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Introduction: Since Röntgen’s discovery of X-rays in 1895, advancements in
radiobiology have significantly shaped radiotherapy practices. This historical
review traces the evolution of radiobiological theories and their impacts on
current therapeutic strategies.

Materials and Methods: Databases such as PubMed were utilized to trace the
evolution of concepts in radiobiology.

Results/Discussion: One of the first theories concerning the effect of radiation
was Dessauer’s target theory, introduced in the 1920s. He found that damage to
critical molecular cellular targets leads to cell death. In the early 20th century,
Muller contributed to the understanding of DNA structure and radiation-induced
mutations, highlighting theories on the impact of radiation on genetic material
and cellular damage. In 1972, Kellerer and Rossi introduced the theory of dual
radiation action, which explains that ionizing radiation induces sequential damage
to DNA, starting with single-strand breaks and progressing to irreparable double-
strand breaks. Recent advances have enhanced the understanding of the effects
of radiation on themicroenvironment and immune responses, thereby improving
therapeutic outcomes. The significance of the sigmoid dose–response curve and
the initial shoulder effect were recognized early, leading to theoretical models
such as the multitarget single-hit, linear-quadratic and repair-misrepair models.
The history of fractionation and the 4R/5R principles have informed today’s
ultrahigh fractionation techniques, including single doses of approximately 20Gy.

Conclusion: Although significant advances have been made toward
understanding the effects of radiation on cancerous and healthy tissues, many
clinical observations, such as the effects of very high doses or FLASH therapy,
remain poorly understood.
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1 Introduction

Over the centuries, advances in radiobiology have contributed to a deeper
understanding of the applications of ionizing radiation and modern therapeutic
protocols. In December 1895, Wilhelm Röntgen discovered X-rays at the Würzburg
Physics Institute (1). This marked a transformative moment, leading to the invention of
the first contact therapy unit. For this discovery, he was awarded the first Nobel Prize in
Physics in 1901. Shortly after the discovery, he noted ipsilateral hair loss as well as erythema
as a result of X-ray exposure, prompting the exploration of X-rays for treating various
lesions (2). During this era, radiation-induced erythema served as a crude dosimetry
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measure, highlighted by the first reported case of radiation-induced
skin cancer by Frieben in 1902, a technician who regularly tested
X-rays on his own hand (3). These observations underscore the
profound medical implications of X-ray technology. Additionally,
Perry Brown, an American radiologist, published his collection of
biological essays titled “American Martyrs to Science through
Roentgen Rays” in 1936. He died of X-ray-induced cancer in
1950 (4, 5). Early pioneers quickly understood both the
advantages and dangers of radiation. This paper provides a
summary of the historical development of different theories on
the radiobiological action of radiation on cells and its principal
protagonists. Advancements and discoveries in radiobiology and
quantum biology are traced to gain a better understanding of
contemporary radiotherapy practices.

To write a historical review, databases such as PubMed, Google
Scholar, and historical scientific books by early pioneers such as
Friedrich Dessauer, Nikolay Timofeev-Ressovsky and Douglas E.
Lea were consulted. For better comprehension, the review is divided
into different sections. First, the discovery of DNA and the effects of
radiation on cells and interactions with the microenvironment are
discussed, followed by an emphasis on the reasons for the sigmoid
shape of the curve, which represents the radiation effect and its
evolution over time. The final section focuses on the history of
fractionation and the importance of the 4Rs/5Rs in radiotherapy.

2 Discovery of DNA and the effects of
radiation on cells

In 1869, the Swiss biologist Johann Friedrich Miescher
discovered the cell nucleus while conducting experiments on
leukocytes. He identified its biochemical differences from other
cell organelles because of its resistance to proteases and its high
phosphorus content. Miescher hypothesized that this element could
play a crucial role in the mechanisms of heredity (6).

