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Widely conserved miRNAs in
buffalo milk extracellular vesicles
survive gastrointestinal digestion
and potentially target neural and
immunomodulatory contexts
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Diana Marisol Abrego-Guandique3, Paola Tucci1,
Giovanni Smaldone2 and Erika Cione1*
1Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy, 2IRCCS
SYNLAB SDN, Naples, Italy, 3Department of Health Sciences, University of Magna Graecia Catanzaro,
Catanzaro, Italy

MicroRNAs (miRNAs) are small non-coding RNAs with unique functions. Their
presence in human milk raises the possibility of accumulation along the
food chain. Buffalo milk extracellular vesicles, as other milks, are a known
source of dietary miRNAs. However, information on the digestive stability
of miRNAs remains limited, which is a prerequisite for understanding their
in vivo functionalities. To this, the presence of widely conserved miRNAs:
miR-10a-5p, miR-24-3p, miR-25-3p, miR-26a-5p, miR-27b-5p, miR-33a-5p,
miR-103a-3p, miR-125b-5p, miR-130a-3p, miR-133a-3p, miR-138-5p,
miR-139-5p, miR-141-3p, miR-148a-3p, miR-153-3p, miR-199a-3p and
miR-223-3p, were assessed in isolated extracellular vesicles, extracted from
buffalo milk. The miR-10a-5p, miR-24-3p, and miR-130a-3p, were not detected
in raw buffalo milk. Therefore, we simulated the gastrointestinal digestion using
INFOGEST 2.0 and extracted extracellular vesicles from the digest. Apart from
particle numerosity, which differed significantly, from 1.2 × 1011 ± 5.3 × 109

particles/mL in raw milk to 9.53 × 1010 ± 1.2 × 109 particles/mL in digested
milk, the extracted extracellular vesicles showed no structural differences before
and after digestion. The miRNA cargo exhibited a similar pattern, except miR-
141-3p, miR-153-3p, both increased slightly, and miR-223-3p, which increased
substantially; miR-148a-3p, which decreased; and miR-33a-3p, which was no
longer detectable after digestion. The bioinformatics analysis of the overall 13
miRNAs detected post-digestion, concertedly target neural and immunological
contexts, with an MHC-mediated antigen processing and presentation. The
prospect offered highlights the potential of milk, through its EV-miRNA fraction,
to impact inflammatory responses in the neurodevelopmental processes of the
benefiting offspring, and by extension, dairy consumers. However, relevant in
vitro and in vivo investigations are needed to demonstrate the post-digestion
transfer of these nucleic acids from the concerned dietary sources and their
effect on target tissues.
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1 Introduction

The primary relevance of effector systems employing small
RNAs in the formation of RNA-based interference (RNAi) systems
might have been the formulation of a defense structure against
extraneous nucleic acid molecules (1). However, this structure
has diversified in such a way that endogenously produced RNA
molecules are recruited to regulate gene expression. Hence, in
multicellular contexts, these systems are composed of effector
proteins that mediate the silencing of nucleic acids, such as
RNA-Induced Silencing Complexes (RISC), which are responsible
for sequence recognition relevant to the system’s functionality,
and nucleases that process the nucleic acids (2). A major, well-
documented nucleic acid component of RNAi is the microRNA
(miRNA), which is distinguished from other small RNAs by
its highly precise excision from imperfect stem-loop structures
residing in the primary miRNA transcripts (3). It is so named due
to its short length, typically ranging from 18 to 25 nucleotides,
which is approximately the length of a standard PCR primer.
miRNAs pair with the 3′ UTR of target mRNA transcripts to repress
their translation or cause their cleavage; hence, they are generally
regarded as repressors of gene expression.

Due to their vital roles across diverse biological contexts,
miRNAs are considered an essential feature of plant and animal
development (4, 5). This indicates the plausibility of their ubiquity
in any products that can be considered food. To this, the first food
of humans is breast milk, in which miRNAs were identified (6). It
was borne out of the need to explore other possible vertical transfer
of genetic material besides sexual reproduction, but has since
then gone on to become a basis of food-related miRNA studies.
It is therefore not surprising that milk is the most documented
in terms of miRNA make-up. A basic functionality reserved for
milk-related miRNAs is the regulation of immune processes in the
receiving offspring (6–8). However, concerning their contribution
to literature, the identification of miRNAs in food has been vital
in exploring the concept of cross-kingdom (9) and cross-species
miRNA transference (10).

