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Introduction: Sarcopenia is prevalent among oncological patients; its diagnosis 
remains challenging due to technical limitations. This study aims to compare 
an AI-assisted ultrasound (US) evaluation of the rectus femoris with the gold-
standard L3 computed tomography (CT) scan and to establish diagnostic cut-
off values for sarcopenia in oncologic patients.
Methods: This cross-sectional observational study assessed body composition 
in oncology patients undergoing treatment, comparing two AI-assisted imaging 
modalities: L3 vertebral level CT and US of the rectus femoris. Muscle mass 
was quantified using Skeletal Muscle Area (SMA) and Lean Muscle Area (LMA) 
from CT, and Rectus Femoris Area (RFA) and Thickness (RFT) from US. Muscle 
quality was evaluated via skeletal muscle Hounsfield units (SM-HU) on CT, and 
muscle (Mi) and fat (FATi) percentages within the region of interest on US. CT 
served as the reference standard for diagnosing malnutrition, sarcopenia, and 
myosteatosis.
Results: A total of 337 patients (58.8% male; mean age 69.7 (10.9) years) were 
analyzed, with malnutrition identified in 78.3%, including 8% with sarcopenia. 
Ultrasound measurements correlated with CT-derived muscle metrics, 
including RFA with SMA (r = 0.44; p < 0.01) and LMA (r = 0.47; p < 0.01). Muscle 
quality parameters from US showed a positive correlation between Mi and SM-
HU (r = 0.27; p < 0.01), while FATi negatively correlated with SM-HU (r = −0.19; 
p  < 0.01). Ultrasound-based cut-off points for diagnosing sarcopenia were 
established at 3.425 cm2 RFA (AUC: 0.628) and 1.180 cm RFT (AUC: 0.636) 
for men, and 2.845 cm2 RFA (AUC: 0.628) and 0.868 cm RFT (AUC: 0.636) for 
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women; and ultrasound-based cut-off points for diagnosing myosteatosis were 
46.77% for MiT (AUC: 0.640) and 41.20% for FATi (AUC: 0.623). Derived cut-off 
values demonstrated high negative predictive value for low muscle mass and 
high positive predictive value for myosteatosis.
Conclusion: AI-enhanced rectus femoris ultrasonography is a feasible, 
non-invasive, and clinically relevant approach for sarcopenia assessment in 
oncology. AI-assisted ultrasonography showed moderate correlations with CT-
derived muscle mass indices and reliably capture qualitative changes in muscle 
quality and fat infiltration. The AI heralds a new era of rapid, radiation-free body 
composition assessment.

KEYWORDS

muscle ultrasound, sarcopenia, disease-related malnutrition, computed tomography, 
artificial intelligence

1 Introduction

Disease related malnutrition (DRM) is a condition with a high 
prevalence of 60% among hospitalized patients with chronic diseases, 
with up to 10% of them becoming malnourished during their hospital 
stay (1). This situation worsens with disease progression and varies 
according to the treatment administered (surgery, chemotherapy, or 
radiotherapy) (2). It is associated with numerous adverse outcomes: a 
higher number of complications, more frequent and prolonged stays, 
poor tolerance for aggressive treatments, and lower survival rates (2). 
Early detection of malnutrition risk, along with the early initiation of 
medical nutritional treatment, may be linked to a reduction in the rate 
of complications and a decrease in the average length of stay (3). 
Furthermore, sarcopenia in oncologic patients who are about to 
undergo surgery is associated with poorer postoperative outcomes in 
conditions as closely linked to malnutrition as pancreatic or gastric 
cancer (4, 5).

A proper diagnosis of DRM and sarcopenia demands an approach 
that goes beyond simply measuring body weight or using related 
estimates like the Body Mass Index (BMI) (6). Specific imaging 
methods like magnetic resonance imaging (MRI), computed 
tomography (CT), and dual-energy X-ray absorptiometry (DEXA) are 
considered the “gold standard” for evaluating body composition, 
particularly for the measurement of muscle mass. In fact, these 
imaging techniques are most commonly used as diagnostic criteria for 
both Global Leadership Initiative on Malnutrition (GLIM) (6, 7) and 
European Work Group on Sarcopenia in Older People (EWGSOP2) 
(8). CT scans can assess skeletal appendicular muscle mass by 
analyzing a region of interest at the L3 vertebral level (9). Nevertheless, 
these imaging modalities are not typically used in routine clinical 
practice due to logistical challenges, as they often require extra 
imaging that exposes patients to some level of ionizing radiation.

In everyday clinical practice, clinicians often rely on more 
accessible and easily reproducible methods due to their simplicity and 
availability. Traditional anthropometry and bioelectrical impedance 
analysis (BIA) are examples of such methods (10). Muscle ultrasound 
has recently gained attention as a dynamic technique for evaluating 
both the quantity and quality of muscle tissue in targeted areas of the 
body (11, 12). Typically, the procedure involves taking a transverse 
image of the rectus femoris in the quadriceps, from which 
practitioners measure the muscle mass (area, muscle thickness…) 
and assess the muscle’s echogenicity as an indicator of its quality (11). 

The main challenge with this method is that scientific evidence 
supporting its use is still limited. Moreover, since most ultrasound 
studies have been conducted on healthy elderly populations, its role 
in assessing DRM remains to be fully validated (12). Disease-Related 
caloric-protein malnutrition EChOgraphy (DRECO) study showed 
cut-off points for sarcopenia with a diagnosis of low muscle mass 
established by an estimation through BIA in patients at risk of 
malnutrition (13).

Artificial Intelligence (AI) in radiological body composition 
assessment lies in accurately identifying the relevant anatomical 
regions and interpreting the imaging data (14). AI significantly 
enhances the evaluation of body composition on CT scans through 
automatic image segmentation. It distinguishes between different 
components-such as fat, muscle, and other tissues-providing both 
quantitative and qualitative metrics. This capability has paved the way 
for processes that not only extract quantitative features quickly but 
also assess qualitative characteristics of the images, transforming them 
into actionable data. This approach is a core element of the emerging 
field of radiomics (15). Muscle ultrasound segmentation and 
standardization can be challenging due to the observer’s influence 
when performing the segmentation. Recent studies have demonstrated 
that using artificial intelligence for image segmentation in patients 
with DRM can be  at least as effective as human observers (16). 
Moreover, AI-based tools have enabled the standardization of muscle 
quality evaluations. These technologies facilitate the extraction of 
features from conventional ultrasound images, providing concrete 
measurements within a defined region of interest (ROI). They allow 
for a detailed analysis of muscle architecture and quality by assessing 
parameters such as echogenicity and image texture biomarkers.

The objective of this study is to compare the evaluation of the 
quantity and quality of rectus femoris muscle-as assessed by muscle 
ultrasound assisted by artificial intelligence (17), with the analysis of 
muscle mass and quality determined by the gold standard CT scan of 
L3. Furthermore, the study aims to establish cut-off points of muscle 
mass and quality by ultrasonography in sarcopenia in a sample of 
oncology patients at risk of malnutrition. To achieve the objective of 
this study, patients with oncological pathology undergoing active 
treatment (surgery, chemotherapy, or radiotherapy) were evaluated 
through a comprehensive nutritional assessment, including muscle 
ultrasound of the rectus femoris. Additionally, abdominal CT scans at 
the L3 level, performed for other clinical reasons, were selected. Both 
ultrasound and CT images were analyzed to assess their correlation 
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and to explore the possibility of establishing ultrasound-based cut-off 
points for muscle quantity and quality parameters.