In 1902, Theodor Boveri, a German biologist, conducted
experiments on sea urchin embryos and demonstrated that
deviations from normal chromosomal combinations often lead to
cell death, suggesting that cancer may arise from such chromosomal
changes (7). As research has progressed, scientists have begun to
identify more nuanced mechanisms of cell death. Currently, one
distinguishes between direct and indirect cell death. Direct cell death
occurs when a cell is directly targeted and killed, while indirect cell
death occurs when a cell dies as a result of secondary effects or
changes in the cellular environment.

Friedrich Dessauer was a German physicist and a pioneering
figure in radiobiology. He revolutionized the application of X-rays
through innovative techniques, such as designing a water-cooled
Roentgen tube at age 16 in 1897 (8). This early model later served as
the foundation for the construction of the first contact therapy unit
20 years later. Research by Dessauer into the interaction between
ionizing radiation and living cells continues to influence
contemporary therapeutic protocols. Dessauer’s target theory,
introduced in the 1920s, posits that cells contain critical
molecular targets that, when damaged, lead to cell death (9).
According to this theory, the destruction of all targets requires a
sufficient radiation dose to induce cell death, highlighting the
importance of the dose‒response relationship. These principles

are articulated within his “Laws of Homogeneous Irradiation,”
which he wrote in 1920 and presented at the 1921 American
Roentgen Radiation Society meeting in Washington, DC. These
“Laws” were designed to inform and protect against the effects
of X-rays (10).

Because of his strong social and political engagement, his strong
stance on human rights, scientific freedom, and religious beliefs
brought him into opposition to the Nazi regime. He had to leave his
position as a professor at the Institute for the Physical Foundations
of Medicine at Frankfurt University for Turkey in 1934 (11).

In the early 20th century, American geneticist Hermann Joseph
Muller conducted groundbreaking research on DNA, specifically
examining the chromosomal structures of Drosophila and their
implications for heredity. In collaboration with Thomas Hunt
Morgan in 1927, Muller devised a method to quantify mutations
arising from radiation experiments. His findings unequivocally
established that X-rays can induce genetic mutations, a
transformative revelation that culminated in his receipt of the
Nobel Prize in Physiology and Medicine in 1946 (12, 13). Muller
also developed of the concept of the linear no-threshold (LNT) dose
response model for hereditary and cancer risk assessment. In 1930,
he proposed the existence of the “Proportionality Rule” to describe
the dose-response nature of ionizing radiation-induced mutations.
The LNT model assumes that even the smallest dose of ionizing
radiation carries some risk, with effects accumulating over time.
While the Proportionality Rule suggests that the number of
mutations caused by radiation is directly proportional to the
dose received.

In 1931, Max Delbrück, a young German physicist, redirected
his focus toward biophysics and molecular biology. By 1935, he had
collaborated with Nikolay Timofeev-Ressovsky and Karl Zimmer on
a significant paper proposing an extension of Friedrich Dessauer’s
target theory. This extension aimed to estimate gene size on the basis
of its sensitivity to ionizing radiation. Referring to the “three-man
paper,” they hypothesized that individual quanta of radiation would
impact specific “targets” (14). Their research, in which gene stability
was measured through mutation rates at varying doses of ionizing
radiation and temperatures, suggested the likely nature of a gene as a
molecule. Delbrück emigrated from Nazi Germany to the U.S. in
1937 and later received the Nobel Prize in 1969 for a discovery
unrelated to radiation effects (9).

In the 1950s, Philip I. Marcus and Theodore T. Puck
conducted pioneering studies on the sensitivity of human cells
to X-rays in HeLa cells (15). In 1963, Dr. T. Alper proposed that, in
addition to DNA, cell membranes could also be targets of
radiation, particularly in well-oxygenated cells (16, 17).
Furthermore, the indirect effect of radiation plays a significant
role in biological damage, often surpassing the direct action in
impact. For example, radiation interacting with water molecules in
the cell can lead to the formation of free radicals which can trigger
chain reactions that amplify biological damage. This hypothesis
was supported in the 1970s by studies showing that fat-soluble
vitamins and anesthetics could modulate the response to radiation
(18). Fat-soluble vitamins may help mitigate radiation-induced
damage due to their antioxidant properties. As for anesthetics,
they might influence cellular metabolism and oxidative stress
pathways, which could indirectly affect how cells respond to
radiation exposure.
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In 1972, Kellerer and Rossi introduced the theory of dual
radiation action (TDAR), emphasizing the role of DNA damage,
following Watson and Crick’s discovery of its double-helix structure
in 1953 (19). This, after Rosalind Franklin’s X-ray diffraction images
of DNA laid the foundation of Watson and Crick’s development of
the double helix model (20).

