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Environmental and climate changes have placed increasing pressure on

the resilience of marine ecosystems. In addition to these transformations,

coastal environments are also a�ected by anthropogenic stressors, such as

metal contamination. Bivalves play a crucial ecological role in marine and

estuarine ecosystems. This study aimed to evaluate the e�ects of CO2-induced

acidification, warming, and mixed metals contamination on the mangrove

mussel Mytella charruana. We evaluated DNA damage (strand breaks), lipid

peroxidation (LPO) levels, and reduced glutathione (GSH) content, as well as

the enzymatic activities of glutathione S-transferase (GST) and glutathione

peroxidase (GPx) in the gills and digestive glands. Additionally, neurotoxicity

was assessed in muscle tissues through acetylcholinesterase (AChE) activity.

Laboratory experiments were conducted using sediments spiked with metals

(Cu, Pb, Zn, and Hg), alongside a control group (non-spiked sediments),

combining with three pH levels (7.5, 7.1, and 6.7) and two temperatures (25

and 27◦C). Five mussels per treatment (four replicates) were exposed for 96h.

Two pools of two organisms each were separated per replicate (n = 8) and their

gills, digestive glands, and muscles were dissected for biochemical biomarkers

analyses. Temperature increase and metal contamination were the primary

factors modulating antioxidant responses in the gills and digestive glands, as

well as AChE activity in the muscle. However, when combined with CO2-

induced acidification, these stressors also a�ected DNA integrity and LPO.

Acidification alone showed no e�ect for any biomarker analyzed. Higher IBR

values indicated e�ects for combined metal exposure, even at concentrations

below individual safety levels. Here, we provide insights from a short-term

experiment on the complex interactions between predicted scenarios, in

which climate change stressors influenced estuarine mussel responses when

associated with a mixture of metals in sediments. These findings contribute to
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understanding of organismal responses in complex scenarios of contamination

and climate change, particularly in estuarine environments.

KEYWORDS

biomarkers, ocean acidification, ocean warming, antioxidants defenses, contamination,

ecotoxicology

1 Introduction

Since the pre-industrial period, atmospheric CO2

concentrations have increased from 277 to 414 ppm in 2021,
and they have continued to increase by approximately 2.4 ppm
per year over the last decade, reaching 1.070 ppm until the end of
the century (Friedlingstein et al., 2020; IPCC Intergovernmental
Panel on Climate Change, 2022). In addition, current surface
seawater temperatures have been approximately 1.0 ◦C warmer
since the beginning of the industrial period (Lough et al., 2018;
Garcia-Soto et al., 2021; IPCC Intergovernmental Panel on Climate
Change, 2022). The global ocean absorbs approximately one third
of atmospheric CO2 and heat (Caldeira and Wickett, 2003; Levitus
et al., 2005) leading to an expected reduction of surface ocean
water pHs of an average of 0.3–0.4 units and temperature elevation
by 2.6–4.8◦C by 2100 (IPCC Intergovernmental Panel on Climate
Change, 2014).

Ocean acidification and warming are critical threats to coastal
ecosystems (Boyd et al., 2018; Lu et al., 2018; Bahamon et al.,
2020; Cotovicz Júnior et al., 2022). Furthermore, sediments from
densely urbanized and industrialized coastal areas are frequently
contaminated by metals and metalloids such as mercury, arsenic,
cadmium, lead, zinc, and copper (Boyd, 2010; Kim et al., 2016;
Alves et al., 2022). Under such conditions, estuarine and coastal
organisms are commonly exposed to the metals present in
sediments (Trevizani et al., 2023; Pinho et al., 2024). Previous
studies have reported that both low pH/high pCO2 and warming
can affect the solubility and speciation of metals in the environment
(Tsai et al., 2003; Sokolova and Lannig, 2008; Millero et al., 2009;
Banaee et al., 2024) as well as their availability, increasing their
potential toxic effects on biota (Roberts et al., 2013; Halsband et al.,
2024).

Bivalves play a crucial ecological role in marine and estuarine
ecosystems (Byrne and O’halloran, 2001). The benthic mangrove
mussel Mytella charruana (Mollusca: Mytilidae) is commonly
found in tropical estuarine regions (Yuan et al., 2016), adhering
to hard substrates or forming dense aggregates in estuarine mud.
Owing to its suspension-feeding mode, this species is exposed to
sediment contamination through water and food ingestion. Bivalve
molluscs are considered effective bioindicators because of their
tolerance to fluctuations in abiotic factors (Belivermiş et al., 2016,
2023), including elevated pCO2 (Range et al., 2012), and their
capacity to accumulate contaminants throughout their life cycle,
making them widely used in environmental risk assessments of
metal pollution in marine systems (Zhang et al., 2010; Basallote
et al., 2015; Campana et al., 2015; Chandurvelan et al., 2015; Rocha
et al., 2016). Therefore, these organisms can be considered excellent

test organisms for evaluating scenarios of marine acidification and
warming in sediments contaminated by metals.

Although many organisms, such as bivalves, have evolved
to resist daily or seasonal abiotic variations in coastal areas
(Ross et al., 2016; Zhao et al., 2020; Trevisan and Mello, 2024),
complex interactions in multiple potential stressors vary and can
drive changes in physiological, biochemical, and ecological fitness
tolerance thresholds (Pörtner et al., 2004; Noyes et al., 2009;
Maulvault et al., 2017; Alves et al., 2024) as well as their metal
accumulation potential (Lacoue-Labarthe et al., 2011; Belivermiş
et al., 2016; Nardi et al., 2018), increasing their vulnerability.

Specifically, acidification directly affects mollusks by (i)
alterations in shell structure and growth (Michaelidis et al., 2005;
Beniash et al., 2010; Dickinson et al., 2013; Harvey et al., 2013;
Thomsen et al., 2013; Sokolova et al., 2016), (ii) changes in the
opening and closing of valves (Clements et al., 2018), (iii) changes
in metabolic processes (heat tolerance and growth rates) (Duarte
et al., 2014; Nikinmaa and Anttila, 2015; Wang et al., 2015; Freitas
et al., 2017; Cao et al., 2022), and (iv) induction of oxidative
stress (Matozzo et al., 2013; Regoli and Giuliani, 2014; Cao et al.,
2018). In addition, temperature increases in coastal surface waters
affect the physiological processes in bivalves, increasing metal
uptake (Belivermiş et al., 2016; Maulvault et al., 2016; Sampaio
et al., 2018), changing their energy balance (Sokolova and Lannig,
2008; Cherkasov et al., 2010), causing oxidative stress (Verlecar
et al., 2007; Mangan et al., 2017), modifying the lysosomal system
(Izagirre et al., 2014; Múgica et al., 2015), and mortality (Lannig
et al., 2006).