2 Methods

2.1 Study design

This is a cross-sectional observational study designed to compare 
body composition parameters assessed using two different techniques, 
with a maximum time interval of 2 weeks between assessments: CT 
imaging at the L3 vertebral level (CT-L3) and muscle ultrasound of 
the Quadriceps Rectus Femoris (QRF) in patients with oncological 
conditions. The study examines both muscle quantity and quality 
using two different AI tools based on U-Net system to analyze the 
imaging results.

Additionally, the research seeks to diagnose malnutrition and 
sarcopenia by evaluating commonly used muscle composition and 
function parameters. It aims to establish cut-off values for sarcopenia, 
referencing the gold standard: computed tomography (CT scans).

Upon obtaining informed consent and enrolling the patients in 
the study, a comprehensive medical history assessment was conducted, 
including personal background, disease progression, and nutritional 
history. Anthropometric measurements and muscle ultrasound 
evaluations were performed. Electronic medical records were 
reviewed to determine whether control CT scans for the oncological 
condition had been conducted, and muscle mass and quality at the L3 
vertebral level was analyzed with a maximum time interval of 2 weeks 
between consultation assessment and CT image obtention.

Using the collected data, an initial descriptive statistical analysis 
was performed to assess the prevalence and nutritional status of the 
patients, comparing different body composition evaluation techniques. 
A further statistical analysis will be  carried out to examine the 
diagnostic accuracy of muscle ultrasound compared to CT parameters, 
as well as to define cut-off points for sarcopenia components, such as 
low muscle mass and low muscle strength, and to compare quality 
parameters determined via CT attenuation.

2.2 Patients selection

Patients were recruited between January 2021 and March 2025. 
The patients met the following criteria: inclusion criteria: outpatients 
with oncological conditions undergoing treatment or pending curative 
treatment (surgery, chemotherapy, and/or radiotherapy) who attended 
the nutrition consultation due to high nutritional risk, and individuals 
over 18 years old; exclusion criteria: patients with oncological 
conditions managed in the Palliative Care Unit without surgical, 
radiotherapeutic, or oncological treatment, patients who did not 
undergo an extended CT scan, those with decompensated liver 
disease, patients with Chronic Kidney Disease stage IV or higher, and 
patients who did not sign the informed consent.

The study complies with all ethical considerations outlined in the 
Declaration of Helsinki, and informed consent will be obtained from 
all patients. This study was reviewed by the Ethics Committee for 
Research with Medicines (CEIm) of the Valladolid Areas and was 
approved under code PI-GR-24307-C on May 8, 2024. All patients 
included signed the informed consent.

2.3 Variables

2.3.1 Anthropometric measures
The measured anthropometric variables included current body 

weight (kg), usual body weight (kg), height (m), body mass index 
(BMI), arm circumference (cm), calf circumference (cm), and the 
percentage of body weight loss. Height was measured with a calibrated 
height scale (SECA, Germany), while body weight was determined 
using digital scales (SECA, Germany) with subjects minimally clothed 
and barefoot. BMI was calculated as weight in kilograms divided by 
height in meters squared (kg/m2). The percentage of body weight loss 
was computed using the formula: [(usual weight-current weight)/
usual weight] × 100.

2.3.2 AI-based body composition computed 
tomography at L3 level (CT-L3)

Abdominal CT scans (General Electric Revolution, Cincinnati, 
OH, USA) was analyzed by AI-tool (ARTIS Development, Las Palmas 
Gran Canaria, Spain). This software features an intuitive interface and 
a semi-automatic labelling tool, allowing user adjustments for body 
mass segmentation.

CT scans was centered on the third lumbar vertebra, averaging the 
slices between the upper and lower plates of the vertebra. Skeletal 
muscle was assessed using cross-sectional CT images at L3, evaluating 
the following muscle groups: psoas, erector spinae, quadratus 
lumborum, transversus abdominis, external obliques, internal 
obliques, and rectus abdominis, assessing Skeletal Muscle Area (SMA) 
in cm2, skeletal muscle index (SMI) in cm2/m2, and the average 
Hounsfield Unit (SM-HU). Adipose tissue was classified into 
subcutaneous (SAT), visceral (VAT), and intramuscular fat (IMF), 
with all areas measured in cm2. Tissue quality was determined based 
on its mean Hounsfield Unit (SAT-HU, VAT-HU, IMAT-HU) value. 
This tool can differentiate lean muscle area (LMA) from SMA as the 
content of muscle without IMF (Figure  1). Body composition 
components (SMA, LMA, IMF, VAT, SAT) were represented as well as 
the percentage from the ROI.

We have used a 2D approach to evaluate the muscle mass in the 
CT scans due to two main reasons: (1) Sarcopenia cut-off values most 
commonly used in oncology-such as those published by Martin et al. 
for mortality risk-are based on two dimensional CT measurements at 
the L3 vertebral level (18). To enable direct comparability with these 
established thresholds and ensure that our findings can be interpreted 
against the same benchmarks, we therefore performed all CT muscle 
assessments using identical 2D parameters at L3. (2) Our primary 
objective was a head-to-head comparison with rectus femoris 
ultrasound (a 2D modality). Adopting 2D thickness and area ensured 
methodological consistency between modalities.

2.3.3 AI-based muscular ultrasonography
Ultrasonography of the QRF muscle was conducted on the 

dominant leg using a 10–12 MHz multifrequency linear array probe 
(Mindray Z60, Madrid, Spain). The patient was positions supine, and 
the probe was held perpendicular to the muscle along the transverse 
axis of the dominant leg, specifically at the lower third of the distance 
between the iliac crest and the upper border of the patella (19).

Ultrasound images were processed using an AI-driven imaging 
system (PIIXMED™; DAWAKO MedTech, Valencia, Spain) based on 
a convolutional neural network with a U-Net architecture. This system 
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enables 2D feature extraction from conventional B-mode ultrasound 
by computing single-value metrics for each feature within a defined 
ROI. A range of biomarkers was derived by analyzing these features 
and applying various algorithms to assess the ROI’s morphological 
structure, muscle quality (via echogenicity), and multiple texture-
based characteristics (16). The system has been trained on ultrasound 
images from healthy athletes as well as on individuals with pathologies 
that can affect muscle quality.

Muscle quality was assessed by measuring the pennation angle—
the angle between the muscle fibers and the lower aponeurosis—with 
larger angles indicating greater potential for muscle strength. 
Additionally, muscle quality indices were computed using a multi 
thresholding algorithm (Multi-Otsu) that analyzed histogram 
echogenicity and grayscale intensity, applying defined thresholds to 
classify pixels into distinct tissue categories (20). Multi-Otsu refines 
the classic Otsu thresholding, which normally splits an image into 
foreground and background, by introducing multiple intensity cut-off 
points. Instead of just two classes, it partitions pixels into three or 
more groups, making it well suited for images with several ROI. The 
algorithm analyzes the histogram to find thresholds that minimize 
variance within each class while maximizing variance between classes. 
This algorithm produced three quantitative indices from transverse 
ultrasound images: the Muscle Index (MiT), representing the 
percentage of muscular tissue within the ROI; the Fat Index (FATi), 
indicating the proportion of intramuscular adipose tissue; and the No 
Muscle No Fat Index (NMNFiT), denoting the percentage of the ROI 
composed of other structural elements such as collagen, connective 
tissue, or fibrosis. All indices were expressed as percentages of the total 
ROI (Figure 1).

