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Jellyfish and gelatinous zooplankton (GZ) in general, fulfill important ecological

roles with significant impacts, although they are often oversimplified or

misunderstood. This paper reviews the impacts, pressures, monitoring methods

and current management strategies for various GZ groups. It also introduces

potentially applicable indicators for their assessment in ecosystem-based

management approaches, such as the European Marine Strategy Framework

Directive (MSFD). This multi-faceted review is primarily envisioned to serve

as a state-of-the-art document for scientists and policymakers to foster a

holistic assessment and management of GZ across European regional seas.

The systematic review on global impacts of GZ shows a notable increase in the

number of studies since the early 2000s. Stings were the main cause of human

health impacts. Mechanisms that impact biodiversity included direct predation,

modification of trophic flows or competition for resources. Several GZ taxa

may be beneficial to biodiversity acting as biological regulators and provide

societal ecosystem services such as food provision or medical applications.

The systematic review on monitoring techniques outlined a variety of methods,

such as nets (the most common technique), continuous plankton recorder

(CPR), polyp and jelly-fall monitoring, acoustic methods, remote aerial and

underwater imaging, molecular methods, and citizen science. Furthermore,

several currently employed management strategies were enumerated,

including the use of anti-jelly nets, bubble curtains, chemical compounds,

or the introduction of GZ predators. This study highlights the pressing

need for enhanced GZ-dedicated monitoring, assessment, and anticipatory

management of GZ populations to address future GZ crises more e�ectively and
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cost-e�ciently. Moreover, exploring GZ ecosystem services unveils

opportunities to harness marine resources while mitigating adverse e�ects,

thereby supporting sustainable blue economies.

KEYWORDS

Cnidaria, Ctenophora, pelagic tunicates, impacts, monitoring, ecosystem based

management approach (EBMA)

1 Introduction

The term “jellyfish” collectively encompasses gelatinous
zooplankton (GZ) from diverse metazoan taxonomic groups,
including Cnidaria (cnidarian jellyfish or medusozoans: the
planktonic life stages of Hydrozoa, Scyphozoa and Cubozoa),
Ctenophora (comb jellyfish), and pelagic Tunicata (e.g., larvaceans,
salps, and doliolids) (Boero, 2013; Jaspers et al., 2023). GZ
can exhibit complex life cycles. Several medusozoan species
frequently comprise an alternation or coexistence of asexual (often
benthic) polyp and sexual medusa stages (Russell, 1953, 1970).
Non-metazoan gelatinous organisms are not considered here.

Jellyfish have long been associated with stinging risks to bathers
and adverse impacts on diverse socioeconomic activities at sea
(Bosch-Belmar et al., 2021b; Lee et al., 2023). In recent years,
there seems to be a public perception of a global increase of
jellyfish outbreaks, which is often attributed to climate change. This
perception is enhanced by media reports portraying historically
documented jellyfish outbreaks as novel phenomena (e.g., mass fish
kills in the UK and Ireland caused by Pelagia noctiluca outbreaks).
However, there are few long-term data and insufficient reference
baselines to substantiate this claim (Condon et al., 2012) and
the available long-term data document large fluctuations without
understanding the underlying causes (see Decker et al., 2023).

It is now scientifically acknowledged that gelatinous
zooplankton play a vital role in marine ecosystems and may
provide a range of benefits to humans (Doyle et al., 2014;
Graham et al., 2014; Culhane et al., 2019; Jaspers et al., 2023).
However, despite their importance, the ecological roles of GZ
are often grossly oversimplified or misunderstood, and GZ taxa
remain poorly monitored compared to other zooplankton groups
(Templeman et al., 2021). Managers limit resources for monitoring
GZ based on the assumption of their unpredictable nature (Aubert
et al., 2018) and some monitoring difficulties, such as sample
damages during collection, preservation difficulties, or scarcity of
taxonomic expertise on surveys.

Currently, jellyfish management is mainly focused on
responsive control and mitigation of local impacts (Dong, 2019).
Nevertheless, as marine ecosystems continue to be altered by
climate change and human activities, and the abundance and
frequency of some GZ species increases in some coastal waters
(Brotz and Pauly, 2012; Lee et al., 2023), approaches such as
ecosystem-based management strategies can help anticipate GZ
outbreaks, rather than simply respond to emergencies, which have
greater costs and societal impacts (Brodeur et al., 2016).

In Europe, the Marine Strategy Framework Directive (MSFD,
European Commission, 2008), marked a significant milestone
in adopting an ecosystem-based management approach for

sustainable supply of marine goods and services across Europe.
The initial MSFD’s objective was to achieve Good Environmental
Status (GES) in European seas by 2020 (now, by 2026) (European
Commission, 2020). Implemented through a 6-year adaptive
management cycle, the MSFD includes assessing the status of
the marine environment and its essential features, analyzing their
predominant pressures and impacts, and considering economic
and social aspects of sea use (Art. 8 MSFD, European Commission,
2008). For assessing the status of European Seas, determining GES
(Art. 9 MSFD), environmental targets and associated indicators
(Art. 10 MSFD), leads to the development of monitoring programs
(Art. 11 MSFD), and programs of measures (Art. 13 MSFD) to
maintain or restore GES (Palialexis et al., 2021).

In 2010, the Joint Research Centre - MSFD Task Group
4 on Food Webs recommended assessing the abundance and
distribution of key taxa with fast turnover rates, such as jellyfish.
These taxa can serve as early warning indicators of food web
functioning in response to environmental changes (Rogers et al.,
2010). Despite this recommendation, GZ were almost absent in
the 2012 and 2018 assessment reporting cycles (Tornero Alvarez
et al., 2023). Nonetheless, past and ongoing initiatives continue to
propose “cost-effective” monitoring and assessment strategies and
tools to include GZ information in MSFD assessments (Aubert
et al., 2018; Magliozzi et al., 2021, 2023).

This study reviews the main impacts, pressures, and
management options described in the literature, as well as
current and upcoming monitoring methods and indicators
applicable to assess GZ. This paper aims to serve as a practical
state-of-the-art document for scientists and policymakers to foster
the assessment and management of GZ across European regional
seas and contribute to the achievement of GES.

2 Methods

This work includes one traditional literature review based
on comprehensive, critical, and objective analysis of the current
knowledge for pressures, indicators, and management sections,
and three systematic literature reviews for the sections on impacts
and monitoring techniques. The systematic reviews followed the
PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) guidelines (Moher et al., 2009) and the detailed
search criteria were the following ones:

For the systematic review on impacts, the search string
used, combining keywords, Boolean operators and wildcards, was:
(“gelatinous ∗plankton” OR jellyfish OR cnidaria∗ OR scyphozoa∗

OR hydrozoa∗ OR cubozoa∗ OR medusozoa OR medusa∗ OR

ctenophor∗ OR salp∗ OR tunicat∗ OR thaliacea∗ OR appendicularia∗
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OR doliolid∗ OR urochordat∗ OR siphonophor∗) AND (impact∗ OR

effect∗ OR consequence∗ OR damag∗ OR loss OR sting OR econom∗)

AND (bloom∗ OR outbreak∗ OR swarm∗ OR proliferation∗ OR

aggregation∗ OR accumulation∗ OR “mass occurrence”). The search
was conducted on the 5th of April 2023, it was limited to
the title, abstract, and keywords, and was not restricted by
publication year. The initial search yielded 2,382 and 1,378 articles
from Scopus and Web of Science online databases, respectively
(Supplementary Figure S1). Screening of additional publications
identified by experts or within the references of assessed articles
or reviews was carried out (n = 151 articles). Following the
removal of duplicate entries, 2,596 articles remained for the initial
screening stage. Four reviewers assessed the articles for eligibility
and inclusion in the second-stage full-text screening, based on
the titles and abstracts. Inclusion criteria was based on a GZ
relative population level being assessed for potential negative
impacts on biodiversity, ecosystem services or human health
at global scale, without any geographical restriction. Exclusion
criteria included the manuscript’s language (only English, Spanish,
Italian, Portuguese, Greek, or French were considered), and the
publication type encompassing only published research documents
with primary evidence of GZ impacts. Review studies that did not
provide primary knowledge on impacts were removed to prevent
the inclusion of duplicate records of impacts. It is important to note
that all relevant review articles underwent full-text screening, and
additional relevant references missing in the literature search were
added for screening. To ensure inter-rater reliability, the reviewers
independently evaluated a randomly selected sample of 50 retrieved
articles, subsequently discussing any discrepancies. This validation
process involved the four participant reviewers of the first stage
screening. The first stage screening of title and abstract for eligibility
against the inclusion criteria resulted in 306 articles selected
for the second stage full-text screening (the full process can be
tracked in PRISMA flow diagram Supplementary Figure S1). In
this subsequent phase, eight reviewers were engaged in examining
the full text of retrieved articles to determine their eligibility
and extract pertinent information from the included studies.
Finally, 212 articles were included for data extraction and 94
articles were excluded as they did not meet the above-mentioned
inclusion criteria.