According to TDAR, ionizing radiation induces sequential
damage to DNA, beginning as single-strand breaks and
progressing to irreparable double-strand breaks and
chromosomal aberrations (21, 22).

Recent research indicates that cell lethality resulting from
radiation primarily arises from chromosomal alterations, such as
dicentric and acentric fragments, which lead to the loss of genetic
material and hinder subsequent cell division, thereby causing
mitotic cell death (23). Figure 1 illustrates the history of the
discovery of the effect of radiation on DNA.

3 History of radiation and cell death

3.1 Cell cycle checkpoints

In 1961, Leonard Hayflick and Paul Moorhead discovered the
limited lifespan of normal human fetal fibroblasts in culture, a
phenomenon termed “cellular senescence,” also known as
Hayflick limit. They showed that fibroblast cells could only
divide a limited number of times before entering a state of
permanent growth arrest, which they termed replicative
senescence (24).

Cell cycle checkpoints play critical roles in maintaining DNA
integrity postirradiation. These checkpoints serve as protective

mechanisms that restrict the transmission of genetic errors,
thereby promoting cell survival (25).

In 1961, M. Yamada and T. T. Puck reported that a sublethal
dose of X-ray radiation induced a transient G2 premitotic block in
HeLa cells (26). It was not until 1968 that a delay in S-phase entry,
characteristic of a G1 block, was observed in cultures of normal
diploid human cells (27). Furthermore, M. B. Kastan et al. (28)
demonstrated in 1992 that primary murine fibroblasts lacking
p53 expression lost their G1 checkpoint function following
irradiation, whereas those with two wild-type p53 alleles retained
this checkpoint.

Additional research in 1996 by Yang Xu and David Baltimore at
the Massachusetts Institute of Technology highlighted the critical
role of ATM. It activates several key proteins involved in DNA
repair, cell cycle checkpoints, and apoptosis, thereby reducing the
risk of mutation and cancer development.

Together with the G1 checkpoint, ATM plays a crucial role in
the maintenance of cell integrity in response to DNA
damage (25, 29).

Recent findings suggest that activation of the G1/S checkpoint
occurs gradually over 4–6 h, allowing damaged cells to progress into
S phase. In contrast, the G2/M checkpoint is activated more rapidly
but requires at least 10 to 20 double-strand breaks (DSBs) for
initiation (30–32).

The G0 phase appears after mitosis and serves as a checkpoint,
allowing cells to temporarily or permanently exit the cell cycle
through postmitotic cell death (33). Studies on yeast fission have
shown that cell death can be accompanied by postmitotic arrest,
followed by nuclear envelope fragmentation and ultimately plasma
membrane permeabilization, leading to postmitotic cell death, as
demonstrated in 2008 (34).

FIGURE 1
Timeline of key discoveries–effects of radiation on DNA and cells.
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Thus, cell irradiation leads to mitotic catastrophe, which results
in either senescence (permanent state of proliferation arrest) or cell
death, which can occur before, during, or after mitosis (35). Another
important finding is the description of post-mitotic cell death and
mitotic catastrophe that developed over time. Mitotic catastrophe
was first introduced in the scientific literature in the early 1990s and
describes a specific type of cell death that occurs during mitosis due
to severe mitotic failure. The general term post-mitotic cell death
describes irreversible cell death due to DNA damage after mitosis.