The effects of exposure to toxic substances or other stressors
can be assessed by using various biomarkers. These serve
as monitoring tools that provide mechanistic insights into
contaminant concentrations in tissues and their associated toxic
effects and, by detecting sublethal changes, biomarkers offer an
early warning of environmental quality degradation (Depledge
et al., 1995; Monserrat et al., 2007; Hwang et al., 2008).
This study aimed to evaluate the biomarker responses of M.

charruana exposed to multiple stressors simultaneously, such
as CO2-induced acidification, warming, and sediment metal
contamination. Considering the potential effects in multiple
stressor scenarios, we hypothesized that the acidification and
warming of coastal waters caused by the increase in atmospheric
CO2 can modify the toxicity of metals due to changes in
the physiology of the mussel M. charruana. These results
will allow for a better understanding of the mechanisms
underlying organismal resilience, prediction of ecological impacts,
and improvement of environmental risk assessments in a
changing ocean.
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2 Materials and methods

2.1 Experimental design

Biomarker responses of the gills, digestive glands, and
muscles of M. charruana were assessed using a full factorial
experimental design with three fixed factors (and their
interactions): (i) CO2-induced acidification, (ii) warming,
and (iii) sediment contamination by metals (Cu, Pb, Zn, and
Hg). The effects of changes in pH/pCO2 were tested at three
levels: pH 7.5 (control pH/pCO2 – without CO2 injection),
pH 7.1 (medium pH/medium pCO2), and pH 6.7 (low pH/low
pCO2). This range of tested pH/pCO2 levels was established
based on predictions of oceanic pH made using Representative
Concentration Pathways (RCP) 8.5 (Bindoff et al., 2022) and
the Coupled Model Intercomparison Project (CMIP6) of the
World Climate Research Program (IPCC Intergovernmental
Panel on Climate Change, 2021). Two temperatures were
tested: 25◦C (control temperature) and 27◦C (increased
temperature), based on the projections range for the end of
the century by Intergovernmental Panel on Climate Change on
the Representative Concentration Pathways (RCP) 4.5 model
(IPCC Intergovernmental Panel on Climate Change, 2014). The
metal contamination in sediment was assessed using sediment
spiked with Cu, Pb, Zn, and Hg, metals commonly reported in
estuarine sediments contaminated, and harmful to organisms
(Alves et al., 2022; Zhang et al., 2024). According to a pilot
assay, the concentrations of metals were established in two levels:
control (cntrl) (no metal-spiked sediment) and a mild metal
contamination, corresponding to 75% of the Interim Sediment
Quality Guidelines (ISQG) and Probable Effects Level (PEL)
[Canadian Council of Ministers of the Environment (CCME),
2002], simulating a reality commonly found in contaminated
coastal regions.

Specimens of M. charruana were obtained from fishermen’s
farms in mangrove areas along the banks of the Bertioga
Channel (Bertioga, northern coast of São Paulo State, Brazil,
within a marine protected area), where this species is abundant.
They were transported to the laboratory in thermal boxes
for acclimatization. Before the experiments, the organisms
underwent a 7-day acclimation period under controlled
laboratory conditions. They were divided into three distinct
groups of 60 individuals of homogeneous size and kept in 45 L
aquariums containing natural seawater diluted with freshwater
(reaching salinity 24), without sediments, to simulate estuarine
condition (hereafter referred as experimental water), under
constant aeration. Water pH and temperature were gradually
adjusted over the 7-day period (±0.4 unit/day) to reach
the target experimental conditions, minimizing osmotic and
thermal stress on the organisms. During the acclimatization
period, the organisms were fed every 48 h with a commercial
suspension designed for filter-feeding organisms (Phyto-Plus
B

R©
), containing a mixture of microalgae species (2–23µm), at

a dosage of 50 µL per individual. Prior to the experiment, eight
organisms were randomly collected from each acclimatization
aquarium, and their gills, digestive gland, and muscle tissues
were removed for analysis to determine the baseline physiological
conditions (T0).

The bioassays were conducted in a hermetic box system
adapted from Altafim et al. (2023). Each box contained glass bottles
(3 L) with 500mL of sediment and 2 L of filtered experimental water
(salinity 24), with four replicates per treatment, each containing 5
individuals (n = 5). The organisms were fed once after 2 days of
exposure, and the experiment lasted for 4 days. Physicochemical
parameters (i.e., pH, dissolved oxygen (DO), and salinity) were
measured at the beginning and at the end of the bioassay. At the end
of exposure, the organisms were kept on ice, and the gills, digestive
glands, and muscle tissues were collected for biomarker analyses,
in pools of two organisms per replicate (n = 8 per experimental
treatment). After the dissection of the organisms, the soft tissues
were immediately stored in an ultra-freezer (−80◦C).

2.2 Sediment collection, characterization
and spiking

Sediment samples were collected from a reference area, in
a mangrove portion located at the mouth of the Itaguaré River
(23.763◦S, 45.773◦W), also in the municipality of Bertioga. This
location is legally protected as the Restinga of Bertioga State Park
(Decree N◦. 53.526/2008). In the laboratory, sediment was stored
at a constant temperature of 4◦C and protected from light until
the start of the experiment. The sediment was characterized for
grain size fractions through dry sieving and classified based on the
Wentworth (1922) scale. The CaCO3 content was quantified by
digestion using hydrochloric acid (HCL 5N) (Hirota and Szyper,
1975), and the organic matter (OM) content was quantified using
the loss by ignition method (Luczak et al., 1997).

For the sediment spiking process, the moisture content of the
sediment was determined by oven-drying (for 4 d at 60 ◦C). The
moisture was restored by adding distilled water and the spiked
sediment was carried out using stock solutions of each metal of
interest, prepared by the dissolution of inorganic salts of copper
sulfate (CuSO4), lead chloride (PbCl2), zinc sulfate (ZnSO4), and
mercuric chloride (HgCl2) (Merck

R©
, reagent grade) in distilled

water, following the protocols established by the United States
Environmental Protection Agency (United States Environmental
Protection Agency (USEPA), 2001) and the American Society for
Testing and Materials (American Society for Testing Materials
(ASTM), 2014). Quantities of each metal stock solution were
spiked to an amount of the sediment, in order to reach nominal
concentrations, in dry weight, of 14.03mg kg−1 of Cu, 22.65mg
kg−1 of Pb, 93.0mg kg−1 of Zn, and 0.1mg kg−1 of Hg. This
method has been described in detail by Alves et al. (2024).
An amount of non-spiked sediment was subjected to the same
spiking process as a negative contamination control, in which only
distilled water was added to the same volume of the metal stock
solution used.

2.3 CO2 Injection system, pH, and
temperature control

The CO2-induced acidification was controlled by an automated
series of solenoid valves connected to an Apex Fusion R© software
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that manipulated the CO2 injection. The method employed was
CO2 indirect introduction, which manipulated the pCO2 in the
atmosphere of semi-closed boxes (Altafim et al., 2023; Alves et al.,
2024). To achieve this, there is a direct introduction of CO2

into a beaker containing distilled water, allowing CO2 to disperse
into the atmosphere inside the box, controlling the decrease and
stabilization of pH in each experimental unit of each treatment.
The pH of each experimental treatment box was continuously
monitored throughout the exposure period using pH sensors
connected to the Apex system, as when the pH increased or
decreased the established value by 0.05, the system automatically
released or opened CO2 injection to restore the set pH.

The temperature at 25 ± 1◦C was maintained by air
conditioning the room, while the temperature of 27 ± 1◦C
was kept stable by aquarium thermostats within the respective
treatment boxes during the entire exposure period. Additionally,
before and during the experiment period, the temperature in
each box was calibrated and constantly monitored using analog
glass thermometers.

2.4 Carbonate system speciation analysis

Total alkalinity (TA) was measured in each replicate in
all treatments, after the exposure time, through titration with
HCl (0.1M) (Sigma-Aldrich analytical grade) using an automatic
titrator (Hanna HI901C) coupled to a meter (Hanna Instruments,
ref. HI1131) for pH measurement. Then, data from pH (total pH
scale/mol kg−1 H2O), TA, measured salinity and temperature were
used to estimate the parameters of the carbonate system speciation
(partial pressure of CO2 (pCO2), inorganic carbon (TIC), HCO−3,
CO−2

3 , Ω aragonite and Ω calcite saturation states), using the
CO2SYS program (Pierrot et al., 2006), employing the dissociation
constants of carbonic acid in seawater (Mehrbach et al., 1973;
Dickson and Millero, 1987; Dickson, 1990).

