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of Pharmacy, Hangzhou Normal University, Hangzhou, China

Background: Aloe-emodin (AOE), the principal anthraquinone constituent
derived from aloe and rhubarb, exhibits antioxidant and anti-inflammatory
properties, suggesting its therapeutic potential against hyperuricemia (HUA) and
associated renal injury. Here, we investigated the potential of AOE in mitigating
HUA and related kidney damage, with a focus on its underlying biological
mechanisms.

Methods: A HUA mouse model was established by oral gavage of potassium
oxonate (PO, 1.5 g/kg) and adenine (Ad, 0.1 g/kg). Serum uric acid (UA) levels,
kidney function indicators, histological changes, inflammatory response, and
oxidative stress state were assessed to evaluate the urate-lowering and kidney-
protective roles of AOE. Furthermore, transcriptomic profiling and RT-gPCR
analysis were employed to investigate how AOE contributes to UA reduction
and renal protection.

Results: AOE lowered serum UA levels and inhibited xanthine oxidase and
adenosine deaminase activity. Moreover, AOE improved kidney function
indicators (reflected by reductions in serum creatinine and blood urea nitrogen
levels), restored the integrity of renal tissue structure, and mitigated inflammation
and oxidative stress in HUA-exposed animals. Transcriptomic analysis revealed
2,307 differentially expressed key genes associated with AOE against HUA in
kidney. Furthermore, AOE downregulated p65/RelA and NF-kB1/p50 transcript
levels, while increasing PPARa, PPARy, and CPT2 expression.

Conclusion: AOE effectively lowered serum UA levels, and exhibited
renal protection in the PO/Ad-induced HUA mouse model by dampening
inflammatory signaling and restoring redox equilibrium, likely through the PPAR
and NF-kB pathways. This study demonstrated that AOE is a promising natural
candidate with a desirable safety profile for treating HUA and renal injury, and
more experimental validation are needed in the future.
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1 Introduction

Hyperuricemia (HUA) is a metabolic disorder caused by either
purine metabolism dysfunction or insufficient uric acid clearance. It
is the world’s second most common metabolic condition after diabetes
(1, 2). Among Chinese adults, reported rates of HUA are 24.4% in
males and 3.6% in females (3), with an increasing prevalence among
younger individuals (4). Over the past few decades, with changes in
lifestyle and dietary patterns, including the consumption of purine-
rich and protein-heavy diets, HUA and its complications, such as gout,
hyperuricemic nephropathy (HN), and renal failure, have been
increasing rapidly (3, 5). Moreover, HUA is associated with the
development of multiple target organ damage (6), with HN being the
most common consequence, as the kidney is the primary organ for
the excretion and reabsorption of UA (7, 8). Emerging evidence
suggests that HUA directly induces renal pathologies, including acute
and chronic kidney impairments, and may also promote advancement
to end-stage renal disease (9, 10). However, effective strategies for
HUA management remain missing. Currently, HUA treatment focuses
on suppressing the generation of UA (febuxostat, allopurinol) and
promoting the excretion of UA (benzbromarone) (9, 11). However,
uric acid-lowering drugs may exacerbate hepatic and renal damage
because of side effects like hepatic/renal dysfunction and
gastrointestinal adverse reactions. This highlights the need to develop
treatments with improved safety and efficacy for HUA and its
associated renal complications.

HUA-induced renal damage is frequently accompanied by
inflammatory responses (12, 13). Chronic exposure to elevated UA
levels can initiate the activation of the nuclear factor-kappa B (NF-kB)
inflammatory signaling pathway, promoting the production of
pro-inflammatory cytokines and leading to an inflammatory response
(12). Notably, activation of NF-kB has been observed in the renal
proximal tubule cells of HUA mice (14), and it can be modulated by a
diverse array of cellular signaling cascades, including those involving
peroxisome proliferator-activated receptors (PPARs), mitogen-
activated protein kinases (MAPK), and reactive oxygen species (ROS)
(15). Previous studies have shown that PPARy exhibits anti-
inflammatory properties by inhibiting the NF-kB signaling cascade
and inflammatory mediators (16). These studies suggest that the PPAR
and NF-kB pathways may be potential targets for mitigating renal
inflammation and present a promising novel therapy for HUA-induced
renal damage.

