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diet-induced metabolic
dysfunction-associated steatotic
liver disease
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Introduction: Naringin (Nar), the predominant flavonoid in citrus fruits, shows
therapeutic potential against metabolic dysfunction-associated steatotic liver
disease (MASLD). However, its underlying mechanisms remain largely elusive.
Methods: In this study, we investigated the efficacy and underlying mechanisms
of Nar in a mouse model of high-fat diet (HFD)-induced MASLD using integrated
analyses of network pharmacology, molecular docking, hepatic lipidomics, and
gut microbiota.

Results: Treatment with Nar markedly ameliorated MASLD phenotypes, as evidenced
by reduced body and liver weights, lower hepatic triglycerides (TGs), and improved
serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels.
Network pharmacology analysis revealed that Nar targets associated with MASLD
are primarily enriched in proteins such as SRC, AKT1, STAT3, FOS, ESR1, and NFKB1,
which exert their effects through the PI3K-AKT signaling pathway. Molecular docking
simulations further elucidated the interaction mechanisms. Lipidomic analysis
revealed that Nar restored hepatic lipid homeostasis, significantly decreasing levels
of TGs and diglycerides (DGs), with 20 differentially abundant lipid species identified
as potential biomarkers. Additionally, Nar profoundly altered the gut microbial
community, promoting the enrichment of beneficial genera including Oscillibacter,
Allisonella, and Flavonifractor.

Discussion: Our findings indicate that Nar prevents MASLD by harmonizing
hepatic lipid metabolism and modulating the gut microbiome, providing a
multifaceted mechanistic insight into its therapeutic potential.

KEYWORDS
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1 Introduction

Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as a global
chronic liver disorder, affecting approximately 25-30% of adults worldwide, with its prevalence
rising alongside that of metabolic syndrome and obesity (1, 2). Clinically defined by excessive
hepatic lipid accumulation independent of alcohol use, MASLD represents a progressive
condition spanning simple steatosis, non-alcoholic steatohepatitis, cirrhosis, and hepatocellular
carcinoma (2-4). Its etiology is deeply interwoven with insulin resistance, dysregulated lipid
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metabolism, and gut microbiota dysbiosis, thereby functioning as a
hepatic manifestation of metabolic syndrome (5-7). Despite its
growing public health burden, effective pharmacotherapy remains
elusive, leaving lifestyle modifications—often inadequate—as the
primary management strategy (8-10).

The therapeutic bottleneck in MASLD stems largely from an
incomplete dissection of its multifactorial pathogenesis (11). While
lipidomic disruptions, particularly elevated triglycerides (TGs) and
cholesterol esters, are well-characterized drivers of hepatic steatosis,
accumulating evidence highlights the gut microbiota as a master
regulator of lipid homeostasis and inflammation. Moreover, intestinal
flora is closely linked to alterations in host liver metabolites. Recent
studies suggest that bile acids, short-chain fatty acids, trimethylamine
N-oxide, and tryptophan metabolites are critical in driving hepatic
inflammation and steatosis, thereby influencing MASLD progression.
Therefore, this positions the gut-liver axis as a promising therapeutic
target for MASLD intervention (12, 13).

Natural flavonoids, particularly naringin (Nar)—an abundant
bioactive constituent of citrus fruits—have demonstrated considerable
potential in alleviating metabolic dysfunction (14). Preclinical
investigations revealed Nar’s capacity to reduce hepatic TG levels, suppress
oxidative stress, and modulate pro-inflammatory signaling cascades (e.g.,
NF-kB pathway) (15). To systematically dissect the complex interplay
between host metabolism and microbial communities, advanced omics
technologies offer indispensable tools. Lipidomics, in particular, enables
high-resolution mapping of hepatic lipid signatures, providing insights
into diagnostic biomarkers and mechanistic pathways (16-18). Although
widely used to evaluate traditional Chinese medicine (TCM)
formulations, conventional lipidomics faces limitations in deconvoluting
specific bioactive compounds and their lipidomic protein interactions
(18). Integration with network pharmacology and lipidomic modeling
addresses this gap, facilitating precise identification of active constituents,
prediction of molecular targets, and elucidation of synergistic mechanisms
(19). Concurrently, the gut microbiota emerges as a central node in
metabolic regulation, with dietary interventions shown to mitigate
MASLD severity via microbiota-mediated alterations in host
lipid metabolism.