The relevant information extracted from the selected
articles included: (1) year of publication; (2) marine realm
and province (based on Spalding et al., 2007); (3) species
identified as having an impact; (4) type of evidence classified
into six categories (Katsanevakis et al., 2014): manipulative
or natural experiments, experiments, direct observation of
impacts, modeling, non-experimental based correlations, and
expert judgment (definitions of each type of evidence category
are provided in Supplementary Table S1), (5) mechanisms of
impacts on biodiversity, ecosystem services, and human health, (6)
magnitude of the impact on biodiversity categorized as minimal,
minor, moderate, major, or massive according to Blackburn et al.
(2014) (definitions of each magnitude category are provided
in Supplementary Table S2), and (7) any indication of benefits
from GZ.

For the systematic review on monitoring methods, the
search string used was: (“gelatinous ∗plankton” OR jellyfish∗

OR cnidaria∗ OR scyphozoa∗ OR hydrozoa∗ OR cubozoa∗ OR

medusozoa OR medusa∗ OR ctenophor∗ OR salp∗ OR tunicat∗

OR thaliacea∗ OR appendicularia∗ OR doliolid∗ OR urochordat∗

OR siphonophor∗) AND (monitor∗ OR survey∗ OR sampl∗ OR

detect∗) AND (bloom∗ OR outbreak∗ OR swarm∗ OR proliferation∗

OR aggregation∗ OR accumulation∗ OR “mass occurrence”). The
search was implemented on Scopus and Web of Science online
databases, covering peer-reviewed literature from 2008 (year of the
MSFD publication) to 20th April 2023. The initial search yielded
1,113 and 665 articles from Scopus and Web of Science online
databases, respectively (Supplementary Figure S2). Screening of
additional publications identified by experts was carried out (n
= 8 articles). Following the removal of duplicate entries, 1,171
articles remained for the initial screening stage. Three reviewers
assessed the articles for eligibility to be included in the second-
stage screening, based on title and abstract. The inclusion criteria
applied was based on (1) the mention of GZ identification
techniques; and (2) the use or development of monitoring tools.
Exclusion criteria considered (1) the specific language of the
manuscripts (only English, Spanish, Italian, Portuguese, Greek,
or French were considered), (2) publication type and (3) if
monitoring method referred to modeling approach to forecast
GZ occurrence, not to a direct and currently applied technique
for monitoring. Each reviewer independently evaluated a third
of the total articles, and subsequently the other two reviewers
checked for agreement/disagreement with the original decision
and discussed any discrepancies. This validation process occurred
during various virtual meetings involving the three reviewers.
After the first screening regarding the appropriateness of each
article to be included as a monitoring technique paper, 282 articles
were selected for the second-stage screening. In this subsequent
phase, eleven reviewers were engaged in examining the full text of
retrieved articles to determine their eligibility and extract pertinent
information from the included studies. Ultimately, 212 articles were
included for data extraction.

An additional systematic search was performed specifically

for monitoring on medusozoan polyps. In this case the
search string was: (polyp∗ OR scyphopolyp∗ OR cubopolyp∗

OR scyphistoma∗) AND (monitor∗ OR survey∗ OR sampl∗ OR

detect∗) AND (“gelatinous ∗plankton” OR jellyfish∗ OR cnidaria∗

OR scyphozoa∗ OR hydrozoa∗ OR cubozoa∗ OR medusozoa OR

medusa∗). The initial inventory of 291 (Scopus) and 181 (Web of
Science) papers published from 2008 to 19th June 2023 was reduced
to 302 after removing duplicates (Supplementary Figure S3). These
papers were consecutively screened by title, abstract and full text
by three reviewers, resulting in 73 articles that mentioned marine
polyp identification techniques (excluding freshwater species and
benthic hydrozoan), the use or development of monitoring tools,
and were written in English, Spanish, Italian, Portuguese, Greek,
or French. Out of these, 72 articles were selected for the second-
stage screening. In this subsequent phase, four reviewers were
engaged in examining the full text of retrieved articles to determine
their eligibility and extract pertinent information from the included
studies. Ultimately, 19 articles were included for data extraction.

From both sets of selected articles on monitoring techniques,
relevant information was retrieved, including: (1) year of
publication, (2) survey temporal coverage (year/month), (3) survey
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spatial coverage (country, site name, geographical coordinates,
and marine realm and province, based on Spalding et al., 2007),
(4) monitoring methodology used, (5) GZ species considered,
(6) monitoring objectives, and (7) results related to stressors
present in the area of GZ proliferation, predictions, geographical
or phenological changes, abundance/biomass (and units used),
outbreak periodicity, and shifts in species composition.

The list of articles obtained in the three searches, as well as the
row data extracted are publicly available as Supplementary material
(see Data availability statement). The figures were created using
the open-source software R 3.6.0 (R Core Team, 2020) and the
“ggplot2” package (Wickham, 2016).

3 Results

3.1 Impacts caused by gelatinous
zooplankton

Most adverse impacts caused by GZ on maritime activities
and ecosystems result from mass occurrences that can range from
small, localized spots to large patches detectable for kilometers.
GZ aggregations can form due to passive drift by wind or
currents, or because of active swimming, by which they form
swarms, often in association with sudden population increases
or “outbreaks” (Alldredge, 1982; Hamner and Dawson, 2009).
The high reproductive and growth potential for outbreaks is
observed in a limited number of Cnidaria genera, belonging to
the Rhizostomeae and Semaeostomae scyphozoans, in hydrozoans
(Hamner and Dawson, 2009; Fernández-Alías et al., 2021; Leoni,
2022), in some ctenophore species (Jaspers et al., 2018a; Shiganova
et al., 2019), and in most pelagic Tunicata (Jaspers et al., 2023). In
cases of highly venomous species (e.g., Chironex fleckeri, Physalia
physalis), only a few individuals may adversely impact human
health (e.g., Lippmann et al., 2011; Cegolon et al., 2013).

The systematic review on global impacts of GZ revealed that
most of the studies were conducted in the temperate Northern
Atlantic (57%) (Figure 1A). The number of studies on negative
GZ’s impacts notably increased after the early 2000s (Figure 1B).
Most of these studies focused on GZ’s impacts on biodiversity,
food provision, or human health, and few addressed impacts on
recreation and tourism, ocean nourishment and water storage
(Figure 1C). The term “biodiversity” is used hereby in accordance
with the definition of “biological diversity” proposed by the
Convention on Biological Diversity (CBD, 1992) and taken up in
the MSFD - Task Group 1 report (Cochrane et al., 2010).

Impacts on biodiversity and ecosystem services were
investigated mostly in the northern European Seas and the
Mediterranean Sea (Figures 2A, B). GZ were frequently reported
to impact aquaculture facilities through both stings (Baxter
et al., 2011a; Bosch-Belmar et al., 2016a,b, 2017; Marcos-López
et al., 2016; Powell et al., 2018; Mitchell et al., 2021) and disease
transmission to farmed fish (Ferguson et al., 2010; Delannoy et al.,
2011; Clinton et al., 2021). Impacts on human health were less
frequently reported and mostly found along temperate and tropical
coasts. Stings were the primary cause of human health impacts, and
only three articles identified GZ as potential vectors of pathogens
(Basso et al., 2019; Stabili et al., 2020, 2022) (Figure 2C).

Among the species frequently cited for negative impacts on
biodiversity, Mnemiopsis leidyi (n = 28 articles), Aurelia aurita (n
= 19), and P. noctiluca (n = 10) were the most prominent. For
impacts on ecosystem services, the most cited species were also
P. noctiluca (n = 15), A. aurita (n = 15), and M. leidyi (n = 6).
In contrast, impacts on human health were mainly associated with
P. physalis (n = 11), P. noctiluca (n = 9), Carukia spp. (n = 9),
C. fleckeri (n = 6), and Rhopilema nomadica (n = 4). Fatal cases
involved mostly box jellyfish, such as C. fleckeri (Currie and Jacups,
2005), but also scyphozoans, such as Nemopilema nomurai (Fenner
and Williamson, 1996; Kim et al., 2018). A detailed enumeration
of the reported species associated with different adverse impacts
is included in Supplementary Table S3. It is important to note that
some GZ taxa are formed by a complex of cryptic species, often
misidentified and typically referred to as a single, most popular
species (e.g., the moon jellyfish A. aurita; see Scorrano et al., 2017;
Lawley et al., 2021; Moura et al., 2023).