2.3.4 Muscle strength
Muscle functionality was evaluated by measuring handgrip 

strength with a JAMAR® dynamometer (Basel, Switzerland). Patients 
were seated with their dominant arm positioned at a right angle to the 
forearm while performing the handgrip test.

2.3.5 Nutritional diagnosis

	•	 Malnutrition diagnosis: Malnutrition was diagnosed according 
the Global Leadership Initiative on Malnutrition (GLIM) criteria, 
which require the presence of at least one phenotypic criterion 
and one etiologic criterion (6). Low muscle mass phenotypic 
criterion was done with cut-off points of CT-L3 total muscle area 
adjusted by height, established by Martin et al. in patients with 
cancer (BMI > 25 kg/m2: men <53 cm2/m2, women <43cm2/m2; 
BMI < 25 kg/m2: men<43cm2/m2, women<41 cm2/m2) (18).

	•	 Sarcopenia diagnosis: Sarcopenia was identified using the 
European Working Group on Sarcopenia in Older People 
(EWGSOP2) criteria. This diagnosis necessitated an impaired 
handgrip strength, defined as less than 27 kg in men and less than 
16 kg in women, coupled with reduced muscle mass, with low 
muscle mass defined with the same cut-off points by Martin et al. 
(18). Patients exhibiting compromised handgrip strength without 
low muscle mass were classified as having probable sarcopenia 
or dynapenia.

	•	 Myosteatosis diagnosis: Low muscle quality was defined using 
CT-derived skeletal muscle attenuation (SM-HU), based on the 
survival-related cut-off values established by Martin et al. (18) 
According to these criteria, myosteatosis is identified by an 

FIGURE 1

Images from quadriceps rectus femoris ultrasonography (PIIXMEDTM) and computed tomography-L3 (FocusedON) with artificial intelligence tools.
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SM-HU value of less than 41 HU in patients with a BMI below 
25 kg/m2, and less than 33 HU in patients with a BMI of 25 kg/
m2 or higher.

2.4 Statistical analysis

Statistical analysis was performed using SPSS version 15.0 (SPSS 
Inc., Chicago, IL, USA), under an official license by the University of 
Valladolid. The Kolmogorov–Smirnov test assessed the normality of 
continuous variables. Variables following a normal distribution are 
presented as the mean (standard deviation), while those not normally 
distributed are reported as the median with interquartile range. 
Categorical variables are expressed as frequency (number and 
percentage of the total sample). For comparing parametric continuous 
variables, the unpaired Student’s T-test was used; in contrast, the 
Mann–Whitney U-test was applied for non-parametric data. 
Additionally, correlation analyses were conducted to determine the 
relationships between quantitative variables.

Furthermore, the diagnostic validity of the muscular ultrasound 
test was evaluated using ROC analysis for sarcopenia (diagnosed by 
EWGSOP with CT-L3 measurements). Cut-off points were 
determined through the application of the Youden index 
(Sensitivity + Specificity-1), which also allowed for the calculation of 
both the positive predictive value (PPV) and the negative predictive 
value (NPV).

3 Results

3.1 Sample description

A total of 337 oncology patients were included, with 198 (58.8%) 
men and a mean age of 69.7 (10.9) years. The distribution of cancer 
types was as follows: esophagogastric (34.4%), colorectal (25.8%), 
hepatobiliary-pancreatic (17.2%), urological (6.1%), lung (5.5%), head 
and neck (5.2%), gynecological (3.4%), breast (1.5%), and 
hematological (0.9%). There were difference in type of pathologies 
related to gender (Table 1).

Body composition parameters are represented in Table 1, where 
we observed that BMI and arm circumference showed no significant 
gender differences, but men had notably larger calf circumference. 
Ultrasonography revealed that men had significantly greater 
quadriceps muscle area, thickness, and quality (higher MiT and lower 
NMNFATi), while women exhibited higher FATi. Computed 
tomography confirmed that men had larger skeletal and lean muscle 
areas, higher muscle indices, and slightly more intramuscular fat, 
though muscle attenuation was similar across sexes. Functionally, men 
demonstrated significantly stronger handgrip strength. Overall, men 
tended to have greater muscle mass and strength, while women 
showed higher fat infiltration in muscle tissue (Table 1).

3.2 Malnutrition and sarcopenia prevalence

According to the GLIM criteria, malnutrition was present in 264 
patients (78.3%), of whom 164 (62.1%) had severe malnutrition, 
accounting for 48.7% of the total sample (Figure 2). Sarcopenia was 
identified in 27 patients (8%). Additionally, 80 patients (23.7%) had 

low muscle mass (per Martin et al. cut-offs), and 117 (34.7%) had 
reduced muscle strength. Myosteatosis was prevalent in 299 patients 
(88.7%) (Figure 2). There were no significant differences related to 
gender in malnutrition (Men: 80.3%; women: 75.50%), sarcopenia 
(Men: 7.6%; women: 8.6%) or its components (Low muscle mass: Men: 
20.70%; women: 28.10%; low muscle strength: Men: 38.90%; women: 
28.90%; low muscle quality: Men: 89.90%; women: 87.10%) (Figure 2).

3.3 Muscle mass and quality assessment

Table  2 compares ultrasound muscle-related metrics across 
sarcopenia and its components (sarcopenia, low muscle mass, low 
muscle strength and low muscle quality) assessed by L3 CT; sarcopenia 
and low muscle mass are associated with significant reductions in muscle 
area, thickness, and pennation angle, while low muscle strength primarily 
impacts muscle tissue and area with increased fat infiltration. Low 
muscle quality, assessed via CT attenuation, shows the most pronounced 
decline in muscle tissue and area, alongside elevated fat indicators. Lower 
muscle quality parameters on ultrasound were associated with decreased 
CT attenuation values and reduced muscle strength. Across all 
conditions, most differences are statistically significant, underscoring the 
distinct physiological impacts of each (Table 2).

Among men, no significant differences in CT-derived muscle 
quality (SM-HU, LM-HU, VAT-HU, SAT-HU) were observed between 
those with and without sarcopenia. Similarly, no significant differences 
were found in women for SM-HU and LM-HU by sarcopenia status. 
However, women with sarcopenia exhibited significantly higher 
VAT-HU [−68.4 (15.8) vs. –81.9 (13.8); p < 0.01] and SAT-HU values 
[−74.1 (23.1) vs. –89.9 (20.6); p = 0.01].

3.4 Association with dynapenia

Men with dynapenia had significantly lower muscle density on CT 
compared to non-dynapenic individuals: SM-HU [21.1 (10.6) vs. 27.5 
(11.7); p < 0.01] and LM-HU [30.6 (7.8) vs. 34.5 ± 8.4; p < 0.01]. In 
women, dynapenic participants also showed reduced SM-HU [17.7 
(14.4) vs. 26.9 (12.0)] and LM-HU [28.8 (9.7) vs. 35.0 (8.6)], both with 
p < 0.01. No significant differences in VAT-HU or SAT-HU were 
observed between dynapenic and non-dynapenic groups in either sex.

