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of Pharmacy, Hangzhou Normal University, Hangzhou, China

Background: Aloe-emodin (AOE), the principal anthraquinone constituent 
derived from aloe and rhubarb, exhibits antioxidant and anti-inflammatory 
properties, suggesting its therapeutic potential against hyperuricemia (HUA) and 
associated renal injury. Here, we investigated the potential of AOE in mitigating 
HUA and related kidney damage, with a focus on its underlying biological 
mechanisms.
Methods: A HUA mouse model was established by oral gavage of potassium 
oxonate (PO, 1.5 g/kg) and adenine (Ad, 0.1 g/kg). Serum uric acid (UA) levels, 
kidney function indicators, histological changes, inflammatory response, and 
oxidative stress state were assessed to evaluate the urate-lowering and kidney-
protective roles of AOE. Furthermore, transcriptomic profiling and RT-qPCR 
analysis were employed to investigate how AOE contributes to UA reduction 
and renal protection.
Results: AOE lowered serum UA levels and inhibited xanthine oxidase and 
adenosine deaminase activity. Moreover, AOE improved kidney function 
indicators (reflected by reductions in serum creatinine and blood urea nitrogen 
levels), restored the integrity of renal tissue structure, and mitigated inflammation 
and oxidative stress in HUA-exposed animals. Transcriptomic analysis revealed 
2,307 differentially expressed key genes associated with AOE against HUA in 
kidney. Furthermore, AOE downregulated p65/RelA and NF-κB1/p50 transcript 
levels, while increasing PPARα, PPARγ, and CPT2 expression.
Conclusion: AOE effectively lowered serum UA levels, and exhibited 
renal protection in the PO/Ad-induced HUA mouse model by dampening 
inflammatory signaling and restoring redox equilibrium, likely through the PPAR 
and NF-κB pathways. This study demonstrated that AOE is a promising natural 
candidate with a desirable safety profile for treating HUA and renal injury, and 
more experimental validation are needed in the future.
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1 Introduction

Hyperuricemia (HUA) is a metabolic disorder caused by either 
purine metabolism dysfunction or insufficient uric acid clearance. It 
is the world’s second most common metabolic condition after diabetes 
(1, 2). Among Chinese adults, reported rates of HUA are 24.4% in 
males and 3.6% in females (3), with an increasing prevalence among 
younger individuals (4). Over the past few decades, with changes in 
lifestyle and dietary patterns, including the consumption of purine-
rich and protein-heavy diets, HUA and its complications, such as gout, 
hyperuricemic nephropathy (HN), and renal failure, have been 
increasing rapidly (3, 5). Moreover, HUA is associated with the 
development of multiple target organ damage (6), with HN being the 
most common consequence, as the kidney is the primary organ for 
the excretion and reabsorption of UA (7, 8). Emerging evidence 
suggests that HUA directly induces renal pathologies, including acute 
and chronic kidney impairments, and may also promote advancement 
to end-stage renal disease (9, 10). However, effective strategies for 
HUA management remain missing. Currently, HUA treatment focuses 
on suppressing the generation of UA (febuxostat, allopurinol) and 
promoting the excretion of UA (benzbromarone) (9, 11). However, 
uric acid-lowering drugs may exacerbate hepatic and renal damage 
because of side effects like hepatic/renal dysfunction and 
gastrointestinal adverse reactions. This highlights the need to develop 
treatments with improved safety and efficacy for HUA and its 
associated renal complications.

HUA-induced renal damage is frequently accompanied by 
inflammatory responses (12, 13). Chronic exposure to elevated UA 
levels can initiate the activation of the nuclear factor-kappa B (NF-κB) 
inflammatory signaling pathway, promoting the production of 
pro-inflammatory cytokines and leading to an inflammatory response 
(12). Notably, activation of NF-κB has been observed in the renal 
proximal tubule cells of HUA mice (14), and it can be modulated by a 
diverse array of cellular signaling cascades, including those involving 
peroxisome proliferator-activated receptors (PPARs), mitogen-
activated protein kinases (MAPK), and reactive oxygen species (ROS) 
(15). Previous studies have shown that PPARγ exhibits anti-
inflammatory properties by inhibiting the NF-κB signaling cascade 
and inflammatory mediators (16). These studies suggest that the PPAR 
and NF-κB pathways may be potential targets for mitigating renal 
inflammation and present a promising novel therapy for HUA-induced 
renal damage.

Phytochemicals isolated from Chinese medicinal and edible 
plants show compelling therapeutic effects against HUA, with fewer 
toxic and adverse reactions (9, 17). Notably, previous evidences 
have indicated that anthraquinone components possess the ability 
to reduce UA levels and alleviate inflammation (18). For instance, 
rhubarb acid, the main anthraquinone compound in Rheum 
palmatum, can decrease serum UA levels in adenine and 
ethambutol-induced HUA mouse models, and improve 
HUA-induced renal damage by suppressing inflammatory 
mediators (19). Moreover, emodin, another natural anthraquinone, 
also shows promise in the treatment of HUA and its associated gout, 
primarily by increasing renal uric acid excretion (20). Aloe-emodin 
(AOE) is an anthraquinone bioactive component, which is primarily 
sourced from Aloe vera, Rheum officinale, and Cassiae semen (21). 
AOE possesses extensive biological activities, including antioxidant 
(22), anticancer (23), and anti-inflammatory properties (24). 