Phytochemicals isolated from Chinese medicinal and edible
plants show compelling therapeutic effects against HUA, with fewer
toxic and adverse reactions (9, 17). Notably, previous evidences
have indicated that anthraquinone components possess the ability
to reduce UA levels and alleviate inflammation (18). For instance,
rhubarb acid, the main anthraquinone compound in Rheum
palmatum, can decrease serum UA levels in adenine and
ethambutol-induced HUA mouse
HUA-induced renal damage by suppressing inflammatory

models, and improve
mediators (19). Moreover, emodin, another natural anthraquinone,
also shows promise in the treatment of HUA and its associated gout,
primarily by increasing renal uric acid excretion (20). Aloe-emodin
(AOE) is an anthraquinone bioactive component, which is primarily
sourced from Aloe vera, Rheum officinale, and Cassiae semen (21).
AOE possesses extensive biological activities, including antioxidant
(22), anticancer (23), and anti-inflammatory properties (24).
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Regarding its hypouricemic activity, AOE exhibits a strong
inhibitory effect on xanthine oxidase (XOD) (25). XOD and
adenosine deaminase (ADA) are critical purine degradation
enzymes that convert hypoxanthine to xanthine, promoting uric
acid production (26). Considering the potential beneficial effects of
AOE, we hypothesize that it is a strong natural candidate for the
therapeutic management of HUA and its related kidney
complications. Nonetheless, to date, the therapeutic efficacy of AOE
against HUA and HUA-induced kidney injury remains unclear, and
its underlying mechanisms have not been thoroughly investigated
or reported.

Our study aimed to assess the efficacy of AOE in treating
HUA and associated renal impairment. To determine its mode of
action, we conducted extensive transcriptome profiling and real-
time quantitative reverse transcription PCR (RT-qPCR) on renal
tissue. The outcomes of this investigation may help advance AOE
as a therapeutic option for hyperuricemia and its related
renal complications.

2 Materials and methods
2.1 Chemicals and reagents

Aloe-emodin (AOE, B20772) was obtained from Yuanye
Bio-Technology Co., Ltd. (Shanghai, China). Information regarding
additional substances used, such as reagents, assay kits, and primers,
is available in the Supplementary materials.

2.2 Animal experimental methods

All procedures involving animals were conducted in accordance
with approval from the Animal Ethics Committee of Zhejiang
University of Technology (Ethics No. ZH20250305040). Male ICR
mice were purchased from Shanghai SLAC Laboratory Animal Co.,
Ltd. (Shanghai, China).

Following a one-week of acclimatization, mice were randomly
divided into five groups (n = 10 per group; Figure 1A): a control
group (CON, receiving 0.5% CMC-Na), a hyperuricemia model
group (HUA, also receiving 0.5% CMC-Na), a low-dose AOE group
(AOE_L, 50 mg/kg), a high-dose AOE group (AOE_H, 100 mg/kg),
and a positive control group (ALLP, 10 mg/kg). To induce
hyperuricemia, all groups except the control were administered
adenine (0.1 g/kg, p.o.) and potassium oxonate (1.5 g/kg, p.o.)
suspended in 0.5% CMC-Na daily for 4 weeks (27). The PO/
Ad-induced mouse model has been widely used for HUA
establishment. The mice were then administered the corresponding
drugs intragastrically after 3h of Ad and PO treatment. The
selection of AOE dosage was based on our preliminary experiment.
Mice body weights were monitored once weekly. After 4 weeks of
administration, the animals were fasted for 12h, and then
anesthetized via intraperitoneal injection of sodium pentobarbital
at a dose of 50 mg/kg. Blood was collected from orbital venous
plexus of mice, followed by euthanasia via cervical dislocation.
Blood was centrifuged at 3500 rpm for 10 min at 4 °C to isolate
serum, and organs, including the liver and kidneys, were excised
and weighed. Serum, liver, and left kidney samples were frozen at
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Influence of AOE on serum uric acid level, body weight, and organ coefficients in HUA mice. (A) Schematic diagram depicting the experimental
protocol in HUA mice; (B) Serum uric acid level; (C) Body weight changes; (D) Kidney and (E) Liver coefficient. Values are expressed as mean +
standard deviation (SD). *p < 0.05, **p < 0.01, **p < 0.001 vs the CON group, and *p < 0.05, #p < 0.01, **#p < 0.001 vs the HUA group.
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—80 °C; the right kidney was formalin-fixed and stained with
hematoxylin and eosin (H&E) for histology.

2.3 Measurement of serum biochemical
indices

Levels of serum UA, creatinine (Cr), and blood urea nitrogen
(BUN) were quantified using an automatic biochemistry analyzer
(Chemray 240, Rayto, China).