2.5 Sediment metal analysis

The concentrations of metals (Cu, Pb, Zn, and Hg) in
the sediments from each contamination treatment (control and
metal contamination) were measured before the beginning of
the experiments (T0) and at the end of exposure (T1) from
each treatment. All laboratory instruments and non-volumetric
glassware were decontaminated with detergent, ultrapure water,
and 5% HNO3.

The sediment samples were lyophilized and subjected to partial
acid digestion following a modification of the USEPA method
3050B (United States Environmental Protection Agency (USEPA),
1996). The digestion methods for Cu, Pb, and Zn were detailed
by Altafim et al. (2023) and the acid extracts were quantified
using Inductively Coupled Plasma Optical Emission spectroscopy
(ICP-OES) (Varian equipment, model 710ES), following USEPA
6010C method (United States Environmental Protection Agency
(USEPA), 2007). To control method accuracy and precision,
certified reference material (CRM) was analyzed using the same
analytical procedure for the respective analyses. The certified

reference material SS-2 (EnviroMAT Contaminated Soil, SCP
Science) (n = 3) was used for Cu, Pb, and Zn quantification,
with recoveries of 87–97% (Supplementary Table 1). The analytical
limits of quantification (LOQ) were calculated for each element
of interest for an uncertainty of 20% (m = 1.0 g; v = 50mL)
(Supplementary Table 2).

For the determination of mercury (Hg) in sediments, the
Direct Mercury Analyzer DMA-80 Tri Cell (Milestone, Italy) was
used. This method eliminates the need of sample preparation,
enabling direct analysis through a simplified process involving
drying, decomposition, amalgamation, and detection by atomic
absorption spectrometry (AAS). The main advantage lies in its
efficiency, bypassing time-consuming steps. The samples were
weighed (50mg) directly into nickel boats and subjected to a
heating cycle: drying at 200 ◦C for 60 seconds, decomposition at
650◦C for 120 s and amalgamation for 12 s. Mercury vapor was
transported by 99.9% pure oxygen (White Martins, Brazil) at 4 kg
cm1, with detection based on absorbance at 253.7 nm. Each analysis
was completed in approximately 5min. Method accuracy was
validated using CRM MESS-3 and DORM-4 (National Research
Council of Canada, NRC – CNRC) (n = 3), yielding results of
0.088 ± 0.004 µ g−1 (MESS-3) and 0.457 ± 0.04 µg g−1 (DORM-
4), consistent with certified values of 0.091 ± 0.009 µg g−1 and
0.412 ± 0.036 µg g−1, with recovery result of 97 and 111%,
respectively (Supplementary Table 1). Calibration curves (0.01–100
ng Hg) showed determination coefficients > 0.999, with detection
and quantification limits of 4.0 pg and 12.0 pg, calculated as
(3σ/S) and (10σ/S), where σ is the standard deviation of 10 blank
measurements and S is the calibration curve slope.

2.6 Biomarkers responses

Aliquots of the samples of gills and digestive glands of
mussels were separated for quantification of levels of non-
protein thiols (reduced glutathione, GSH), and DNA damage
(strand-breaks). In addition, glutathione-S-transferase (GST) and
glutathione peroxidase (GPx) enzymatic activities were analyzed.
The levels of LPO in gills were also quantified. Adductor muscle
tissues were separated for acetylcholinesterase (AChE) enzymatic
activity analysis. The tissues were homogenized (in a pool of 2
organisms) to 5% w/v in a Tris-HCl buffer in pH 7.6 in Tris-
HCl buffer (50mM Tris; 1mM EDTA; 1mM DTT; 50M Sucrose;
KCl a 150mM, 1mM PMSF, pH 7.6) in a cell disruptor (Loccus
L-beader 24). Aliquots of gill and digestive gland homogenates
were separated for total protein quantification, DNA damage, and
LPO (150 µl). Then, the remained samples were centrifuged for
20min at 12,000G in 4◦C and the supernatant was separated for
analysis of GST and GPx enzymatic activities, and GSH levels.
In the case of muscle tissue, the supernatant fraction was used
to determine AChE. Total protein contents were quantified in
the homogenized and centrifuged fractions using the dye-binding
method by Bradford (1976) using bovine serum albumin protein
(BSA) as standard. All analyzes were performed on a microplate
reader (Biotek-Synergy TM HT).

For DNA damage analysis, the alkaline precipitation method
described by Olive (1988) was used, with DNA quantification
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performed through fluorescence (Gagné and Blaise, 1995). DNA
damage was expressed as µg of DNA mg−1 of protein. Oxidative
stress-induced changes in LPO levels were assessed indirectly
using the thiobarbituric acid reactive substances (TBARs) method,
following Wills (1987), with results expressed as µM TBARs mg−1

of total protein. GSH levels were determined using the method
of Sedlak and Lindsay (1968), measured spectrophotometrically at
415 nm, and expressed as nmol min−1 mg−1 of total protein. GST
enzymatic activity was determined by incubating supernatants with
42mM 1-chloro-2,4-dinitrobenzene (CDNB), 1mM glutathione,
and 80mM K2HPO4 (pH 6.5). The reaction was monitored
spectrophotometrically at 340 nm for 5min, with measurements
taken at 30-s intervals (Keen et al., 1976). GST enzymatic activity
was expressed as nmol GSH-CDNB min−1 mg−1 of protein. GPx
enzymatic activity was assessed following the method of Sies et al.
(1979), using a reaction mixture containing 1mM hydroperoxide
in sodium phosphate buffer (pH 7.0), with NADPH added as
a cofactor. Absorbance was measured spectrophotometrically at
340 nm, and GPx enzymatic activity was expressed as nmol min−1

mg−1 of total protein. Neurotoxicity effects were assessed by
measuring AChE activity following the method of Ellman et al.
(1961). A reaction mixture containing 10 mmol L−1 DTNB and
0.075mol L−1 acetylcholine iodide in potassium phosphate buffer
(pH 7.6) was added to the samples. Absorbance was immediately
recorded at 405 nm for 2min, with measurements taken at 30-s
intervals. AChE activity was expressed as nmol NTB min1 mg1

of protein.

2.7 Data treatment

Mean sediment quality guideline quotients (mSQGQs) were
calculated for each experimental treatment based on the Probable
Effects Level (PEL) [Canadian Council of Ministers of the
Environment (CCME), 2002] to estimate the relative impact
of sediment metal contamination in sediments on biomarker
responses in Mytella charruana. The mSQGQ was determined by
normalizing the concentration of each metal in the sediments to
its respective sediment quality guideline (SQG) and then averaging
the individual metal quotients into a single value (Long, 2006). The
means Probable Effects Level quotient (mPELq) was determined
according to Equation 1:

mPELq = Σ(Ci/PELi)n−1 (1)

where “Ci” represents the investigated content of metal “i”,
“PELi” represents the PEL of metal “i” and n represents the number
of metal species. Categories of mPELq was classified according to
ecotoxicological risk with 10, 25, 50, and 75% probability of toxicity,
respectively: low risk level (mPELq≤ 0.1); low to medium risk level
(0.11 < mPELq < 1.5); medium to high risk level (1.51 < mPELq
< 2.3), and high ecotoxicological risk level (mPELq > 2.3) (Long
and MacDonald, 1998).