Regarding its hypouricemic activity, AOE exhibits a strong 
inhibitory effect on xanthine oxidase (XOD) (25). XOD and 
adenosine deaminase (ADA) are critical purine degradation 
enzymes that convert hypoxanthine to xanthine, promoting uric 
acid production (26). Considering the potential beneficial effects of 
AOE, we hypothesize that it is a strong natural candidate for the 
therapeutic management of HUA and its related kidney 
complications. Nonetheless, to date, the therapeutic efficacy of AOE 
against HUA and HUA-induced kidney injury remains unclear, and 
its underlying mechanisms have not been thoroughly investigated 
or reported.

Our study aimed to assess the efficacy of AOE in treating 
HUA and associated renal impairment. To determine its mode of 
action, we conducted extensive transcriptome profiling and real-
time quantitative reverse transcription PCR (RT-qPCR) on renal 
tissue. The outcomes of this investigation may help advance AOE 
as a therapeutic option for hyperuricemia and its related 
renal complications.

2 Materials and methods

2.1 Chemicals and reagents

Aloe-emodin (AOE, B20772) was obtained from Yuanye 
Bio-Technology Co., Ltd. (Shanghai, China). Information regarding 
additional substances used, such as reagents, assay kits, and primers, 
is available in the Supplementary materials.

2.2 Animal experimental methods

All procedures involving animals were conducted in accordance 
with approval from the Animal Ethics Committee of Zhejiang 
University of Technology (Ethics No. ZH20250305040). Male ICR 
mice were purchased from Shanghai SLAC Laboratory Animal Co., 
Ltd. (Shanghai, China).

Following a one-week of acclimatization, mice were randomly 
divided into five groups (n = 10 per group; Figure 1A): a control 
group (CON, receiving 0.5% CMC-Na), a hyperuricemia model 
group (HUA, also receiving 0.5% CMC-Na), a low-dose AOE group 
(AOE_L, 50 mg/kg), a high-dose AOE group (AOE_H, 100 mg/kg), 
and a positive control group (ALLP, 10 mg/kg). To induce 
hyperuricemia, all groups except the control were administered 
adenine (0.1 g/kg, p.o.) and potassium oxonate (1.5 g/kg, p.o.) 
suspended in 0.5% CMC-Na daily for 4 weeks (27). The PO/
Ad-induced mouse model has been widely used for HUA 
establishment. The mice were then administered the corresponding 
drugs intragastrically after 3 h of Ad and PO treatment. The 
selection of AOE dosage was based on our preliminary experiment. 
Mice body weights were monitored once weekly. After 4 weeks of 
administration, the animals were fasted for 12 h, and then 
anesthetized via intraperitoneal injection of sodium pentobarbital 
at a dose of 50 mg/kg. Blood was collected from orbital venous 
plexus of mice, followed by euthanasia via cervical dislocation. 
Blood was centrifuged at 3500 rpm for 10 min at 4 °C to isolate 
serum, and organs, including the liver and kidneys, were excised 
and weighed. Serum, liver, and left kidney samples were frozen at 
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−80 °C; the right kidney was formalin-fixed and stained with 
hematoxylin and eosin (H&E) for histology.

2.3 Measurement of serum biochemical 
indices

Levels of serum UA, creatinine (Cr), and blood urea nitrogen 
(BUN) were quantified using an automatic biochemistry analyzer 
(Chemray 240, Rayto, China).

2.4 Assessment of XOD and ADA enzymatic 
activity

Liver samples were processed by blending one part of tissue with 
nine parts of physiological saline to produce a 10% (w/v) homogenate 
using a high-speed homogenizer. The resulting solution was 
centrifuged at 3,000 rpm for 15 min, and the supernatant collected. 
Enzymatic activities of XOD and ADA in liver homogenates and 
serum were quantified using commercially available kits, strictly 
following the manufacturer’s protocols.

2.5 Determination of inflammatory factors

Pro-inflammatory cytokine (IL-6, IL-1β, and TNF-α) 
concentrations in serum and kidney homogenates were determined 
via enzyme-linked immunosorbent assay (ELISA) according to the 

manufacturer’s recommended procedures. Cytokine levels in kidney 
samples were normalized against the total protein content of the 
corresponding homogenates.

2.6 Determination of oxidative stress levels

Kidney tissues were homogenized in PBS and centrifuged. The 
supernatant was then assessed for oxidative stress markers. Levels of 
MDA and the enzymatic activities of SOD, GSH-Px, and CAT in 
serum and kidney homogenates were measured using commercial 
assay kits.