3.5 Ultrasound-CT correlations

Ultrasound-derived muscle mass parameters (e.g., rectus femoris 
area) showed moderate correlations with CT-based skeletal muscle 
area (SMA) and lean muscle area (LMA) (Figure 3). Muscle quality 
indicators, such as MiT, demonstrated weak positive correlations with 
CT-based muscle quality measures, while FATi and NMNFiT showed 
negative correlations with muscle parameters and positive correlations 
with intramuscular fat content (Table 3).

3.6 Diagnostic performance and cut-off 
points

Receiver operating characteristic (ROC) analyses for ultrasound-
based markers are summarized in Table 4 and Figure 4. For sarcopenia 
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detection, rectus femoris thickness (RFT) yielded an AUC of 0.64 (95% 
CI 0.53–0.74), and rectus femoris area (RFA) 0.63 (95% CI 0.52–0.74).

For muscle quality assessed by AI-assisted ultrasonography, the 
MiT achieved its highest performance in identifying myosteatosis with 
an AUC of 0.63 (95% CI 0.53–0.73), followed by an AUC of 0.57 (95% 
CI 0.50–0.64) for low muscle strength and 0.51 (95% CI 0.39–0.62) for 

sarcopenia. The FiT performed best for myosteatosis (AUC 0.61, 95% 
CI 0.51–0.71) and showed lower concordance for low muscle strength 
(AUC 0.55, 95% CI 0.49–0.62) and sarcopenia (AUC 0.55, 95% CI 
0.44–0.66).

Sex-specific thresholds were identified. In the overall population, 
a cross-sectional area threshold of 2.845 cm2 had high specificity in 

TABLE 1  Differences between genders in baseline characteristics.

Variables Total (n = 337) Men (n = 198) Women (n = 139) p-value

Age (years) 69.7 (10.9) 69.98 (10.87) 69.24 (10.91) 0.54

Localization of cancer (%):

 � Esophagogastric 34.4 38 29.1

<0.01

 � Colorectal 25.8 26.6 24.6

 � Hepatobiliary-pancreatic 17.2 16.7 17.9

 � Urological 6.1 8.3 3

 � Lung 5.5 4.7 6.7

 � Head and neck 5.2 4.7 6

 � Gynecological 3.4 0 8.2

 � Breast 1.5 0 3.7

 � Hematological 0.9 1 0.7

Anthropometry

 � BMI (kg/m2) 23.69 (4.62) 23.84 (4.36) 23.49 (4.97) 0.5

 � Arm Circumference (cm) 25.37 (3.37) 25.63 (3.03) 24.97 (3.81) 0.09

 � Calf Circumference (cm) 32.59 (3.71) 32.98 (3.63) 32.05 (3.78) 0.03

Quadriceps rectus femoris ultrasonography

 � RFA (cm2) 3.03 (0.99) 3.36 (0.99) 2.56 (0.78) <0.01

 � RFI (cm2/m2) 1.15 (0.36) 1.22 (0.37) 1.05 (0.32) <0.01

 � RFT (cm) 0.95 (0.26) 1.02 (0.26) 0.86 (0.22) <0.01

 � MiT (%) 45.64 (9.64) 47.37 (9.86) 43.18 (8.78) <0.01

 � FATi (%) 40.03 (6.27) 39.13 (6.95) 40.92 (6.19) 0.02

 � NMNFATi (%) 14.49 (4.62) 13.50 (4.42) 15.91 (4.56) <0.01

 � MiArea (cm2) 1.41 (0.63) 1.61 (0.64) 1.12 (0.47) <0.01

 � FATiArea (cm2) 1.19 (0.44) 1.31 (0.45) 1.04 (0.38) <0.01

 � Pennation Angle (°) 5.51 (2.81) 5.80 (2.85) 5.05 (2.67) 0.02

Computed tomography

 � SMA (cm2) 131.65 (28.24) 144.70 (25.47) 113.05 (20.57) <0.01

 � SMI (cm2/m2) 49.39 (10.63) 51.76 (11.17) 45.99 (8.81) <0.01

 � Muscle Attenuation (HU) 24.76 (12.41) 24.91 (11.61) 24.53 (13.51) 0.78

 � LMA (cm2) 119.96 (26.38) 132.34 (23.73) 102.33 (18.91) <0.01

 � LMI (cm2/m2) 44.89 (9.59) 47.23 (10.05) 41.54 (7.79) <0.01

 � Lean Muscle (% Muscle) 91.20 (5.44) 91.56 (4.96) 90.69 (6.03) 0.15

 � IMFA (cm2) 11.68 (7.68) 12.36 (7.74) 10.72 (7.51) 0.05

 � IMFI (cm2/m2) 4.49 (3.06) 4.53 (2.99) 4.45 (3.14) 0.83

 � Intramuscular Fat (% Muscle) 8.79 (5.44) 8.44 (4.96) 9.31 (6.03) 0.15

Muscle function

 � Handgrip Strength (kg) 24.16 (8.38) 28.00 (7.32) 18.84 (6.69) <0.01

BMI: Body Mass Index; RFA: Rectus Femoris Area; RFI: Rectus Femoris Index; RFT: Rectus Femoris Thickness; ROI: Region of Interest; MiT: ROI Muscle percentage; FATi: ROI Fat 
percentage; NMNFATi: ROI No muscle, no fat percentage; MiArea ROI Muscle Area; FATiArea: Roi Fat Area; SMA: Skeletal Muscle Area; SMI: Skeletal Muscle Index; HU: Houmsfield Units; 
LMA: Lean Muscle Area; LMI: Lean Muscle Index; IMFA: Intramuscular Fat Area; IMFI: Intramuscular Fat Index.
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women, while RFT demonstrated a higher threshold in men with 
strong negative predictive value. Notably, Mi and FATi indices showed 
distinct diagnostic thresholds between sexes, emphasizing the need 
for sex-specific cut-offs tailored to the condition being assessed 
(Table 4).

The application of these cut-off points to select quality parameters 
and establish diagnostic criteria for muscle mass and muscle quality 
based on MiT and FiT, stratified by gender, yielded the following 
findings. MiT-based diagnosis of low muscle mass showed significant 
differences in muscle area and muscle attenuation, both in total 
muscle and in the percentage of lean mass. In contrast, FiT-based 
diagnosis of low mass detected significant differences only in 
intramuscular fat area and intramuscular fat attenuation. Regarding 
muscle quality, both MiT and FiT criteria for low muscle quality 
identified significant differences in the percentages of total muscle, 
lean muscle, and intramuscular fat, as well in muscle attenuation and 
lean muscle attenuation (Table 5).

4 Discussion

The AI powered Rectus Femoris Muscle ultrasonography is a 
valuable bedside tool for assessing muscle mass and quality. 
Comparisons between muscle ultrasonography and body 
composition parameters obtained from AI assisted CT at the L3 level 
showed moderate correlations for muscle mass indicators (RFA and 
RFT). In contrast, muscle quality parameters assessed by ultrasound 
(Mi, FATi, and NMNFATi) demonstrated weak but statistically 
significant correlations with CT-derived quality metrics (SM-HU, 
LM-HU, %LM, and %IMF). For diagnosing sarcopenia, ultrasound-
based muscle mass parameters exhibited better AUC values. However, 

when diagnosis was based on muscle quality and strength, 
ultrasound-derived quality parameters showed superior predictive 
performance. Specifically, ultrasonographic assessment of muscle 
mass (low muscle mass) had higher negative predictive value, while 
muscle quality assessment (myosteatosis) had higher positive 
predictive value.