Notwithstanding, the varying contributions of milk miRNAs
to overall biological function have been elaborated upon over
the years. This ranges from embryogenesis (11), angiogenesis
(contributing to wound-healing) (12), epithelial-mesenchymal
transformation-related changes (13), regulation of adipogenesis
(14), fibrogenetic potential in liver cirrhosis (15) to the modulation
of apoptotic rate, stress, invasion, migration, and clonogenicity
of cancer cells (16, 17). Several of these processes are regulated
through the control of inflammatory or immune-related pathways.
One crucial factor that may preserve the function of dietary
miRNAs is their encapsulation in protective structures. These
lipid bilayer vesicles are the smaller form of extracellular vesicles
(EVs), ranging from 30 to 200 nm, formed by the invagination of
endosomes from the mammary gland cell membrane (18) as a part
of cell-to-cell communication, taken up through endocytosis by
recipient cells which may be routed to the endoplasmic reticulum
(ER) and then, lysosomes, for cargo release and mediation of
gene expression (19). They confer a substantial (ten-fold) level of
protection on the contained miRNAs against conditions that may
impede their delivery in vivo , especially gastrointestinal digestion

(20–22). With the consumption of commercial dairy milk being a
global norm, milk EVs are crucial in the interspecies delivery of
miRNAs and the consequential regulation of target genes (23).

The conservation of miRNAs across species makes the
discussion of cross-species miRNA transfer even more relevant.
Particularly in the animal phyla, where mismatches between the
relative target and miRNA sequence are more tolerated (24),
miRNAs from a species can pair with a target from another species.
What’s more, the targets of these miRNAs are equally conserved
(25), although variation exists in the sites and timing of expression
of the miRNAs (26). Within vertebrates, there are more similarities
in the sequence of these miRNAs (27), suggesting the possibility
that foods offered by animals provide miRNA homologs of high
complementarity (28).

Buffalo milk (BuM) accounts for a significant portion of the
global dairy output. Like other milks in the dairy sector, it has
been garnering attention regarding certain components that offer
benefits beyond the classical nutritional outlook. Exosomes from
BuM contain and can be a biologically efficient shuttler of bovine
miRNAs, especially immune-related ones, which were found to be
higher than in cow milk (16, 29). These miRNAs were documented
to be protected from the stress that could result from household
handling conditions (30), suggesting that selected exosomal BuM
miRNAs may serve as biomarkers of milk quality. Despite the
complexity of dairy milk being affirmed and the biological efficacy
of some of the components being documented, comparatively little
is known regarding the feasibility of these functions in vivo . A
step toward this understanding is examining the possibility of these
fractions surviving gastrointestinal digestion. Hence, this study
aimed to investigate the stability under simulated gastrointestinal
conditions of buffalo milk extracellular vesicles (BuM-EVs) as well
as their highly conserved miRNA cargo with the highest alignment
statistics with the homo sapiens homologs.

Materials and Methods

2.1 Sample collection

Raw buffalo milk samples were obtained from pools of milk
obtained as part of the routine milking procedure from a dairy
farm (Il Caseificio Polito, Agropoli SA, Italy) into sterile urine
containers. As a result, no ethical approval was sought for this
study. The sample was transported (in 24 h) to the laboratory,
where it was aliquoted into sterile Falcon tubes and subjected to
subsequent treatments and analyses or stored at −80◦C.

2.2 In vitro gastrointestinal digestion

All reagents and enzymes used, unless otherwise stated,
were supplied by Sigma-Aldrich (Schnelldorf, Germany). The
gastrointestinal digestion of the milk samples was simulated
according to the INFOGEST 2.0 (31). Prior enzyme assays were
done to determine the activity and concentration of porcine pepsin
(Sigma-Aldrich, Germany), leporine pepsin and gastric lipase
(Lipolytech, Marseille, France), porcine pancreatic trypsin (Sigma-
Aldrich, Germany), and bovine bile (Sigma-Aldrich, Germany).
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The human salivary α-amylase (Sigma-Aldrich, Germany) used
was not assayed; hence, the supplier-indicated activity was
adapted. BuM (20 mL) was treated to oral digestion by mixing
with a simulated salivary fluid containing human salivary α-
amylase (75 U/mL) and incubating in an agitating incubator
(711/CT+ VDLR Mixer, ASA srl, Milan, Italy) for 2 min. This
was followed by the gastric phase, where the simulated gastric
fluid (pH 3), containing porcine pepsin and rabbit gastric extract
solutions, was added to obtain respective final pepsin and gastric
lipase activities of 2,000 U/mL and 60 U/mL. The mixture was
incubated for 120 min, and the result of the incubation was
subjected to intestinal digestion treatment with simulated intestinal
fluid (pH 7) containing sonicated porcine pancreatin suspension
(100 U trypsin/mL) (32) and bovine bile solution (10 mM) and
similarly incubated. Subsequently, the activity of the digestive
enzymes was halted by heat shock (MOD. 1800-D Thermostatic
Bath, F.lli Galli, Milan, Italy) at 85◦C for 15 min, before
separation of the soluble/‘digestible’ fraction by centrifugation
(4,470 × g for 15 min). This was stored at −20◦C until
further analysis.