2.7 Kidney histology

Kidney specimens were fixed in 10% neutral-buffered formalin for 
24 h, then subjected to standard paraffin embedding and H&E 
staining for histopathological examination. Tissue sections were 
analyzed under a light microscope to assess morphological changes 
and the degree of renal injury.

2.8 Molecular docking

Binding interactions between AOE and the target enzymes XOD 
and ADA were investigated through molecular docking simulations 
conducted using AutoDock Vina (28). The crystal structures of XOD 
(PDB ID 2HD1) and ADA (PDB ID 3IAR) were obtained from the 

FIGURE 1

Influence of AOE on serum uric acid level, body weight, and organ coefficients in HUA mice. (A) Schematic diagram depicting the experimental 
protocol in HUA mice; (B) Serum uric acid level; (C) Body weight changes; (D) Kidney and (E) Liver coefficient. Values are expressed as mean ± 
standard deviation (SD). ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 vs the CON group, and #p < 0.05, ##p < 0.01, ###p < 0.001 vs the HUA group.
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Protein Data Bank.1 Then, the pretreatment of enzyme molecules was 
performed, which includes cleaning, correcting, removing ligands and 
water, and adding hydrogen, using PyMOL software (version 3.0.3). 
The docking pocket of XOD was defined with coordinates 
center_x = −4.1, center_y = 15.6, center_z = −18.1, and ADA was 
defined with coordinates center_x = −3.1, center_y = 0.3, 
center_z = 0.3. Meanwhile, the docking grids were set to dimensions 
of 90 Å × 90 Å × 90 Å, with a spacing of 0.375. Subsequently, a genetic 
algorithm facilitated conformational exploration and evaluation, with 
docking scores guiding the selection of the most favorable structure 
for binding mode visualization in PyMOL.

2.9 Transcriptome analysis

Total RNA was isolated and purified using TRIzol reagent 
following the manufacturer’s procedure, and the quantity and purity 
of total RNA were analyzed using NanoDrop ND-1000 (NanoDrop, 
Wilmington, DE, USA), followed by electrophoresis with denaturing 
agarose gel to evaluate the RNA integrity. Library construction for 
transcriptome sequencing was prepared by using TruSeq Stranded 
mRNA Library Prep Kit. Then, 2 × 150 bp paired-end sequencing 
(PE150) were performed on an illumina Novaseq™ 6,000 at LC-Bio 
Technologies (Hangzhou) Co., Ltd. following the vendor’s 
recommended protocol.

The initial sequencing data underwent quality control to identify 
high-confidence gene transcripts, reads those contained adapters, 
those with >20% low-quality bases, those containing poly A and G, 
and those undetermined bases were removed with fastp software2. The 
expression levels of transcripts were then quantified using Feature 
Counts.3 To identify differentially expressed genes (DEGs) between 
groups, RSEM4 was used to generate transcript per million (TPM) 
values at the gene level, and DESeq2 was applied to screen for DEGs 
with log2FC > 1.5, p < 0.05, and false discovery rate (FDR) < 0.05. 
Subsequently, we  conducted functional annotation and pathway 
enrichment of DEGs using Gene Ontology (GO)5 and Kyoto 
Encyclopedia of Genes and Genomes (KEGG), applying 
hypergeometric distribution methods for analysis of the DEGs. 
Moreover, correlation analysis, principal coordinate analysis (PCoA), 
and hierarchical clustering heatmaps were generated using tools 
available on OmicStudio.6

2.10 RT-qPCR validation of DEGs

RNA was extracted from kidney tissues, and cDNA was 
synthesized using a high-capacity cDNA reverse transcription kit 
(Thermo Fisher Scientific). Subsequently, gene expression levels were 
quantified utilizing a SYBR Green-based real-time PCR platform 
(Invitrogen). Primer sequences were custom-synthesized by Shanghai 

1  https://www.rcsb.org/

2  https://github.com/OpenGene/fastp

3  http://bioinf.wehi.edu.au/featureCounts/

4  http://deweylab.github.io/RSEM

5  http://www.geneontology.org/

6  https://www.omicstudio.cn/tool

Sangon Biotech and are provided in Supplementary Table S1. Relative 
quantification of gene expression was calculated with the ΔΔCt 
method; GAPDH was the internal control.

2.11 Statistical analysis

All statistical evaluations were conducted using GraphPad Prism 
(version 9, Inc., La Jolla, CA, USA). One-way ANOVA followed by 
Dunnett’s test was applied for group-level comparisons. Data are 
presented as mean ± SEM, and statistical significance was defined as 
p < 0.05.