Biological data were analyzed by first assessing potential
laboratory effects of acclimation to pH/pCO2 and warming on
the general health condition of the tested organisms. This was
done by comparing biomarker data before (T0) and after the
bioassays (control treatment for each pH and temperature). Then

the effects of CO2-induced acidification, temperature, and metal
contamination on biomarker responses were assessed. For both
comparisons, a General Linear Model (GLM) analysis with an
identity link function were built using the statistical software
(Jamovi Project, 2022) (version 2.3) Gallucci (2019) for each
biomarker analyzed. A confidence level of p ≤ 0.05 and the
distribution was determined according to the best fit of the model
to the data distribution, which are the lowest Akaike Information
Criterion (AIC) (Quinn and Keough, 2002) and best normality of
residuals were adopted for all statistical analyses. Tukey’s post hoc
test was performed, when necessary, to detect significant differences
between levels.

2.7.1 Integrative approach
Mean values of each biomarker as variables was transformed

by Z-score. After, PCA was performed using the software PAST
(version 5.0.2) (Hammer et al., 2001), and values greater than ≥

0.4 were considered relevant associations.
A more general view of the biomarker responses was obtained

bymeans of the calculation of the “Integrated Biomarker Response”
– version 2 individual (IBRv2i) for each treatment, following the
methodology proposed by Sanchez et al. (2013) and adapted by
Mattos et al. (2024). This IBR approach compares the average
of biomarker responses of mussels exposed to stressors (and
their interactions) with the average of those of animals under
control conditions (at normal or basal levels of each biomarker),
maintaining biomarker data for each individual in order to
enabling the use of statistical analysis. For this study, the respective
control groups of each pH at each temperature were used as
reference. The index was calculated as: (i) log transformation of
the data; (ii) Z-score; (iii) subtraction of the mean Z-score of
the control or reference group from the Z-score of all groups;
(iv) modulus of all Z-scores to obtain absolute values; (v) sum
of the absolute Z-scores of the biomarkers of each experimental
group with the weight attributed to each biomarker according to
its systemic importance (GSH, GST, and GPx = 1; DNA and LPO
= 2) to obtain the IBRv2i. In general, lower values of the IBR index
are indicative of a better health status (or greater animal fitness),
and higher scores may indicate a worsening of the physiological
condition of the organisms. IBRv2i of the gills and digestive gland
were compared to the control using the same GLM approach
described to detect significant differences between levels.

3 Results

3.1 Physicochemical analysis of sediment

The grain size analysis demonstrated a predominance of very
fine sands (54.74%), followed by fine sands (41.38%), with 0.87%
silt and clay. The sediment had CaCO3 levels of 2.23% and OM
of 1.90%.

Sediment metal spiking was effective, with sediment
concentrations at the beginning of exposure approaching the
pre-established nominal concentrations set for this study.
The concentrations of Cu, Pb, Zn, and Hg in sediment are
in Table 1. The final exposure period (T1) concentrations of
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trace metals added to the sediment did not show substantial
differences among pH and temperature levels comparing with
the beginning (T0). In addition, the mPELq values of metals
spiked sediment in the control and metal contamination
treatments at 25 and 27◦C exhibited low to medium
ecotoxicological risk classification at the beginning and end of the
experiment (Table 1).

3.2 Carbonate chemistry speciation

In general, the physical-chemical parameters of the seawater
measured at the beginning and the end of the bioassay were
maintained within acceptable limits for the experiment and low
variations regarding at T0. Salinity levels were maintained around
25 ± 1, while dissolved oxygen concentrations remained 5.95 ±

0.68mg L−1, and non-ionized ammonia were 0.02 ± 0.01mg L−1.
The pH and temperature exhibited minimal variation within the
same treatment but were well different between the tested levels,
with 7.46 ± 0.03 for the control, 7.14 ± 0.04 for the medium pH
and 6.8 ± 0.03 to low pH, and 24.42 ± 0.63 ◦C / 27.09 ± 0.42 ◦C,
respectively (Supplementary Table 3).

The carbonate system parameters analyzed did not vary
regarding the increase in temperature, validating themanipulations
by CO2 injection (Table 2). As expected, the CO2-induced
acidification treatments (pH 7.1 and 6.7) had increasing in total
alkalinity, total inorganic carbon, pCO2, and CO2 concentrations.
An inverse relationship with TIC, �Ca and �Ar saturations and
carbonate concentrations were reduced. These analyses confirmed
the reduction of pH by manipulations with CO2 injection and are
in line with other studies (Ferraz et al., 2022; Altafim et al., 2023;
Alves et al., 2024; Portugal et al., 2025).

3.3 Biomarkers responses

3.3.1 Interactive e�ects of pH, temperature, and
contamination on gills tissue

The results of GLM analysis of biomarker responses on
gills tissue are presented in Figure 1, and QQ Plot residuals are
detailed in Supplementary Figure 1. In the comparison between
the condition after 7 days of organisms acclimatization to
the laboratory conditions (T0) with their respective control
treatments for each pH and temperature, there was a significant
difference only at pH 6.7 at the highest temperature for
DNA damage (p < 0.001), and for GSH at pH 7.5 (p
< 0.001) and 6.7 (p = 0.004) at 25◦C, which indicates
low or no “laboratory effect” on biomarkers in the gills of
M. charruana.

For DNA damage in gills, GLM analysis showed that the
variation in pH/pCO2 did not show a significant individual effect,
but only when combined with contamination (AIC = 1,245.23, F
= 4.52, df = 2, p = 0.014), causing a decrease of DNA damage in
pH 6.7, compared with pH 7.5, at 25 ◦C (ptukey = 0.007). Also,
there was an increase in DNA damage due to the increase in
temperature in the control treatments (no metal contamination)
(ptukey = 0.015). Interactions among the three factors were found

for levels of LPO (AIC = 638.23, F = 12.50, df = 2, p < 0.001),
with reduced effects on metal-contaminated treatments in pHs 7.5
and 7.1 at the control temperature (25◦C) compared with their
respective controls (ptukey = 0.049 and ptukey = 0.014, respectively),
however, high pCO2 decreasing LPO levels in control treatment
(ptukey = 0.020) and increased in metal contamination (ptukey =

0.002). In addition, temperature induced LPO levels in pH control
(7.5) at metal contamination while inhibiting them in control at
pH 7.1 compared to the same treatments in temperature control
(ptukey = 0.005 and 0.004, respectively). Regarding GSH levels,
significant difference in the interaction between the three factors
were also observed (AIC = 964.77, F = 3.13, df = 2, p = 0.049),
with an increase only in the pH 7.5 with metal exposure at 27◦C
when comparing on all pHs at 25◦C (ptukey = 0.043; 0.005; 0.007),
but when combining low pH (6.7) and warming, the GSH levels
were inhibited in metal-contaminated treatment (ptukey = 0.048).
As for GST enzymatic activity, significant difference was found
only among the temperatures tested (AIC = 973.46, F = 23.14,
df = 1, p <0.001), which increased in warming scenario (ptukey
< 0.001). GPx enzymatic activity showed interaction between
temperature and metal contamination (AIC = 1,296.88, F = 3.38,
df = 1, p = 0.05), with an increase in GPx activity related with
metal contamination in control temperature (25◦C) (ptukey <

0.001), but decrease associated temperature increase (27◦C) (ptukey
= 0.014).