Impacts on biodiversity were suggested to be caused through
various mechanisms, such as direct predation (Yilmaz, 2015; Wang
et al., 2020; Báez et al., 2022; Vineetha et al., 2022), modification
of trophic flows (West et al., 2009b; Dinasquet et al., 2012b),
competition for resources (Lynam et al., 2005; Báez et al., 2022),
transmission of pathogens (Basso et al., 2019; Stabili et al., 2020,
2022), reduction of light penetration (Zaitsev, 1992; Stoner et al.,
2014), behavioral changes of species in order to avoid GZ (Carr and
Pitt, 2008; Chittenden et al., 2018), and envenomation (Helmholz
et al., 2010) (Figure 3A). “Modification of trophic flows” (Dinasquet
et al., 2012a; Tiselius and Møller, 2017) may occur through
indirect predation (Schneider and Behrends, 1998; Dinasquet et al.,
2012a; West et al., 2009a), accumulation of decaying organic
matter (i.e., jelly-falls) (Tinta et al., 2012; Chelsky et al., 2016:
Dunlop et al., 2018; Lebrato et al., 2019), and mucus and nutrient
excretion altering abiotic parameters such as nutrients and oxygen
concentrations (West et al., 2009b; Condon et al., 2011; Dinasquet
et al., 2012b; Manzari et al., 2015; Marques et al., 2021).

Most studies on GZ impacts on biodiversity drew conclusions
primarily from non-experimental correlations (39%), followed by
manipulative experiments and expert judgment (both 20%), direct
observations (16%), and modeling (5%) (Figure 3B). Hence, the
strength of evidence was low for a substantial portion of the
reported impacts.

Stronger evidence provided by manipulative experiments
demonstrated impacts on biodiversity through predation or
modification of trophic flows (Sullivan and Gifford, 2004; West
et al., 2009a; Dinasquet et al., 2012a,b; Pereira et al., 2014; Zoccarato
et al., 2016;Wang et al., 2020).Aurelia aurita andM. leidyiwere the
most frequently studied species through manipulative experiments
(7 and 6 studies respectively). Other mechanisms of impacts on
biodiversity, such as competition were primarily reported through
non-experimental correlations, modeling and expert judgment.

Concerning GZ effects on ecosystem services, manipulative
experimental studies revealed impacts on farmed fish (Baxter et al.,
2011b; Bosch-Belmar et al., 2016a,b; Powell et al., 2018) and
alterations in nutrient cycling and carbon flow (Chelsky et al., 2016;
Sweetman et al., 2016; Tinta et al., 2016). Additionally, studies based
on direct observations addressed GZ impacts on fishing (Kim et al.,
2012; Mianzan et al., 2014; Conley and Sutherland, 2015; Diciotti
et al., 2016; Mghili et al., 2022), aquaculture (Ferguson et al., 2010;
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FIGURE 1

(A) Spatial distribution of studies investigating negative impacts of gelatinous zooplankton (GZ) on biodiversity, ecosystem services and human

health, (B) number of studies published per year investigating GZ impacts, and (C) number of studies investigating GZ impacts on biodiversity,

ecosystem services categories (food provision, recreation and tourism, water storage and provision, and ocean nourishment) and human health.

Marcos-López et al., 2016; Mitchell et al., 2021), and desalination
and coastal power plants through clogging or ingress (Mianzan
et al., 2014; Graham et al., 2014; Angel et al., 2016; Kumar et al.,
2017).

According to the categories of the magnitude of the
impact on biodiversity sensu Blackburn et al. (2014) (see
Supplementary Table S2), “moderate” impacts inducing population
declines in other species (e.g., though predation on copepods,
pteropods, rotifers, cladocerans, chaetognaths, hydromedusae, or
fish larvae and eggs) were prevalent (n = 77 reports) and followed
by “minor” impacts (n= 43). “Major” impacts resulting in the local
extinction of at least one prey species were less abundant (n = 21)
and “massive” impacts have not been documented for GZ species.
“Minimal” impacts were infrequently reported in the literature (n
= 11), although this category may be under-represented, as non-
significant results are less likely to be published (Jennions and
Møller, 2002).

Probably one of the most notable examples of a “major”
impact is the invasion of M. leidyi in the Black Sea in the mid-
1980s, causing significant reductions in zooplankton abundances,
primarily by predation (Shiganova, 1998), as documented for other
invaded areas as well (e.g., Riisgård et al., 2012). This intense
predation caused changes in the community structure of the Black
Sea, with some species becoming virtually absent (Zaitsev, 1992;
Shiganova, 2005). However, in the late 1990s, a new non-indigenous
species (NIS) of ctenophore, Beroe ovata, was introduced in the
Black Sea. This species preyed exclusively on GZ including M.

leidyi, leading to reductions of M. leidyi population densities
(Finenko et al., 2003). Since then, impacted species have been
recovering (Finenko et al., 2003; Shiganova, 2005). The reduction
of other ecosystem pressures, such as eutrophication and fishing
pressure, along with changes in large-scale atmospheric conditions,
also contributed to the changes observed in the Black Sea food web
(Bilio and Niermann, 2004).

Therefore, GZ can have positive impacts on biodiversity: they
are an important food source for various top predators and
threatened species like sea turtles, birds and fish (Cardona et al.,
2012; Jarman et al., 2013; Mianzan et al., 2014; Sato et al., 2015;
Smith et al., 2016; Hays et al., 2018; Thiebot and McInnes, 2020;
Jaspers et al., 2023) and some species can act as biological regulators
of invasive species, such as the arrival of B. ovata in the Black Sea
(Shiganova et al., 2001; Finenko et al., 2003; Bilio and Niermann,
2004). Additionally, certain GZ species, especially scyphomedusae
provide shelter and trophic resources to juvenile fish, thereby
improving their survival rates (Lynam and Brierley, 2007; Masuda
et al., 2008; Mianzan et al., 2014; D’Ambra et al., 2015; Tilves
et al., 2018). In some quite exceptional cases, GZ may also play a
role in maintaining water quality and preventing dystrophic crises
through a top-down control process (Pérez-Ruzafa et al., 2002,
2019; Fernández-Alías et al., 2022).

Furthermore, GZ can provide several societal ecosystem
services (Doyle et al., 2014; Leone et al., 2015). Up to 35 species
of jellyfish have been reported to be consumed by humans (Brotz
et al., 2017). For millennia, GZ (mostly scyphomedusae) have been
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FIGURE 2

Spatial distribution of studies investigating gelatinous zooplankton impacts on (A) biodiversity and (B) ecosystem services. (C) Marine provinces

where stinging events were reported from the retrieved studies and fatal cases.
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FIGURE 3

(A) Counts of the reported mechanisms of impacts of gelatinous zooplankton (GZ) on biodiversity. “Other” includes reduction of light penetration,

disease transmission, envenomation, and behavioral changes to other species. (B) Counts of types of evidence for the reported impacts of GZ on

biodiversity. “NEC” stands for non-experimental based correlations.

consumed in Asia, where they are considered delicacies (Omori
and Nakano, 2001; Brotz and Pauly, 2017; Syazwan et al., 2020)
and recently, there has been growing interest in Western countries
considering jellyfish as a sustainable food resource (Brotz et al.,
2017; Pedersen and Vilgis, 2019; Ramires et al., 2022a,b). Since
the 1970s−80s there have been attempts to establish Stomolophus

meleagris fisheries in the United States (Page, 2015), and in Mexico
(Cruz-Colín et al., 2021), mainly where commercial fishing crises
occurred due to overfishing of finfish and shrimps. However, the
product was primarily exported to Asia, due to low consumer
acceptance and neophobia in western countries (Torri et al., 2020),
as well as its health- and cost-effective processing (Brotz, 2016;
Raposo et al., 2022). In Europe, several species have the potential
to support jellyfish fisheries (Brotz, 2016; Brotz et al., 2017; Bleve
et al., 2019; Leone et al., 2019; Youssef et al., 2019; Edelist et al.,
2021; Duarte et al., 2022; Raposo et al., 2022). The target species are
particularly large-sized Rhizostomeae, with low stinging potential
and recurring annual blooms, such as Rhizostoma pulmo and
Rhizostoma octopus. In the absence of significant consumption,
jellyfish have been labeled as “novel foods” under the current
European regulation (European Union Regulation 2015/2283) and
some innovative processing tests have already yielded new patented
jellyfish-based foods that overcome the limitations of traditional
Asian processes (Bleve et al., 2019, 2021; Leone et al., 2021; Ramires
et al., 2022a,b). Jellyfish harvesting from by-catch of finfish fisheries
may also offer novel resources to diverse industries and economic
activities, as organic fertilizers (Hussein et al., 2015; Emadodin
et al., 2020; Borchert et al., 2021), insecticides (Yu et al., 2005,
2014, 2016, 2021), animal feed for terrestrial or aquaculture farming
(Miyajima et al., 2011; Wakabayashi et al., 2012; Liu et al., 2015;
Duarte et al., 2022), or bait for fishermen (Mianzan et al., 2014).