3 Results

3.1 AOE lowers serum urate levels in 
hyperuricemic mice

To evaluate the urate-lowering potential of AOE, we established a 
hyperuricemia mouse model by administering potassium oxonate 
(PO) and adenine (Ad) orally daily for 4 weeks (Figure  1A). 
Concurrently, AOE was given orally at doses of 50 or 100 mg/kg to 
assess its therapeutic efficacy in this model. PO/Ad administration 
significantly increased mice UA serum levels relative to the control 
group (99.76 vs. 140.15 μmol/L, p < 0.01) (Figure 1B). HUA mice 
treated with high doses of AOE (100 mg/kg) and allopurinol (10 mg/
kg) mitigated hyperuricemia in mice (p < 0.01), as evidenced by 
reductions in serum UA levels of 28.4 and 42.1% in the AOE_H and 
ALLP groups, respectively.

3.2 AOE reverses alterations in body weight 
and organ indices in HUA mice

Body weight and organ-to-body weight ratios were measured to 
evaluate systemic health and organ impairment in the HUA model 
(29). Compared to control animals, mice in the hyperuricemia group 
exhibited a substantial decrease in body weight (p < 0.001, Figure 1C) 
and a marked increase in the kidney coefficient (p < 0.05, Figure 1D). 
AOE intervention prevented weight loss in HUA mice (p < 0.05) 
(Figure 1C). By contrast, the kidney coefficient in the AOE_L and 
AOE_H groups did not differ from control animals, suggesting that 
AOE effectively reduced kidney enlargement. Moreover, liver 
coefficient measurements showed no difference between the HUA, 
AOE_L, AOE_H, and control groups (Figure  1E). Interestingly, 
treatment with allopurinol led to a statistically significant decline in 
the liver coefficient versus controls (p < 0.05), suggesting that 
allopurinol may contribute to hepatic injury.

3.3 AOE improves purine metabolism in 
HUA mice

Hepatic ADA and XOD are crucial enzymes involved in purine 
catabolism, contributing to the formation of UA (30). Liver samples 
from HUA mice exhibited significantly elevated activities of XOD and 
ADA versus control animals (p < 0.01) (Figures 2A,B). Treatment with 

https://doi.org/10.3389/fnut.2025.1677560
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.rcsb.org/
https://github.com/OpenGene/fastp
http://bioinf.wehi.edu.au/featureCounts/
http://deweylab.github.io/RSEM
http://www.geneontology.org/
https://www.omicstudio.cn/tool


Wang et al.� 10.3389/fnut.2025.1677560

Frontiers in Nutrition 05 frontiersin.org

AOE (low- and high doses) (AOE_L and AOE_H) markedly reduced 
XOD and ADA enzyme activity (p < 0.05), indicating that the urate-
lowering effect of AOE may be partially attributed to inhibition of 
ADA and XOD.

To evaluate the binding interactions between AOE and the target 
enzymes XOD and ADA, we performed molecular docking analysis. 
In general, a lower affinity value between a ligand and receptor 
indicates a stronger binding affinity, with binding energy below 
−6.0 kcal/mol indicating the formation of a stable ligand-receptor 
complex (31). In this study, the binding energies were calculated to 
be −9.2 kcal/mol for XOD and −7.3 kcal/mol for ADA, indicating a 
strong affinity of AOE for both proteins. Docking simulations revealed 
that AOE forms hydrogen bonds with Lys255, Leu256, Ala300, and 
Leu403 residues of XOD, and with Leu62, His157, and Asp185 
residues of ADA (Figures 2C,D).

3.4 AOE ameliorates renal injury in HUA 
mice

To evaluate renal function in HUA mice, we measured BUN and 
Cr levels in serum. The HUA group showed significant increases in 
BUN (41.50 vs. 9.79 mmol/L) and Cr (68.48 vs. 19.69 μmol/L) 
compared to controls, confirming kidney impairment (Figures 3A,B). 
AOE-exposure produced a dose-dependent decrease in serum BUN 
and Cr levels (p < 0.001), indicating renal protective effects.

Histopathological analysis revealed distinct alterations in kidney 
morphology following long-term PO/Ad exposure (13). To evaluate 
the influence of AOE on renal histopathology in HUA mice, kidney 
tissue sections were examined microscopically. In the control group, 
renal cells appeared well-organized with preserved structural 
integrity, showing no tubular vacuolar dilatation, inflammatory cell 
infiltration, or glomerular degeneration (Figure 3C). By contrast, the 

HUA group exhibited glomerular atrophy, marked renal tubular 
lumen dilatation, and pronounced inflammatory infiltration. These 
outcomes were not significantly improved by allopurinol treatment; 
however, AOE intervention restored renal tissue structure and 
reduced pathological features. Administration of AOE at 100 mg/kg 
AOE (AOE_H) produced the most significant improvement in 
kidney damage, with tissue anatomy comparable to control animals. 
Consistent with the results of H&E staining, kidneys from HUA mice 
exhibited a pale coloration, noticeable swelling, coarse texture, and 
were covered with prominent white granules on the surface. 
However, following treatment with 100 mg/kg AOE, the kidneys 
returned to a healthy reddish tone and smooth surface (Figure 3D). 
These data demonstrate that AOE confers renal protection in PO/
Ad-induced HUA mice, with greater efficacy observed at the higher 
dosage level.