2.3 Extracellular vesicle isolation

Raw and digested BuM samples were immediately processed
upon collection. All samples were centrifuged first at 2,000 ×
g to remove milk cells, debris, and milk fat globules. Next,
the pellet was discarded, and the supernatant was used for
another centrifugation step at 10,000 × g. Milk supernatants
were filtered twice using a 0.45 μm syringe filter (GVS North
America, Sanford, USA) and processed for EVs separation using
differential ultracentrifugation (DUC). Specifically, milk samples
were centrifuged first at 30,000 × g for 1 h using the MLA-50
Fixed-Angle Rotor and OPTIMA MAX-XP (Cat# 393315, Beckman
Coulter, USA). This step was necessary to remove larger EVs
and milk contaminants. Therefore, another filtration step was
performed on the milk sample prior to obtaining EV pellets.
Moreover, milk supernatants were subsequently processed for two
rounds of ultracentrifugation at 200,000 × g for 90 min at 4 ◦C
to obtain the EV pellet, which was washed with 0.22 μm filtered
PBS (Cat# 14190, Gibco) by ultracentrifugation. Finally, enriched
EV pellets were resuspended in 500 μL of 0.22 μm filtered PBS and
used for further analysis.

2.4 Extracellular vesicle characterization

2.4.1 Dynamic light scattering
Zeta potential (ZP) of BuM-EVs was analyzed by dynamic light

scattering (DLS) with Zetasizer Nano ZS 374 (Malvern). The ZP
of the EV isolates was measured three times at 25 ◦C under the
following settings: angle of detection backscatter, 3 repeats per
measurement, and an equilibration time of 60 s, while analyzing the
data with the ZetaView software.

2.4.2 Nanoparticle tracking analysis
Particle concentration and size of BuM-EVs were analyzed

using Nanoparticle Tracking Analysis (NTA) (NanoSight NS300,
Malvern Instruments Ltd, Malvern, UK). EV samples were diluted
1:100 and automatically injected into the NTA system under
constant flow conditions (flow rate = 50). The detection threshold
during analysis was selected to ensure that only distinct nano-
objects were analyzed and any artifacts were removed. Five × 60-s
videos of the particles in motion were recorded and analyzed using
NTA 3.2 software.

2.4.3 Scanning electron microscopy
The morphology of BuM-EVs was assessed using scanning

electron microscopy. As previously described (33). All EV samples
were suspended in 2% paraformaldehyde (PFA) and incubated at
4 ◦C overnight. Subsequently, samples were ultracentrifuged at
100,000 × g for 2 h, and the fixed EV pellets were resuspended
in 200 μL of deionised water. Ten (10) μL of fixed samples were
deposited on metallic stubs and coated with gold before imaging.
Finally, EV samples were examined using the PHENOM PROX
scanning electron microscope (SEM).

2.5 Total RNA extraction

Total RNA isolation from the raw and digested BuM-EVs was
performed using the bead-binding technology of the KingFisher
Duo Prime Magnetic Particle Processor (Thermo Fisher Scientific,
Waltham, MA, USA) with MagMAX mirVana Total RNA Isolation
Kit (Thermo Fisher Scientific, Waltham, MA, USA). A 100 μL
of the EV isolate was added to the wells in the second row of a
96-Deep-Well Plate. To monitor total RNA extraction efficiency,
3 μL 1 pM cel-miR-39-3p was added to the samples before
extraction. Extraction, irrespective of the extraction batch, showed
consistent recovery with a per cent Ct variability of 3.3%. Extraction
was performed in duplicates. Subsequent steps of the extraction
procedure followed the kit’s accompanying instructions for high-
throughput RNA isolation from serum and plasma samples. RNA
concentration of the extract was quantified using a Thermo
Scientific NanoDrop One instrument (Thermo Fisher Scientific,
Waltham, MA, USA).

2.6 Quantitative reverse transcription PCR

The 17 miRNAs examined in this study were selected based
on widely conserved miRNAs annotated in miRBase (https://
www.mirbase.org/) with 100% alignment with the corresponding
human homologs (Supplementary Table S1) (34). Reagents and
kits used in the qRT-PCR were procured from Life Technologies
Europe (Milan, Italy). Total RNA containing 2 ng was used in
a Poly(A) reaction with the Taqman Advanced cDNA Synthesis
kit. The reaction product was funneled into adaptor ligation,
reverse transcription and cDNA synthesis reactions as indicated
by the manufacturer. The PCR reaction was set up with 5 μL
of the diluted cDNA (1:10 with RNAse-free water). The probes
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used in this study are presented in Supplementary Table S2, in
compliance with the Minimum Information for the Publication
of Real-Time Quantitative PCR Experiments (MIQE) guidelines
(35). All templates were prepared in technical triplicate. Template
amplification was set up and run on a QuantStudioTM 5 system
(PCR System, Applied BiosystemsTM, Madrid, Spain) using the
following cycling conditions on a fast-cycling mode with a
comparative Ct type: a cycle of 95 ◦C for 20 s (enzyme activation)
and 40 cycles each of 95 ◦C for 1 s (denaturation) and 60 ◦C for 20 s
(annealing and extension). The Ct values acquired were inverted
by subtracting from 40, which was the maximum number of cycles
employed (36).

