most commonly applied physical 

approach for reducing DON contamination. In general, higher 
temperatures yield better detoxification efficiency. The common 
techniques include steaming, baking, frying, canning, and extrusion 
(7). For instance, superheated steam treatment at 185 °C for 6 min 
reduced the DON levels in contaminated wheat by 52% (98, 99). 

Frying at 169–243 °C decreased DON concentrations in wheat dough 
by 20–28%, whereas baking of bread led to 54% of 82% reduction 
(100). Despite these promising results, the mechanisms behind DON 
reduction during heating remain unclear. It remains unknown 
whether DON is fully degraded or simply adsorbed onto the food 
matrix. Moreover, the identity and toxicity of the resulting degradation 
products are not well characterized. Advantages—well-established 
technology with proven scalability; Limitations—the mechanisms of 
action and the toxicity of degradation products remain incompletely 
elucidated, and potential impacts on quality and nutritional attributes 
cannot be excluded.

4.1.2 Irradiation
Three primary irradiation techniques have been investigated in 

relation to DON degradation: gamma irradiation, electron beam 
irradiation, and ultraviolet (UV) irradiation. Khaneghah et al. (101) 
reported found that the efficiency of DON degradation by electron 
beam irradiation increased with higher doses, which was also 
influenced by the concentration of DON in the solution. Specifically, 
at doses of 1–10 kGy, higher solution concentrations resulted in 
greater degradation, whereas the detoxification rate of DON in the 
aqueous solution was 89.13% at 20 kGy (102). Irradiation exhibited 
greater effectiveness in aqueous environments, with little effect on 
DON in dry materials such as wheat and corn, limiting its applicability 
to solid commodities.

DON is also sensitive to UV light. Feizollahi et  al. (103) 
demonstrated that UV irradiation significantly degraded DON, with 
enhanced efficacy detected under longer exposure times, shorter 
irradiation distances, and lower solution pHs. Shanakhat et al. (104) 
performed UV irradiation at 254 nm for 15, 30, 60, and 120 min on 
semolina to reduce the mycotoxin contamination. In fact, UV 
irradiation has been widely explored for degrading aflatoxins, albeit 
its application to DON remains limited. Moreover, the inconsistent 
performance, shallow penetration depth, and the potential to damage 
sensitive nutrients such as vitamins significantly constrain its practical 
utility in DON detoxification. Advantages—high degradation 
efficiency in aqueous systems; Limitations—poor penetration in solid 
matrices, narrow parameter windows, and unfavorable effects on 
sensitive nutrients.

4.1.3 Adsorption
A range of adsorbents is currently available in the market for 

DON removal, including activated carbon, inorganic aluminosilicates 
such as hydrated sodium calcium aluminosilicate (HSCAS), and 
organic materials such as glucomannan and yeast cell walls. Activated 
carbon can adsorb and remove 90.5% of DON and AFB1 (105). A 
newly developed composite adsorbent of HSCAS achieved an average 
DON adsorption rate of 90% (106). However, these adsorption 
method has several limitations. It often requires elevated temperatures 
or stringent conditions, and may non-selectively bind essential 
micronutrients in the food or feed. Furthermore, if DON is only 
adsorbed but not degraded, there is a risk of secondary contamination. 
Considering such concerns, the European Union does not permit the 
use of adsorbents for mycotoxin mitigation in animal feed. As such, 
adsorption is not considered the most reliable strategy for DON 
detoxification. Advantages—simple implementation and low cost; 
Limitations—lack of selectivity, concomitant adsorption of nutrients, 
risk of recontamination, and restricted regulatory acceptance.
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4.2 Chemical methods

Chemical degradation methods involve the breakdown of 
functional groups on the DON molecule through exposure to strong 
acids, bases, or oxidants, with the aim of ultimately reducing or 
eliminating its toxicity. Common techniques employed for this include 
alkaline hydrolysis, ammoniation, and oxidation. DON is particularly 
sensitive to alkaline conditions and readily degrades in basic solutions. 
Treatment of DON-contaminated wheat with sodium carbonate 
(Na₂CO₃) and sodium bisulfite (NaHSO₃) yielded DON-reduction 
rates of 83.9 and 69.9%, respectively (7). These methods are most 
effective for high-moisture materials, such as silage and liquid fats, but 
less suitable for solid feeds such as oilseed cakes or bulk feed ingredients.

Ozone is a powerful oxidizing agent that can rapidly cleave double 
bonds in organic compounds. It exhibits excellent penetration ability 
and readily decomposes into oxygen without leaving any toxic residues. 
Moreover, ozone is easy to generate on-site, requires no storage or post-
treatment, and has been widely recognized by researchers globally for 
its remarkable potential in practical applications. Among oxidants, 
ozone has received growing attention due to its strong oxidative 
potential. It targets the C9–C10 double bond in DON’s structure, 
breaking it down into simpler, less toxic compounds such as acids, 
aldehydes, and ketones (107, 108). As illustrated in Figure 6, ozone 
reacts directly with the molecular structure of DON (109). In recent 
years, ozone has emerged as a widely studied and applied technique for 
controlling fungal growth and mycotoxin contamination in diverse 
food products. It effectively kills harmful microbes and insects, reduces 
pesticide residues, and extends the shelf life of stored grains.