2.4 Assessment of XOD and ADA enzymatic
activity

Liver samples were processed by blending one part of tissue with
nine parts of physiological saline to produce a 10% (w/v) homogenate
using a high-speed homogenizer. The resulting solution was
centrifuged at 3,000 rpm for 15 min, and the supernatant collected.
Enzymatic activities of XOD and ADA in liver homogenates and
serum were quantified using commercially available kits, strictly
following the manufacturer’s protocols.

2.5 Determination of inflammatory factors

Pro-inflammatory cytokine (IL-6, IL-1f, and TNF-a)
concentrations in serum and kidney homogenates were determined

via enzyme-linked immunosorbent assay (ELISA) according to the
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manufacturer’s recommended procedures. Cytokine levels in kidney
samples were normalized against the total protein content of the
corresponding homogenates.

2.6 Determination of oxidative stress levels

Kidney tissues were homogenized in PBS and centrifuged. The
supernatant was then assessed for oxidative stress markers. Levels of
MDA and the enzymatic activities of SOD, GSH-Px, and CAT in
serum and kidney homogenates were measured using commercial
assay Kits.

2.7 Kidney histology

Kidney specimens were fixed in 10% neutral-buffered formalin for
24 h, then subjected to standard paraffin embedding and H&E
staining for histopathological examination. Tissue sections were
analyzed under a light microscope to assess morphological changes
and the degree of renal injury.

2.8 Molecular docking

Binding interactions between AOE and the target enzymes XOD
and ADA were investigated through molecular docking simulations
conducted using AutoDock Vina (28). The crystal structures of XOD
(PDB ID 2HD1) and ADA (PDB ID 3IAR) were obtained from the
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Protein Data Bank.! Then, the pretreatment of enzyme molecules was
performed, which includes cleaning, correcting, removing ligands and
water, and adding hydrogen, using PyMOL software (version 3.0.3).
The docking pocket of XOD was defined with coordinates
center_x = —4.1, center_y = 15.6, center_z = —18.1, and ADA was
defined  with
center_z = 0.3. Meanwhile, the docking grids were set to dimensions
of 90 A x 90 A x 90 A, with a spacing of 0.375. Subsequently, a genetic
algorithm facilitated conformational exploration and evaluation, with

coordinates center_x = —3.1, center_y = 0.3,

docking scores guiding the selection of the most favorable structure
for binding mode visualization in PyMOL.

2.9 Transcriptome analysis

Total RNA was isolated and purified using TRIzol reagent
following the manufacturer’s procedure, and the quantity and purity
of total RNA were analyzed using NanoDrop ND-1000 (NanoDrop,
Wilmington, DE, USA), followed by electrophoresis with denaturing
agarose gel to evaluate the RNA integrity. Library construction for
transcriptome sequencing was prepared by using TruSeq Stranded
mRNA Library Prep Kit. Then, 2 x 150 bp paired-end sequencing
(PE150) were performed on an illumina Novaseq™ 6,000 at LC-Bio
Technologies (Hangzhou) Co., Ltd. following the vendor’s
recommended protocol.

The initial sequencing data underwent quality control to identify
high-confidence gene transcripts, reads those contained adapters,
those with >20% low-quality bases, those containing poly A and G,
and those undetermined bases were removed with fastp software”. The
expression levels of transcripts were then quantified using Feature
Counts.? To identify differentially expressed genes (DEGs) between
groups, RSEM* was used to generate transcript per million (TPM)
values at the gene level, and DESeq2 was applied to screen for DEGs
with log,FC > 1.5, p < 0.05, and false discovery rate (FDR) < 0.05.
Subsequently, we conducted functional annotation and pathway
enrichment of DEGs using Gene Ontology (GO)® and Kyoto
(KEGG), applying
hypergeometric distribution methods for analysis of the DEGs.

Encyclopedia of Genes and Genomes
Moreover, correlation analysis, principal coordinate analysis (PCoA),
and hierarchical clustering heatmaps were generated using tools
available on OmicStudio.®

2.10 RT-gPCR validation of DEGs

RNA was extracted from kidney tissues, and ¢cDNA was
synthesized using a high-capacity cDNA reverse transcription kit
(Thermo Fisher Scientific). Subsequently, gene expression levels were
quantified utilizing a SYBR Green-based real-time PCR platform
(Invitrogen). Primer sequences were custom-synthesized by Shanghai

https://www.rcsb.org/
https://github.com/OpenGene/fastp
http://bioinf.wehi.edu.au/featureCounts/
http://deweylab.github.io/RSEM

http://www.geneontology.org/

O U A NN

https://www.omicstudio.cn/tool
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Sangon Biotech and are provided in Supplementary Table S1. Relative
quantification of gene expression was calculated with the AACt
method; GAPDH was the internal control.