3.3.2 Interactive e�ects of pH, temperature, and
contamination on digestive gland tissue

The results of GLM analysis of biomarker responses on
digestive gland tissue of M. charruana are presented in Figure 2,
and QQ Plot residuals are detailed in Supplementary Figure 2. In
the comparison between the acclimatization period (T0) and the
respective control treatments, there was a significant difference
only in the pH 7.5 at 27◦C for GPX enzymatic activity (p =

0.017). On the exposure comparisons between treatments, DNA
damage exhibited a slight increase when the temperature increased
(AIC = 598.71, F = 4.48, df = 1, p = 0.043). For GSH, the
interaction between temperature and metal contamination was
significant (AIC = 309.71, F = 13.64, df = 1, p < 0.001), showing
the induction of GSH after metal exposure at 27◦C, compared to
25◦C (ptukey < 0.001), and among control andmetal contamination
treatment at the same temperature (ptukey = 0.002). Effects related
with sediment contamination by metal were observed (AIC =

500.27, F = 5.26, df = 1, p = 0.029), with decreased GST
enzymatic activity in metal-contaminated treatments compared
to control in 25◦C (ptukey = 0.013). As for GPx enzymatic
activity, significant interactions between temperature and metal
contamination were observed (AIC = 684.08, F = 9.77, df =

1, p = 0.004), with a decrease in metal-contaminated treatments
at 25◦C when compared with controls (no-spiked sediment)
(ptukey = 0.013), and between control treatments (no spiked-metal
sediment) at 25 and 27◦C (ptukey < 0.001). Although not statistically
different, there is a tendency of reduction of the GPx enzymatic
activity associated with metal contamination in the more acidic
treatment (pH 6.7) at 27◦C compared to the same treatment at
control temperature.
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TABLE 1 Analytical concentrations (mg kg−1) and calculated mPELq for the spiked trace metals, other trace elements, and all trace elements in the

tested sediments, at the beginning and end of the tests, in all experimental treatments.

Factors Metals spiked (mg kg−1) mPELqespcific (metals spiked)

T ◦C Time pH Cont. level Cu Pb Zn Hg Mean SD Risk classification

25◦C T0 - Cntrl 1.31 5.81 4.61 0.03 0.15 2.35 Low to Medium

MC 15.71 26.00 96.00 0.12 0.89 36.70 Low to Medium

T1 7.5 Cntrl 0.96 5.00 6.01 0.04 0.14 2.54 Low to Medium

MC 13.00 23.03 79.00 0.12 0.78 30.10 Low to Medium

7.1 Cntrl 0.97 5.82 5.24 0.03 0.14 2.54 Low to Medium

MC 15.73 25.60 89.98 0.12 0.87 34.20 Low to Medium

6.7 Cntrl 0.96 6.00 4.62 0.05 0.17 2.47 Low to Medium

MC 15.06 25.78 84.20 0.15 0.90 31.87 Low to Medium

27◦C T0 - Cntrl 0.92 5.83 5.00 0.04 0.15 2.50 Low to Medium

MC 15.49 25.34 91.26 0.10 0.84 34.79 Low to Medium

T1 7.5 Cntrl 1.40 4.92 5.18 0.05 0.16 2.21 Low to Medium

MC 15.79 26.54 95.04 0.12 0.89 36.26 Low to Medium

7.1 Cntrl 0.90 5.27 5.49 0.05 0.16 2.47 Low to Medium

MC 13.72 19.30 70.12 0.11 0.71 26.51 Low to Medium

6.7 Cntrl 0.88 13.61 5.50 0.05 0.28 5.38 Low to Medium

MC 15.08 24.45 80.70 0.12 0.84 30.48 Low to Medium

3.3.3 Interactive e�ects of pH, temperature, and
contamination on adductor muscle tissue

For the AChE enzymatic activity in muscle tissues, there
were differences between the acclimatization period (T0) and
the respective control treatments only in the lowest pH tested
(6.7) at warm temperature (27◦C) (p < 0.001). There was
a significant difference among the metal contamination and
temperatures (AIC = 952.60, F = 5.16, df = 1, p = 0.02),
showing that the increase in enzyme cholinesterase levels in metal
contaminated exposure at 27◦C treatments compared to 25◦C
(ptukey = 0.037) (Figure 3 and QQ Plot residuals are detailed in
Supplementary Figure 3).

3.3.4 PCA integration of biomarkers responses
The results of the PCA integrated all data from biomarkers

responses for gills, digestive glands, and muscle tissues, and the
factors tested: CO2-induced acidification, warming, and metal
contamination. Three principal components (PCs) explained
74.9% of the original data variance, with coefficients ≥ |0.4|
(Table 3, Figure 4). PC1 explained 30.1% of the data variance
and showed positive associations among GSH and GST activity
in gills, GSH in digestive gland, and AChE activity in muscle.
PC2 explained 24.4% of the data variance, showing a positive
association for GST enzymatic activity in digestive gland and
a negative association for DNA damage and GPx enzymatic
activity in gills. For PC3 there was a strong association
between LPO levels in gills and GPx enzymatic activity in
digestive glands, explaining 20.4% of variances. Overall, the
observed PCA results suggest that temperature and metal

contamination and temperature are the factors most responsible
for the effects. In addition, when the three factors occur
simultaneously, they may influence the effects of antioxidant
enzymes and neurotoxicity.

3.4 IBRv2i index

3.4.1 IBRv2i in gills tissue
The integration of biomarkers responses showed interaction

among temperature and metal contamination (AIC = 424.82, F
= 15.67, df = 1, p = 0.002), increasing the IBRv2i index in the
control treatments at 27◦C compared with 25◦C (ptukey = 0.05).
In addition, highest alteration IBRv2i index was observed between
the control and metal-contaminated treatments at 25◦C (ptukey <

0.001) and 27 ◦C (ptukey = 0.013) (Figure 5A and QQ Plot residuals
are detailed in Supplementary Figure 4A). Therefore, these results
suggest that temperature and metal contamination were the factors
that most influenced the effects in gills ofM. charruana.

3.4.2 IBRv2i in digestive gland tissue
The IBRv2i index for the digestive gland showed a significant

difference in the interaction among pH/pCO2 and metal
contamination (AIC= 195.65, F= 5.78, df = 2, p= 0.002), showed
an increasing in IBRv2i index along with the metal-contaminated
treatment in pH 7.5 compared to the respective control (ptukey <

0.001), followed of a decrease in the lowest pH tested (6.7) in the
metal-contaminated treatment (ptukey = 0.04) (Figure 5B and QQ
Plot residuals are detailed in Supplementary Figure 5B).
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TABLE 2 Values of carbonate system speciation calculated at the end of the experiment with metals in sediment under di�erent warming scenarios. Quantified values of total alkalinity (TA) in water samples and

estimated concentrations of total inorganic carbon (TIC), bicarbonate (HCO−

3 ), carbonate (CO−2
3 ); partial pressure of CO2 (pCO2); saturation state for calcite (�Ca) and aragonite (�Ar).