3.5 AOE reduces renal inflammation in HUA 
mice

Under hyperuricemic conditions, renal tissue cells (epithelial 
cells, mesangial cells, endothelial cells, and tubular cells) release 
IL-6, IL-1β, and TNF-α, which promote immune cell infiltration, 
exacerbating renal injury. In the HUA group, IL-6, IL-1β, and 
TNF-α levels in serum were significantly higher than in control 
animals (p < 0.001, Figures 4A–C). AOE administration led to a 
marked decline in cytokine levels, with the most substantial 
reductions observed in the high-dose group. In kidney tissue, IL-6, 
IL-1β, and TNF-α were significantly upregulated in HUA mice 
(p < 0.01, Figures  4D–F), but these increases were substantially 
attenuated in the AOE_H group (p < 0.05). Allopurinol did not 
restore IL-1β and TNF-α expression in the kidney (p > 0.05 vs. 
HUA-treated animals), and even appeared to increase IL-6 levels. 

FIGURE 2

Improvement of purine metabolism in HUA mice by AOE treatment. (A) Liver XOD activity; (B) Liver ADA activity; (C) Docking results of AOE and XOD; 
(D) Docking results of AOE and ADA. Values are expressed as mean ± standard deviation (SD). ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 vs the CON group, and 
#p < 0.05, ##p < 0.01, ###p < 0.001 vs the HUA group.
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These findings further demonstrate that AOE effectively inhibits 
renal inflammation and contributes to the structural recovery of 
kidney tissue in HUA mice.

3.6 AOE modulates redox balance in HUA 
mice

Elevated UA disrupts the redox equilibrium in renal tissues, 
leading to oxidative stress within the kidneys (32). To investigate 
the antioxidant effects of AOE, the activities SOD, CAT, and 
GSH-Px along with malondialdehyde (MDA) levels were measured 
in HUA mice. Serum from the HUA group showed reduced 
activities of these enzymes, while MDA concentrations were 
significantly higher in HUA mice than in controls (p < 0.05) 
(Figures 5A−D). A similar pattern was observed in kidney tissues, 
where antioxidant enzyme activities decreased and MDA levels 
were elevated in HUA mice (Figures 5E−H), signifying that HUA 
induces oxidative stress in vivo.

Antioxidant enzyme activities and MDA levels in kidney tissues 
consistently showed the same trend. These results indicate that after 
AOE intervention, the decline in activities in renal CAT, SOD, and 
GSH-Px caused by HUA was restored. Concurrently, the increase in 
MDA level was also reversed by AOE, as shown by 77.4 and 35.2% 

reduction in serum (Figure  5D) and kidney tissue (Figure  5H), 
respectively, post 50 mg/kg AOE treatment. By contrast, treatment 
with allopurinol had no significant effect on CAT, SOD, or GSH-Px 
activities, nor MDA levels in renal tissue from hyperuricemic mice 
(p > 0.05).

3.7 Transcriptome analysis

3.7.1 Transcriptome sequencing and assembly
Furthermore, transcriptome sequencing (RNA-seq) was 

conducted from control, HUA, and AOE_H mice to investigate the 
molecular basis underlying the protective effects of AOE against 
HUA-induced renal injury. After filtering the adaptor sequences and 
low-quality sequences, 87.73 GB of clean data was obtained. Base 
quality scores over 30 ranged from 99.28 to 99.37%, indicating 
sufficient read quality (Supplementary Table S1). To assess the 
reliability of the experiment, the correlation coefficient between 
samples was calculated (Supplementary Figure S1). PCoA showed that 
control and HUA-treated animals exhibited distinct clustering and 
significant separation, indicating substantial alterations in gene 
expression between HUA and control mice. However, the genetic 
profile of the AOE_H group tended to converge with that of the 
control group (Supplementary Figure S2).

FIGURE 3

Improvement of kidney injury in HUA mice by AOE treatment. (A) Serum creatinine level; (B) Blood urea nitrogen level; (C) Kidney tissues morphology 
assessed by hematoxylin and eosin (H&E) staining; (D) Digital images of the renal photographs. Values are expressed as mean ± standard deviation (SD). 
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 vs the CON group, and #p < 0.05, ##p < 0.01, ###p < 0.001 vs the HUA group.
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3.7.2 DEG screening
Using thresholds of log2FC over 1.5 and p-value below 0.05, 5,645 

DEGs were identified between the HUA and control groups, comprising 
4,548 transcripts with increased expression, and 1,097 with decreased 
expression (Figure 6A; Supplementary Table S3). In the AOE_H versus 
HUA comparison, 902 transcripts displayed elevated expression 
levels, while 1,754 showed reduced expression (Figure  6B; 

Supplementary Table S4). A total of 2,307 genes were common between 
the HUA vs. CON and AOE_H vs. HUA comparisons based on Venn 
analysis, accounting for 38.49% of the total (Figure 6C). Hierarchical 
clustering of these shared genes revealed that the transcriptional profile 
in HUA animals was opposite to control mice. This dysregulated pattern 
was normalized following AOE treatment (Figure 6D), indicating that 
AOE restored the disrupted gene expression profile caused by HUA.