GZ may also provide important biomaterial for medical
applications and research (Ahn et al., 2018; Rastian et al.,
2018; Widdowson et al., 2018; Felician et al., 2019). In the
early 1900s, Charles Richet won the Nobel Prize in Medicine
for his groundbreaking research on anaphylaxis, uncovered by
studying P. physalis. From the serendipitous discovery of green
fluorescent protein (GFP) in the hydromedusa Aequorea victoria

(Shimomura et al., 1962), the biotechnological potential of
cnidarians started to attract the attention of researchers for their
well-documented ability to produce venoms (Turk and Kem, 2009).

Other bioactive compounds obtained from various GZ species have
been examined for their antioxidant, anticancer, antihypertensive,
and antimicrobial properties, suggesting potential use in the
pharmaceutical sector (Leone et al., 2013, 2015; Amreen Nisa et al.,
2021; De Rinaldis et al., 2021; Ranasinghe et al., 2022; De Domenico
et al., 2019, 2023). Furthermore, in the fields of biotechnology and
biomedicine, GZ biomass has been explored for designing cell-
scaffold devices to address non-healing skin wounds (Nudelman
et al., 2019; Fernández-Cervantes et al., 2020).

Other GZ provisional services, include the contribution to the
aquarium trade (Duarte et al., 2022), andmore recently GZmaterial
was proposed as a potential alternative for replacing fossil-based
plastics (Steinberger et al., 2019). Moreover, it has been proposed
that cnidarian GZmucusmight be used as bio-flocculationmaterial
for trapping and sequestrating plastic micro- and nanoparticles
from contaminated waters of factories (Patwa et al., 2015; Lengar
et al., 2021) and wastewater treatment plant effluents (Ben-David
et al., 2023).

Further, pelagic tunicates, especially salps (Décima et al., 2023)
and larvaceans (Jaspers et al., 2023) as well as cnidarian jelly-
falls (Lebrato et al., 2019) have a significant capacity to fuel
carbon sequestration, highlighting a crucial role amidst the ongoing
climate crisis.

3.2 Potential pressures causing gelatinous
zooplankton outbreaks and aggregations

Attributing GZ outbreaks to specific causes, whether natural
or anthropogenic, is often challenging and accompanied by
uncertainty (Lee et al., 2023). Increases in GZ populations appear
often to be influenced by a combination of human activities,
which might interact synergistically to trigger outbreaks of certain
species (Richardson et al., 2009). A critical review by Pitt et al.
(2018) contended that there was weak evidence that anthropogenic
stressors trigger GZ outbreaks, because such claims were mostly
based on two highly invasive (and often cryptic) taxa (A. aurita and
M. leidyi) and relied on correlative investigations or circumstantial
evidence that cannot establish causation (e.g., Duarte et al., 2015).
However, the increase of human activities and uses of the marine
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ecosystems suggests, that regardless of “natural” global increases
of GZ populations, their interactions with human activities are
expected to increase, particularly in coastal waters (Gibbons and
Richardson, 2013).

Several GZ have specific functional attributes that enable
them to thrive in disturbed marine ecosystems and capitalize
on ecological opportunities presented by anthropogenic activities.
These include a broad diet (Purcell, 1992; Lilley et al., 2009;
Fleming et al., 2015; Nagata et al., 2015), rapid growth rates
(Marques et al., 2015; Jaspers et al., 2023), tolerance of harsh
conditions (Purcell, 2012), or the ability to shrink and channel body
carbon into reproduction during food-shortage to keeping up high
reproduction rates (Lilley et al., 2014; Jaspers et al., 2015).

Various human-related causes of GZ outbreaks have been
reported in the literature (Supplementary Table S4):

• Overfishing. The removal and decline of fish populations,
which compete with certain carnivorous GZ for prey or
predate on them, has allowed certain GZ taxa to exploit
available resources more effectively and has led to abnormally
large and long-lasting outbreaks of some jellyfish in certain
areas (Lynam et al., 2006; Richardson et al., 2009; Boero, 2013).
These declines may be reversible if new ecological components
control these outbreaks or if the fishing pressure is reduced
(Daskalov et al., 2007).

• Eutrophication. It has been hypothesized that excessive
nutrients from fertilizer runoff and sewage into coastal waters,
rich in nitrogen and phosphorus but poor in silica, promotes
the dominance of non-siliceous phytoplankton, such as
flagellates, and can create conditions that are more suitable for
certain GZ than for fish to thrive. Various reasons have been
suggested for this. Some GZ have the ability to feed on these
protists directly (e.g., Parsons and Lalli, 2002; Richardson
et al., 2009); further, GZ are reported to be more competitive
than othermetazoans including finfish to thrive under hypoxic
conditions, that often occur in eutrophic environments (e.g.,
Purcell et al., 2001; Breitburg et al., 2003; Purcell, 2012).

• Climate change, with its associated sea surface warming,
altered water column stratification, and increased climate
variability, can also influence GZ population dynamics
(Boero et al., 2016; Jaspers et al., 2023; Lee et al., 2023).
Increased sea surface temperatures can create more favorable
conditions for GZ by favoring their prey abundances (Jaspers
et al., 2023) and/or accelerating their growth (Purcell, 2005).
Fernández-Alías et al. (2021) showed that large species
living in temperate, shallow waters appear to have a high
outbreak potential, with temperature appearing to be the
main environmental factor regulating the onset of population
outbreaks, and food availability, enhanced by bottom-up
eutrophication, being key to maintaining large biomass.
Furthermore, the expansion of venomous tropical jellyfish
species to subtropical and temperate latitudes due to warming,
poses potential threats to the colonized ecosystems and
local economies.

• Species translocation. The human-assisted movement of
species in new marine regions through ballast water exchange,
fouling on ship hulls, aquaculture, and the opening of
corridors connecting previously isolated seas (such as the Suez

Canal) has translocated many outbreak forming GZ species
such as the hydrozoans Blackfordia virginica (Marques et al.,
2017),Maeotias marginata, Nemopsis bachei (Nowaczyk et al.,
2016), orGonionemus vertens (Marchessaux et al., 2017) which
can reach remarkably high abundances and cause significant
ecosystem impacts on invaded habitats. Although we are still
far from understanding the true number of NIS of gelatinous
zooplankton, especially small sized hydrozoan jellyfish species,
examples of non-indigenous GZ in European waters include
R. nomadica (Galil et al., 1990; Spanier andGalil, 1991; Deidun
et al., 2011) and Cassiopea andromeda (Mammone et al., 2021;
Cillari et al., 2022) in the Mediterranean Sea, G. vertens in
the northern European coasts (Marchessaux et al., 2017) as
well as multiple independent invasions of M. leidyi into other
European seas (Jaspers et al., 2018b, 2021).

• Habitat modification, such as an increase in suitable benthic
habitat, either natural or artificial (ocean sprawl), could
contribute to the proliferation of jellyfish polyps by providing
additional substrates for polyp attachment and growth
(Duarte et al., 2013).

3.3 Management measures and strategies

Despite the numerous and heterogeneous known impacts
of GZ outbreaks and the studies dedicated to identifying their
triggering causes, current GZ management strategies are based
on reactive strategies that primarily focus on controlling and
mitigating the adverse impacts caused by cnidarian jellyfish
populations at local scales (Lucas et al., 2014; Dong, 2019). Their
main objective is to reduce health risks and loss of revenue
for the affected coastal and marine activities (Ghermandi et al.,
2015). Some of the control methods that are used nowadays are
enumerated below.

