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Kidney cancer is the 14th most common cancer globally. The 5-year relative survival rate of
kidney cancer at a localized stage is 92.9% and it declines to 17.4% in metastatic stage.
Currently, the most accurate method of its diagnosis is tissue biopsy. However, the
invasive and costly nature of biopsies makes it undesirable in many patients. Therefore,
novel biomarkers for diagnosis and prognosis should be explored. Urinary extracellular
vesicles (uEVs) are small vesicles (50–200 nm) in urine carrying nucleic acids, proteins and
lipids as their cargos. These uEVs’ cargos can provide non-invasive alternative to monitor
kidney health. In this review, we have summarized recent studies investigating potential
use of uEVs’ cargos as biomarkers in kidney cancer for diagnosis, prognosis and
therapeutic intervention.
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INTRODUCTION

Kidney cancer is the 14th most common cancer globally and one of the top ten most common
cancers in males. According to the GLOBOCAN 2020, there are 431,288 new cases and 179,386 new
deaths of kidney cancer. Incidence and mortality rate of kidney cancer are 6.1 and 2.5 in males, and
3.2 and 1.2 in females, respectively [1]. Notably, the 5-year relative survival rate of kidney cancer at
localized stage is 92.9%, and sharply decline to 17.4% inmetastatic stage [2]. Different types of kidney
cancer are classified based on histology and require different targeting therapies. Therefore, novel
biomarkers for diagnosis and prognosis should be investigated to ameliorate the survival rate of
kidney cancer.

Extracellular vesicles (EVs) are the lipid bilayer membrane-bound particles which contain
abundant biological information (nucleic acids, proteins, metabolites and lipids). They have
various sizes including exosomes (50–200 nm), ectosomes (100–1,000 nm) and apoptotic bodies
(50–5,000 nm). Body fluids such as blood, plasma, serum and urine, and cell culture media are the
great resources of EVs [3]. Recent studies have reported that EVs can be taken up from donor cells to
recipient cells and considered as a new tool for intercellular communication [4]. Due to the
membrane of EVs, their cargos are protected from degradation by proteases and other enzymes. This
protection of cargos enables them to be delivered to the recipient cell or organ. Plasma-derived
exosomal protein profiles exhibit unique patterns of cargos that allow us to classify primary tumors.
These unique patterns of plasma-derived EVs may be utilized to predict the tumor origin in patients
[5]. Furthermore, EVs contain biomarkers for predicting future site of metastasis. Therapeutic
approaches can be targeting EVs and inhibiting specific organ uptake, targeting EVs-induced
changes in future site of metastasis, and using EVs as drug delivery system [6]. The emerging
potential role of EVs in diagnosis and therapy with highest sensitivity has led to increased interest in
their investigation.
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EXTRACELLULAR VESICLES (EVS) IN
KIDNEY CANCER

Renal cell carcinoma (RCC) is the most common type of kidney
cancer in adults. It ranks as the third most common urological
cancer following prostate and bladder cancer. RCC starts in the
renal tubules that clean the blood and produce urine. In addition,
RCC in the later stages disseminates to other organs frequently,
i.e., bones, lungs, or brain. Histopathologically, the most common
subtypes of RCC are: clear cell (75%–85%), papillary (10%–15%),
and chromophobe (5%–10%) renal cell carcinoma. Clear cell
renal cell carcinoma (ccRCC) has the lowest survival rate among
these prevalent subtypes [7]. The common metastatic sites of
ccRCC are lungs (54%), bone (18%), lymph nodes (16%) and
liver (6%) [8].

Kidney surgery is the gold intervention to manage localized
kidney cancer. This includes partial nephrectomy that removes
only the cancerous portion of the kidney, while radical
nephrectomy removes the entire kidney [9]. Further treatments
for kidney cancer comprise of radiation therapy, chemotherapy,
targeting medicines, cryoablation, radiofrequency ablation and
microwave ablation [10–12]. Moreover, in an effort to gain
insight into targeting therapy, engineering EVs show potentially
effective vehicles against RCC. TRAIL (TNF-related apoptosis-
inducing ligand) engineered MSC-derived EVs showed a
significant effect on TRAIL resistant renal cancer cell lines, e.g.,
RCC10 and HA7-RCC [13]. Mesenchymal stem cell-derived EVs
have mild effect on renal cancer by enhanced apoptosis and
preventing proliferation [14]. Currently, diagnosis of kidney
cancer is composed of physical exam, urine test, blood test,
intravenous pyelogram, CT scan, ultrasound test and biopsy [9].
RCC raises a big concern due to highmetastatic rate, mortality rate,
increased incidence and therapeutic resistance. Diagnosing solid
tumor becomes challenging in circumstances of unconventional
tumor cell patterns or limited tissue samples [15].