2.7 Statistical analysis

The normality of the data obtained was verified using
a Kolmogorov-Smirnov test. Group means for the EVs
characterization data (particle size and concentration)
and inverted Ct of the miRNAs were compared using a
multiple paired t-test at a 5% level of significance. Results
were visualized using GraphPad Prism 10.2.3 for Windows
(GraphPad Software).

2.8 Functional analysis

Target prediction and enrichment analysis of the miRNAs were
performed based on their expression levels in the BuM-EVs after

simulated gastrointestinal digestion. Hence, miRNAs approaching
undetectable levels were excluded. Validated target prediction
was performed using multiMiR (37), clusterProfiler (38) and
accompanying packages on RStudio (39) using default parameters.
The target genes were used for the Gene Ontology (GO) and KEGG
enrichment analysis. The Reactome enrichment was analyzed based
on targets involved in the top 20 KEGG pathways, while the
interaction between the proteins (PPI) was visualized using the full
STRING network at a medium interaction score confidence, i.e.,
0.4 (https://string-db.org/) (40) to understand the positioning of
the hub proteins. Additional plots for visualization were generated
using the SRPlot tool (41). Also, the PPI network was clustered
using k-means and the top 20 nodes degree from each cluster
(where possible) was used in plotting a circular plot on the
Cytoscape software 3.10.3 (42). All the experimental procedures are
summarized in Figure 1.

3 Results

3.1 Buffalo milk extracellular vesicle
properties

The phase plot and frequency shift of the preliminary dynamic
light scattering measurements (Supplementary Figure S1) for both
the raw and digested BuM-EV isolates indicate an appropriate
signal shape and resolution, which suggests good signal quality
typical of well-dispersed colloidal systems with a monodisperse
attribute. The system tended toward a relatively more stable
colloid after digestion by the reduction of the zeta potential

FIGURE 1

Protocol summary of gastrointestinal digestion, extracellular vesicle isolation, and miRNAs detection in buffalo milk.
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FIGURE 2

Nanoparticle tracking analysis of buffalo milk EVs by NS300. (A)
Comparison of particle concentration in raw and digested buffalo
milk EVs involved a minimum of four × 60-s videos recorded for
each sample. (B) Comparison of particle size in raw and digested
buffalo milk EVs. Three replicates of each sample were analyzed by
NTA independently and presented as mean bars ± SEM. The
significant p-value is reported; * indicates p < 0.05; n.s. indicates
not significant.

from −12.41 mV to −18 mV. The BuM-EVs exhibited a size
range mainly between 30 and 200 nm. Specifically, EVs isolated
from raw BuM exhibited a diameter size of 94.4 nm, while
for digested milk EVs, the diameter was 96 nm (Figure 2A)
(Supplementary Figure S2). Hence, no statistical differences were
observed between EV samples in raw and post-digested milk.
On the other hand, particle numerosity differed significantly
(p < 0.05) after gastrointestinal digestion, as the EVs in raw milk
(1.2 × 1011 ± 5.3 × 109 particles/mL) were higher compared to
those in digested milk (9.53 × 1010 ± 1.2 × 109 particles/mL)
(Figure 2B). The SEM also provided morphological details
of the particles, showing vesicle-like lipid-enclosed structures
(Figure 3).

3.2 Expression of widely conserved
EV-miRNAs in buffalo milk as a factor of
gastrointestinal digestion

Based on the alignment statistics of Bos taurus miRNAs
against their corresponding homo sapiens homologs, 17 highly
conserved miRNAs, which exhibited optimal E-value as well as
100% identity, query coverage, and target coverage (mirbase.org).
First, the presence of these miRNAs in raw BuM-EVs was
ascertained. Three miRNAs, the miR-10a-5p, miR-24-3p, and
miR-130a-3p, were undetectable. The average of the inverted
Ct values indicated that miR-199a-3p (15.16) and miR-141-3p
(14.94) were the most expressed among the detected miRNAs

(36.4). Subsequently, the expression of these miRNAs in digested
BuM-EVs was compared with the raw sample. The expression
levels indicated that most miRNAs are largely stable. However,
the expression levels of miR-148a-3p dropped notably, miR-33a-
5p was undetectable post-digestion, while miR-141-3p, miR-153-
3p, and miR-223-3p increased (Figure 4). Hence, only 13 of
the miRNAs are expressed in the digest EVs, and as such, the
remaining 4 (miR-10a-5p, miR-24-3p, miR-130a-3p, and miR-
33a-5p) were excluded from the subsequent functional analysis.
Similarly, the digestion influences the ranking of the miRNAs
surviving the gastrointestinal digestion in terms of their abundance,
although the two most abundant miRNAs were minimally affected
(Table 1).