Young et al. (108) demonstrated that ozone treatment effectively 
degraded DON in wheat and corn, with significantly better outcomes 
observed in humid ozone environments relative to that in dry ozone. 
Additionally, Yang et al. (110), based on their investigation of the 
degradation efficiency of ozonated water at different concentrations 

on the trichothecene mycotoxins, proposed preliminary pathways for 
the formation of degradation products. Their findings consistently 
indicated that ozone was highly effective in degrading DON.

Obadi et al. (111) reported that ozone reacts with double bonds 
in carotenoid-like compounds, resulting in the reduction of the 
yellowness of flour and an increase in brightness. Ozone also reacts 
with the double bonds of unsaturated fatty acids, generating free 
radicals that can cause rancidity. In addition, ozone exposure was 
found to alter the gelatinization properties of starch. Bamyar et al. 
(112) further demonstrated that moderate ozone treatment enhanced 
the dough strength of wheat flour and reduced its extensibility; 
however, excessive ozone treatment led to a decrease in the ratio of 
unextractable polymeric protein to extractable polymeric protein 
(UPP/EP), indicating a potential degradation of the gluten quality.

Therefore, when applying ozone technology to degrade 
mycotoxins, it is essential to evaluate its impact on the nutritional 
value and the processing quality of grains. Presently, studies assessing 
the nutritional properties of major DON-contaminated commodities 
such as wheat and corn after ozone treatment remain limited. This 
lack of a comprehensive quality-evaluation system for ozone-treated 
raw materials directly restricts the broader application and 
commercialization of ozone detoxification technologies. Advantages—
high efficiency with in situ generation, well-defined reactivity toward 
double bonds; Limitations—requires careful evaluation of impacts on 
dough rheology, lipid oxidation, color, and other quality parameters.

4.3 Biological methods

Despite the limited reports, recent studies both domestically and 
internation-ally, have demonstrated a significant progress in the 
biological degradation of DON. Microorganisms can secrete 
extracellular enzymes that catalyze various chemical reactions—such 

FIGURE 6

The chemical process of DON and ozone.
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as de-epoxidation, deacetylation, hydroxylation, hydrolysis, and 
glycosylation—to convert DON into less toxic metabolites.

For example, Wang et al. (113) isolated a bacterial strain from 
soil that could use DON as its sole carbon source, which achieved 
a degradation efficiency of 63%. Liu et  al. (114) screened and 
identified an effective DON-degrading Bacillus strain, which, when 
added to animal feed, reduced the DON levels by up to 50.69%.

Enzymatic degradation methods, particularly, offer high 
specificity and efficiency by exploiting the unique substrate affinity of 
enzymes to catalyze mycotoxin breakdown. These methods prevent 
toxin regeneration and are highly selective. Chen et  al. (115) 
demonstrated that enzymes produced by Gordonia hydrophobica 
HAU421 could cleave the epoxide ring of trichothecenes, thereby 
significantly reducing the toxicity of DON.

Despite these advantages, the existing biological methods face 
several limitations. Their economic feasibility is low, and the inherent 
microbial activity fluctuates with the environmental conditions. The 
degradation process is typically slow, and it is challenging to apply 
these methods to solid matrices. Furthermore, the safety and 
composition of microbial metabolites are often difficult to evaluate. As 
a result, the presently known practical application of biological 
detoxification strategies for DON remains limited. Advantages—high 
specificity, mild conditions, and potential for selective 
biotransformation; Limitations—ladaptation to solid matrices and 
industrial-scale application remain challenging, and the safety of 
metabolic products requires systematic evaluation.

5 Conclusion

This review consolidates mechanistic insights into DON biosynthesis 
and its regulation, emphasizing the TRI cluster, transcriptional control, 
signaling cross-talk, and environmental modulation. While pathway 
enzymes and key regulators are increasingly well mapped, context-
dependent TRI expression and matrix-specific detoxification efficacy 
remain major sources of variability.

Currently, chemical fungicides are widely being used to manage 
FHB during agricultural production. However, concerns regarding 
chemical residues and environmental contamination underscore the 
urgent need for eco-friendly control strategies. A deeper understanding 
of the biosynthetic and regulatory mechanisms governing DON 
production in F. graminearum provides a crucial foundation for 
developing more sustainable disease management approaches.

Each detoxification strategy presents unique strengths and 
limitations. The known physical methods are scalable but may leave 
toxic residues. Chemical approaches are effective but can damage 
product quality or pose safety risks. Biological methods offer 
specificity and sustainability but are constrained by process complexity 
and scalability. Therefore, the choice of detoxification method should 
consider not only efficacy but also safety, regulatory compliance, and 
compatibility with food/feed matrices.

6 Prospects

Future research should focus on leveraging gene editing 
technologies to enhance the endogenous resistance to DON and 
breeding new wheat cultivars with both FHB resistance and reduced 

toxin accumulation. In parallel, the hybrid methods, such as 
combining physical, chemical, and biological techniques, to maximize 
the detoxification efficiency. Innovations in enzyme engineering and 
microbial synthetic biology may yield more robust strains and 
catalytic tools. Moreover, regulatory frameworks must evolve to 
evaluate detoxification products comprehensively and guide the safe 
implementation of biological methods in the food industry.

These advancements of advancements in gene editing, enzyme 
engineering, and hybrid detoxification methods could offer promising 
solutions for mitigating FHB outbreaks and ensuring global food security.
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