Several pioneer studies have shown the potential of EVs in RCC
diagnosis. Remarkable markers CA9, CD70 and CD147, which are
expressed in ccRCC tumor tissues, are also identified in secreted EVs.
Expression of these proteins in EVs validate their origin from the
primary kidney tissue and can be the reliable biomarkers for less
invasive and tumor-specific diagnostic methods [16]. Cargos of EVs
derived from clear cell RCC, papillary RCC (pRCC) and benign
kidney cell lines have unique signatures, thereby they can be used to
discriminate not only RCC subtype, but also RCC from benign renal
cells. Twenty and thirty-four exosomal proteins are exclusively
enriched in EVs released from ccRCC and pRCC, respectively.
Exosomal mRNA of EPCAM, PRKCZ, PXDN, CXADR, EPS8L1,
HOXA7, LAD1,MYO1D, ROCK2, and SLC35A3 are unique to EVs
of benign renal cell, but not ccRCC [17]. In contrast, an epithelial
tumor cell marker EpCAM heterogeneously expresses in both
normal tubular and ccRCC samples [16]. Moreover, CDH2,
COL7A1, FGFR2, BMPR1B, HDHD3, ICAM1, KIAA1462, and
PFKFB4 mRNA are found only in ccRCC-derived EVs [17].

Besides proteins and mRNAs, non-coding RNAs, e.g.,
microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and
circular RNAs are abundantly enriched in EVs. miR-205 is
significantly downregulated in EVs secreted by ccRCC cell

lines 786-O compared to normal cells HK-2 [18]. Many
studies have disclosed the tumor suppressive role of miR-205
in renal cancer. miR-205 inhibits Src-mediated oncogenic
pathway, negatively regulates EMT transcription factor ZEB2,
suppresses PTEN/AKT pathway, and downregulates VEGFA and
PI3K/Akt/mTOR signaling [19–22].

Examining the miRNA profiling of plasma derived-EVs from
RCC patients exhibits upregulated expression of miR-149-3p and
miR-424-3p, and downregulated miR-92a-1-5p expression. These
miRNAs are potential diagnostic biomarkers for RCC with area
under the curve (AUC), the sensitivity and specificity of hsa-miR-
92a-1-5p (0.8324, 87.5% and 77.3%), hsa-miR-149-3p (0.7188, 75%
and 72.7%) and hsa-miR-424-3p (0.7727, 75% and 81.8%),
respectively [23]. The mechanism how these dysregulated
miRNAs are involved in tumor progression needs to be
investigated.

Moreover, exosomal miR-210 is upregulated in ccRCC
patients compared to healthy control, especially, the high
expression of this miRNA is significantly associated with
patients at T3/T4 tumor stage, Fuhrman grade III/IV and
metastasis [24]. In addition, exosomal miR-210 is significantly
elevated in renal cell lines HK-2, 786-O, and SN12-PM6 upon
hypoxic condition induced by CoCl2. miR-210 has proven to be a
good prognostic biomarker to monitor recurrence after primary
tumor resection as well. Indeed, miR-210-3p, which is
upregulated in RCC tissue, has high level in serum and urine
of RCC patients, and significantly decreases in post-operative
patients’ urine within a month [24–26]. Nakada et al. have
demonstrated that HIF1α protein accumulation induces miR-
210 expression, which subsequently suppresses E2F transcription
factor 3 and causes centrosome amplification and aneuploidy in
ccRCC cell lines [27]. Another study also showed that miR-210
silencing in metastatic RCC cells deregulates the HIF1α protein
[28]. Furthermore, miR-210-5p is a downstream target of
exosomal circular RNA_400068 which is isolated from Caki-1
and Caki-2 cell derived-EVs (ccRCC cell lines) and plays a role as
tumor suppressor in RCC [29].

Long non-coding RNAs such as exosomal lncARSR and
lncRNA IGFL2-AS1 facilitate sunitinib resistance in RCC cells.
Both of these lncRNAs also transform sunitinib-sensitive cells
into resistant cells. Hence, EVs are the effective delivery package
that disseminate drug resistance in advanced RCC. These
lncRNAs might be prognostic indicators and potential
therapeutic approach in chemotherapeutic resistance [30, 31].