2.11 Statistical analysis

All statistical evaluations were conducted using GraphPad Prism
(version 9, Inc., La Jolla, CA, USA). One-way ANOVA followed by
Dunnett’s test was applied for group-level comparisons. Data are
presented as mean + SEM, and statistical significance was defined as
p <0.05.

3 Results

3.1 AOE lowers serum urate levels in
hyperuricemic mice

To evaluate the urate-lowering potential of AOE, we established a
hyperuricemia mouse model by administering potassium oxonate
(PO) and adenine (Ad) orally daily for 4 weeks (Figure 1A).
Concurrently, AOE was given orally at doses of 50 or 100 mg/kg to
assess its therapeutic efficacy in this model. PO/Ad administration
significantly increased mice UA serum levels relative to the control
group (99.76 vs. 140.15 pmol/L, p < 0.01) (Figure 1B). HUA mice
treated with high doses of AOE (100 mg/kg) and allopurinol (10 mg/
kg) mitigated hyperuricemia in mice (p <0.01), as evidenced by
reductions in serum UA levels of 28.4 and 42.1% in the AOE_H and
ALLP groups, respectively.

3.2 AOE reverses alterations in body weight
and organ indices in HUA mice

Body weight and organ-to-body weight ratios were measured to
evaluate systemic health and organ impairment in the HUA model
(29). Compared to control animals, mice in the hyperuricemia group
exhibited a substantial decrease in body weight (p < 0.001, Figure 1C)
and a marked increase in the kidney coefficient (p < 0.05, Figure 1D).
AOE intervention prevented weight loss in HUA mice (p < 0.05)
(Figure 1C). By contrast, the kidney coefficient in the AOE_L and
AOE_H groups did not differ from control animals, suggesting that
AOE effectively reduced kidney enlargement. Moreover, liver
coefficient measurements showed no difference between the HUA,
AOE_L, AOE_H, and control groups (Figure 1E). Interestingly,
treatment with allopurinol led to a statistically significant decline in
the liver coeflicient versus controls (p <0.05), suggesting that
allopurinol may contribute to hepatic injury.

3.3 AOE improves purine metabolism in
HUA mice

Hepatic ADA and XOD are crucial enzymes involved in purine
catabolism, contributing to the formation of UA (30). Liver samples
from HUA mice exhibited significantly elevated activities of XOD and
ADA versus control animals (p < 0.01) (Figures 2A,B). Treatment with
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FIGURE 2
Improvement of purine metabolism in HUA mice by AOE treatment. (A) Liver XOD activity; (B) Liver ADA activity; (C) Docking results of AOE and XOD;
(D) Docking results of AOE and ADA. Values are expressed as mean + standard deviation (SD). *p < 0.05, *p < 0.01, **p < 0.001 vs the CON group, and
#p < 0.05, **p < 0.01, ***p < 0.001 vs the HUA group.

AOE (low- and high doses) (AOE_L and AOE_H) markedly reduced
XOD and ADA enzyme activity (p < 0.05), indicating that the urate-
lowering effect of AOE may be partially attributed to inhibition of
ADA and XOD.

To evaluate the binding interactions between AOE and the target
enzymes XOD and ADA, we performed molecular docking analysis.
In general, a lower affinity value between a ligand and receptor
indicates a stronger binding affinity, with binding energy below
—6.0 kcal/mol indicating the formation of a stable ligand-receptor
complex (31). In this study, the binding energies were calculated to
be —9.2 kcal/mol for XOD and —7.3 kcal/mol for ADA, indicating a
strong affinity of AOE for both proteins. Docking simulations revealed
that AOE forms hydrogen bonds with Lys255, Leu256, Ala300, and
Leu403 residues of XOD, and with Leu62, Hisl57, and Aspl85
residues of ADA (Figures 2C,D).

3.4 AOE ameliorates renal injury in HUA
mice

To evaluate renal function in HUA mice, we measured BUN and
Cr levels in serum. The HUA group showed significant increases in
BUN (41.50 vs. 9.79 mmol/L) and Cr (68.48 vs. 19.69 pmol/L)
compared to controls, confirming kidney impairment (Figures 3A,B).
AOE-exposure produced a dose-dependent decrease in serum BUN
and Cr levels (p < 0.001), indicating renal protective effects.