Factors pH final
(total scale)

TA
(µmol kg−1)

TIC
(µmol kg−1)

pCO2
(µatm)

HCO3
−

(µmol kg−1)
CO−2

3
(µmol

kg−1)

CO2 (µmol

kg−1)

�Ca �Ar

T ◦C pH Cont.
level

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

25 ◦C 7.5 Cntrl 7.53± 0.07 1,175.15± 59.45 1,147.42± 63.56 855.96± 161.64 1,090.65± 60.63 31.37± 4.69 25.40± 4.86 0.82± 0.12 0.52± 0.08

MC 7.45± 0.04 1,212.78± 47.45 1,201.19± 53.52 1062.70± 145.92 1,142.62± 50.30 26.13± 1.35 32.45± 4.27 0.68± 0.04 0.43± 0.02

7.1 Cntrl 7.13± 0.04 1,046.20± 54.26 1,460.86± 63.04 2,619.67± 335.77 1,366.16± 54.94 15.47± 1.39 79.23± 10.21 0.40± 0.04 0.26± 0.02

MC 7.14± 0.08 1,559.40± 121.26 1,619.85± 145.77 2,885.09± 728.69 1,514.61± 125.64 17.61± 1.69 87.62± 22.29 0.46± 0.05 0.29± 0.03

6.7 Cntrl 6.85± 0.05 2,551.03± 70.23 2,804.96± 54.76 9,095.08± 828.13 2,515.60± 65.82 15.29± 2.13 274.07± 25.73 0.40± 0.06 0.25± 0.04

MC 6.82± 0.08 2,538.70± 163.95 2,825.29± 227.73 9,898.17± 2317.77 2,506.81± 166.22 13.75± 2.34 304.73± 70.43 0.36± 0.06 0.23± 0.04

27 ◦C 7.5 Cntrl 7.40± 0.04 1,171.14± 231.30 1,162.02± 238.99 1,170.64± 333.59 1,103.89± 226.47 24.87± 3.21 33.27± 9.47 0.65± 0.08 0.42± 0.05

MC 7.47± 0.03 1,146.42± 88.77 1,126.30± 88.31 965.62± 107.99 1,070.75± 83.92 28.04± 3.23 27.51± 3.08 0.74± 0.09 0.47± 0.05

7.1 Cntrl 7.17± 0.01 1,551.02± 70.23 1,597.09± 73.25 2,675.98± 135.87 1,501.07± 68.72 19.86± 0.93 76.16± 3.97 0.52± 0.02 0.33± 0.02

MC 7.18± 0.03 1,457.57± 32.37 1,498.14± 28.36 2,464.84± 173.01 1,408.88± 28.91 19.12± 1.78 70.14± 4.98 0.50± 0.05 0.32± 0.03

6.7 Cntrl 6.73± 0.07 2,352.40± 51.55 2,665.60± 96.90 1,1517.79± 2145.85 2,326.09± 52.17 11.33± 1.74 328.18± 61.14 0.30± 0.05 0.19± 0.03

MC 6.80± 0.02 2,484.27± 92.24 2,824.86± 83.27 12,543.89± 3,603.42 2,455.90± 86.47 12.30± 3.16 356.66± 103.13 0.32± 0.08 0.21± 0.05
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FIGURE 1

Means and standard deviations (n = 8) of biomarkers responses on gills tissue of Mytella charruana. (A) DNA damage, (B) Lipid peroxidation (LPO),

(C) Reduced glutathione (GSH), (D) Glutathione s-transferase (GST), and (E) Glutathione peroxidase (GPx). Green-toned bars represent treatments at

25◦C, and red-toned bars represent treatments at 27◦C. Light green and light red bars represent treatments at pH 7.5, green and salmon red bars

represent treatments at pH 7.1, and dark green and red bars represent treatments at pH 6.7. C = control treatments (without metal exposure) and

Metal = Cu, Pb, Zn, and Hg sediment contaminated treatments. Capital letters represent significant di�erences between factors (considering the

entire factor group), and lowercase letters represent significant di�erences between treatments (each single bar).

4 Discussion

This study demonstrated that the interaction of warming
and/or CO2-induced acidification with metal-contaminated
sediments, even at concentrations below the threshold effect levels,
could alter the antioxidant defense mechanisms of M. charruana

within a short exposure period. Overall, significant effects of
stressors and their interactions were observed across different
soft tissues. The gills and digestive glands were particularly
influenced by increased temperature and metal contamination in
the sediments. Acidification is recognized as a strong pro-oxidant
stressor in bivalves (Dean, 2010; Munari et al., 2018; Romero-Freire
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FIGURE 2

Means and standard deviations (n = 8) of biomarker responses on digestive gland tissue of Mytella charruana. (A) DNA damage, (B) Reduced

glutathione (GSH), (C) Glutathione s-transferase (GST), and (D) Glutathione peroxidase (GPx). Green-toned bars represent treatments at 25◦C, and

red-toned bars represent treatments at 27◦C. Light green and light red bars represent treatments at pH 7.5, green and salmon red bars represent

treatments at pH 7.1, and dark green and red bars represent treatments at pH 6.7. Cntrl = control treatments (without metal exposure), and Metal =

Cu, Pb, Zn, and Hg sediment contaminated treatments. Capital letters represent significant di�erences between factors (considering the entire factor

group), and lowercase letters represent significant di�erences between treatments (each single bar).

et al., 2024; Sun et al., 2025). In this study, elevated pCO2 primarily
exerted an effect when combined with a temperature increase
and/or metal exposure. In scenarios involving multiple stressors,
including global environmental changes, it is crucial to consider
(eco)toxicological interactions at cellular and physiological levels,
as they may influence the overall toxicity of metals (Ivanina and
Sokolova, 2015; Zeng et al., 2015).

The data showed that warming alone inhibited glutathione
peroxidase (GPx) enzymatic activity in the digestive gland (without
interaction withmetals or increase in pCO2). GPx plays a role in the
defense mechanism by catalyzing hydrogen peroxide degradation,
thus preventing the accumulation of these radicals in cells (Storey,
1996; Reed, 2013). GPx and some isoforms of glutathione S-
transferase (GST) reduce lipid hydroperoxides to alcohol, with
the concomitant oxidation of GSH to GSSG (Regoli and Giuliani,

2014). Higher temperatures are likely to increase the release
of ROS, thus increasing the risk of oxidative damage, thus an
overload of the antioxidant system may occur (Benedetti et al.,
2022). Therefore, defenses related to catalyzing hydrogen peroxide
degradation were likely compromised, which may have caused
the inhibition of GPx activity in this study, probably due to an
increase in metabolic processes (Matoo et al., 2021) and/or damage
in the defense mechanism. In contrast, exposure to increased
temperatures induced GST enzymatic activity in the gills. To
neutralize the effects of increased reactive oxygen species (ROS),
bivalves can increase antioxidant defenses in cells (Jeeva Priya
et al., 2017). GST contributes to detoxification by neutralizing
ROS by conjugating them with glutathione so that they can be
excreted (Stegeman et al., 1992). Therefore, this induction may
indicate the activation of a detoxification mechanism as a result of
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TABLE 3 Results of principal component analysis (PCA) integrating all

data from biomarkers responses for gills (G), digestive gland (DG), and

adductor muscle tissues (AM) of the musselM. charruana exposed to

CO2-induced acidification, warming, and metal contamination

experimental treatments.

Eigenvectors

Variables Component 1 Component 2 Component 3

DNA
damage_G

0.11 −0.48 –0.11

LPO_G 0.09 0.21 0.56

GSH_G 0.45 –0.18 0.34

GST_G 0.47 0.14 –0.30

GPX_G –0.14 −0.48 0.10

DNA
damage_DG

0.30 0.18 –0.28

GSH_DG 0.45 0.19 0.09

GST_DG –0.12 0.56 0.01

GPX_DG –0.22 0.12 0.51

AChE_AM 0.40 –0.16 0.32

Eingenvalues 3.01 2.44 2.04

% of variance 30.11 24.47 20.40

Relevant correlations highlighted in bold (≥ |0.4|).

heat stress, since GST may be one of the most active antioxidant
enzymes in mussels and its increased activity could represent a
compensatory mechanism for the simultaneous inhibition of other
antioxidant enzymes (Vidal-Liñán et al., 2010; Cui et al., 2020),
such as the GPx in this study. These findings are supported by the
literature, which indicates that temperature is a dominant factor
in the physiological regulation of bivalves (Matoo et al., 2021).
Although mussels are generally tolerant to temperature stress,
when optimum physiological ranges are extrapolated and/or when
co-exposure to other stressors occurs, one of the consequences
of heat stress may be increased oxidative stress due to the
imbalance between the production and detoxification of ROS,
such as superoxide, hydroxyl, and hydrogen peroxide, overloading
antioxidant enzymes (Abele et al., 2002; Matoo et al., 2013). In line
with our results, temperature was the main variable that induced
oxidative stress, such as GST in the gills of the mangrove oyster
Crassostrea rhizophorae in estuaries from Brazilian coast (Zanette
et al., 2006).