Using a combination of network pharmacology and molecular
docking, we aimed to evaluate the potential of Nar-derived metabolites
involved in lipid metabolism modulation. To validate this hypothesis
experimentally, high-fat diet (HFD)-fed mice were treated with Nar,
followed by integrated omics analyses to characterize hepatic
metabolic shifts and gut microbial community dynamics. Our findings
provide novel insights into the multi-target actions of Nar in MASLD
amelioration, offering a foundation for developing microbiota-
directed therapeutic strategies.

2 Materials and methods
2.1 Chemicals and reagents
Naringin was purchased from Chengdu Munster Biotechnology

Co., Ltd. (Chengdu, China).
spectrometry (LC-MS) grade acetonitrile, methanol, isopropanol, and

Liquid chromatography-mass

formic acid were supplied by Fisher Scientific (Fisher Scientific,

California, United States), and distilled water was purchased from
Watsons (Guangzhou Watsons Food & Beverage Co., Ltd., China).
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2.2 Animal experiments

A total of 18 male C57BL/6 mice (67 weeks old) were obtained
from the Chinese Academy of Medical Sciences (Beijing, China).
These mice were maintained in a specific pathogen-free laboratory
animal center under controlled conditions (temperature 22 + 2 °C,
humidity 55 + 5%, and a 12-h light/dark cycle) with free access to food
and water. Following 1 week of adaptation, the mice were randomly
divided into three groups (n = 6): a normal chow diet group (Chow,
12% fat), a high-fat diet group (HFD, 60% fat), and a high-fat diet with
Nar group (HFD supplemented with 0.07% Nar). The 0.07% NAR
dose was selected based on prior research (20). All experimental
procedures adhered to the Guide for the Care and Use of Laboratory
Animals (National Institutes of Health) and were approved by the
Animal Ethics Committee of Gansu University of Traditional Chinese
Medicine (SYXK(Gansu)2024-0005).

2.3 Sample collection and preparation

After a 12-week experimental intervention, mice were fasted for
12h and subsequently euthanized under pentobarbital sodium
anesthesia. Blood samples, liver tissues, and epididymal adipose
tissues were collected for further analysis. Serum was isolated through
centrifugation at 3,000 rpm for 15 min (4 °C) and preserved at —80 °C
for subsequent biochemical analyses.

2.4 Histopathological evaluation

Histopathological analysis was performed as previously described
(20). In summary, livers fixed in 4% paraformaldehyde were processed
into paraffin sections with a thickness of 5 pm. These sections were
stained with hematoxylin and eosin (H&E) for histological examination.
The stained sections were then mounted with neutral resin, and images
were captured under a microscope at 400 x magnification.

2.5 Biochemical analysis

The serum samples were retrieved from the —80 °C freezer and
allowed to thaw at 4 °C. The levels of TGs in the liver tissue, as well as
serum aspartate transaminase (AST) and alanine aminotransferase
(ALT), were measured using activity assay kits (Jiancheng Biotech,
Nanjing, China) following the manufacturer’s instructions.

2.6 Hepatic lipidomic analysis

For sample preparation, 25 mg of liver tissue from each group (1 = 6)
was used. The liver tissue was powdered and mixed with 300 uL of
phosphate-buffered saline (PBS) by vortexing. Subsequently, 429 pL of
methyl tert-butyl ether, 342 pL of methanol, and 429 pL of water were
added to the mixture, which was vortexed for 1 min and then centrifuged
at 3,000 rpm for 15 min at 4 °C. The supernatant (300 pL) was collected
and evaporated at —20 °C. After drying, 100 pL of isopropanol was added
to the dried mixture, vortexed on ice for 3 min, and centrifuged at
13,000 rpm for 15 min at 4 °C. The final supernatant was transferred to a
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glass vial for UPLC/MS analysis. The QC samples were prepared by
mixing equal volumes (20 pL each) of all the samples.