Several conditions can lead to sarcopenia, and the different 
diagnostic domains significantly influence the progression of muscle 
decline. In our study, we considered muscle quality as the initial stage 
of muscle deterioration. Accordingly, most patients in our sample 
exhibited low muscle quality, based on the myosteatosis values 
established by Martin et al. (41 HU for BMI < 25 kg/m2; and 33 HU 
for BMI > 25 kg/m2) (18). Other studies reported similar attenuation 
values (38.5 HU) in healthy kidney donor candidates. However, their 
study did not differentiate based on BMI, which may affect diagnostic 
accuracy (20). In contrast, Van der Werf et al. reported lower 5th 
percentile values for muscle attenuation – 29.3 HU for and 22 HU for 
women – which may reflect lower values with higher BMI (9). These 
discrepancies may be  influenced by differences in population 
characteristics, as well as by the distinction between using a statistical 
metric such as a percentile and a clinical cut-off value. For instance, 
Martin’s study focused on cancer patients, while Van der Werf ’s study 
involved healthy individuals. When applying Martin’s cut-off values, 
our ultrasound-based assessments showed poorer results in both 
muscle mass and muscle quality parameters.

On the other hand, the definition of low muscle mass varies across 
studies, and it is influenced by the selected cut-off points. The mean 
SMI in our sample (51.76 cm2/m2 for men and 45.99 cm2/m2 for 
women) was higher than that reported by Van der Werf et al., although 
their study included a non-oncological population with a wide age 
range (9). When compared to other cancer populations, such as in the 

FIGURE 2

Diagnosis of malnutrition and sarcopenia and differences related to gender.
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study Martin et al., our mean values were similar, but the prevalence 
of low muscle mass was higher in their cohort (53% for women and 
31% in men), likely due to the fact that their patients were in stage IV 
of cancer (18). Borrelli et al., in a small sample of cancer patients, 
reported even higher mean SMI values than ours, including among 
those diagnosed with sarcopenia (21). In that study, the cut-off points 
for low muscle mass were based on the Fearon et al. consensus, with 
a reported prevalence of 47.4% (22). Similarly, Faron et al., in a study 
of melanoma patients, found mean values comparable to ours, but 
defined low muscle mass using the median of their sample as the 
cut-off (23). The higher prevalence of low muscle mass in these 
studies, compared to ours (20.7% in men and 28.1% in women); may 
be attributed to differences in definitions and patient characteristics. 
However, it is important to note that many studies refer to sarcopenia 
solely based on low muscle mass, without considering muscle 
function (8).

Sarcopenia is defined primarily by low muscle strength, followed 
by low muscle mass. In our sample, only 8% of patients met the criteria 
for confirmed sarcopenia. However, when considering low muscle 
strength alone (probable sarcopenia), the prevalence increased to 
34.7%. When compared with other studies using different assessment 
techniques, such as bioelectrical impedance analysis (BIA), the 
DRECO study reported a similar prevalence of confirmed sarcopenia 
(9.7%) but a lower rate of probable sarcopenia (14%) (13). In contrast, 
another study from our group, which included 68.4% oncologic 
patients, found a higher prevalence of sarcopenia at 20% (24). Patients 
with confirmed sarcopenia showed lower values in ultrasonographic 
muscle mass parameters and pennation angle, which reflects 
contractile capacity. Similarly, patients with low muscle strength 
exhibited altered values in ultrasonographic muscle quality 
parameters. These findings highlight the importance of muscle quality 
in relation to muscle function, suggesting that impairments in muscle 
quality may precede the decline in muscle mass (12).

Muscle mass parameters obtained via ultrasonography, specifically 
rectus femoris area (RFA) and thickness (RFT), showed moderate 
correlations with muscle mass parameters derived from AI-based CT 
imaging, such as skeletal muscle area (SMA) and lean muscle area. 
Jiménez-Sánchez et al. reported higher correlations with L3-SMA for 
RFT (r = 0.64) and RFA (r = 0.60), which may be attributed to the use 
of a homogeneous population consisting of colorectal cancer patients 
(25); In contrast, a study by Guirado et al. found a lower correlation 
for RFT and a higher one for muscle area. This discrepancy could 
be  due to the partial relationship between muscle thickness and 

TABLE 2  Differences in ultrasonographic parameters between muscle 
mass and quality components of sarcopenia and diagnosis of sarcopenia 
using CT values.

Sarcopenia (Low SMI + Low Handgrip Strength)

Variables YES (n = 26) NO (n = 274) p-value

RFA (cm2) 2.66 (0.88) 3.05 (0.99) 0.05

RFI (cm2/m2) 1.00 (0.29) 1.15 (0.36) 0.03

RFT (cm) 0.85 (0.22) 0.96 (0.25) 0.03

MiT (%) 46.21 (9.85) 45.53 (9.73) 0.73

FATi (%) 41.24 (6.17) 39.90 (6.26) 0.30

NMNFATi (%) 14.92 (5.82) 14.45 (4.53) 0.62

MiArea (cm2) 1.25 (0.56) 1.41 (0.63) 0.21

FATiArea (cm2) 1.02 (0.36) 1.21 (0.44) 0.04

Pennation Angle 

(°)
4.37 (2.82) 5.61 (2.77) 0.03

Low muscle mass (Low SMI (Martin cut-off points))

Variables YES (n = 80) NO (n = 255) p-value

RFA (cm2) 2.73 (0.92) 3.12 (0.99) <0.01

RFI (cm2/m2) 1.00 (0.32) 1.19 (0.35) <0.01

RFT (cm) 0.86 (0.23) 0.98 (0.25) <0.01

MiT (%) 39.20 (7.13) 40.28 (5.98) 0.06

FATi (%) 39.20 (7.13) 40.28 (5.98) 0.19

NMNFATi (%) 14.11 (5.85) 14.65 (4.16) 0.36

MiArea (cm2) 1.32 (0.63) 1.43 (0.62) 0.19

FATiArea (cm2) 1.03 (0.37) 1.25 (0.44) <0.01

Pennation Angle 

(°)
4.89 (2.62) 5.69 (2.84) 0.03

Low muscle strength (Low Handgrip Strength)

Variables YES (n = 110) NO (n = 190) p-value

RFA (cm2) 2.89 (0.97) 3.10 (1.01) 0.07

RFI (cm2/m2) 1.12 (0.36) 1.16 (0.35) 0.44

RFT (cm) 0.92 (0.26) 0.97 (0.25) 0.11

MiT (%) 44.17 (9.47) 46.45 (9.79) 0.04

FATi (%) 41.29 (5.51) 39.28 (6.55) <0.01

NMNFATi (%) 14.83 (4.84) 14.25 (4.53) 0.27

MiArea (cm2) 1.28 (0.54) 1.47 (0.67) 0.01

FATiArea (cm2) 1.18 (0.48) 1.20 (0.42) 0.73

Pennation Angle 

(°)
5.53 (2.94) 5.48 (2.71) 0.87

Low muscle quality (Low CT attenuation (Martin Cut-
Off Points))