URINARY EXTRACELLULAR VESICLES
(UEVS) IN KIDNEY CANCER

Urinary extracellular vesicles (uEVs), which originate from
bladder, prostate and kidney, have gained immense
investigation since uEVs reflect the pathology of the kidney [32,
33]. First and mid-stream urine are collected as an appropriate
resource for EV analysis [34]. uEVs are isolated by several methods
such as ultracentrifugation, chemical precipitation, size exclusion
chromatography and ultrafiltration [35]. Tamm Horfall protein
(THP) is abundant in urine and can trap uEVs. Detergents such as
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TABLE 1 | Studies of urinary extracellular vesicles’ cargos in kidney cancer.

Types of uEVs’ cargos Sample size Profiling
methods

Differential
expression or
modulationa

ROC curve
analysisb

(AUC,
sensitivity,
specificity)

Application References

Nucleic
acids

mRNA GSTA1, CEBPA, PCBD1 33 Kidney
cancer vs.
22 healthy
controls

Microarray, RT-
qPCR

Downregulated N/A Discriminate
patients of low-
Fuhrman-grade
ccRCC from
healthy controls
and non-ccRCC

[34]

ALOX5, RBL2, VEGFA, TLK2 11 Tumor tissue
and tumor
adjacent tissue

nCounter
PanCancer
Progression Panel
(NanoString
Technologies)

Upregulated N/A RCC-specific urine
EV biomarkers

[40]

NME2, AAMP, CAPNS1, VAMP8,
MYL12B

4 ccRCC
patients vs.
6 healthy
controls

Ion Torrent PGM
sequencing
platform (Thermo
Fisher Scientific)

Upregulated N/A Specific for stage I
ccRCC

[41]

miRNA miR-126-3p and miR-449a 81 ccRCC
patients vs.
33 healthy
controls

RT-qPCR Upregulated 0.84,
83.8%, 62.5%

Preferable
discrimination by
combination of
miRNAs

[4]

miR-126, miR-145 46 type
2 diabetic
patients

RT-qPCR Upregulated N/A Induce EMT [42]

miR-204-5p 10Xp11 tRCC
model mice vs.
10 controls

miRCURY LNA
miRNA Custom
PCR Panels
(Exiqon; Qiagen,
Hilden, Germany)

Upregulated N/A Biomarker for early
detection of
Xp11 tRCC

[43]

miR-210-3p 38 ccRCC
patients vs.
10 healthy
controls

RT-qPCR Upregulated N/A Potential non-
invasive biomarker
for diagnosis and
surveillance after
nephrectomy or
treatment
responses

[25]

miR-224-5p 6 RCC patients
vs. 6 healthy
controls

RT-qPCR Upregulated N/A Biomarkers to
predict PD-1/PD-
L1 treatment
responses

[44]

miR-30c-5p 42 ccRCC
patients vs.
30 healthy
donors

Next-generation
sequencing

Downregulated 0.8192,
68.57%,
100%

Specific biomarker
for RCC

[45]

RT-qPCR

Proteins CAIX 29 RCC patients
vs. 23 healthy
controls

Proxeon EasynLC
System (Proxeon
Biosystems)
MaXis hybrid
UHR-QToF
system (Bruker
Daltonics)

Upregulated 0.862 ±
0.054, N/A,
N/A

uEV proteome
involved in the
RCC pathogenesis
or progression

[46]

CP 1, N/A, N/A
MMP9 0.938 ±

0.035, N/A,
N/A

PODXL 1, N/A, N/A
DKK4 0.979 ±

0.025, N/A,
N/A

CD10 Downregulated 0.794 ±
0.083, N/A,
N/A

[46]

DPEP1 0.760 ±
0.083, N/A,
N/A

(Continued on following page)
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Dithiothreitol (DTT)/urea, which are used for entrapping EVs,
enhance yield of uEVs [36, 37].