Lipidomic analysis was performed using an ExionLC Infinity series
ultra-high performance liquid chromatography (UPLC) system (AB
Sciex) equipped with a BEH C18 column (Waters, 2.1 x 100 mm, 1.7 pim)
maintained at a column temperature of 45 °C. The mobile phase consisted
of two solvents: Solvent A was water/acetonitrile containing 10 mM
ammonium formate (40:60, v/v), and Solvent B was a mixture of 10%
acetonitrile/isopropanol (10:90, v/v) with 50 mL of 10 mM ammonium
formate per 1,000 mL. The gradient elution was as follows: 0-12 min,
2-45% B; 12-20 min, 45-65% B; 20-25 min, 65-99% B; 25-26 min,
99-2% B; and 26-30 min, 2% B. The flow rate was set at 0.3 mL/min, and
the injection volume was 3 pL (for both positive and negative ion modes).
MS/MS spectra were acquired using a TripleTOF 5,600 mass
spectrometer. Data analysis was conducted according to previously
described methods (18). Raw UPLC-Q-TOF/MS data were processed
using PeakView software (SCIEX) for peak picking, alignment, and
integration. To ensure the quality of the data, endogenous metabolites
were filtered based on a relative standard deviation (RSD) of < 30% in the
quality control (QC) samples, thereby eliminating variations that could
compromise reliability. The data were subsequently normalized to the
total peak area to correct for systematic variations in signal intensity
across samples (clearer explanation of normalization). Multivariate
statistical analysis was then performed using SIMCA (version 14.1),
where an orthogonal partial least squares-discriminant analysis (OPLS-
DA) model was constructed to assess group separation and calculate the
variable importance in projection (VIP) scores. Differential metabolites
were identified based on a VIP value > 1.0 and a Student’s t-test p-value <
0.05, ensuring the selection of statistically significant metabolites.
Metabolite identification was conducted by comparing accurate mass and
MS/MS fragmentation patterns with entries from the LIPID MAPS
database and other public databases. Finally, pathway enrichment analysis
was performed on these significantly altered metabolites using
MetaboAnalyst 5.0 to identify potential biological pathways.

2.7 Analysis of network pharmacology
analysis and molecular docking

Potential targets of Nar were retrieved from multiple databases,
including SwissTargetPrediction, TCMSP, PharmMapper, and the
Comparative Toxicogenomics Database. NASH-related targets were
obtained from GeneCards, the Therapeutic Target Database, and
OMIM. All retrieved targets were standardized using the UniProt
database. Venn diagram analysis was performed to identify
intersecting targets between MASLD and Nar. A protein—protein
interaction (PPI) network of the overlapping targets was constructed
using the STRING database and visualized using Cytoscape 3.9.1.
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis was subsequently conducted on the intersecting
targets. Molecular docking was carried out using AutoDock Tools
1.5.7 to predict the binding interactions between NAR and key targets,
and the results were visualized using PyMOL software.

2.8 Analysis of gut microbiota composition

Full-length 16S rRNA gene amplicon sequencing of the fecal gut
microbiome was performed by Novogene (Beijing, China). The V1-V9
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hypervariable regions of the bacterial 16S rRNA gene were amplified
usingthe universal primers 27F (5'-AGAGTTTGATCCTGGCTCAG-3")
and 1492R (5'-GNTACCTTGTTACGACTT-3"). Equimolar pooled
PCR products were purified and subjected to sequencing on the PacBio
platform. Sample demultiplexing was performed based on barcode
sequences using Lima. After removing primers using Cutadapt, sequences
underwent Small Subunit Ribosomal RNA (SSR) filtering. Quality-
filtered reads were clustered into operational taxonomic units (OTUs) at
97% sequence identity using UPARSE. Representative sequences from
each OTU were taxonomically annotated against the Silva SSU rRNA
database with Mothur. The relative abundance of OTUs across samples
was calculated for subsequent analysis.