Variables YES (n = 299) NO (n = 38) p-value

RFA (cm2) 2.99 (0.99) 3.39 (0.99) 0.02

RFI (cm2/m2) 1.13 (0.36) 1.26 (0.34) 0.03

RFT (cm) 0.94 (0.26) 1.05 (0.24) 0.01

(Continued)

TABLE 2  (Continued)

MiT (%) 45.01 (9.15) 50.59 (11.89) <0.01

FATi (%) 40.19 (6.45) 37.31 (8.06) <0.01

NMNFATi (%) 14.79 (4.45) 12.09 (5.27) <0.01

MiArea (cm2) 1.36 (0.59) 1.75 (0.74) <0.01

FATiArea (cm2) 1.19 (0.44) 1.25 (0.42) 0.44

Pennation Angle 

(°)
5.55 (2.78) 5.17 (3.02) 0.43

RFA: Rectus Femoris Area; RFI: Rectus Femoris Index; RFT: Rectus Femoris Thickness; ROI: 
Region of Interest; MiT: ROI Muscle percentage; FATi: ROI Fat percentage; NMNFATi: ROI 
No muscle, no fat percentage; MiArea ROI Muscle Area; FATiArea: Roi Fat Area. SMI 
Skeletal Muscle Index.
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muscle function, whereas muscle area is more directly related to 
muscle mass (26). Nevertheless, the strongest correlations between 
techniques are observed when comparing parameters directly related 
to muscle mass. However, these correlations are not particularly 
strong, likely because they involve comparisons between trunk muscle 
mass and appendicular muscle mass (i.e., from the leg) at a single 
point. A correlation with dual-energy X-ray absorptiometry (DXA) 
might provide more accurate results.

The assessment of muscle quality, particularly the detection of 
atrophy or myosteatosis, is a key aspect in patient characterization 
using artificial intelligence. In this context, AI enables a more precise 
and standardized evaluation of fat infiltration in skeletal muscle 
through various tools applied across different imaging modalities, 
including CT, ultrasound or MRI (27). Numerous studies have 
demonstrated a relationship between muscle attenuation and overall 
patient prognosis in individuals who have undergone CT imaging 

FIGURE 3

Scatter Plot between muscle mass parameters determined by ultrasonography (US) and computed tomography-L3 (CT-L3).

TABLE 3  Correlation between ultrasound variables and computed tomography variables.

Variables SMA SM-HU LMA LM-HU %LM IMFA %IMF

RFA
r = 0.44

p < 0.01

r = 0.14

p < 0.01

r = 0.47

p < 0.01

r = 0.13

p < 0.02

r = −0.13

p = 0.01

r = 0.03

p = 0.65

r = −0.15

p = 0.01

RFT
r = 0.43

p < 0.01

r = 0.08

p = 0.12

r = 0.43

p < 0.01

r = 0.10

p = 0.06

r = −0.06

p = 0.29

r = 0.09

p = 0.07

r = 0.06

p = 0.29

MiT
r = 0.02

p = 0.75

r = 0.27

p < 0.01

r = 0.09

p = 0.12

r = 0.25

p < 0.01

r = 0.25

p < 0.01

r = −0.23

p < 0.01

r = −0.25

p < 0.01

FATi
r = 0.09

p = 0.07

r = −0.21

p < 0.01

r = −0.01

p = 0.41

r = −0.19

p < 0.01

r = −0.22

p < 0.01

r = 0.19

p < 0.01

r = 0.14

p < 0.01

NMNFATi
r = −0.10

p = 0.07

r = −0.26

p < 0.01

r = −0.16

p < 0.01

r = −0.16

p < 0.01

r = −0.24

p < 0.01

r = 0.19

p < 0.01

r = 0.24

p = 0.01

Pennation Angle
r = 0.13

p < 0.02

r = 0.02

p = 0.73

r = 0.12

0.03

r = 0.05

p = 0.34

r = −0.02

p = 0.69

r = 0.07

p = 0.19

r = 0.02

p = 0.69

Red: Very weak; yellow: weak; blue: moderate; green: strong. RFA: Rectus Femoris Area; RFT: Rectus Femoris Thickness; ROI: Region of Interest; MiT: ROI Muscle percentage; FATi: ROI Fat 
percentage; NMNFATi: ROI No muscle, no fat percentage; SMA: Skeletal Muscle Area; SM-HU: Hounsfield Units Skeletal Muscle; LMA: Lean Muscle Area; LM-HU: Hounsfield Units Lean 
Muscle; %LM: percentage Lean Muscle; IMFA: Intramuscular Fat Area; %IMF: percentage Intramuscular Fat.
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TABLE 4  Cut-off points of Artificial Intelligence enhanced ultrasound variables of the rectus femoris for detecting sarcopenia and its components 
(muscle mass and quality) in all patients and distributed by sex.

Variables Categories Patients Cut-
Off 

Value

AUC Sensitivity 
(%)

Specificity 
(%)

PPV 
(%)

IC95% NPV 
(%)

IC95%

Rectus femoris 

area (cm2)

Sarcopenia

All 2.845 0.628 55.25 66.67 12.60 6.6–18.6 94.49 91.5–97.5

Men 3.425 0.598 49.40 73.30 65.00 55.46–

65.40

59.20 52.90–

65.40

Women 2.845 0.632 34.10 100 100 69.20–100 94.60 92.15–

97.05

Low muscle 

strength

All 3.09 0.565 46.90 65.80 46.09 37.5–54.7 66.53 60.10–73

Men 3.221 0.616 62.20 57.10 47.40 39.9–54.9 70.79 63.9–77.7

Women 2.801 0.582 37.50 77.50 40.93 30.8–51.1 71.86 66.3–77.5

Low muscle mass

All 2.71 0.619 64.70 55.00 30.87 23.8–37.9 83.38 77.5–89.3

Men 2.71 0.580 78.80 36.60 24.50 18.8–30.2 86.87 80.8–92

Women 1.88 0.617 88.90 30.80 33.43 27.5–39.3 87.65 80.6–94.4

Low muscle 

quality

All 3.68 0.624 47.40 78.60 95.15 91.6–98 23.07 15.7–0.30.8

Men 3.68 0.654 65.00 68.00 94.53 91–98 27.81 18–37.7

Women 2.64 0.667 61.10 63.60 91.80 87.5–96.1 19.50 13–26

Rectus femoris 

thickness (cm)

Sarcopenia

All 0.912 0.636 54.90 74.10 15.6 8.31–22.89 94.97 92.22–

97.72

Men 1.180 0.613 25.60 93.30 25.00 8.9–41.10 93.50 90.8–96.30

Women 0.868 0.641 43.9 100 100 75.30–100 95.30 93–97.70

Low muscle 

strength

All 0.901 0.557 60.50 53.60 37.49 30.5–44.5 68.85 61.9–75.7

Men 0.924 0.580 73.80 47.30 47.13 40.3–54.9 73.93 66.5–81.3

Women 0.895 0.578 42.20 72.20 38.04 28.9–47.1 75.54 69.8–81.3

Low muscle mass

All 0.888 0.619 61.60 63.70 34.52 26.8–42.2 84.23 79–89.4

Men 1.086 0.593 39.10 78.00 11.57 7.3–15.3 58.05 48.3–67.7

Women 0.867 0.633 49.50 84.60 55.68 44.9–66.3 81.08 76.2–86

Low muscle 

quality

All 0.96 0.631 71.10 54.80 92.50 89–96 19.40 11.6–27.2

Men 0.95 0.633 85.00 42.70 93.00 90–96 24.20 15.3–33.1

Women 1.13 0.680 38.90 90.01 96.40 93.1–99.7 17.90 12.7–23.1

Mi (%)