3.3 Enrichment analysis of the surviving
widely conserved EV miRNA cargo

Using the multiMiR package, a total of 14,340 validated
targets were identified from the 13 miRNAs that survived
gastrointestinal digestion. The biological process of the gene
ontology (GO) (Figure 5A, upper panel) indicates the enrichment
of targets associated with protein turnover (macroautophagy
and catabolism) and gene expression regulation (ncRNA
processing and ribosome biogenesis), particularly within
the context of neural development (synapse organization
and neuron protection regulation) and intracellular signaling
(small GTPase-mediated signal transduction). Their molecular
function (Figure 5A, lower panel) also supported these
processes through elements of ubiquitination, transcription
regulation, RNA-related catalytic processes, cell adhesion
(cadherin binding), and kinase/GTPase activity. The cellular
location (Figure 5A, middle panel) of the targets gives a
strong indication of their neuronal orientation and synaptic
structures (glutamatergic synapse, neuron-to-neuron synapse,
postsynaptic specialization, asymmetric synapse, postsynaptic
density) and migratory or dynamic propensities (cell adhesion
and cell-leading edge) while being transcriptionally active
(chromosomal region).

Pathways essential to neuronal pathways are among the most
enriched (Figure 5B). Particularly, pathways of neurodegeneration,
Alzheimer’s disease, and axonal pathfinding are among the top
20 pathways. Another enriched pathway which may be involved
in neurodegeneration is ubiquitin-mediated proteolysis. However,
the most represented pathways are those associated with viral and
bacterial infections. Hence, the presence of “Human papillomavirus
infection,” “Viral carcinogenesis,” “Yersinia infection,” “Salmonella
infection,” “Shigellosis,” and “Human T-cell leukemia virus
infection” suggests a high association of the targets with host-
pathogen and immune response. This response may also involve
pathways like endocytosis and MAPK signaling, which are equally
enriched. Alongside other heavily targeted pathways, such as
focal adhesion, axon guidance, and proteoglycans in cancer, the
MAPK signaling pathway can be vital in regulating cell adhesion,
morphogenesis, and extracellular matrix remodeling.

The target genes involved in the top 20 enriched KEGG
pathways, which constituted 14.7% of all targets, were analyzed
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FIGURE 3

Scanning electron microscopy of raw (A) and digested (B) buffalo milk EV isolates.

FIGURE 4

Expression levels of the widely conserved miRNAs in raw and digested buffalo milk EV isolates. Data are average ± SEM of 2 independent extractions.
The data without error bars are excluded from comparison. * indicates p < 0.05; n.s. indicates not significant.

using Reactome pathways, yielding pathways critical to immune
response, cell cycle regulation, intracellular communication, and
cellular signaling networks (Figure 6), with an emphasis on neural

and developmental processes, the dysregulation of which can
result in diseases of signal transduction. These include interleukin
signaling, which is particularly relevant in cytokine-related
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TABLE 1 Ranking of the miRNAs in terms of abundance pre- and
post-digestion.

Rank Raw Digest

1 miR-199a-3p miR-141-3p

2 miR-141-3p miR-199a-3p

3 miR-26a-5p miR-153-3p

4 miR-138-5p miR-139-5p

5 miR-148a-3p miR-223-3p

6 miR-153-3p miR-125b-5p

7 miR-125b-5p miR-138-5p

8 miR-139-5p miR-25-3p

9 miR-33a-5p miR-26a-5p

10 miR-25-3p miR-103a-3p

11 miR-223-3p miR-148a-3p

12 miR-103a-3p miR-27b-3p

13 miR-133a-3p miR-133a-3p

14 miR-27b-3p miR-33a-5p

immune response signaling; Fc epsilon receptor (FCERI), an
indicator of immune cell activation and potential involvement
of IgE-mediated hypersensitivity mechanisms; and NOTCH
signaling. The MAPK signaling axis, including MAPK family
signaling cascades, MAPK1/MAPK3 signaling, and the RAF/MAP
kinase cascade, which are widely recognized for their involvement
in immune cell activation, differentiation, and cytokine production,
was similarly enriched. Members of a regulatory pathway of
cytoskeletal dynamics, RHO GTPase effectors, are equally enriched,
aligning with the localization of the targets in synaptic and
adhesion components.