2.9 Data processing and multivariate
analysis

All experimental data are presented as mean * standard deviation
(SD) of the means. The sample means were analyzed with a one-way
ANOVA using SPSSV20 software (IBM, Armonk, NY, United States).
GraphPad Prism 8 (San Diego, CA, United States) was used for Figure
preparation. Differences between the groups with a p-value of <0.05
were considered significant.

3 Results

3.1 Predicting MASLD alleviation by NAR via
network pharmacology and molecular
docking

To elucidate the molecular mechanisms underlying NAR
regulation of MASLD, a network pharmacology approach was
used. By overlapping 99 NAR-related targets, 2,479 MASLD-
related targets, and 45 potential common targets, they were
identified as being involved (Figure 1B). Using STRING and
Cytoscape, a PPI network was constructed, and topological
analysis identified six core targets: AKT1, SRC, STAT3, FOS,
ESR1, and NFKBI1 (Figures 1C,D). These targets laid the
foundation for elucidating the molecular mechanisms of nar’s
multi-target regulation of MASLD. KEGG enrichment analyses
using the DAVID database revealed that these targets are
primarily involved in the P13K-Akt signaling pathway and lipid
and atherosclerosis, underscoring their relevance to MASLD
pathogenesis (Figure 1E). Molecular docking validation revealed
strong binding affinity between Nar and the four core targets
(AKT1, SRC, STAT3, FOS, ESR1, and NFKB1). Molecular
docking of MASLD targets demonstrated that key targets in the
PIK3CA, ESR1, MMP9, and SRC protein receptors exhibited
spontaneous binding. Notably, the binding energies of PIK3CA,
ESR1, MMPY, and SRC were all <—5 kcal/mol, indicating strong
affinity for these targets (Figure 1F).

3.2 The protective effects of Nar on the
MASLD mice induced by high-fat diet

The growth parameters are shown in Figures 2A-D. The HFD
group exhibited significant increases in body weight, body weight
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gain, liver weight, and epididymal fat tissue (EFT) weight compared
to the Chow group (p < 0.05 for all). After 12 weeks of intervention,
the Nar group displayed significantly lower body weight, body weight
gain, and liver weight than the HFD group (p <0.05 for all).
Additionally, the Nar group had a significantly lower EFT weight than
the HFD group (p < 0.05).

Histological analysis, as shown in Figure 2E, revealed that liver
tissue from the Chow group exhibited neatly arranged hepatocytes
with minimal lipid accumulation, whereas liver tissue from the
HED group showed diffuse hepatic fatty infiltration with numerous
fat vacuoles. Notably, hepatic steatosis in the HFD mice was
markedly reduced following Nar intervention. Furthermore,
hepatic triglyceride (TG) levels, which were elevated in the HFD
group, were significantly reduced after Nar treatment (Figure 2F).
The serum levels of ALT and AST, well-known biomarkers of
hepatic injury, are presented in Figures 2G,H. The HFD group
exhibited significantly elevated serum ALT and AST levels
compared to the Chow group (p<0.05). However, Nar
supplementation significantly reduced serum ALT and AST
activities in the HFD group. Collectively, these results indicate that
Nar intervention effectively ameliorates hepatic lipid deposition
and dysfunction induced by the HFD.

3.3 Influence of lipidomic profiles in the
liver of MASLD mice by high-fat diet

Increasing evidence suggests that the pathophysiology of
MASLD is primarily characterized by an imbalance between lipid
acquisition and lipid disposal (21). To further elucidate the
regulatory mechanisms of Nar, we performed a lipidomic analysis
on liver tissue. Principal Component Analysis (PCA) analysis
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revealed clear separation of the Chow, HFD, and Nar groups in both
positive and negative ion modes, indicating significant differences
in hepatic metabolic profiles among the groups. The QC samples
were well-clustered, demonstrating the stability and reliability of the
analysis system (Figures 3A,B). To achieve better group separation,
we applied a supervised PLS-DA model to analyze the liver tissue
samples. The PLS-DA results showed distinct separation between
the Chow and HFD groups, with the Nar group closer to the Chow
group (Figures 3C,D), suggesting that Nar partially reversed the
lipid metabolism disorder induced by the HFD. The model was
validated by 200 random permutation tests, yielding R’Y and Q?
values of 0.987 and 0.947 in the positive ion mode and 0.96 and
0.815 in the negative ion mode, respectively. These results confirm
that the model is not overfitted and possesses strong predictive
capability and reliability (Figures 3E,F). Collectively, these findings
provide evidence that Nar supplementation can reverse the lipid
metabolism disorder caused by HFD.