Sarcopenia

All 43.32 0.505 52.50 36.60 6.72 3.34–10.10 89.86 84.59–

95.13

Men 44.69 0.416 54.70 46.70 7.78 3.87–11.69 92.60 88.51–

96.69

Women 47.29 0.602 30.10 100 100 66.39–100 93.83 91.24–

96.42

Low muscle 

strength

All 40.62 0.569 76.80 37.30 39.43 33–45.8 75.16 66.9–83.4

Men 51.02 0.555 36.40 76.70 49.86 39.9–59.9 65.45 59.3–71.6

Women 40.61 0.645 77.10 55.60 41.26 34.1–48.5 85.72 79–91.5

Low muscle mass All 62.68 0.547 12.50 97.30 58.98 35.1–82.9 78.17 73.7–83.7

Men 46.45 0.629 65.90 57.70 28.91 21.9–36.9 86.63 81.4–91.1

Women 34.64 0.491 94.90 84.80 70.93 62.9–78.9 97.70 95.4–100

Low muscle 

quality

All 46.77 0.640 68.40 63.90 93.70 90.3–97.1 20.50 13.1–27.9

Men 47.72 0.691 75.00 62.40 94.70 91.9–97.5 21.90 13.5–30.3

Women 46.73 0.614 61.10 73.60 94.00 90.5–97.5 21.90 15–28.8

(Continued)
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(28). In fact, among oncology patients, lower muscle attenuation 
values and greater fat infiltration in skeletal muscle have been 
associated with poorer prognosis (27). When comparing muscle 
quality parameters assessed by ultrasonography, we observed weak 
correlations between the percentage of muscle and fat mass, muscle 
attenuation of total and lean muscle mass, and the percentage of 
muscle and fat within the ROI. The correlations were stronger when 
using the Muscle Index (Mi). Evaluation of muscle quality via 

ultrasonography has been associated with phase angle and muscle 
strength, as higher echogenicity values are linked to lower phase angle 
and reduced muscle strength in patients with DRM (11). Nevertheless, 
there are no specific studies directly comparing muscle quality 
measured by ultrasonography with that assessed by computed 
tomography. The assessment of myosteatosis using muscle 
ultrasonography is based on tissue echogenicity and the analysis of 
grayscale values to differentiate the proportion of muscle mass and fat 

TABLE 4  (Continued)

Variables Categories Patients Cut-
Off 

Value

AUC Sensitivity 
(%)

Specificity 
(%)

PPV 
(%)

IC95% NPV 
(%)

IC95%

FATi (%) Sarcopenia All 38.11 0.549 66.40 48.10 9.91 5.53–14.29 96.55 93.7–99.40

Men 38.11 0.603 63.40 60.00 11.14 5.94–16.34 96.37 93.75–

98.99

Women 47.16 0.479 13.80 100 13.80 1.2–26.4 92.03 88.90–95

Low muscle 

strength

All 40.40 0.555 59.00 45.40 32.71 26–39.5 63.45 55.6–71.2

Men 36.68 0.547 63.10 12.20 29.23 23.8–34.7 32.66 21.9–43.4

Women 40.41 0.602 72.50 56.20 43.47 35.8–51.2 62.16 54.7–69.7

Low muscle mass All 41.25 0.567 44.70 67.50 27.57 19.6–35.6 77.47 71.8–83.2

Men 37.61 0.614 67.30 51.20 16.04 10.5–21.6 59.02 53.1–65

Women 46.17 0.523 19.20 92.30 41.43 31–51.8 77.25 72.5–82.1

Low muscle 

quality

All 41.20 0.623 45.50 78.90 94.40 90.5–98.3 15.60 10.4–20.8

Men 41.14 0.642 44.40 80.00 95.20 91.8–98.6 13.90 8.9–18.9

Women 38.66 0.622 71.10 61.61 92.90 89.4–96.4 23.20 15.3–31.1

AUC: Area Under Curve; PPV: Positive Predictive Value; NPV: Negative Predictive Value. MiT: ROI Muscle percentage; FATi: ROI Fat percentage.

FIGURE 4

Receiving operating characteristic (ROC) curves for muscular ultrasonography of rectus femoris: (1) Muscle mass parameters: rectus femoris muscle 
area (blue) and rectus femoris thickness (green) for the diagnosis por sarcopenia; (2) Muscle quality parameters: percentage of muscle mass (Mi) 
(green) and percentage of fat mass (FATi) (blue) for the diagnosis of sarcopenia (a), dynapenia (b), and low muscle quality (c). AUC: Area Under Curve.
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mass within the defined ROI (29, 30). However, there are currently no 
well-validated reference values or diagnostic thresholds that allow us 
to determine prognostic implications. Additionally, the low correlation 
observed in our sample may be attributed to differences in muscle 
location and the specific ROI used for analysis.

Cut-off values for muscle mass (RFA and RFT) in sarcopenia were 
similar to those reported in the DRECO study, which used ASMI 
assessed by BIA to diagnose low muscle mass and applied the same 
cut-off points for handgrip strength (13). This is noteworthy because 
the DRECO study employed diagnostic criteria for primary sarcopenia, 
whereas our study used criteria for low muscle mass based on mortality 
risk, as proposed by Martin et al. (18). In our study, these cut-off values 
demonstrated better negative predictive values, consistent with findings 
from the DRECO study. This may be attributed to the use of extreme 
cut-off points for diagnosing sarcopenia, specifically, muscle mass 
thresholds based on mortality risk and handgrip strength values below 
the 5th percentile in patients over 75 years of age (8). This condition 
can influence over the worse ROC curves of association compared with 

other test as ASMI measured by BIA, like the study of De Luis et al. 
where AUC were 0.714 [0.785 for males and 0.813 for females (31)].

Ultrasonography-based muscle quality parameters showed 
superior performance when using cut-off points related to muscle 
quality, such as muscle attenuation on CT. These parameters yielded 
better positive predictive values for both Mi and FATi. Similar findings 
were reported by Kim et al. in a study involving patients undergoing 
hip surgery, where muscle quality was assessed using Sono 
elastography. In that study, sensitivity, specificity, and accuracy based 
on muscle attenuation were 77.3, 100, and 87.5%, respectively (32). 
The muscle quality values observed in our study may be linked to the 
high prevalence of myosteatosis detected among the participants.

This study has several limitations. First, the heterogeneity of the 
oncologic population, encompassing various tumor types, disease 
stages, and treatment modalities, may limit the generalizability of the 
findings despite efforts to standardize the timing of imaging. Second, 
the study was conducted at a single center, which may affect external 
validity. Third, although AI-assisted ultrasound allowed for 

TABLE 5  Differences between L3 Computed Tomography based on cut-off points for sarcopenia in ultrasound muscle quality parameters.