Transmission electron microscopy (TEM) and nanoparticle
tracking analysis (NTA) are utilized to identify the morphology
and size of EVs. NTA is preferable to determine the size
distribution of EVs than TEM, because EVs usually coagulate
and form a bundle on the coal-copper grid [16]. EV markers are
characterized by immune blotting. CD63 is found to be a
representative exosomal marker for RCC cell lines, e.g., 786-O,
769-P, ACHN, Caki-2, Caki-1 and RCC53 due to its stable
expression rather than other exosomal markers CD9 and
CD81, which have variable expression among RCC cell lines
[16]. Thus, anti-CD63 nanobodies have been applied for an
efficient isolation of EVs from urine with high purification
[38]. CANX is identified as a negative EV marker for RCC cell
lines by spatial proteomics analysis [16, 17]. Indeed, human renal
cancer tissue derived-EVs are enriched in CD63, CD81 and
flotillin-1 [3]. Notably, clinical urine samples also contain
bacteria. These bacteria have been known as a resource of
bacterial EVs and can interfere with the analysis results.
Furthermore, bacterial EVs induce the cytokine secretion of
renal cells [39]. This implies that the consideration about
storage urine samples should be rigorously considered.

In kidney cancer, examining uEVs is a non-invasivemethod than
tissue biopsy and longitudinal monitoring to observe the condition
of the disease (Table 1). The contents of uEVs are also identified in
the tissue of origin [16]. Studies have shown that compared to serum
miRNAs, urinary miRNAs provided a stronger signature for acute
kidney injury by oxalic acid poisoning [48]. Secreted EVs are
comparable in human urine and various immortalized human
kidney cell lines, e.g., podocyte, glomerular endothelial, mesangial
and proximal tubular cells. This suggests that in vitro experiments
may imitate the in vivo condition [49].

Exosomal miRNAs from urine can differentiate RCC from
healthy individuals. uEVs’ miR-126-3p is significantly
plummeted in ccRCC patients compared to healthy controls
(AUC: 0.74; 95% CI, 0.5948–0.8880; p = 0.004) [4]. The low
expression of miR-126, caused by lncRNA DUXAP8, intensely
associated with poor survival rate and metastatic RCC [50]. Tumor
suppressor miR-126 can eradicate RCC progression via either
SLC7A5 and SEPRINE1/mTOR/HIF pathway or EGFL7/ERK/
STAT3 axis [51, 52]. Remarkably, combining urinary miR-126-
3p and miR-449a is feasible for a sensitive distinction between
ccRCC and healthy individuals, namely, AUC: 0.84; 95% CI,
0.7620–0.9151; p < 0.0001, the specificity and sensitivity are
83.8% and 62.5%, respectively. After nephrectomy, these miRNA
levels recover comparable expression of healthy samples [4].

Additionally, lncARSR enhances sunitinib resistance by
competitively binding miR-34 and miR-449 which facilitates
upregulation of AXL/c-MET and the activation of STAT3,
AKT, and ERK signaling in resistant RCC cells [31]. The low
levels of exosomal shuttle RNAs consisting of GSTA1, CEBPA and
PCBD1 in ccRCC patients relative to the healthy controls, are well
defined in ccRCC, while these three genes have high expression in
non ccRCC. One month after nephrectomy in ccRCC patients,
these exosomal shuttle RNA levels are recovered [34].

Kuczler et al. initially carried out a comparative study of
exosomal mRNA in urine and tissue of RCC samples.
Exosomal mRNA transcripts of ALOX5, RBL2, VEGFA,
TLK2 are specifically identified in tissue and uEVs of ccRCC
patients [40]. Furthermore, uEV-derived mRNA transcripts of
NME2, AAMP, CAPNS1, VAMP8, andMYL12B are significantly
downregulated in early stage ccRCC patients [41].

uEV-derived miR-204-5p is detected at high level in both 20-
and 40-weeks-old Xp11 translocation RCC (tRCC) mice relative
to control mice. This upregulated miR-204-5p is additionally

TABLE 1 | (Continued) Studies of urinary extracellular vesicles’ cargos in kidney cancer.

Types of uEVs’ cargos Sample size Profiling
methods

Differential
expression or
modulationa

ROC curve
analysisb

(AUC,
sensitivity,
specificity)

Application References

EMMPRIN 0.879 ±
0.060, N/A,
N/A

Syntenin 1 0.733 ±
0.089, N/A,
N/A

AQP1 0.891 ±
0.050, N/A,
N/A

Lipids Phosphatidylinositol phosphate,
Lyso-phospholipids,
Phosphatidylethanolamines,
Phosphatidylcholines, Mono/Di/
Tri-glycerols, Phosphatidic acids,
Gangliosides, Prostanoids

8 ccRCC
patients vs.
8 healthy
controls

CapLC system
(Waters)

Modulation N/A Lipid composition
of uEVs involved
in RCC

[47]

Q-TOF-Ultima in-
strument
(Micromass,
Waters)