Jellyfish cutters are used in Japan and Korea to remove
aggregated jellyfish like Nemopilema spp. or Aurelia spp. (Kim
et al., 2013; Lucas et al., 2014). However, cutting and/or grinding
jellyfish do not affect their distribution at sub-surface depths and
do not consider the powerful regenerative property of cnidarians
such as Aurelia coerulea, able to produce new polyps even by
few cell debris (He et al., 2015). Jellyfish-excluding devices for
towed fishing gears (Matsushita and Honda, 2006) have been
developed to prevent GZ from entering nets, reducing their bycatch
and adverse impacts on fisheries. First adopted in Australia to
protect beachgoers against envenomation from lethal cubozoans,
anti-jellyfish nets are nowadays broadly used throughout the
Mediterranean Sea (Piraino et al., 2016) to create enclosed areas
for safe swimming and maintain tourism appeal (Ruiz-Frau, 2023).
The effectiveness of these nets demands specific design, material
and installation procedures (mostly standardized by patents) as
well as monitoring and maintenance services, even requiring rapid
intervention to remove the nets when required. Other solutions like
protective covers, mesh screens, and bubble screens are used in
the aquaculture industry to safeguard fish production, and in power
stations and desalination plants to protect the cooling and pumping
systems from GZ infestations (Verner, 1984; Ratcliff, 2004; Lucas
et al., 2014; Haberlin et al., 2021).
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Chemical compounds are also used for antifouling ship

paints to inhibit polyp settlement and attachment in aquaculture
facilities and other artificial structures (Guenther et al., 2009, 2010;
Feng et al., 2017, 2022). Introducing natural polyp predators,
like nudibranchs, to habitat areas can also help control some GZ
populations with a benthic life-stage such asmost cnidarian jellyfish
species (Hernroth and Gröndahl, 1985; Hoover et al., 2012). Here,
recruitment is reduced and thereby the frequency and intensity of
population outbreaks.

Operational early warning systems (EWS) are being
developed to inform coastal users about potential GZ presence or
predict the outbreak probability or intensity for certain noxious
species. EWS may be based on hydrodynamic models, real-time
observations, remote sensing techniques and/or unmanned aerial
vehicles (UAVs) allied with high resolution imagery and effective
image analysis algorithms or deep learning technology (Aznar
et al., 2017; Mcilwaine and Casado, 2021; Edelist et al., 2022;
Han et al., 2022; Zhang et al., 2023). EWS may also benefit from
recent scientific advancements on environmental DNA (eDNA) for
detecting rare but life-threatening species (Bolte et al., 2021). EWS
are currently employed to detect outbreaks of GZ species such
as N. nomurai (Uye, 2008; Lucas et al., 2014) Cyanea purpurea,

R. pulmo, Phacellophora camtschatica, Agalma okeni, A. aurita,

Phyllorhiza punctata, and Rhopilema esculentum (Gao et al., 2023).
Public education and awareness (i.e., ocean literacy) on

different GZ groups and their associated risks can also play a
significant role in mitigating the impacts of GZ outbreaks on
public health and tourism (Gershwin et al., 2010; Lucas et al.,
2014). In addition, collaborative citizen science approaches (Boero,
2013) involving trained personnel, volunteers, social networks, and
media may contribute to gather data on GZ and enhance public
engagement (e.g., Pikesley et al., 2014; Gatt et al., 2018; Marambio
et al., 2021; Dobson et al., 2023; Levy et al., 2024).

Ecosystem-based strategies including different GZ taxa are
uncommon, even though integrating the multifaceted linkages
between GZ, human activities and other ecosystem components
may help to prevent or reduce outbreaks of harmful GZ
species (Lynam et al., 2006; Richardson et al., 2009; Brodeur
et al., 2016; Bastardie et al., 2021; Edelist et al., 2021). This is
evidenced by the example of the Benguela upwelling region, where
historically similar ecosystems (in terms of their structure, species
communities, and functions) followed different trajectories after
the collapse of small pelagic fish stocks in the 1960/70s. In the
northern Benguela system (Namibia), the prolonged absence of
fishing regulations after the collapse of stocks, combined with
changing environmental conditions, led to the domination of
GZ in the mid-trophic level and the depletion of small pelagic
fish abundance. In contrast, in the southern Benguela system
(South Africa), catch limits and management measures for small
pelagic fishes prevented overfishing and succeeded to maintain
their ecosystem dominance (Roux et al., 2013).

3.4 Indicators to include GZ in the MSFD’s
assessments

The MSFD is an ecosystem-based management approach
adopted by the European Commission to attain GES across

European Seas. In practice, GES is assessed through eleven thematic
descriptors and associated criteria related to different ecosystem
components (state) and pressures (European Commission, 2017).
European Union (EU) member states or Regional Sea Conventions
are required to determine indicators and associated thresholds
consistent with GES achievement in their marine reporting units.
Moreover, the 6-yearly reports must assess the cumulative effects
of pressures and social and economic costs of environmental
degradation (Tornero Alvarez et al., 2023).

GZ have been considered minimally in the 2012 and 2018
reporting cycles, even though GZ are frequently regarded as
sentinels of marine ecosystem health (Schrope, 2012; Lee et al.,
2023), offering diagnostic insights to interpret changes across the
food web, including higher and lower trophic levels (Bedford
et al., 2018). To introduce GZ component in MSFD, an initial
assessment would be required to (i) define appropriate indicators
and associated thresholds for different GZ taxa and areas, (ii)
differentiate between anthropogenic and natural factors driving
GZ outbreaks and aggregations (“pressures”), (iii) identify impacts
and services of GZ in the ecosystem, and (iv) devise relevant
management actions to mitigate/prevent their harmful effects
where practical. Such analysis is pivotal for designing and
implementing effective monitoring programs that aid GZ-related
assessments and establish a robust scientific foundation for crafting
efficient management strategies to attain GES. In this holistic
approach, various MSFD descriptors (D) and criteria may be of
relevance to assess GZ state, their pressures and impacts (see
Supplementary Table S5).

TheMSFD indicators should include, as a minimum, ameasure
of the ecological state of an ecosystem component to evaluate
change over time (e.g., abundance or biomass of different GZ
groups, or the frequency of occurrence of their aggregations).
In addition, to understand the changes on GZ populations in
the ecosystem, indicators related to the relevant natural and
anthropogenic pressures are required (Ndah et al., 2022). Many
pressures are already captured in MSFD and regional biodiversity
assessments, including temperature increase due to climate change,
fishing effort, seabed and hydrological changes, nutrient and
contaminant levels and change in the base of the food web
through primary production metrics. However, indicators of direct
pressure(s) favoring GZ (e.g., provision of artificial settling habitat
for polyp stages of cnidarian jellyfish; Duarte et al., 2013) should
be included to develop efficient mitigation measures and identify
risk of expansion (Foster et al., 2016). Similarly, a measure of GZ
as a pressure and their impacts on the ecosystem (e.g., losses in
fisheries, aquaculture, or energy generation) would be useful to
informmanagers of the scale of their effects (Abdul Azis et al., 2000;
Doyle et al., 2008; Uye, 2008; Quiñones et al., 2013; Ghermandi
et al., 2015; Kennerley et al., 2022).

A few indicators including GZ have been considered in current
European biodiversity assessments: the Oslo/Paris Convention’s
Intermediate Assessment (OSPAR, 2017; Holland et al., 2023a),
the Helsinki Commission’s coreset of indicators (HELCOM, 2018)
and the Black Sea Commission’s report on the “State of Gelatinous
Plankton” (BSC, 2019) were delivered to assist contracting parties
when reporting to the MSFD. While OSPAR, BSC and HELCOM
have each developed indicators for NIS, only the BSC mentions
GZ explicitly. However, HELCOM acknowledged that GZ were an
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important group missing from the indicator: “Trends in arrival of
new non-indigenous species” (HELCOM, 2018).