FIGURE 5

AOE ameliorated oxidative stress in HUA mice. Serum (A) SOD, (B) CAT, and (C) GSH-Px activity; (D) Serum MDA level; The SOD (E), CAT (F), and GSH-
Px (G) activity in kidney tissue; (H) MDA level in kidney tissue. Values are expressed as mean ± standard deviation (SD). ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 
vs the CON group, and #p < 0.05, ##p < 0.01, ###p < 0.001 vs the HUA group.

FIGURE 4

AOE ameliorated the inflammatory response in HUA mice. Serum (A) IL-6, (B) IL-1β, and (C) TNF-α concentrations, and the (D) IL-6, (E) IL-1β, and 
(F) TNF-α concentrations in kidney tissue. Values are expressed as mean ± standard deviation (SD). ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 vs the CON group, 
and #p < 0.05, ##p < 0.01, ###p < 0.001 vs the HUA group.
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3.7.3 Enrichment analysis
To further explore the functional roles of the shared DEGs, 

enrichment analysis was carried out using the GO and KEGG 
databases. Numerous signaling pathways involved in inflammatory 
processes and redox imbalance were significantly enriched. GO 
analysis revealed significant involvement in biological processes, 
including interleukin-6 regulation, inflammatory response, immune 
activation, and oxidoreductase function (Figure  7A). KEGG 
pathway analysis further indicated strong associations with 
immune-related cascades, including cytokine-cytokine receptor 

interactions, TNF and IL-17 signaling, and the PPAR pathway 
(Figure  7B). GSEA demonstrated that AOE administration 
suppressed the activation of pro-inflammatory pathways in HUA 
mice, while simultaneously restoring activity within the PPAR 
pathway (Figure  7C). These results suggest that the therapeutic 
efficacy of AOE in HUA-induced renal impairment is primarily 
mediated through the modulation of inflammatory and oxidative 
stress mechanisms.

Surprisingly, the expression of genes related to cytokine-
cytokine receptor interactions and inflammatory signaling 

FIGURE 6

AOE treatment restored the transcript profiling in HUA mice. (A) Volcano plot of the DEGs between HUA and CON; (B) Volcano plot of the DEGs 
between AOE_H and HUA; (C) Venn diagram of gene expression between HUA vs. CON, and AOE_H vs. HUA; (D) The hierarchical clustering heatmap 
of overlapped DEGs in HUA vs. CON and AOE_H vs. HUA groups.
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cascades, such as CCL2, Cxcl5, MMP9, Nfkb1, and RelA, 
was markedly increased in HUA mice (Figure  7D). By 
contrast, AOE administration reduced inflammatory marker 
expression, suggesting that AOE mitigates renal injury primarily 
through the modulation of inflammation-associated pathways. 
Moreover, the down-regulated Pparα, Cpt2, and the Pparg genes 
in the PPAR signaling pathway of HUA mice were restored by 
AOE treatment.

3.8 RT-qPCR validation of DEGs

To confirm the transcriptomic findings, representative DEGs 
associated with TNF signaling pathway, IL-17 signaling pathway, 
and the PPAR pathway were chosen for validation by 
RT-qPCR. Gene expression profiles obtained from RT-qPCR fully 
mirrored the trends from the RNA-seq data (Figure  8). This 
alignment between the two datasets reinforces transcriptomic data 
robustness and reliability.

4 Discussion

Chronic HUA levels typically result in renal function damage 
because the kidneys struggle to filter out excess UA. This promotes the 
formation of urate crystals (33), which can adhere to kidney tubules, 
triggering inflammation and subsequent renal injury (34), potentially 
causing HN (10). On the other hand, elevated uric acid levels contribute 
to the overproduction of reactive oxygen species, leading to cellular 
oxidative imbalance and tissue injury (9). Increasing evidence shows 
that inflammatory processes and oxidative stress are central drivers in 
the pathological transition from HUA to HN (35). In this context, 
natural, plant-derived bioactive compounds with antioxidant and anti-
inflammatory properties have attracted increasing attention as 
alternatives for managing HUA while protecting against renal injury 
(9, 13). Aloe-emodin (AOE), the primary anthraquinone constituent 
derived from aloe and rhubarb, contains antioxidant, anti-
inflammatory, antibacterial, and hepatoprotective properties (24, 36). 
This suggests that AOE has the potential to be a natural candidate 
against HUA and HUA-induced kidney injury.