N/A, not available.
aDifferential expression or modulation of the cargos in uEVs of kidney cancer compared to healthy controls.
bReceiver Operating Characteristic (ROC) curve.
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observed in human Xp11 tRCC cell lines compared to normal
cells, which is caused by overexpression of PRCC-TFE3 fusion
gene. The comparable level of miR-204-5p in 20 and 40 weeks of
age infers that uEVs can be biomarkers for early diagnosis of
patients with Xp11.2 tRCC [43].

miR-224-5p is significantly upregulated in both uEVs and tissue
from RCC patients compared to healthy controls. miR-224-5p
stabilizes PD-L1 (programmed cell death protein 1) expression via
directly suppressing the gene encoding cyclin D1 (CCND1). The
study has elucidated the mechanism how miR-224-5p promotes
resistance to T cell-dependent toxicity and metastasis via EVs
transmission between RCC cells [44]. Cancer metastasis is the
major cause of death of cancer patients and considered a hallmark
of tumor progression. To invade, resist apoptosis, and disseminate,
carcinoma cells must lose their epithelial phenotypes, detach from
epithelial sheets, while gaining the mesenchymal characteristics.
This reversible process called the epithelial–mesenchymal
transition (EMT) which involves in-wound healing,
embryogenesis and inflammation [53]. Podocytes and proximal
tubular cell line HK-2 under renal damage condition develop EMT.
In addition, these cells specifically exhibit elevated levels of miR-
145 and miR-126 in EVs, in accordance with uEVs from diabetic
nephropathy patients and lead to EMT progression [42].

The small RNA sequencing of uEVs of ccRCC patients shows
significantly lower level of miR-30c-5p in ccRCC compared to
healthy individuals. Indeed, this miR-30c-5p is the specific
biomarker for RCC owing to its different expression between
RCC patients and healthy controls, but it is not distinguishable in
bladder and prostate cancer. The AUC, sensitivity and specificity of
miR-30c-5p in the diagnosis of ccRCC are 0.8192 (95% confidence
interval 0.7388–0.8996, p < 0.01), 68.57% and 100%, respectively.
Indeed, miR-30c-5p directly binds and suppresses heat shock
protein HSPA5 which promotes ccRCC progression [45].

Studies have shown that uEV-derived protein phosphorylation
enabled to classify the grade difference of RCC [54]. A panel of uEV-
derived proteins including CAIX, CP, MMP9, PODXL, DKK4,
CD10, DPEP1, EMMPRIN, Syntenin 1 and AQP1 are new
biomarker candidates for early stage of ccRCC [46]. Boccio et al.
gained insights into the potential lipid biomarkers for RCC by
analyzing uEVs from RCC patients. These cancer-derived EVs
contain distinguished lipidome as phosphatidylinositols phosphate
(PIP), lyso-phospholipids (Lyso), phosphatidylethanolamines (PE),
phosphatidylcholines (PC), mono/di/three-glycerols (MG/DG/TG),
phosphatidic acids (PA), gangliosides (GL), prostanoids (Pn) [47].
Furthermore, at the time of submitting this review, a clinical trial
(NCT04053855) is expected to be completed in August 2024 which
used electron microscopy and flow cytometry for percentage of
CD9+/CA9+ uEVs in urine as ccRCC biomarker [55]. In
summary, uEVs have shown the potential for optimal solution for
less invasive, highly sensitive and specific diagnosis and prognosis of
kidney cancer.

DISCUSSION

Urine diagnostics has limitations due to contamination with
many factors and short-term stability of nucleic acids, but

urine EVs and their contents retain high integrity in
alternative temperature [39, 56–58]. Since EVs produced by
the cells are membranous, the information is protected and
accurate, which facilitates the application of uEVs in kidney
cancer diagnosis and prognosis. To achieve a better outcome,
combining EVs contents with other information would improve
discrimination sensitivity and specificity between cancer patients
and healthy participants. Even though a large amount of research
has shown many potential markers, these biomarkers still need to
be validated for clinical application. Further evaluation is
required for the specificity of EVs related to kidney cancer
since experimental models or sample sizes are limited. Other
concern for optimizing the uEVs utilization in biomarker
discovery for kidney cancer are normalization, quantification,
and characterization in spot urines. There are several
normalization approaches to compare uEV biomarkers among
individuals such as urine creatinine, nephron mass or uEV
excretion rate, total urine protein and albumin [37, 58,
59]. Despite these limitations, uEVs are a promising and
applicable biomarker resource and can revolutionize clinical
diagnosis, prognosis and treatment of kidney cancer patients in
the future.
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