Histopathological analysis revealed distinct alterations in kidney
morphology following long-term PO/Ad exposure (13). To evaluate
the influence of AOE on renal histopathology in HUA mice, kidney
tissue sections were examined microscopically. In the control group,
renal cells appeared well-organized with preserved structural
integrity, showing no tubular vacuolar dilatation, inflammatory cell
infiltration, or glomerular degeneration (Figure 3C). By contrast, the
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HUA group exhibited glomerular atrophy, marked renal tubular
lumen dilatation, and pronounced inflammatory infiltration. These
outcomes were not significantly improved by allopurinol treatment;
however, AOE intervention restored renal tissue structure and
reduced pathological features. Administration of AOE at 100 mg/kg
AOE (AOE_H) produced the most significant improvement in
kidney damage, with tissue anatomy comparable to control animals.
Consistent with the results of H&E staining, kidneys from HUA mice
exhibited a pale coloration, noticeable swelling, coarse texture, and
were covered with prominent white granules on the surface.
However, following treatment with 100 mg/kg AOE, the kidneys
returned to a healthy reddish tone and smooth surface (Figure 3D).
These data demonstrate that AOE confers renal protection in PO/
Ad-induced HUA mice, with greater efficacy observed at the higher
dosage level.

3.5 AOE reduces renal inflammation in HUA
mice

Under hyperuricemic conditions, renal tissue cells (epithelial
cells, mesangial cells, endothelial cells, and tubular cells) release
IL-6, IL-1P, and TNF-a, which promote immune cell infiltration,
exacerbating renal injury. In the HUA group, IL-6, IL-1p, and
TNF-a levels in serum were significantly higher than in control
animals (p < 0.001, Figures 4A-C). AOE administration led to a
marked decline in cytokine levels, with the most substantial
reductions observed in the high-dose group. In kidney tissue, IL-6,
IL-1p, and TNF-a were significantly upregulated in HUA mice
(p <0.01, Figures 4D-F), but these increases were substantially
attenuated in the AOE_H group (p < 0.05). Allopurinol did not
restore IL-1p and TNF-a expression in the kidney (p > 0.05 vs.
HUA-treated animals), and even appeared to increase IL-6 levels.
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FIGURE 3

Improvement of kidney injury in HUA mice by AOE treatment. (A) Serum creatinine level; (B) Blood urea nitrogen level; (C) Kidney tissues morphology
assessed by hematoxylin and eosin (H&E) staining; (D) Digital images of the renal photographs. Values are expressed as mean + standard deviation (SD).
*0 < 0.05, *p < 0.01, **p < 0.001 vs the CON group, and #p < 0.05, #p < 0.01, #*#p < 0.001 vs the HUA group.

These findings further demonstrate that AOE effectively inhibits
renal inflammation and contributes to the structural recovery of
kidney tissue in HUA mice.

3.6 AOE modulates redox balance in HUA
mice

Elevated UA disrupts the redox equilibrium in renal tissues,
leading to oxidative stress within the kidneys (32). To investigate
the antioxidant effects of AOE, the activities SOD, CAT, and
GSH-Px along with malondialdehyde (MDA) levels were measured
in HUA mice. Serum from the HUA group showed reduced
activities of these enzymes, while MDA concentrations were
significantly higher in HUA mice than in controls (p < 0.05)
(Figures 5A—D). A similar pattern was observed in kidney tissues,
where antioxidant enzyme activities decreased and MDA levels
were elevated in HUA mice (Figures 5E—H), signifying that HUA
induces oxidative stress in vivo.

Antioxidant enzyme activities and MDA levels in kidney tissues
consistently showed the same trend. These results indicate that after
AOE intervention, the decline in activities in renal CAT, SOD, and
GSH-Px caused by HUA was restored. Concurrently, the increase in
MDA level was also reversed by AOE, as shown by 77.4 and 35.2%
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reduction in serum (Figure 5D) and kidney tissue (Figure 5H),
respectively, post 50 mg/kg AOE treatment. By contrast, treatment
with allopurinol had no significant effect on CAT, SOD, or GSH-Px
activities, nor MDA levels in renal tissue from hyperuricemic mice
(p > 0.05).