In addition to the direct effects on organisms, temperature can
also influence susceptibility to metals (Banni et al., 2014; Nardi
et al., 2017; Morosetti et al., 2020), as observed in this study, owing
to changes in chemical speciation. However, this influence may
be limited (Sokolova and Lannig, 2008). The interactions between
heat stress and metal exposure are likely driven by additive or
synergistic mechanisms, as metal uptake is temperature-dependent
owing to increased metabolic demand and membrane permeability
(Quinn, 1988; Foulkes, 2000). Additionally, metals can disrupt
regulatory mechanisms for essential redox elements and affect the
thermal tolerance of organisms (Cosson et al., 2008; Sokolova
and Lannig, 2008). Moreover, metals can specifically contribute

FIGURE 3

Means and standard deviations (n = 8) of biomarker response of

neurotoxicity e�ects (Acetylcholine - AChE) on adductor muscle

tissue of Mytella charruana. Green-toned bars represent treatments

at 25◦C, and red-toned bars represent treatments at 27◦C. Light

green and light red bars represent treatments at pH 7.5, green and

salmon red bars represent treatments at pH 7.1, and dark green and

red bars represent treatments at pH 6.7. Cntrl = control treatments

(without metal exposure), and Metal = Cu, Pb, Zn, and Hg sediment

contaminated treatments. Capital letters represent significant

di�erences between factors.

to the imbalance of antioxidant enzymes by ROS production,
either by donating electrons to stress markers or by catalyzing
Fenton-type reactions, thereby increasing intracellular ROS levels
(Yakovleva et al., 2004; Varotto et al., 2013; Regoli and Giuliani,
2014; Benedetti et al., 2016). This, in turn, can affect the capacity
of antioxidant defenses (Regoli and Principato, 1995), further
exacerbating oxidative stress in the exposed organisms.

In this study, metal exposure in sediment inhibited GPx
and GST enzymatic activities, while increasing GSH levels in
the digestive gland of M. charruana, regardless of acidification
or warming. This response may indicate a shift in the cellular
redox state, which contributes to the elimination of oxyradicals
(Viarengo et al., 1990). Mussels can counteract the initial oxidative
stress by enhancing antioxidant defense mechanisms (Mocan
et al., 2010; Coppola et al., 2018). Consistent with our findings,
previous studies have reported the activation of antioxidant
responses following exposure to various metals (Verlecar et al.,
2007; Coppola et al., 2017; Morais et al., 2023). Analysis of the
antioxidant responses in the gills revealed that metal contamination
significantly increased GPx enzymatic activity under controlled
temperature conditions (25◦C). However, when the temperature
was raised to 27◦C, individuals from the same treatments exhibited
significant inhibition of enzymatic activity, suggesting a reduced
capacity for hydroperoxide degradation in a warmed environment.
These findings are consistent with those of previous studies,
such as Benedetti et al. (2016), who reported that the interaction
between temperature and Cd reduced GPx enzymatic activity
in the digestive gland of the scallop, Adamussium colbecki.
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FIGURE 4

Biplot of PC1 and PC2 based on PCA results, integrating all data from biomarkers responses in gills, digestive glands, and muscle tissues of the

mussel Mytella charruana exposed to CO2-induced acidification, warming, and metal contamination experimental treatments. G, gills; DG, digestive

gland; AM, adductor muscle. Green circles = pH 7.5; Blue triangles = pH 7.1; Red asterisk = pH 6.7.

FIGURE 5

The Integrated Biomarker Response – version 2 individual (IBRv2i) index for (A) gills and (B) the digestive gland tissues of Mytella charruana.

Green-toned bars represent treatments at 25◦C, and red-toned bars represent treatments at 27◦C. Light green and light red bars represent

treatments at pH 7.5, green and salmon red bars represent treatments at pH 7.1, and dark green and red bars represent treatments at pH 6.7. Cntrl =

control treatments (without metal exposure), and Metal = Cu, Pb, Zn, and Hg sediment contaminated treatments. Capital letters represent significant

di�erences between factors (considering the entire treatment group within the same factor), and lowercase letters represent significant di�erences

between treatments.

Similarly, Coppola et al. (2018) observed limited activation of
antioxidant defenses in Mytillus galloprovincialis exposed to Hg at
elevated temperatures (21◦C), attributing this effect to metabolic
downregulation mechanisms. At higher temperatures, organisms
may employ strategies, such as valve closure, to reduce metabolism

and serve as a defense against thermal stress. Adaptive responses
have also been documented in other studies (Anestis et al., 2007;
Sokolova et al., 2012; Morosetti et al., 2020). Valve closure is also a
common response to other types of stress such as metal exposure
(Liao et al., 2005) and low pH (Pynnönen and Huebner, 1995).
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Exposure to CO2-induced acidification affects the gills of
M. charruana only when combined with warming and/or metal
contamination, leading to distinct response patterns. In the case
of GSH levels in the gills, although GSH activity increased in
the presence of metal contamination at elevated temperatures, a
decrease was observed as the pH decreased. This suggests that GSH
is rapidly consumed by binding to metals (or metal-induced ROS)
for excretion at a rate exceeding its replenishment capacity. Such
an imbalance in the antioxidant system could compromise cellular
defense against oxidative stress (Franco et al., 2009; Morosetti et al.,
2020). In bivalves, exposure to high pCO2 levels has been widely
associated with a reduced antioxidant capacity (Wang et al., 2016;
Zhang et al., 2022). However, there is no clear consensus in the
literature, as some studies have reported an increase in GSH levels
under high pCO2 and warming in the gills ofMytilus coruscus (Hu
et al., 2015), and in combination with metal contamination and
warming also in gills of A. colbecki (Benedetti et al., 2016) and
Perna viridis (Verlecar et al., 2007). Conversely, Wang et al. (2016)
found that elevated pCO2 (∼2,000 ppm) inhibited GSH levels in the
digestive gland of Crassostrea gigas, with no observed interaction
with other stressors.

Lipid peroxidation is commonly used as an indicator of cellular
damage to oxidative stress by the interaction of ROs with cell
membrane structures or through the interaction of membranes
with electrophiles (Pisoschi et al., 2021). Increased levels of LPO in
co-exposure to high pCO2 and metal contamination were observed
in the gills. Increased LPO levels were attributed to failures in
detoxification mechanisms to prevent cellular damage in the gills
of the oyster C. gigas exposed to Cu and acidification (pH 7.6)
(Cao et al., 2019). Therefore, it can be attributed that the increase
in LPO levels in the current study may be due to effects on
antioxidant mechanisms, because despite the increase in GST
enzymatic activity in the gills, there was a reduction in GSH levels
and GPx enzymatic activity, which probably contributed to a lower
cellular protective capacity.