Recently, specific metrics for GZ have been proposed by
OSPAR as part of the indicator “Changes in Phytoplankton and
Zooplankton Communities” (Holland et al., 2023a; Magliozzi et al.,
2023). This indicator is used within MSFD descriptors on pelagic
habitats (for D1) and food webs (D4) and adopts the Phytoplankton
Community Index approach of Tett et al. (2008). This indicator
relies on the concept of “lifeforms” or multiple unrelated taxa
that are considered to share a similar functional role within
their ecosystem (e.g., primary producers, grazers or carnivores).
Once the abundance or biomass of the lifeform groupings are
determined from sample data, the ratios of specific pairs of
lifeforms are used to evaluate the energy or mass flow through
trophic pathways in marine food webs (McQuatters-Gollop et al.,
2019; Holland et al., 2023a,b). For GZ, two lifeform pairs indices
are considered: (1) GZ vs. fish larvae/eggs and (2) Crustaceans vs.
GZ (Supplementary Figure S5). In each case, GZ are considered
as a predator (of crustacean plankton and of fish eggs and
larvae) directing energy away from fish populations. However,
GZ outbreaks may also result from (rather than cause) ecosystem
degradation, and metrics of GZ abundance have been proposed as
a potential indicator of ecosystem instability (Lynam et al., 2011).

Unfortunately, these assessments are still supported by very
little monitoring data on GZ, with all species of Cnidaria
and Ctenophora currently grouped together as “Gelatinous
zooplankton.” Data for GZ were available to OSPAR (2017) from
a single sampling site within the western Channel (“L4,” Atkinson
et al., 2021) and was improved for OSPARs Quality Status Report
2023 (Holland et al., 2023a), with an additional station off north-
western Scotland (Loch Ewe) (see Supplementary Figure S5), a
station off eastern Scotland (Stonehaven), and Swedish data for the
Kattegat and Norwegian Trench in the eastern North Sea. However,
these GZ data were insufficient to support additional analyses to
determine key environmental pressures (Holland et al., 2023a,b).

In light of the aforementioned considerations and in
anticipation of forthcoming assessments, we consider the following
to be potentially useful indicators related to GZ:

Pressure indicators driving change in GZ:

• Indicators of water-mass dynamics (e.g., Ndah et al., 2022).
• Provision of artificial habitat (e.g., Duarte et al., 2013; Foster

et al., 2016).
• Sea surface temperature and eutrophication (in shallow coastal

waters) (Fernández-Alías et al., 2021).
Potential change of state indicators for GZ:

• Estimation of episodic and/or seasonal GZ outbreaks and
aggregations as an early warning indicator of climate effects
on the marine environment (Van Walraven et al., 2013, 2015).

• Frequency of occurrence of GZ in stomach contents samples
of predators (e.g., Smith et al., 2016).

• Polyp presence and abundance in coastal habitats (lagoons,
marinas) (e.g., Van Walraven et al., 2016).

Impact indicators due to GZ outbreaks:

• Frequency of occurrence of GZ supporting foraging grounds
of dependent predators like leatherback turtles (Houghton
et al., 2006).

• Economic losses in fisheries (e.g., Uye, 2008; Quiñones et al.,
2013), aquaculture (e.g., Doyle et al., 2008), and coastal
desalination or energy installations (e.g., Abdul Azis et al.,
2000).

• Social impact indicators, such as number of bathers requiring
medical attention due to jellyfish stings (De Donno et al.,
2014), or beach closures and loss of tourism (Ghermandi et al.,
2015; Kennerley et al., 2022).

The precise selection and definition of GZ-related indicators
including their specific metrics, variables and threshold values,
remains a pending and challenging exercise which must consider
practical aspects, such as feasible/required sampling and analysis
capabilities, temporal, spatial, and taxonomic resolutions of
underlying data, capacity to reflect pressures-state-impact linkages,
inter-indicator connections (Dale and Beyeler, 2001; Niemeijer
and De Groot, 2008; Marques et al., 2009; Magliozzi et al., 2023),
accumulated uncertainties (Racault et al., 2014), and the potential
for pan-European intercomparison and harmonization (European
Commission, 2017; Magliozzi et al., 2023). These requisites will
heavily rely on the monitoring programs and techniques to be
implemented to support the assessment process.

3.5 Current monitoring programs and
techniques and new alternatives

Presently there is a growing demand for cost-effective and
innovative monitoring approaches to improve research on GZ and
integrate them into the MSFD assessment and management
framework (Magliozzi et al., 2021, 2023). Technological
advancements have introduced new techniques for monitoring GZ
outbreaks and aggregations, including sampling approaches more
suitable to study these fragile animals.

The findings of our systematic review on monitoring programs
and methodologies for GZ are described hereafter.

• Nets: WP2 and Bongo nets are the most widely used
GZ monitoring tools. They are particularly suited for
small, abundant hydromedusae, scyphozoan ephyra and
calycophoran siphonophores. Different sampling gears
provide complementary insights in GZ populations studies
(Hosia et al., 2008; Purcell, 2009). Fish trawl nets are also
employed, mainly for sampling larger and more robust
gelatinous species (Purcell, 2009). In Europe, night-time
ichthyoplankton work conducted during fisheries trawl
surveys have been proposed as a cost-saving approach
to support GZ monitoring (Aubert et al., 2018). Here,
ichthyoplankton sampling gear such as MIK-nets can
quantitatively assess the gelatinous macrozooplankton
community (Aubert et al., 2018; Køhler et al., 2022).
However, these depth integrated nets have the disadvantage
of underestimating fragile gelatinous organisms that may
break during collection. In addition, true abundances may be
underestimated if species are present at very low abundances
and low water volumes are processed. Other nets such as
MOCNESS or MultiNets may be alternatives for sampling
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discrete depth strata where GZ are known to accumulate (e.g.,
Haraldsson et al., 2013).

• The Continuous Plankton Recorder (CPR) is a continuous
surface monitoring method (Lynam et al., 2011) that can
detect outbreaks of both meroplanktonic and holoplanktonic
hydrozoans and scyphozoans. For instance, outbreaks of P.
noctiluca, recorded by the CPR off Ireland in October 2007,
were confirmed by net tows and visual examination (Baxter
et al., 2010; Licandro et al., 2010), suggesting that CPR
can provide reliable information for identifying regions and
periods favorable for GZ outbreaks. The main limitations of
this technique are the inability to sample complete specimens
of GZ larger than the aperture of the CPR which is only a
few centimeters in size, and the difficulties to preserve the
GZmorphology, except for rigid calycophoran siphonophores
(Gibbons and Richardson, 2009), impairing their taxonomic
identification at species level. However, preserved samples can
be used for re-analysis and genetic studies (Kirby et al., 2006;
Licandro et al., 2010). CPR devices can be mounted on ships
of opportunity, enabling periodic surveys covering extensive
spatial and temporal scales.

• Polyp monitoring: Polyp monitoring ranks as the third most
frequently reported monitoring method. Despite their crucial
role in cnidarians outbreaks, polyps remain the least known
stage in the cnidarians’ life cycle, and field investigations of this
stage have only recently gained attention. Among Scyphozoa
and Cubozoa species (the most conspicuous GZ), 5% are
holopelagic, 32% have a benthic stage, whilst the life cycle of
the remaining 63% is unknown (estimated from Jarms and
Morandini, 2019).

We observed that polyp species detection in nature is
not in accordance with increasing sampling efforts. In only
18.6% of species with benthic stage, polyps have been observed
in the natural environment (i.e., 16 of 86 species), with
the genus Aurelia and Chrysaora accounting for almost the
half (44%) of these observations (Cargo and Schultz, 1966;
Hartwick, 1991; Kikinger, 1992; Dawson et al., 2001 and
references in Supplementary Table S6 for reports after 2008).
Polyp monitoring and research efforts encompass density
estimations, ephyrae production, and the identification of
suitable substrates (e.g., Miyake et al., 2002; Van Walraven
et al., 2016). In the few occasions when polyps have been
observed, monitoring of this benthic stage is usually carried
out through visual surveys by SCUBA divers or by employing
underwater cameras for recording (Supplementary Table S6).

• Visual counts: Although GZ monitoring based on visual
observations from ships ranks as the fourth most frequently
reported method in the review, this approach is inherently
biased toward species of detectable size and relatively
straightforward taxonomic identification present on the
surface during daytime. Monthly visual surveys from boats
have been successfully implemented to monitor five jellyfish
species for several years in Irish/UK waters, showing where
aggregations tend to occur (Bastian et al., 2011; Purcell, 2012).
Additionally, for certain remarkable (dangerous or visually
striking) species, visual counts from ferries (Yoon et al., 2018),
or boats used for beach surveillance, cleanup, or touristic

activities (such as whale watching, birdwatching, and coastal
tours) can serve as early warning systems to manage bathing
and/or fishing areas and support educational initiatives
respectively. In recent years, visual counts have gradually been
substituted by aerial and underwater imagery and videos.
Visual counts are also sometimes used to ground truth other
data collected through other monitoring techniques.