3.7 Transcriptome analysis

3.7.1 Transcriptome sequencing and assembly

Furthermore, transcriptome sequencing (RNA-seq) was
conducted from control, HUA, and AOE_H mice to investigate the
molecular basis underlying the protective effects of AOE against
HUA-induced renal injury. After filtering the adaptor sequences and
low-quality sequences, 87.73 GB of clean data was obtained. Base
quality scores over 30 ranged from 99.28 to 99.37%, indicating
sufficient read quality (Supplementary Table S1). To assess the
reliability of the experiment, the correlation coefficient between
samples was calculated (Supplementary Figure S1). PCoA showed that
control and HUA-treated animals exhibited distinct clustering and
significant separation, indicating substantial alterations in gene
expression between HUA and control mice. However, the genetic
profile of the AOE_H group tended to converge with that of the

control group (Supplementary Figure 52).
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3.7.2 DEG screening

Using thresholds of log,FC over 1.5 and p-value below 0.05, 5,645
DEGs were identified between the HUA and control groups, comprising
4,548 transcripts with increased expression, and 1,097 with decreased
expression (Figure 6A; Supplementary Table S3). In the AOE_H versus
HUA comparison, 902 transcripts displayed elevated expression
levels, while 1,754 showed reduced expression (Figure 6B;
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Supplementary Table 54). A total of 2,307 genes were common between
the HUA vs. CON and AOE_H vs. HUA comparisons based on Venn
analysis, accounting for 38.49% of the total (Iigure 6C). Hierarchical
clustering of these shared genes revealed that the transcriptional profile
in HUA animals was opposite to control mice. This dysregulated pattern
was normalized following AOE treatment (Figure 6D), indicating that
AOE restored the disrupted gene expression profile caused by HUA.
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AOE treatment restored the transcript profiling in HUA mice. (A) Volcano plot of the DEGs between HUA and CON; (B) Volcano plot of the DEGs
between AOE_H and HUA; (C) Venn diagram of gene expression between HUA vs. CON, and AOE_H vs. HUA; (D) The hierarchical clustering heatmap
of overlapped DEGs in HUA vs. CON and AOE_H vs. HUA groups.

3.7.3 Enrichment analysis

To further explore the functional roles of the shared DEGs,
enrichment analysis was carried out using the GO and KEGG
databases. Numerous signaling pathways involved in inflammatory
processes and redox imbalance were significantly enriched. GO
analysis revealed significant involvement in biological processes,
including interleukin-6 regulation, inflammatory response, immune
activation, and oxidoreductase function (Figure 7A). KEGG
pathway analysis further indicated strong associations with
immune-related cascades, including cytokine-cytokine receptor
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interactions, TNF and IL-17 signaling, and the PPAR pathway
(Figure 7B). GSEA demonstrated that AOE administration
suppressed the activation of pro-inflammatory pathways in HUA
mice, while simultaneously restoring activity within the PPAR
pathway (Figure 7C). These results suggest that the therapeutic
efficacy of AOE in HUA-induced renal impairment is primarily
mediated through the modulation of inflammatory and oxidative
stress mechanisms.

Surprisingly, the expression of genes related to cytokine-
cytokine receptor interactions and inflammatory signaling
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cascades, such as CCL2, Cxcl5, MMP9, Nfkbl, and RelA,
was markedly increased in HUA mice (Figure 7D). By
contrast, AOE administration reduced inflammatory marker
expression, suggesting that AOE mitigates renal injury primarily
through the modulation of inflammation-associated pathways.
Moreover, the down-regulated Ppara, Cpt2, and the Pparg genes
in the PPAR signaling pathway of HUA mice were restored by
AOE treatment.

3.8 RT-gPCR validation of DEGs

To confirm the transcriptomic findings, representative DEGs
associated with TNF signaling pathway, IL-17 signaling pathway,
and the PPAR pathway were chosen for validation by
RT-qPCR. Gene expression profiles obtained from RT-qPCR fully
mirrored the trends from the RNA-seq data (Figure 8). This
alignment between the two datasets reinforces transcriptomic data
robustness and reliability.
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4 Discussion

Chronic HUA levels typically result in renal function damage
because the kidneys struggle to filter out excess UA. This promotes the
formation of urate crystals (33), which can adhere to kidney tubules,
triggering inflammation and subsequent renal injury (34), potentially
causing HN (10). On the other hand, elevated uric acid levels contribute
to the overproduction of reactive oxygen species, leading to cellular
oxidative imbalance and tissue injury (9). Increasing evidence shows
that inflammatory processes and oxidative stress are central drivers in
the pathological transition from HUA to HN (35). In this context,
natural, plant-derived bioactive compounds with antioxidant and anti-
inflammatory properties have attracted increasing attention as
alternatives for managing HUA while protecting against renal injury
(9, 13). Aloe-emodin (AOE), the primary anthraquinone constituent
derived from aloe and rhubarb, contains antioxidant, anti-
inflammatory, antibacterial, and hepatoprotective properties (24, 36).
This suggests that AOE has the potential to be a natural candidate

against HUA and HUA-induced kidney injury.
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The transcriptome-revealed FPKM values of the DEGs. (A) p65/RelA; (B) NF-kB1/p50; (C) PPARa; (D) Cpt2. Values are expressed as mean + standard
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The PO/Ad-induced mouse model