Another harmful effect observed in M. charruana in this study
was increased DNA damage in the digestive gland, particularly
at 27◦C. As discussed earlier, climate change stressors, such as
warming and acidification, combined with metal contamination
can elevate ROS production. This leads to the induction or
inhibition of oxidative enzymes, which can have a range of
detrimental effects on the bivalve physiological functions, including
lipid peroxidation and DNA damage (Gagné et al., 2008; Pöhlmann
et al., 2011; Tomanek, 2011; Izagirre et al., 2014; Múgica et al., 2015;
Munari et al., 2018). These findings are consistent with the results
of the present study, in which higher levels of LPO were observed
in the gills of M. charruana exposed to metal at the lowest pH.
An interesting response was observed regarding DNA damage in
gills (at 25 and 27◦C). Under acidification scenarios (high pCO2

levels and metal contamination), a reduction in DNA damage was
observed in organisms exposed to metals. This effect, combined
with the LPO results, suggests that despite the occurrence of
oxidative damage, it does not reflect DNA fragmentation. Although
this response may vary depending on the species and tissue
analyzed. Previous studies have correlated this reduction with the
activation of antioxidant defenses, reporting an increase of DNA
strand breaks in gills and an inhibition in the digestive gland of

M. galloprovincialis at low pH (7.0) (Munari et al., 2018). Metals
can increase DNA strand breaks by producing ROS through the
Fenton reaction (Stohs and Bagchi, 1995), but at the same time, the
oxidative stress induced by them can be alleviated in hypercapnia
(Ivanina et al., 2013). An increase in pCO2 levels may attenuate
the response to oxidative stress caused by metals and warming. The
relief of hypercapnia in oxidative stress is attributed to the reaction
of H+ ions introduced into the mediumwith free radicals produced
by other stressors, such as temperature and metal contamination,
generating water and oxygen, decreasing the availability of ROS,
and alleviating oxidative stress (Sampaio et al., 2017; Santos et al.,
2022).

AChE is commonly found in nervous tissues, such as
neuromuscular junctions (Silman and Sussman, 2005). The current
results showed that the presence of a mixture of metals in a heated
environment resulted in the significant activation of AChE in the
muscle of M. charruana. The available information on the impact
of co-exposure of metals and/or warming upon AChE activity is
very inconsistent, varying according to the species, tissue and metal
chosen. First, a recent study showed that metal ions inhibited
AChE activity in M. charruana in the order Hg2+ > Pb2+ >

Cd2+ > As2+ > Cu2+ > Zn2+ (Santos et al., 2022). AChE activity
in bivalves can be influenced by several abiotic factors, especially
temperature (Dellali et al., 2001). In the gills of Mytilus sp. AChE
showed higher activity at higher temperatures (∼23◦C) (Pfeifer
et al., 2005), whereas Kamel et al. (2012) observed inhibition of
AChE inM. galloprovincialis adults exposed to 18–26◦C. Regarding
co-exposure to stressors simultaneously, the results also vary. Attig
et al. (2014) revealed that the combination of warming (26◦C)
and metal (Ni) caused inhibition of the AChE enzymatic activity
in the digestive gland of M. gallaprovincialis. However, according
Boukadida et al. (2022) thermal stress combined with Cu and Ag
significantly increased the AChE activity in the larvae of the mussel
M. galloprovincialis, corroborating our results. Furthermore, the
effects on AChE activity were not influenced by pCO2 in M.

charruana in the present study. Qu et al. (2022) observed that the
effect of CO2 and Cu onM. galloprovincialis was tissue-dependent,
with a greater effect on the gills.

Exposure of multiple stressors simultaneously can affect the
physiological response and stress tolerance of marine organisms,
especially bivalves (Cherkasov et al., 2007; Nardi et al., 2018;
Maar et al., 2018; Maulvault et al., 2019; Khan et al., 2020;
Chahouri et al., 2023). In this study, the results of biomarkers
in the gills and digestive gland showed a dependence of stressor
interaction and the biomarker analyzed, in which the interaction
of the effects can induce or inhibit oxidative stress in mussels.
For instance, PCA integration showed that temperature modulated
most of the antioxidant enzyme responses in all the tissues
analyzed. In addition, CO2-induced acidification appears to be a
stressor that affects biological responses only in interactions with
temperature and/or metal contamination. In a general context, the
IBR index results reinforce the biological effects of temperature
and/or acidification on metal contamination in both tissues
analyzed. Higher IBR values for contamination by a mixture
of metals can indicate a significant effect (as seen in gills and
digestive glands in the current study), even at concentrations below
individual safety levels. Higher IBR values have been associated to
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contamination exposure (Marigómez et al., 2013; Bertrand et al.,
2018) and climate changes (Maulvault et al., 2018; Marques et al.,
2020). Interactions between warming and metal contamination
may be associated with increased metal absorption through
increased metabolism and membrane permeability, affecting the
organism’s susceptibility to metal contaminants (Lannig et al.,
2008; Sokolova and Lannig, 2008; Banni et al., 2014; Coppola
et al., 2017; Lan et al., 2020). Previous studies showed that co-
exposure to metals and elevated pCO2 can regulate antioxidant
mechanisms and attenuate metal-induced ROS generation, in
which acidification may antagonize the negative physiological
effects of metals on energy metabolism and oxidative stress in
bivalves (Tomanek, 2011; Ivanina et al., 2013). Jin et al. (2021)
revealed that the negative effects of metals on marine organisms
can be alleviated by acidification, leading to a neutral impact
of heavy metals in combination with high pCO2. Antagonistic
relationships between Cu and pCO2 have also been reported
(Marangoni et al., 2019; Marques et al., 2020), and it can also
be explained by a CO2-related increase in H+ ions concentration
in the cellular environment, which is counterbalanced by acid-
base compensation to normalize the intracellular pH. This is
because the presence of excess H+ ions due to acidification
activates antioxidant defenses to combat ROS (Michaelidis et al.,
2007; Tiedke et al., 2013; Heuer and Grosell, 2014; Sampaio
et al., 2017, 2018). On the other hand, when bivalves are
simultaneously exposed to multiple stressors, intracellular ROS
formation can increase, leading to alterations in antioxidant
mechanisms and cellular damage (Regoli andGiuliani, 2014; Freitas
et al., 2019). Figueiredo et al. (2022) were observed high LPO
levels for the mollusk Spisula solida exposed to La metal, warming,
and acidification.

Although studies with multiple stressors are important
to achieve greater comparability to natural conditions,
identifying the factors responsible for this effect is a
complex challenge. As discussed previously, a combination
of factors can result in synergistic or antagonistic
effects depending on the biological response analyzed.
Understanding the effects of co-exposure to multiple
stressors is essential for predicting their impacts in future
scenarios; however, we strongly encourage studies that also
test isolated factors and their effects beyond the interaction
between them.

5 Conclusion

The results of this study suggest that climate change
stressors can influence mussel responses to contamination by a
mixture of metals in sediments, even at levels below the TEL;
therefore, estuarine organisms tend to be more vulnerable to
contamination under climate change scenarios. These findings
revealed that warming and metal contamination were the main
factors modulating antioxidant responses in the gills and digestive
glands, as well as AChE activity in the muscle. When combined
with CO2-induced acidification, these stressors also affect DNA
integrity and LPO levels. Here, we provide insights into a
short-term experiment on the complex interactions between
predicted climate change scenarios and exposure to a mixture

of metals, suggesting that estuarine organisms tend to be more
vulnerable to contamination in climate change scenarios. Similar
studies conducted over longer exposure periods and with more
specific biological analyses are needed to better understand the
mechanisms of the potential effects or adaptations of mussels to
climate change scenarios in co-exposure to metal contamination.
However, this study suggested that the effects of metal pollution
tend to be more severe when combined with ocean warming
and acidification. Understanding the effects of climate change
in future scenarios on estuarine ecosystems and their biota
is essential for guiding decision makers’ actions and public
conservation policies.
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