FIGURE 7

GO (A) and KEGG (B) pathway enrichment of DEGs; (C) Gene set enrichment analysis (GSEA) of cytokine−cytokine receptor interaction, TNF signaling 
pathway, IL-17 signaling pathway, and PPAR signaling pathway between AOE_H vs. HUA group; (D) Heatmap of the relevant gene expression from 
cytokine−cytokine receptor interaction, TNF signaling pathway, IL-17 signaling pathway, and PPAR signaling pathway.
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The PO/Ad-induced mouse model reliably replicates 
HUA-associated renal dysfunction, making it an indispensable 
method for researchers aiming to conduct in-depth investigations into 
the pathophysiology of HN (37). Our results show that AOE decreases 
serum UA levels in the PO/Ad-induced HUA mouse model. Our data 
further demonstrate that AOE treatment suppressed the activities of 
XOD and ADA elevated by PO/Ad exposure. Similarly, Meng et al. 
reported that rhubarb acid, an anthraquinone compound derived 
from Rheum palmatum, also exhibited a UA-lowering effect by 
inhibiting XOD activity (post 70–300 mg/kg/d) (19). Notably, XOD 
and ADA are critical enzymes in the liver that significantly influence 
UA synthesis, with XOD serving as a major regulator of systemic uric 
acid production (38, 39). Allopurinol, an XOD inhibitor, is among the 
most effective clinical treatments for HUA (40), but is therapeutically-
restrictive as it may produce liver and kidney toxicity (11, 41). In our 
investigation, evaluation of systemic toxicity through measurements 
of body weight and organ indices, specifically for the kidneys and liver, 
demonstrated that AOE exhibited favorable safety characteristics 
while also alleviating hyperuricemia and exerting protective effects on 
organ health.

A growing body of research increasingly supports a close 
association between HUA and renal damage. Elevated levels of BUN 
and serum creatinine are key indicators of impaired renal function 
(26). Renal injury decreases the clearance of urea and creatinine, thus 
as evidenced by increasing levels of BUN and serum Cr (42). This 
study demonstrated that treatment with AOE effectively reduced BUN 
and serum Cr levels, indicating its kidney-protective effect in HUA 
mice. Furthermore, the histopathological analysis using H&E staining 
confirmed that HUA status led to kidney tissue deterioration. 
However, the administration of AOE resulted in a remarkable 

transformation. The intervention was observed to restore the integrity 
of renal tissue structure, significantly reducing the pathological 
features indicative of renal distress. These results suggest that AOE was 
nephroprotective in PO/Ad-induced hyperuricemic mice.

Excessive UA levels in the body trigger the innate immune system, 
leading to a cascade of adverse effects on renal cell morphology and 
function. In general, this process begins with immune system 
activation, which subsequently triggers the secretion of inflammatory 
mediators (43). In our study, PO/Ad exposure induced an 
inflammatory response in HUA mice, as evidenced by increasing 
serum and renal proinflammatory cytokines levels. AOE significantly 
suppressed high proinflammatory cytokine levels, ameliorating 
inflammatory responses in HUA mice (Figure  4). Furthermore, 
mounting evidence suggests that oxidative injury, driven by elevated 
uric acid levels, is a key contributor to renal cellular damage and 
inflammation (44). Under normal conditions, maintaining an 
appropriate level of UA is conducive to eliminating reactive oxygen 
species (45). However, elevated blood UA levels increase oxidase 
activity and decrease SOD function, leading to oxidative tissue 
damage (46, 47). As demonstrated in this study, oxidative injury was 
noticed in the kidneys of PO/Ad-induced HUA mice (Figure  5). 
Similar studies have consistently reported significant oxidative damage 
to HUA mice, characterized by increased MDA accumulation and 
diminished activity of key antioxidant enzymes (9). Therefore, 
targeting oxidative stress pathways has emerged as a promising 
strategy for mitigating HUA-associated kidney injury (47). For 
example, Qian et al. demonstrated that linarin (dose of 120 mg/kg/d), 
the flavonoids compounds in Chrysanthemum indicum L., could 
alleviate oxidative stress of HUA mice, thereby delaying the 
progression of HN (9). Chen et al. demonstrated that the flavonoid 

FIGURE 8

The transcriptome-revealed FPKM values of the DEGs. (A) p65/RelA; (B) NF-κB1/p50; (C) PPARα; (D) Cpt2. Values are expressed as mean ± standard 
deviation (SD). ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 vs the CON group, and #p < 0.05, ##p < 0.01, ###p < 0.001 vs the HUA group.
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extracts from saffron by-product could effectively improve the 
symptom of kidney injury in HUA rat via enhancing antioxidant 
capacity (48). In this study, AOE treatment (post 50–100 mg/kg/d) 
significantly reversed the increased MDA levels and the decreased 
antioxidant levels in HUA mice, suggesting a regulatory effect on 
oxidative damage. In summary, our results provide compelling 
evidence that AOE confers renal protection in the PO/Ad-induced 
HUA mouse model by reducing inflammation and oxidative stress.