• Acoustic methods: Underwater acoustic devices like single-
beam and multibeam echosounders, scanning sonars and,
hydrophones, have been used in several studies for detecting
GZ presence, tracking their movements and vertical diel
migrations, and estimating their abundance in the water
column (e.g., Han and Uye, 2009). In the past, the
use of acoustic systems to detect GZ was disregarded
because of their high-water content, resulting in a very
low-density contrast at the water–body interface. However,
several studies have demonstrated that different species
of gelatinous plankton can generate significant levels of
sound scattering (Brierley et al., 2005) even at low sound
frequencies (38–50 kHz; Colombo et al., 2003). These methods
enable faster and broader coverage surveys (including the
water column and nighttime), providing continuous count
data along transects and accompanying environmental data.
Moreover, the acoustic characterization of GZ aggregations
from previous recorded acoustic cruises for fish abundance
assessment have proved to be valuable in identifying and
reconstructing historical scenarios of their abundance and
their potential impact on ecosystems (Colombo et al., 2003).
However, implementing these methods requires substantial
efforts to ground truth species identifications and density
estimates, staff training, labor-intensive data processing as
well as equipment investment. Acoustic equipment can be
mounted on fixed mooring platforms (e.g., for monitoring
pumping facilities) on board scientific vessels, or in UAVs and
remotely operated vehicles (ROVs).

• Aerial remote images: Satellite imagery, aerial photography,
and video recording from piloted aircraft or drones are
increasingly employed for GZ monitoring. Whereas drones,
UAVs, and ROVs may include optical sensors with sufficient
resolution for GZ detection, aerial and satellite platforms

should be equipped with very high resolution or hyperspectral
sensors to support GZ monitoring. However, even though
this seems to be a straightforward approach, sea state, cloud
cover and data processing are major obstacles. Moreover,
customized signal processing algorithmsmust be developed to
enable the detection and/or counting of GZ aggregations from
the acquired imagery (Raoult and Gaston, 2018; Schaub et al.,
2018), e.g., JellyX and JellyNet (Mcilwaine and Casado, 2021).
Satellite data frommultispectral and infrared sensors are often
used to provide environmental data that can be incorporated
into GZ prediction models, habitat suitability maps, and early
warning systems. An example of this approach can be seen in
the multi-platform study of the extreme outbreak of the barrel
jellyfish R. pulmo in the Gulf of Trieste in April 2021 (Reyes
Suárez et al., 2022).

UAVs and drone platforms allow the collection of larger
datasets in less time than those acquired during boat-based
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surveys and can also monitor species that are delicate to
sample with nets. However, this method requires a sound
knowledge of the species present from net-based surveys,
as images are often not good enough to allow for species
identification. Also, UAVs access is limited, and deployments
are costly. Drones could facilitate high spatial coverage (Hamel
et al., 2021), however, their usage is constrained by factors
such as flight duration, local flight operation regulations,
and environmental conditions such as rain and wind speed
(Mcilwaine et al., 2022). In addition, remote image quality
can degrade due to foggy conditions, sun-glint, or high-water
turbidity (Hamel et al., 2021).

Other remote sensing methods such as airborne LiDAR

have been used to describe the vertical distribution of GZ
in the water column (Churnside et al., 2016). However, it
is important to keep in mind that some GZ actively modify
their position within the water column. For the ctenophore
M. leidyi it has been shown that sea state and turbulence
conditions impact their vertical position, where animals avoid
surface waters during high wind speeds (Jaspers et al., 2018b).
Furthermore, electronic tags have shown that the large
scyphozoan jellyfish R. octopus spent<10% of their time at the
surface (Hays et al., 2012). This data was then used by Elliott
et al. (2017) to apply a correction factor to their aerial surface
estimates of R. octopus abundance.

• Citizen science: Active participation from the public in
collecting GZ data offers a valuable opportunity to cover larger
coastal areas that would be costly or impractical to cover
through scientific projects (Marambio et al., 2021; Edelist
et al., 2022; Gueroun et al., 2022). However, this information
must be verified by experts or requires prior training of
the participating volunteers to ensure the quality required
for scientific studies, putting a high maintenance demand
on this kind of data generation. In addition, data collection
often suffers from spatial and temporal bias, as more data
is obtained from popular sites during high season for easily
detectable species. Therefore, it is advisable to include local
communities such as schools, diving or sailing clubs into data
acquisition programs and to not restrict these programs to
summer seasons and short-term projects.

• Underwater images and automatic count systems:

Underwater photography and video recording systems
(Cillari et al., 2022) acquired by scuba divers (Gibbons
et al., 2021) or by underwater platforms like ROVs, AUVs
or underwater video profilers (UVPs) (Biard et al., 2016),
can facilitate quantitative evaluations from long-lasting and
spatially extensive surveys. However, they can bias local
fauna’s behavior by causing species to escape. In contrast,
static systems that are quickly accepted by resident fauna
can collect information over longer periods, albeit with
lower spatial coverage than mobile systems. Utilizing camera
systems in conjunction with computer vision algorithms
enables real-time detection and counting of GZ, reducing
observer bias and enhancing monitoring efficiency (Gao et al.,
2023). Furthermore, specialized bathyphotometer cameras
have been employed for the observation and analysis of
bioluminescence signals in salps (Melnik et al., 2022).

• Molecular genetic methods: The advancement of DNA
barcoding, mitochondrial and nuclear DNA and RNA
facilitate species detection, including GZ (Créach et al., 2022).
Quantitative real-time PCR (qPCR) has also been used to
identify GZ by tracing eDNA (Bayha and Graham, 2009;
Marques et al., 2019). This emerging method enables the
analysis of water and sediment samples to detect extracellular
DNA or associated to dead cells (Torti et al., 2015; Minamoto
et al., 2017; Ogata et al., 2021). Molecular techniques are
limited to detecting the presence or absence of taxa and cannot
estimate abundance variability. However, they increase the
likelihood of species detection and, in some cases, reduce the
time and costs compared to other monitoring and sampling
methods. Moreover, marine eDNA is preserved for only 1 day
in water, whereas it can persist for at least 1 year in sediments
and could therefore be useful to reconstruct past occurrences
(Ogata et al., 2021). Furthermore, these techniques can be
applied to analyze the gut content of potential GZ predators,
contributing to food web characterization (Smith et al., 2016).

• Jelly-falls monitoring: Elevated gelatinous biomass may
translate into increased transfer of this organic material
to the seafloor, providing a food supply to benthic fauna.
Monitoring the presence and fate of GZ carcasses has been
conducted using various techniques, including sediment traps,
photography and video systems, and trawling nets (e.g.,
Lalande and Fortier, 2011; Sweetman and Chapman, 2011,
2015; Lebrato et al., 2012; Dunlop et al., 2018).

Most GZ monitoring publications were found in Europe, Asia,
and the United States (Supplementary Figure S6). Nets were the
predominant monitoring method in all Marine Realms (Figure 4),
except for the Eastern Indo-Pacific, where citizen science was the
only method recorded. Most studies focused on cnidarians and
used nets, underwater images, acoustics, and visual counts. Remote
images, molecular methods, and jelly-falls have been implemented
only for Cnidaria and Tunicata (Figure 5). The number of studies
monitoring both the GZ pelagic and benthic stages increased from
2008 to 2022. There was a rise in the number of citizen science
publications in 2021–2022 (Supplementary Figure S7).

Articles focusing on polyp monitoring are relatively scarce (n=
19). The methods used are summarized in Supplementary Table S6.
Among the species considered, 64% belonged to the genus Aurelia
(e.g., Aurelia sp., A. aurita, A. coerulea, and A. labiata), 9%
to the genus Chrysaora (C. pacifica and C. hysoscella), and
the remaining 27% included four Scyphozoa species (Atolla sp.,
Atorella sibogae, Cyanea lamarkii, Nausithoe cf. rubra, and N.

nomurai) and one Cubozoa (Copula sivicksi). Polyps were found
in both natural substrates (shells of clams Spisula subtruncata and
Mactra stultorum, shells of dead clams, hollows of stones, under-
surfaces of oysters growing on port pillars, biogenic reefs formed
by polychaeta, hidden within the coral substratum, or on barnacles,
bivalves, tunicates, sponges, and bryozoan) and artificial substrates
(undersides of floating piers, PVC, synthetic rubber, iron oxide,
wood, granite, glass, floating docks, and plastic debris).