3.4 Protein-protein interaction of predicted
targets

Using the STRING database, a PPI was constructed from the
enriched components of the Reactome pathways. The network
identifies TP53, AKT1, ACTB, EGFR, and CTNNB1 (Table 1) as the
hub proteins, with each interacting with at least 31.9% of the 1,799
network components. TP53 is the protein with the highest node
degrees, having edges connected to about 41% of the interaction
cloud. A 4-unit κ-means clustering of the network identified
two important annotated clusters: Cluster 1, “Nervous System
Development”, which holds more than half of the full PPI network,
and another (Cluster 3) which is relevant to immune regulation,
termed “Class I MHC mediated antigen processing & presentation,”
accounting for 22.4% of all nodes in the network. The hub proteins
of the latter were RPS27A, UBA52, UBC, UBB, TNF, and NFKB
proteins. Cluster 2, which is the second largest, is annotated as
mitotic cell cycle, with TP53 as its central node (Table 2). The
smallest of the clusters accounts for only four members, which
are recognized as an important machinery of zinc influx into cells

(Supplementary Table S3). A circular plot (Figure 7) of the hub
proteins of the clusters 1 in green, 2 in orange and 3 in blue indicates
dense intra- and inter-cluster connections between the 3 clusters,
indicating the pink cluster (responsible for zinc influx) a cluster
with functional independence.

4 Discussion

Although a substantial level of attention is being given to the
fate of EVs and their miRNA content in cow milk as a function of
gastrointestinal digestion, the same level of scrutiny is not being
given to other milks. Particularly, given the contribution of buffalo
milk to global milk production, which has increased in recent
years to become the second highest contributor (15% of global
supply) (43), it is important to demonstrate what results from its
EVs fraction post-digestion. This understanding is vital to both
cross-species transfer and the functionality of dietary EVs and their
molecular cargoes.

In concordance with previous studies (44–46), a combination
of DLS, NTA, and SEM of the isolated EVs from raw buffalo milk
jointly described lipid-bilayered, spherical-shaped nanostructures
in the range 30–200 nm. Other biophysical parameters, like zeta
potential and frequency shift, suggest a monodisperse and fairly
stable colloid in the range of those reported by Joshi et al. (47)
despite employing a different isolation technique. With this, we
subjected the milk to simulated gastrointestinal digestion and
examined the EVs extracted from the soluble fraction of the digest.
Similar parameters of nanovesicular properties were obtained,
although diminishing in numerosity, indicating that the EVs
remained intact despite harsh digestive conditions. This attribute
of the lactary product may be common to mammary milk, as
evidenced by similar reports from human (48) and cow (49) milk
when a mammal’s gastrointestinal apparatus is simulated.

The miRNAs conservation across species is an interesting
phenomenon which, coupled with the possible conservation of
their target genes, may be a basis of “dietary-nutrients miRNAs”
and their ability to produce biological effects following ingestion.
Hence, the relevance of dietary miRNA is not only tied to
their presence in food but also their survival in the digestive
environment and potential to have targets in the intestinal mucosa
of ingesting organism. However, it would be quite bold to assume
that their expression is conserved due to the conservation of their
sequence in the producing species (50). Similarly, an inquiry into
the possible composition of these miRNAs as part of paracrine
communication in EVs is of necessity, since such communication
may be indicative of more complex processes, as in the case of
mastitis in buffaloes (30). This study identified 14 widely conserved
miRNAs: miR-25-3p, miR-26a-5p, miR-27b-5p, miR-33a-5p, miR-
125b-5p, miR-130a-3p, miR-133a-3p, miR-138-5p, miR-139-5p,
miR-141-3p, miR-148a-3p, miR-153-3p, miR-199a-3p and miR-
223-3p, in BuM-EVs, which exhibited perfect alignment with
their human homologs. A previous study, through small RNA
sequencing, found the expression of all but one (bta-miR-138)
(51) in raw BuM-EVs. The miR-148a-3p and miR-26a-5p, which
are consistently expressed among the top ten most abundant
miRNAs both in buffalo milk exosomes (51) and in whole milk
(52), are equally highly expressed in this study. What’s more, most
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FIGURE 5

Enrichment of targets of simulated gastrointestinal stable BuM-EV miRNAs. The Gene Ontology (A) and KEGG (B).

FIGURE 6

Reactome pathway. Pathway enrichment of targets of simulated gastrointestinal-stable BuM-EV miRNAs.

of these miRNAs are largely stable after gastrointestinal digestion
especially the miR-141-3p, miR-153-3p, and miR-223-3p displaying
significant enrichment and apart miR-133a that is totally losted.
This is probably due cause some EVs are lost during digestion the
lipid bilayer of those EVs’ envelope is destroyed. This necessitated
the elucidation of their potential targets after possible absorption.

For a number of miRNAs, a relatively higher expression was
observed after digestion. We observed a significant reduction in
the number of particles in the digested samples, indicating possible
rupture of some EVs in the course of gastrointestinal digestion
despite the retention of the size of the surviving EVs. This may
afford the EV-related miRNAs in digests more accessibility to
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TABLE 2 Hub proteins of the full PPI network and the 3 main clusters.