Orthogonal partial least squares discriminant analysis (OPLS-
DA)
(Supplementary Figure S1), indicating distinct metabolic profiles

revealed significant separation between the groups

across the Chow, HFD, and Nar groups. To identify potential lipid
biomarkers, we selected lipid species based on Fold Change
(FC) > 1.5 or <0.67and p < 0.05. A total of 526 differential lipid
species distinguished the Chow and HFD groups, while 283 lipid
species differentiated the Nar and HFD groups (Figures 4A-D).
Based on variable importance in projection (VIP) > 1 and FC > 1.5
or <0.67, 20 lipid species were selected as potential biomarkers for
Nar intervention (Table 1).

A heatmap was generated to visualize changes in lipid classes
in the liver of mice (Figure 4E). The results indicated that the
levels of Cer 42:2; O2, LPE 16:0, LPE 18:0, LPE 18:2, PE
(18:2/20:2), PE (18:2/20:4), LPC 16:0, SM 42:2; O2, and SM 40:1;

frontiersin.org


https://doi.org/10.3389/fnut.2025.1694191
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org

Sun et al.

10.3389/fnut.2025.1694191

>
=

n
=l

*kkk

Body weight(g)
g & &

[
=

&
®
<

=
E =)
363 3
3 g o
:
<} s iw
=1 £ 20
2 2
So 2,
& Q o
S &
c}@ QS < C°°

FIGURE 2
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02 were significantly higher in the HFD group than the Chow
group (p < 0.05). However, these lipid levels were significantly
reduced following Nar supplementation (p < 0.05). Conversely,
the levels of DG (18:1/20:0), DG (18:1/20:1), DG (18:1/20:4), PC
(22:5/16:1), PC (18:1/16:0), PC (18:2/18:1), PC (20:3/18:1), PC
(20:4/18:1), PE (18:1/18:2), TG (18:1/16:1/14:1), and TG
(20:4/18:2/16:2) were significantly decreased in the HFD group
compared to the Chow group but increased after Nar
supplementation. These 20 lipid species, which include 4
glycolipids (GLs), 12 glycerophospholipids (GPs), and 4
sphingolipids (SPs), may serve as potential lipid biomarkers for
Nar intervention. These findings suggest that Nar intervention
effectively regulates hepatic lipid metabolism and ameliorates
lipid metabolic abnormalities in MASLD mice. To identify
changes in important pathways related to lipid metabolism,
pathway enrichment analysis was performed.

Compared to the Chow group, the HFD group significantly
impacted pathways involved in unsaturated fatty acid biosynthesis,
glycerophospholipid metabolism, glycosylphosphatidylinositol (GPI)-
anchor protein biosynthesis, fatty acid elongation, and fatty acid
biosynthesis (Figures 45G). Nar supplementation alleviated many of
these metabolic alterations, with glycerophospholipid metabolism
emerging as a potential target pathway, based on impact value scores.
Overall, these results indicated that glycerophospholipid metabolism
may play a crucial role in MASLD progression and in the protective
effects of Nar.
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3.4 Nar altered the gut microbiota
composition in MASLD mice