Low muscle mass by MiT
(Cut-Off points: MiT Men: 46.45%; MiT Women: 34.64%)

Low muscle mass by FiT
(Cut-Off points: FiT Men: 37.61%; FiT Women: 46.17%)

Variables YES (n = 143) NO (n = 194) p-value Variables YES (n = 31) NO (n = 306) p-value

SMA (%ROI) 22.65 (4.80) 22.55 (5.06) 0.85 SMA (%ROI) 21.35 (5.16) 22.72 (4.91) 0.14

SMI (cm2/m2) 52.89 (8.93) 47.55 (9.44) < 0.01 SMI (cm2/m2) 51.49 (9.11) 49.66 (9.63) 0.31

Muscle attenuation 

(HU)
22.69 (12.15) 26.27 (12.41) < 0.01

Muscle attenuation 

(HU)
21.04 (14.94) 25.13 (12.09) 0.08

LMA (%ROI) 20.65 (5.07) 20.76 (5.31) 0.84 LMA (%ROI) 19.23 (5.57) 20.86 (5.15) 0.09

LMI (cm2/m2) 47.85 (7.96) 43.39 (8.64) < 0.01 LMI (cm2/m2) 45.78 (7.91) 45.25 (8.71) 0.74

Lean muscle 

attenuation (HU)
31.44 (8.32) 34.36 (8.96) < 0.01

Lean muscle 

attenuation (HU)
31.29 (9.39) 33.31 (8.73) 0.23

IMFA (%ROI) 2.00 (1.20) 1.79 (1.08) 0.08 IMFA (%ROI) 2.12 (1.39) 1.86 (1.11) 0.22

IMFI (cm2/m2) 5.05 (3.35) 4.09 (2.76) < 0.01 IMFI (cm2/m2) 5.71 (4.29) 4.37 (2.88) 0.02

Intramuscular fat 

attenuation (HU)
−64.68 (5.94) −63.91 (6.1) 0.24

Intramuscular fat 

attenuation (HU)
−66.90 (6.39) −63.97 (5.95) 0.01

Low muscle quality by MiT
(Cut-Off points: MiT Men: 47.72%; MiT Women: 46.73%)

Low muscle quality by FiT
(Cut-Off points: FiT Men: 41.14%; FiT Women: 38.66%)

Variables YES (n = 212) NO (n = 125) p-value Variables YES (n = 176) NO (n = 161) p-value

SMA (%ROI) 21.68 (4.35) 24.15 (5.49) < 0.01 SMA (%ROI) 21.64 (4.69) 23.63 (5.02) <0.01

SMI (cm2/m2) 50.46 (9.20) 48.73 (10.15) 0.11 SMI (cm2/m2) 50.15 (9.02) 49.48 (10.19) 0.53

Muscle attenuation 

(HU)
22.23 (11.94) 29.05 (12.04) < 0.01

Muscle attenuation 

(HU)
22.19 (12.17) 27.56 (12.09) <0.01

LMA (%ROI) 19.68 (4.55) 22.47 (5.75) < 0.01 LMA (%ROI) 19.65 (4.87) 21.88 (5.31) <0.01

LMI (cm2/m2) 45.49 (8.23) 44.96 (9.31) 0.59 LMI (cm2/m2) 45.20 (8.16) 45.39 (9.15) 0.84

Lean muscle 

attenuation (HU)
31.28 (8.27) 36.26 (8.82) < 0.01

Lean muscle 

attenuation (HU)
31.26 (8.29) 35.16 (8.91) <0.01

IMFA (%ROI) 2.00 (1.15) 1.67 (1.09) 0.01 IMFA (%ROI) 1.99 (1.19) 1.75 (1.06) 0.05

IMFI (cm2/m2) 4.98 (3.17) 3.68 (2.67) <0.01 IMFI (cm2/m2) 4.94 (3.24) 4.00 (2.76) <0.01

Intramuscular fat 

attenuation (HU)
−64.65 (5.71) −63.53 (6.53) 0.100

Intramuscular fat 

attenuation (HU)
−64.77 (5.32) −63.65 (6.71) 0.09

ROI: Region of Interest; MiT: ROI Muscle percentage; FATi: ROI Fat percentage; SMA: Skeletal Muscle Area; SMI: Skeletal Muscle Index; HU: Hounsfield Unit; LMA: Lean Muscle Area; LMI: 
Lean Muscle Index; IMFA: Intramuscular Fat Area; IMFI: Intramuscular Fat Index.
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standardized and automated assessment of muscle quality, the derived 
echogenicity-based biomarkers (Mi, FATi, NMNFi) lack external 
validation and remain specific to the technology and algorithms used. 
Fourth, muscle mass was assessed using two dimensional CT rather 
than 3D volumetric metrics; this choice aligns with established 
oncology sarcopenia thresholds (e.g., Martin et al.) and mirrors the 
inherently 2D nature of the rectus femoris ultrasound comparator. 
Lastly, the moderate correlations observed between ultrasound and 
CT may reflect the intrinsic anatomical and methodological 
differences between trunk-based and limb-based imaging assessments.

The principal strength of this study lies in its large, well-
characterized cohort of oncology outpatients evaluated through a 
multimodal approach combining AI-enhanced CT, muscle ultrasound, 
and functional measures. Unlike studies focused solely on imaging-
derived body composition, this research incorporates all core 
sarcopenia domains—muscle mass, quality, and strength—providing 
a comprehensive morphofunctional assessment. The use of deep 
learning-based segmentation tools for both imaging modalities 
improves measurement reproducibility and reduces operator 
dependence. Additionally, the definition of diagnostic cut-off points 
by sex offers clinically relevant benchmarks for sarcopenia assessment 
in nutritional oncology practice.

Future research should aim to validate ultrasonography cut-off 
points as prognostic markers in patients with oncologic conditions. 
This study may serve as a first step toward establishing ultrasonography 
as a simple, bedside tool for assessing muscle mass and quality during 
nutritional consultation in oncology patients. Additionally, AI-driven 
analysis of CT images could support the validation of these cut-off 
points in other populations affected by DRM, using opportunistic or 
even low-dose CT scans to evaluate body composition. Future studies 
should derive and validate also 3D volumetric cut-offs to enhance 
accuracy, reproducibility, and clinical utility.

5 Conclusion

This study demonstrates that artificial intelligence-assisted muscle 
ultrasonography of the rectus femoris is a feasible, non-invasive, and 
clinically relevant tool for assessing sarcopenia in oncology patients. 
It provides moderate correlations with gold-standard CT-based 
measurements of muscle mass and captures qualitative alterations 
related to muscle quality and fat infiltration. The identified sex-specific 
ultrasonographic cut-off points offer diagnostic value, with high 
negative predictive value for muscle mass and positive predictive value 
for myosteatosis. These findings support the integration of ultrasound, 
particularly when enhanced by AI segmentation, as a complementary 
bedside method in routine nutritional assessment. Future validation 
studies are warranted to confirm these cut-offs and to explore their 
prognostic implications in broader oncologic populations.

Advances in AI-driven body composition analysis are transforming 
clinical imaging. Deep learning is enhancing the precision of tissue 
segmentation and quantification, enabling not only accurate 
measurement of muscle and fat but also assessment of tissue quality, 
such as detecting fat infiltration and changes in density. Radiomics adds 
further value by extracting image-based patterns to build predictive 
models that link imaging biomarkers with clinical outcomes. 
Additionally, combining multiple imaging techniques may lead to more 
comprehensive 3D models, improving diagnosis and treatment planning.
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