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Editorial on the Research Topic

Food-derived phytochemicals as regulators of gut microbiota

Introduction

Plants supply a dazzling repertoire of bioactive compounds—polyphenols, carotenoids,

terpenoids, alkaloids, organosulfur compounds, and many others—now exceeding

5,000 cataloged structures (1, 2). Cohort and intervention data consistently link

phytochemical-rich diets to lower risk of obesity, insulin resistance, type 2 diabetes,

cardiometabolic disease, several types of cancers, and neurodegeneration (3). While

their redox and anti-inflammatory chemistry are well known, mounting evidence shows

that many benefits are microbiota-mediated (4, 5). Therefore, this Research Topic

explores how food-derived phytochemicals remodel the gut ecosystem and, through it,

human physiology.

Diet–microbiota crosstalk

Phytochemicals reach to the colon largely intact where they are metabolized by

intestinal microbiota reshaping community structure, enriching health-associated taxa

while suppressing pathobionts (6, 7). Such restructuring is not a side effect but a driver

of benefit: the new community generates metabolites—short-chain fatty acids (SCFAs),

secondary bile acids, indole derivatives—that reinforce tight junction proteins, lower

colonic pH, and signal via receptors such as G-protein–coupled FFARs, FXR/TGR5, or the

aryl-hydrocarbon receptor (8). These host–microbe co-metabolites dampen inflammation,

improve insulin sensitivity, and fine-tune lipid metabolism, creating a virtuous cycle in

which phytochemicals act as both substrates and regulators of gut bacteria (6, 9).

Lessons from microbiota transplantation

Lamas-Paz et al. extend this concept beyond diet. In their alcohol-challenge

model, middle-aged male mice showed gut leakiness, dysbiosis, and severe liver

injury—phenotypes largely reversed after fecal microbiota transplantation (FMT) from

age-matched females (Lamas-Paz et al.). Tight-junction proteins (ZO-1, occludin), mucus
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(MUC2), and toll-like-receptor signaling normalized; hepatic

steatosis, inflammation, and senescence markers fell sharply.

Though no plant compounds were used, the study underscores a

unifying principle: engineering microbial communities—whether

by feeding targeted phytochemicals or seeding a health-associated

consortium—can stabilize the gut barrier and blunt systemic

injury (Lamas-Paz et al.). FMT thus marks the intensive end of a

continuum on which polyphenol-rich foods operate more gently,

hinting that future precision-nutrition strategies may mix both

levers, calibrated to sex, age, and exposure history.

Phytochemicals in action

Direct evidence comes from Wilson et al., who administered

polyphenol-dense Aronia melanocarpa juice to humanized mice

bearing microbiota from donors with low- (LO) or high-

inflammation (HI) phenotypes. Aronia juice shielded mice against

high-fat-diet dysmetabolism, expanded an Eggerthellaceae genus

∼7-fold, and boosted phosphatidylcholines linked to barrier

integrity. Crucially, LO donor communities preserved β-diversity

and resisted global metabolomic shifts far better than HI

communities, illustrating that phytochemical efficacy is context-

dependent—the food matrix and the starting microbiome jointly

dictate benefit.

In the same way, saponins from American ginseng, recognized

by their potent antioxidant properties, reshaped positively the

gut microbiota from aged mice. A single intervention and

combined intervention of Rb1 and Re saponins enhanced the

α-diversity of gut microbiota, especially when combined Rb1 +

Re, recovering include to the level of young mice. Such saponins

can promote the abundance of probiotics, including Lactobacillus,

Lactobacillaceae, and Bifidobacterium, and inhibit harmful bacteria

such as Enterobacteriaceae (Shi et al.).

Polysaccharides obtained from plants are emerging as

detoxifying agents explained in part by their impact in the

gut microbiota modulation. In a Cadmium (Cd)-induced liver

injury model, Polygonatum sibiricum polysaccharides (PSP)

supplementation reduced serum alanine aminotransferase

(ALT) and aspartate aminotransferase (AST) levels, improved

hepatic steatosis, increased intestinal villi height, enhanced

intestinal barrier function, promoted the growth of beneficial

bacteria (Lactobacillus), besides modulate the production of

SCFAs. Such effects alleviated hepatic dysfunction and metabolic

disorders. Di et al. demonstrated the PSP potential as a functional

dietary intervention for alleviating hepatotoxicity throughout

gut-liver axis.

Extending this phytochemical-first lens to the gut–bone

axis, Wei et al. argue that many osteoprotective effects ascribed

to “nutraceuticals” are in fact co-productions of diet and

microbes. SCFAs and microbe-enabled biotransformation of

dietary polyphenols—e.g., isoflavones → equol, ellagitannins

→ urolithins, and lignans → enterolignans—engage estrogen

receptors, promote osteoblastogenesis, and restrain osteoclast

activity, thereby reinforcing bone homeostasis. Converging

evidence also shows that plant-derived prebiotics, such as grape-

seed anthocyanins and konjac oligosaccharides, can enrich

Bifidobacterium, restore barrier function, and recalibrate immune

tone—an ecological route to bone protection that complements

polyphenol intake. From this perspective, next-generation

probiotics and bacterial extracellular vesicles (BEVs) are best

viewed as a delivery layer atop diet—stabilizing the production and

targeting of beneficial metabolites along the gut–bone axis—rather

than as stand-alone fixes.

Future directions

Several gaps remain—and they mirror the themes of this

Research Topic. First, we need human dose–response trials that

report not only clinical endpoints but also mechanistic readouts

(SCFAs, secondary bile acids, indole derivatives), barrier markers

(ZO-1, occludin, MUC2), and axis-specific outcomes (gut–liver,

gut–bone). Second, because efficacy is context-dependent, trials

should stratify or adjust by baseline microbiome/inflammation

phenotypes (e.g., in LO/HI donors), sex and age, and routinely

record concomitant modifiers (antibiotics, proton pump inhibitors,

metformin, ultra-processed diet). Third, we need to map keystone

taxa and enzymes that unlock specific phytochemicals (e.g., equol,

urolithins, enterolignans) and determine how food matrices (fiber,

saponins, polysaccharides) shape bioavailability and microbial

metabolism. Fourth, combined strategies deserve testing: dietary

phytochemicals as the foundational lever, complemented—when

appropriate—by microbiota-targeted tools (probiotics, symbiotics,

BEVs, or even FMT) to stabilize metabolite production and

barrier integrity. Finally, to improve comparability and translation,

studies should standardize phytochemical characterization and

dosing, include multi-omics (metagenomics, metabolomics, host

transcriptomics), ensure safety monitoring, and adopt open

protocols and data. Taken all together, these steps will move the

field from associative signals to actionable, precision nutrition,

turning themicrobiome–phytochemical dialogue into reproducible

health gains.
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