Our transcriptome RNA sequence results also show that the 
molecular mechanisms of AOE against HUA-induced renal injury 
linked to inflammatory responses and oxidative stress. Key regulatory 
pathways implicated in these molecular events include the IL-17 axis, 
TNF signaling, and PPAR pathways. Among them, the TNF cascade 
plays a critical role in modulating immune activity and orchestrating 
inflammatory processes (49, 50). Furthermore, IL-17, a cytokine 
predominantly released by Th17 cells, increases NF-κB signaling 
activity and promotes the production of pro-inflammatory mediators 
within renal epithelial and endothelial tissues (26). Importantly, 
hyperuricemic conditions were associated with upregulation of the 
RelA and Nfkb1 genes, core elements of the TNF and IL-17 signaling 
networks. Treatment with AOE effectively normalized this aberrant 
gene expression. RelA and Nfkb1 are important members of the NF-κB 
family that regulate a broad spectrum of biological functions, 
encompassing immune surveillance, inflammatory regulation, and 
programmed cell death (51). Typically, the NF-κB complex consists of 
a heterodimer composed of p65 (RelA) and p50 (Nfkb1) subunits (52). 
Once activated, this dimer drives the transcription of pro-inflammatory 
effectors, perpetuating cellular inflammation (53). Our transcriptomic 
analyses revealed that AOE substantially suppressed RelA and Nfkb1 
expression, a finding further validated by RT-qPCR, which showed 
significant declines in p65/RelA and NF-κB1/p50 transcript levels 
following AOE administration in HUA mice.

Biological activities within cells are often governed by coordinated 
networks of numerous interacting genes that function in concert to 
regulate cellular processes. Natural phytochemicals, particularly those 
derived from medicinal plants, are recognized for their ability to 

modulate multiple molecular targets and signaling pathways 
concurrently. For example, quercetin mitigates renal inflammation by 
reducing TNF-α and IL-1β levels through reactive oxygen species 
(ROS)-dependent mitogen-activated protein kinase (MAPK) and 
NF-κB signaling (39). In this study, AOE demonstrated multi-targeted 
therapeutic potential in ameliorating kidney damage induced by HUA 
(Figure  9). Beyond its influence on IL-17 and TNF-associated 
pathways, AOE also regulated genes involved in the PPAR axis in HUA 
mice. Transcriptomics data revealed increased expression of key PPAR 
pathway components, including Pparα, Cpt2, and Pparg in AOE-treated 
mice. The PPAR system coordinates lipid metabolism, attenuates 
oxidative stress, and modulates immune responses (54). Activation of 
PPARα and PPARγ improves oxidative stress and inhibits the Th17-
mediated inflammatory response (55, 56). RT-qPCR confirmed that 
AOE increased PPARα, Cpt2, and PPARγ mRNA levels in kidney tissue 
from HUA mice. Furthermore, PPARγ activation negatively regulates 
NF-κB p65 activity, thereby dampening pro-inflammatory cytokine 
production and improving tissue inflammation (54). Our results 
consistently showed that AOE treatment upregulated PPARγ 
transcription while concurrently downregulating p65/RelA and 
NF-κB1/p50 mRNA expression in HUA mice, suggesting that its 
renoprotective actions may be mediated through modulation of the 
PPAR/NF-κB signaling axis. However, there are some limitations of 
this study that need to be  addressed. First, this study conducted 
preclinical study using HUA mouse model to investigate the possible 
efficacy of AOE in the treatment of HUA-induced renal injury. Due to 
the significant interspecies differences between rodents and humans, 
the translational value of preclinical models is limited (18). Therefore, 
more experimental studies, such as clinical data, pharmacokinetics, 
toxicity, and safety data are needed in the future. Besides, although 
RT-qPCR confirmed that AOE increased mRNA expression of related 
genes involving PPAR and NF-κB pathways, further protein-level 
evidence (e.g., western blotting or immunohistochemistry) should 
be conduct to validate the proposed molecular mechanisms. Moreover, 
further functional gene validation (e.g., PPAR/NF-κB inhibitors or the 
gene knockdown) are needed to confirm our results in the future.

FIGURE 9

The potential mechanism underlying the protective effects of AOE against hyperuricemia and renal injury.
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5 Conclusion

In the current study, we conducted a preclinical study to assess the 
efficacy of AOE in treating HUA and its associated renal injury. AOE 
administration suppressed XOD and ADA activity in HUA mice, 
reduced serum uric acid concentrations, improved inflammation and 
oxidative stress, and alleviated the HUA-induced renal injury. 
Furthermore, AOE conferred substantial nephroprotective effects in 
HUA mice, mainly through its regulatory influence on oxidative 
imbalance and inflammation targeting PPAR/NF-κB signaling axis. In 
summary, our results indicate that AOE is a promising plant-derived 
therapeutic with a favorable safety profile for managing HUA and its 
associated renal complications. However, in-depth investigations and 
further studies are needed in the future to validate the application of 
AOE in the treatment of HUA and its associated renal injury.
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