Node Node
degrees

Node Node
degrees

Node Node
degrees

Node Node
degrees

Full network Nervous system
development (Cluster 1)

Cell cycle, Mitotic
(Cluster 2)

Class I MHC mediated
antigen processing &

presentation (Cluster 3)

TP53 740 AKT1 417 TP53 236 RPS27A 201

AKT1 714 ACTB 373 MYC 188 UBA52 195

ACTB 674 EGFR 367 CDK1 167 UBC 194

GAPDH 629 SRC 362 BRCA1 164 UBB 189

EGFR 601 CTNNB1 349 CCNB1 160 TNF 164

CTNNB1 574 CDC42 311 EP300 160 NFKB1 149

MYC 566 GAPDH 311 H3-3B 159 NFKBIA 140

SRC 533 RHOA 297 BCL2 152 VCP 138

UBC 529 FN1 269 CDK2 150 HSPA5 126

RPS27A 528 GRB2 262 CCNA2 145 TRAF6 123

HSP90AA1 525 STAT3 257 ATM 140 BIRC2 118

UBA52 516 HSP90AA1 253 H4C6 139 IL1B 117

UBB 508 ERBB2 252 PLK1 137 IL6 116

PTEN 491 GSK3B 250 CCNA1 128 TRAF2 116

TNF 486 EGF 248 CDKN2A 125 TRAF3 115

JUN 467 JUN 246 CYCS 124 UBE2N 113

BCL2 465 KRAS 245 PTEN 124 BIRC3 110

HSP90AB1 461 CD44 230 CHEK1 123 PRKN 110

STAT3 443 PIK3R1 230 HDAC1 122 SNCA 103

MAPK3 439 PTK2 226 CCND1 121 IKBKG 102

extraction. Although there is a minimal variation in the extraction
recovery, minimal differences can exert significant differences in
miRNA detection (53). Hence, the simulated digestive fluids could
exert changes in the matrix (such as EV sensitivity to degradation),
resulting in higher detection of EV-related miRNAs post-digestion.

The main speculation following the discovery of miRNAs in
human breast milk was their potential role in modulating innate
immunity and sustaining immunotolerance (6, 54), a function
that could be conserved across other mammals (52, 55), as
it is evident for human milk (56, 57) and might be possible
for different types of milk. Exosomal miRNAs are important
in guiding the intestinal immune development of dairy animal
offspring and may offer this role through the stimulation of
intestinal epithelium viability, proliferation, and stem-cell activity
(58, 59); reduction of myeloid and lymphoid cells activation; and
cytokine production (60, 61), while modulating the composition
of microbial populations (62). The potential targets of BuM-
EV miRNAs in this study are enriched in processes controlling
protein turnover, which is essential in immune cells, where a
rapid increase in growth and size demand massive energy and
amino acids (63). However, the neurodevelopmental regulation
enrichment suggests that their activities extend beyond the blood-
brain barrier, as documented in another dietary source (64).

Interestingly, the absence of extracellular regions among the most-
enriched compartments suggests that the functional significance
of the miRNAs may manifest mainly after cellular internalization.
Endocytosis is a major route of EV cargo release (65), and as one
of the main enriched pathways, also corroborates the intracellular
functionality of EVs and their cargoes.

Infection-related pathways accounted for a majority of the
most enriched functions of the gastrointestinal stable BuM-EV
miRNAs. Studies have demonstrated the potential of EVs to
regulate host-immune response (66–68), and MAPK is a signaling
pathway usually employed in such (69), even by EVs (70). Other
potential pathways identified in this study include the FCERI
and NOTCH1 signaling, which are involved in IgE-mediated
hypersensitivity mechanisms and T-cell lineage commitment and
maturation, respectively (71–73). The targeting of GTPase-related
proteins and ubiquitin ligases further supports the notion that
milk EVs modulate immune cell trafficking, endocytosis, and
antigen processing, particularly by dampening overactive immune
responses (74). Nevertheless, the principal localization of the
targets in cell-substrate junction, focal adhesion, and cell-leading
edge, which are hubs related to axonal pathfinding (75, 76),
emphasizes roles in structural remodeling and dynamic cell–cell
communication, likely important during neurite extension and
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FIGURE 7

Cluster connections among the hub proteins of the identified clusters. Green — cluster 1. Orange — cluster 2. Blue — cluster 3. Pink — cluster 4.

synapse formation (77). Coupled with the enrichment of targets
in similar pathways and terms, these not only shed light on the
roles of these milk miRNAs in contributing to neural development
and synaptic plasticity (78, 79) but also on the modulation of the
interaction between the immune and the nervous systems.