Alterations in gut microbiota are closely associated with the
development of MASLD (22). To explore the mechanism by which
Nar alleviates MASLD, we analyzed the gut microbiota in mice
using intestinal content samples. As shown in Figure 5A, a total of
2,601 bacterial operational taxonomic units (OTUs) were identified,
with 865 OTUs in the Chow group and 1,162 OTUs in the HFD
group. Among them, 75 OTUs were shared across all three groups
(Figure 5A). To investigate the effect of Nar on a-diversity of gut
microbiota in HFD mice, including the observed species index and
the Chaol, Shannon, and Simpson indices, we found that the Nar
group showed significant increases in these indices when compared
to the HFD group (Figures 5B-D). Principal coordinates analysis
(PCoA) showed that the gut microbiota compositions and
structures of the three groups were significantly different
(Figure 5E). At the genus level (Figure 5F), Nar supplementation
increased the number of bacterial species compared to the Chow
and HFD groups, suggesting that Nar may have a beneficial effect
on gut microbiota composition. We further analyzed the abundance
of the top 25 genera across the different groups, revealing
significant differences between the HFD and Chow groups
(Figure 5G). Notably, the microbiota producing short-chain fatty
acids (SCFAs), including Oscillibacter, Allisonell, unidentified
Ruminococcaceae, and Allisonella, increased in the Nar group
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compared to the HFD group, which indicated that gut microbiota
dysbiosis had occurred in the HFD group. The taxonomic
distribution of enriched and marker species is shown in
Figures 5G,I. Linear discriminant analysis (LDA) with a threshold
of >4 revealed significant differences (p < 0.05) in the abundance
of Lachnoclostridium, Allisonella, and Tyzzerella in the Nar group;
Sutterella, Coriobacteriales, an unidentified Ruminococcaceae genus,
and Oscillibacter in the HFD group; and Bacteroides in the
Chow group.

4 Discussion

Metabolic dysfunction-associated steatotic liver disease
(MASLD) is a heterogeneous chronic condition closely associated
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with global metabolic abnormalities (23). Despite its high
prevalence, effective pharmacological treatments remain elusive.
While Nar has shown promise in ameliorating MASLD, its
underlying mechanisms require further clarification (24).
However, the precise mechanisms remain unclear. This study
combines lipidomics, network pharmacology, and gut
microbiomics to further investigate the therapeutic mechanisms
of Nar in MASLD.

Our study indicated that Nar supplementation effectively
reduces body weight, epididymal fat tissue weight, serum AST,
and ALT levels while also improving hepatic steatosis by
decreasing liver weight and hepatic TG levels. Metabolic
disturbances and toxic lipid accumulation are considered central
factors in the development of MASLD (25). Consequently,

lipidomics is commonly used to link lipid dysregulation with the
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FIGURE 4
Comprehensive analysis of differential lipid profiles across the Chow, HFD, and Nar groups in both positive and negative ionization modes. (A-D)
Volcano plots illustrating pairwise comparisons: (A) HFD vs. Chow (positive mode), (B) HFD vs. Chow (negative mode), (C) Nar vs. HFD (positive mode),
and (D) Nar vs. HFD (negative mode). Significantly altered lipids (red) and non-significant lipids (blue) are shown. The horizontal dashed line
corresponds to the significance threshold (—log;e(p-value)), and vertical dashed lines indicate the fold-change cutoffs. (E) Heatmap of hepatic lipid
abundances across the experimental groups. (F,G) Pathway enrichment analysis of significantly altered lipid metabolic pathways between HFD vs.
Chow (F) and Nar vs. HFD (G). Functionally relevant pathways are annotated.

pathological changes in the MASLD liver. Through lipidomic
analysis, we identified 22 distinct lipid species in the liver of mice,
including TGs, diglycerides (DGs), phosphatidylcholines (PCs),
phosphatidylethanolamines (PEs), sphingomyelins (SMs), and
ceramides (Cer). These lipid species effectively differentiated
Nar-treated mice from MASLD mice. Notably, the accumulation
of TGs in the liver is regarded as the initial step in the progression
of MASLD (26). Several studies have shown that TG levels are
elevated in MASLD patients, and numerous studies have
investigated the potential of using TGs as biomarkers for MASLD
(27). In our study, the majority of TG species increased in the liver
of HFD-induced MASLD mice. Our lipidomic data revealed that
Nar supplementation significantly exhibited anti-dyslipidemic
effects by reducing the levels of TG (18:1/16:1/14:1) and TG
(20:4/18:2/16:2) in the liver of HFD-induced MASLD mice.
Growing evidence suggests that elevated levels of monounsaturated
DGs in the liver are associated with MASLD (28). Notably, our
data indicated an increase in the levels of monounsaturated DGs
(e.g., DG (18:1/20:0), DG (18:1/20:1), and DG (18:1/20:4)) in the
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liver of MASLD mice, suggesting that DGs may play a crucial role
in the anti-MASLD effects of Nar.