In several publications, data from direct GZ monitoring
techniques (e.g., counting methods and citizen science) have
been combined with environmental information (e.g., currents
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FIGURE 4

Types of monitoring methods used to monitor gelatinous zooplankton outbreaks and polyps (benthic stage of Scyphozoa and Cubozoa) across each

Marine Realm, published between 2008–2023.

direction, temperature, and salinity) to develop ecological models,

EWS, or forecast of GZ trajectories (Ferrer et al., 2015; Ferrer
and González, 2021). Ecological modeling approaches used to
predict outbreaks and spatial occurrence patterns include trait-
based models, mixed models, and ecosystem-functional models
(Lamb et al., 2019; Rahi et al., 2020; Ramondenc et al., 2020;
Bosch-Belmar et al., 2021a).

4 Discussion: recommendations to
move forward

Several key recommendations stem from the present
multifaceted review.

4.1 Data representativeness and knowledge
bias

The results of the systematic reviews demonstrate a
pronounced prevalence of studies conducted in northern Atlantic
regions, focusing on Cnidaria, and employing nets as primary
monitoring technique. This highlights the need to diversify GZ
studies, to publish additional research on non-cnidarian GZ
taxa such as ctenophores and tunicates, to diversify monitoring
methods, and to include underrepresented marine regions in the
Southern Hemisphere.

4.2 Further dedicated and sustained
monitoring of GZ is required to support
research and management

Despite their important ecological and socio-economic roles
in marine ecosystems, monitoring programs focused on GZ are

scarce. Currently, there are no coordinated European efforts to
monitor GZ, unlike the ICES fishery surveys (e.g., coordinated
trawl and beam trawl surveys), or GZ defined monitoring
requirements under other EU Directives (MSFD, CFP). Many GZ
surveys are dependent on researchers “piggy backing” onboard
during fisheries surveys to record “jellyfish bycatch”. Certain GZ
surveys rely on temporary national or EU funding (such as
INTERREG or H2020), which limits their usefulness for assessing
changes in GZ populations and distribution. Other monitoring
efforts and funding are focused on harmful or noxious GZ species
(e.g., P. noctiluca research in the Mediterranean in the 1980s)
and dry up once abundances return to normal (Boero, 2013). As
such, the abundance and distribution of GZ tends to be monitored
haphazardly, using an uncoordinated approach.

Often, the implementation of new marine monitoring
programs is hindered by their high costs. However, when
considering the total costs of environmental management, from
monitoring to management programs, monitoring costs constitute
only a small proportion that becomes even smaller when factoring
in the benefits achieved through efficient management (Nygård
et al., 2016). Therefore, one of the most salient recommendations
from this exercise is that the GZ research community across Europe
needs to work together to design a European-wide monitoring
framework supported by European bodies, funding mechanisms
and institutes.

In this context, the coordination and GZ-dedicated extensions
of existing monitoring programs supporting the Fisheries Data
Policy, the Bathing Water Directive, the Water Framework
Directive, the Integrated Coastal Zone Management (ICZM) and
other monitoring facilities like long term ecological research
(LTER) sites or the monitoring of pipelines and aquaculture sites,
could help to enhance the coverage and resolution of data and
rationalize costs. However, it is important not to forget that to
accurately assess GZ, dedicated surveys would require adapted
spatial and temporal extensions and resolutions, and adequate
sampling gears and analysis methods.
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FIGURE 5

Gelatinous zooplankton and polyp (benthic stage of Scyphozoa and Cubozoa) monitoring studies sorted by target taxa based on the methodology

used, published between 2008–2023.

4.3 Understanding the onset of GZ
outbreaks and the role of the polyp phase

The limited understanding of the interplay between the
diversity of pressures that can lead to different GZ species
outbreaks, and their complex interaction mechanisms (i.e.,
additive, synergistic, or antagonistic), highlights the need for
further research to comprehend the connections between human-
induced stressors with GZ outbreaks.

This entails studying a range of different GZ functional groups,
conducting experiments, considering ecosystem dynamics and
employing multidisciplinary approaches to detect and quantify
factors driving GZ outbreaks: traditional net-based methods
and complementary technologies such as automated underwater
imaging systems, artificial intelligence-based species detection and
calibrated multibeam acoustics can be useful for species detection,
abundance estimations, and inference of their interactions and
spatial heterogeneity. Molecular techniques can assist in the early
detection of potential NIS and problematic species. Remote sensing
and modeling activities can cover large spatial scales and upscale
local results to a European and global perspective. Standardized
global monitoring through citizen science can enhance the
availability of in-situ observations and increase public awareness of
GZ-related issues.

Furthermore, the study of cnidarians’ early phases, such
as polyps and the first pelagic stages (i.e., ephyrae), is crucial
to understand their recruitment and populations dynamics
(Kingsford et al., 2000). Many factors determine the timing
and magnitude of scypho- and cubomedusae recruitment, such
as the polyps’ abundance, budding and strobilation rates, and
ephyrae survival rates (Pitt and Kingsford, 2003). However,
polyps are elusive and efforts to monitor these pivotal stages
are still scarce (19 peer-reviewed articles found in the last 16
years). Establishing in-situ sampling programs to identify the
locations, abundance, and spatial extent of polyps, as well as
estimating asexual reproduction, mortality, and growth rates,
both in-situ and in laboratory experiments, would provide

insight into the environmental factors that regulate jellyfish
outbreak dynamics.

4.4 Integration of GZ in the MSFD
framework

Integrating GZ into the MSFD framework involves starting to
define baselines, indicators and thresholds for status, pressures and
impacts of relevant GZ taxa across the different European marine
and coastal areas. In this challenging context, coordination and
complementation of experts, data, methods, and funding are key
to achieving consistency and governance efficiency.

GZ can be considered in different descriptors, especially D1
(biodiversity), D2 (NIS), D4 (food-webs), and D5 (eutrophication).
Defining relevant indicators and clear thresholds will help to
identify when GZ populations exceed natural variability and
become a concern for ecosystem health and marine ecosystem
services. Moreover, differentiating between anthropogenic
and natural factors driving outbreaks is crucial for ensuring
that interventions address the manageable causes of GZ
outbreaks. Due to the unpredictable and dynamic nature
of GZ outbreaks and the current knowledge limitations,
it is recommended to implement adaptive management
through reassessment of the effectiveness of monitoring and
management measures.

4.5 Public awareness, education and
engagement

By informing the public about GZ species, risks, and
safety/mitigating measures, safer behaviors and proactive
preparations can be encouraged, leading to a more supportive
and informed community. Therefore, ocean literacy and citizen
science can be powerful tools to reduce the impact of GZ outbreaks
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on public health, tourism, fisheries, and marine facilities. These
initiatives not only provide valuable insights for scientists and
managers but also foster a sense of stewardship among the public,
making them active participants in observing, reporting, and
managing GZ populations and marine health.

4.6 GZ and sustainable blue economy

Finally, GZ provides numerous ecosystem services and
potentially new valuable marine resources. However, the
exploitation of certain GZ taxa -especially NIS- should undergo
scientific safety assessments, and address sustainability issues for
massive commercial harvesting. In addition, potential impacts on
pelagic food webs, including outbreaks of other non-target GZ
or harvesting in sensitive ecological areas such as the leatherback
turtle hotspots (Houghton et al., 2006) should be carefully
considered before providing incentives for such fisheries (Gibbons
et al., 2016; Hays et al., 2018).

To develop a successful blue economy, it is essential
to align a healthy and resilient blue natural capital with
secure investment and marine uses. This requires the best
science, data, and technology, especially to address topics where
important fallouts coexist with knowledge gaps, as is the
case for GZ.
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screened for citation identification and relevant articles were added for

screening as “Other sources”).
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modeling.
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Reason 2 = Hydrozoans, Reason 3 = freshwater species, Reason 4 =

publication type.
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monthly observations of lifeform abundances: (B) gelatinous zooplankton

versus fish larvae/eggs, and (C) gelatinous zooplankton vs. crustacean

zooplankton. (D) Interannual decreases of gelatinous zooplankton (Marine

Scotland Science, 2018; Wells et al., 2022).
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Counts of reports of monitoring methods used for gelatinous zooplankton

assessment and polyp (benthic stage of Scyphozoa and Cubozoa)

monitoring by year, published between 2008–2023 (∗articles published in

2023 are not representative as the literature research was performed until

June of that year).
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Seas (including Bay of Biscay and the Iberian Coast), MED, Mediterranean

Sea.
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