HUA-associated renal dysfunction, making it an indispensable

reliably replicates
method for researchers aiming to conduct in-depth investigations into
the pathophysiology of HN (37). Our results show that AOE decreases
serum UA levels in the PO/Ad-induced HUA mouse model. Our data
further demonstrate that AOE treatment suppressed the activities of
XOD and ADA elevated by PO/Ad exposure. Similarly, Meng et al.
reported that rhubarb acid, an anthraquinone compound derived
from Rheum palmatum, also exhibited a UA-lowering effect by
inhibiting XOD activity (post 70-300 mg/kg/d) (19). Notably, XOD
and ADA are critical enzymes in the liver that significantly influence
UA synthesis, with XOD serving as a major regulator of systemic uric
acid production (38, 39). Allopurinol, an XOD inhibitor, is among the
most effective clinical treatments for HUA (40), but is therapeutically-
restrictive as it may produce liver and kidney toxicity (11, 41). In our
investigation, evaluation of systemic toxicity through measurements
of body weight and organ indices, specifically for the kidneys and liver,
demonstrated that AOE exhibited favorable safety characteristics
while also alleviating hyperuricemia and exerting protective effects on
organ health.

A growing body of research increasingly supports a close
association between HUA and renal damage. Elevated levels of BUN
and serum creatinine are key indicators of impaired renal function
(26). Renal injury decreases the clearance of urea and creatinine, thus
as evidenced by increasing levels of BUN and serum Cr (42). This
study demonstrated that treatment with AOE effectively reduced BUN
and serum Cr levels, indicating its kidney-protective effect in HUA
mice. Furthermore, the histopathological analysis using H&E staining
confirmed that HUA status led to kidney tissue deterioration.
However, the administration of AOE resulted in a remarkable
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transformation. The intervention was observed to restore the integrity
of renal tissue structure, significantly reducing the pathological
features indicative of renal distress. These results suggest that AOE was
nephroprotective in PO/Ad-induced hyperuricemic mice.

Excessive UA levels in the body trigger the innate immune system,
leading to a cascade of adverse effects on renal cell morphology and
function. In general, this process begins with immune system
activation, which subsequently triggers the secretion of inflammatory
mediators (43). In our study, PO/Ad exposure induced an
inflammatory response in HUA mice, as evidenced by increasing
serum and renal proinflammatory cytokines levels. AOE significantly
suppressed high proinflammatory cytokine levels, ameliorating
inflammatory responses in HUA mice (Figure 4). Furthermore,
mounting evidence suggests that oxidative injury, driven by elevated
uric acid levels, is a key contributor to renal cellular damage and
inflammation (44). Under normal conditions, maintaining an
appropriate level of UA is conducive to eliminating reactive oxygen
species (45). However, elevated blood UA levels increase oxidase
activity and decrease SOD function, leading to oxidative tissue
damage (46, 47). As demonstrated in this study, oxidative injury was
noticed in the kidneys of PO/Ad-induced HUA mice (Figure 5).
Similar studies have consistently reported significant oxidative damage
to HUA mice, characterized by increased MDA accumulation and
diminished activity of key antioxidant enzymes (9). Therefore,
targeting oxidative stress pathways has emerged as a promising
strategy for mitigating HUA-associated kidney injury (47). For
example, Qian et al. demonstrated that linarin (dose of 120 mg/kg/d),
the flavonoids compounds in Chrysanthemum indicum L., could
alleviate oxidative stress of HUA mice, thereby delaying the
progression of HN (9). Chen et al. demonstrated that the flavonoid
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extracts from saffron by-product could effectively improve the
symptom of kidney injury in HUA rat via enhancing antioxidant
capacity (48). In this study, AOE treatment (post 50-100 mg/kg/d)
significantly reversed the increased MDA levels and the decreased
antioxidant levels in HUA mice, suggesting a regulatory effect on
oxidative damage. In summary, our results provide compelling
evidence that AOE confers renal protection in the PO/Ad-induced
HUA mouse model by reducing inflammation and oxidative stress.