Glycerophospholipids, such as PCs and PEs, are essential for
maintaining the structure and function of cell membranes (29).
Dysregulation of glycerophospholipid metabolism can impair the
synthesis and secretion of very-low-density lipoproteins (VLDL),
thereby promoting the progression of MASLD (30). Our findings
indicate that the level of PC is reduced in the liver of MASLD mice.
When PC levels are insufficient, adequate VLDL cannot
be synthesized to transport hepatic TGs, leading to excessive lipid
deposition in the liver. However, supplementation with Nar
restored the levels of PCs and PEs, suggesting that Nar exerts its
effects by modulating the dynamic balance between PCs and TGs
in the liver.

Based on the “disease-gene-target-drug” network system,
network pharmacology is widely used to comprehensively investigate
the effects of drugs on diseases (31). Our study demonstrates that Nar,
a bioactive flavonoid derived from citrus, may exert therapeutic
effects on MASLD through a multi-target and multi-pathway
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TABLE 1 Significantly changed hepatic lipid species regulated by the Nar.

TR  Adducts Adducts Adducts

10.3389/fnut.2025.1694191

HFD/Chow Nar/HFD

FDR

FDR

1 1338 | [M+FA]" Cer 42:2; 02 C,,HyNO, 2.03 0.0017 1.53 1 1.59 0.0013 045 !
2 1391 | [M + NH4]* DG (18:1/20:0) CyHy,Os 1.48 0.0000 5.14 1 1.06 0.0043 0.62 !
3 132 | [M+NH4]" DG (18:1/20:1) CyHyOs 412 0.0000 9.78 1 2.94 0.0002 0.64 !
4 1156 | [M + NH4]* DG (18:1/20:4) CyH,,05 1.96 0.0014 1.83 1 1.49 0.0628 0.80 !
5 301 | [M+H] LPC 16:0 C,H,NOP | 411 0.0002 0.67 ! 218 0.0016 1.53 1
6 314 | [M+H] LPE 16:0 C,H,NOP = 328 0.0002 0.56 ! 143 0.0264 1.20 1
7 43 [M+HJ LPE 18:0 CxHGNOP | 424 0.0004 0.50 ! 237 0.0327 131 1
8 264 | [M+HJ LPE 18:2 CyHNO,P 1.07 0.0477 0.85 ! 1.93 0.0167 131 1
9 1098 | [M+H]* PC (18:1/16:0) C,HoNOP | 351 0.0000 1.66 1 24 0.0374 0.85 !
10 1041 | [M+H]* PC (18:2/18:1) CuHoNOP | 419 0.0000 221 1 23 0.0051 0.89 !
11 106 | [M+H] PC (20:3/18:1) CixHuNOP | 251 0.0000 3.64 1 1.48 0.0150 0.79 !
12 10.08 | [M+H]* PC (20:4/18:1) CiHoNOP | 286 0.0000 261 1 1.4 0.0485 091 !
13 9.69 | [M+FA]- PC (22:5/16:1) CicHyNOP 1.82 0.0284 1.42 1 37 0.0001 0.78 !
14 1061 | [M+HJ* PE (18:1/18:2) CyHNOGP 1.89 0.0040 1.69 1 118 0.0473 0.90 !
15 1158 | [M-H]- PE (18:2/20:2) CoHANOP | 219 0.0000 031 ! 2.83 0.0002 1.74 1
16 10.14 | [M+HJ* PE (18:2/20:4) CysH,NOGP 1.96 0.0178 0.73 ! 1.05 0.0478 116 1
17 1297 | [M+FA]- SM 40:1; 02 CisHaN,OP | 1.26 0.0022 0.43 ! 1.79 0.0406 1.79 1
18 1281 | [M+FA]- SM 42:2; 02 CoHuN,OP | 1.74 0.0047 0.76 ! 1.46 0.0369 1.19 1
19 1505 | [M + NH4]* TG (18:1/16:1/14:1) | C5;Hy,Og 2.42 0.0005 238 1 2.01 0.0306 0.68 !
20 14.83 | [M + NH4]* TG (20:4/18:2/16:2) | Cs;Ho,Og 1.87 0.0004 3.00 1 1.74 0.0143 0.56 !