The PPI network revealed a major component of immune
surveillance—the MHC Class I-mediated antigen presentation and
processing. This machinery involves four main steps: peptide
generation and trimming by the proteosome, peptide transport,
MHC class I complex assembly, and antigen presentation on the cell
surface to CD8+ cytotoxic T lymphocytes (80). The hub proteins
of the cluster are ubiquitin pathway proteins, which are essential
for generating peptides for MHC I, such as RPS27A, UBA52, and
UBC; inflammatory signaling proteins that activate transcription
of MHC I components, e.g., TNF, NFKB1, TRAF6; and protein
folding and ER stress modulators, such as HSPA5 and VCP (81–83).
Generally, the cluster presents a strong pro-inflammatory signature
(such as IL1A, IL1B, IL18, TNF) and multiple Toll-like receptors
(TLRs) alongside their downstream adaptors and transcription
factors, confirming the involvement of innate immune pattern-
recognition pathways where TLRs and inflammasome sensors
modulate relevant pro-inflammatory cytokines production (84).
Hence, the targeting of these components by the digestion-resistant
EV miRNA cargo can offer anti-inflammatory effects. Also, the
ubiquitin-proteasome processing and ER stress response signaling
targets identified in the cluster can shape cytokine receptor
turnover and buffer stress response during inflammation (85, 86),

for instance, through the formation of unfolded protein response
(UPR) in the ER and its cytosolic equivalent [aggresome-like
induced structures (ALIS)], which can prevent excessive MHC
1 antigen presentation (87, 88). Similarly, antigen handling and
cytokine control are used by autophagy in immune cells to
prevent inappropriate activation (89). However, the more extreme
form of programmed cell death, apoptosis, is documented to be
employed by BuM-EVs through ER stress exacerbation, potentially
by miR-27b (16), which is one of the 13 miRNAs surviving
gastrointestinal digestion in this study. In immune contexts, this
serves as a mechanism of immune homeostasis and tolerance
(90). Since the ER stress and MHC I complex assembly impact
each other (82, 91–93), there is potential for this cross-linkage
to be modulated by the milk EV miRNAs, for instance, in
reducing MHC I expression, and therefore, pro-inflammatory
cytokines (94), given that the internalized exosomes at target
cells are targeted to the ER, which is a site of nucleation of
mRNA splicing and silencing machinery (19, 95). Similarly, there
is also a possibility of cross-presentation from the lysosomal
pathway (96), and some proteins involved in the cytosolic route
(e.g., SEC61, VCP) are found in the identified cluster. Cytokine
signaling and the overarching immune activities are increasingly
recognized not only as an immune modulator but also as a
regulator of neural development and synaptic function. Alterations
in the expression of key signaling pathway members—such as IL6,
TNF-α, and IL-1β–can influence the balance between excitatory
and inhibitory transmission during development and injury
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responses (97, 98), as well as contribute to neuroinflammation
or microglial activation (99), synaptic pruning, and homeostatic
plasticity (100). The presence of an annotated cluster vital to
nervous system development and the interconnection between
the hub proteins of the clusters in this study further illustrate
the relationship between the neural and immune systems and
the role of dietary miRNAs in its modulation. Hence, milk
may confer a neuroinflammatory regulatory advantage to the
offspring being fed through the miRNA cargo of its EVs. These
observations are comparable with the potential activity offered
by human breastmilk EV miRNA fraction (101, 102), indicating
such processes as core regulatory hubs consistently targeted by the
mammal’s milk EV miRNAs. Another identified cluster, comprising
four proteins from the SLC39 gene family, is typically involved in
acute-phase responses associated with inflammation and infection
(103). Overall, these results highlight the promising potential of
the widely conserved miRNA cargoes of BuM-EVs to regulate
neural and immune processes following gastrointestinal digestion,
highlighting potentially important targets for subsequent in vitro
and in vivo inquisitions. Given the absorbability, bioavailability,
systemic distribution, and biological actions at target sites (23,
104–106), this supports the broader case for dietary miRNAs
as biologically active molecules, warranting further experimental
investigation in this direction. The presence of widely conserved
miRNAs in buffalo EV milk and in general in food of animals
origin (46, 107–109) could design them as micronutrients (110)
having immunomodulatory properties? For sure, nature does not
do anything without a reason.

5 Conclusion

Based on the best-aligning of 17 widely conserved miRNAs with
human homologs, we demonstrated the digestive stability of 13
miRNAs in buffalo milk EVs, thereby fulfilling a prerequisite for
the biological efficacy of food-derived biomolecules. The validated
targets of these miRNAs are associated with neuromodulatory
and immune system functions, particularly through antigen
presentation and processing. These findings suggest that buffalo
milk, via its broadly conserved miRNA fraction, may exert
biological activity following gastrointestinal digestion. However,
confirming this possibility requires further in vitro and in vivo
studies to investigate the absorption and functional impact of
buffalo milk EV-miRNAs.
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