Our transcriptome RNA sequence results also show that the
molecular mechanisms of AOE against HUA-induced renal injury
linked to inflammatory responses and oxidative stress. Key regulatory
pathways implicated in these molecular events include the IL-17 axis,
TNF signaling, and PPAR pathways. Among them, the TNF cascade
plays a critical role in modulating immune activity and orchestrating
inflammatory processes (49, 50). Furthermore, IL-17, a cytokine
predominantly released by Th17 cells, increases NF-kB signaling
activity and promotes the production of pro-inflammatory mediators
within renal epithelial and endothelial tissues (26). Importantly,
hyperuricemic conditions were associated with upregulation of the
RelA and Nfkb1 genes, core elements of the TNF and IL-17 signaling
networks. Treatment with AOE effectively normalized this aberrant
gene expression. RelA and Nfkb1 are important members of the NF-kB
family that regulate a broad spectrum of biological functions,
encompassing immune surveillance, inflammatory regulation, and
programmed cell death (51). Typically, the NF-kB complex consists of
a heterodimer composed of p65 (RelA) and p50 (Nfkb1I) subunits (52).
Once activated, this dimer drives the transcription of pro-inflammatory
effectors, perpetuating cellular inflammation (53). Our transcriptomic
analyses revealed that AOE substantially suppressed RelA and Nfkb1
expression, a finding further validated by RT-qPCR, which showed
significant declines in p65/RelA and NF-kB1/p50 transcript levels
following AOE administration in HUA mice.

Biological activities within cells are often governed by coordinated
networks of numerous interacting genes that function in concert to
regulate cellular processes. Natural phytochemicals, particularly those
derived from medicinal plants, are recognized for their ability to

10.3389/fnut.2025.1677560

modulate multiple molecular targets and signaling pathways
concurrently. For example, quercetin mitigates renal inflammation by
reducing TNF-a and IL-1p levels through reactive oxygen species
(ROS)-dependent mitogen-activated protein kinase (MAPK) and
NF-kB signaling (39). In this study, AOE demonstrated multi-targeted
therapeutic potential in ameliorating kidney damage induced by HUA
(Figure 9). Beyond its influence on IL-17 and TNF-associated
pathways, AOE also regulated genes involved in the PPAR axis in HUA
mice. Transcriptomics data revealed increased expression of key PPAR
pathway components, including Ppara, Cpt2, and Ppargin AOE-treated
mice. The PPAR system coordinates lipid metabolism, attenuates
oxidative stress, and modulates immune responses (54). Activation of
PPARa and PPARy improves oxidative stress and inhibits the Th17-
mediated inflammatory response (55, 56). RT-qPCR confirmed that
AOE increased PPARa, Cpt2, and PPARy mRNA levels in kidney tissue
from HUA mice. Furthermore, PPARy activation negatively regulates
NE-kB p65 activity, thereby dampening pro-inflammatory cytokine
production and improving tissue inflammation (54). Our results
consistently showed that AOE treatment upregulated PPARy
transcription while concurrently downregulating p65/RelA and
NF-kB1/p50 mRNA expression in HUA mice, suggesting that its
renoprotective actions may be mediated through modulation of the
PPAR/NF-kB signaling axis. However, there are some limitations of
this study that need to be addressed. First, this study conducted
preclinical study using HUA mouse model to investigate the possible
efficacy of AOE in the treatment of HUA-induced renal injury. Due to
the significant interspecies differences between rodents and humans,
the translational value of preclinical models is limited (18). Therefore,
more experimental studies, such as clinical data, pharmacokinetics,
toxicity, and safety data are needed in the future. Besides, although
RT-qPCR confirmed that AOE increased mRNA expression of related
genes involving PPAR and NF-kB pathways, further protein-level
evidence (e.g., western blotting or immunohistochemistry) should
be conduct to validate the proposed molecular mechanisms. Moreover,
further functional gene validation (e.g., PPAR/NF-kB inhibitors or the
gene knockdown) are needed to confirm our results in the future.

FIGURE 9

HUA mice

The potential mechanism underlying the protective effects of AOE against hyperuricemia and renal injury.
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5 Conclusion

In the current study, we conducted a preclinical study to assess the
efficacy of AOE in treating HUA and its associated renal injury. AOE
administration suppressed XOD and ADA activity in HUA mice,
reduced serum uric acid concentrations, improved inflammation and
oxidative stress, and alleviated the HUA-induced renal injury.
Furthermore, AOE conferred substantial nephroprotective effects in
HUA mice, mainly through its regulatory influence on oxidative
imbalance and inflammation targeting PPAR/NF-kB signaling axis. In
summary, our results indicate that AOE is a promising plant-derived
therapeutic with a favorable safety profile for managing HUA and its
associated renal complications. However, in-depth investigations and
further studies are needed in the future to validate the application of
AOE in the treatment of HUA and its associated renal injury.
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