mechanism. Integrative analysis of lipidomics and network
pharmacology identified the PI3K-AKT signaling pathway as a key
regulatory axis, which is essential for hepatic insulin regulation by
mediating glucose transport, p-cell secretion, and insulin gene
transcription (32). Molecular docking further validated the network
pharmacology predictions, showing strong binding affinities of Nar
with core targets such as PIK3CA, ESR1, MMP9, and SRC, without
significant toxicity risks. Functionally, SRC acts upstream of the
PI3K-AKT pathway via ATP-dependent phosphorylation of
substrates (33), whereas MMP9 contributes to adipose tissue
remodeling and fibrosis through extracellular matrix degradation,
processes that are tightly linked to chronic inflammation, insulin
resistance, and lipid metabolic disorders (34). Collectively, these
findings suggest that Nar may ameliorate MASLD by modulating the
PI3K-AKT signaling cascade through direct interactions with key
proteins, providing novel mechanistic insights and potential
therapeutic implications.

Gut microbiota dysbiosis has been increasingly recognized as
a critical contributor to the pathogenesis of MASLD and other
metabolic disorders (35). Our findings suggest that naringin may
reach the colon in its intact form, where it is metabolized by
specific bacterial species to exert prebiotic effects, which is
consistent with previous reports (36). Nar supplementation
significantly enhanced microbial diversity and enriched beneficial
short-chain fatty acid (SCFA)-producing genera, including
Oscillibacter and Allisonella. Previous studies have demonstrated
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that increased SCFA production strengthens the intestinal barrier
and attenuates systemic inflammation, thereby alleviating MASLD
progression (37). Consistent with these findings (38), we observed
that Nar intervention led to marked alterations in gut microbial
abundance, highlighting the pivotal role of the gut-liver axis in
mediating its therapeutic efficacy against MASLD. Overall, this
study suggests that Nar may help prevent obesity-related
complications by maintaining gut microbiota homeostasis,
enriching specific probiotic populations, balancing hepatic lipid
profiles, and enhancing certain hepatic lipid classes in
MASLD mice.

5 Conclusion

Our study demonstrates that naringin protects against
HFD-induced MASLD by restoring hepatic lipid homeostasis and
reshaping the gut microbiota. Lipidomic analysis identified 20
differentially abundant lipid species as potential biomarkers, while
microbiome profiling revealed an enrichment of beneficial genera
such as Oscillibacter and Allisonella. Molecular docking and
bioinformatic analyses further indicated interactions of naringin with
core targets, including PIK3CA, ESR1, MMP9, and CSR, suggesting
plausible mechanistic pathways. Although the exploration of the
relationship between Nar and “gut-liver axis” as a promising
therapeutic target remains largely theoretical, these findings highlight
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FIGURE 5

Cladogram

Nar increased gut microbiota diversity of MASLD mice. (A) Venn diagram illustrating the gut microbiota composition across different groups of mice.
(B) Shannon index. (C) Simpson index. (D) Chao 1 index. (E) Unweighted UniFrac principal coordinate analysis (PCoA) of gut microbiota. (F) Analysis of
the relative abundance of gut microbiota at the genus level. (G) Heatmap depicting the species composition of gut microbiota at the genus level.

(H) Histogram of linear discriminant analysis (LDA) effect sizes for marked species. (I) LEfSe analysis. Statistical significance is indicated as follows:

*p < 0.05, **p < 0.01 compared to the Chow group; #p < 0.05, #*p < 0.01 compared to the HFD group.

naringin as a promising therapeutic candidate for MASLD and
underscore the utility of integrating multi-omics with experimental
pharmacology to advance mechanistic insights into complex
metabolic diseases.
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