3.2 From necrosis to apoptosis

In the 1960s, researchers distinguished between two forms of cell
death. Classic necrosis is characterized by lysosomal rupture, while
the second form involves individual cells transforming into compact
cytoplasmic masses containing condensed nuclear chromatin specks
with intact lysosomes (36). In 1972, pathologists J.F. Kerr, A.H.
Wyllie, and A.R. Currie coined the term “apoptosis” to describe
physiological cell death, contrasting it with necrosis. They likened
apoptosis to in vitro autolysis within phagosomes, devoid of
inflammation (37, 38). Apoptosis represents a controlled pathway
leading to cellular death, which can also be influenced by mutations
in tumor suppressor genes (38).

Necrosis can also arise from the sustained production of growth
factors and cytokines, leading to tissue disorganization and
dysfunction characterized by fibroblast and vascular proliferation.
Clinical manifestations include edema, fibrosis, and
telangiectasia (39).

During the 1980s and 1990s, advances inmolecular biotechnology
shifted apoptosis research from predominantly morphological studies
to interdisciplinary fields integral to developmental biology,
biogerontology, and cancer research. In 1993, Lowe et al.
investigated the proapoptotic role of the p53 gene in the apoptosis
of mouse thymocytes and demonstrated that immature p53-mutant
thymocytes are resistant to ionizing radiation-induced cell death (40)
(Exploring cell apoptosis and senescence to understand and treat
cancer 2015). ATM was discovered in 1995 by Yosef Shiloh and
highlighted the understanding radiation-induced cell death. ATM
mutations are characterized by heightened sensitivity to radiation and
a predisposition to cancer. Its involvement in DNA repair pathways
underscores its importance in the history of radiation biology and cell
death research.

By 1999, preclinical studies underscored the ability of taxanes to
increase cancer cell sensitivity to radiotherapy through the
phosphorylation of Bcl-2, which induces G2/M arrest and
apoptosis via a p53-independent pathway (41). Additionally,
experiments on Bax- and Asmase-knockout mice in
2003 revealed that these genes share an antiapoptotic pathway,
leading to increased tumor growth and a reduced radiation
response due to the increased resistance of endothelial cells to
apoptosis (42).

3.3 Autophagy

Around the turn of the millennium, autophagy, a novel response
of cancer cells to radiotherapy was discovered to impact radiation

sensitivity (43). However, the precise role of autophagy in radiation
treatment remains unclear. Some studies have suggested that
increased autophagy may confer cytoprotective effects to cancer
cells (44, 45). In the 1960s, Christian de Duve observed that cells
encapsulate their contents in membrane-bound vesicles for
transport to lysosomes for degradation (46). Yoshinori Ohsumi’s
pioneering experiments in the early 1990s using baker’s yeast
identified critical autophagy genes and elucidated their
mechanisms, demonstrating their similarity to those in human
cells (47, 48). In 2016, his Nobel Prize-winning work revealed the
mechanisms of autophagy, highlighting its essential role in cellular
degradation and recycling (48). Figure 2 delineates the timeline of
key discoveries in radiation-induced and cell death.

4 History of the interaction between
radiotherapy and the
microenvironment

Ionizing radiation has been proposed to alter immature tumor
blood vessels, potentially leading to disruption of the tumor
microenvironment (TME) (49). In 1984, J. Denekamp
demonstrated the critical role of the vascular system in tumor
survival, highlighting that the absence of collaterals and
innervation makes blood vessels attractive targets for ionizing
radiation (50). The importance of an intact microvasculature was
further underscored in 2003, showing that tumors in apoptosis-
resistant mice (asmase- or Bax-deficient) exhibit 200%–400% faster
growth than those with a wild-type microvasculature, along with
reduced endothelial apoptosis (51).

In 2011, Hallahan and Weinberg described six hallmarks of the
TME: “sustaining proliferative signaling, evading growth
suppressors, resisting cell death, enabling replicative immortality,
inducing angiogenesis, and activating invasion and metastasis” (52).
Whereas low doses of ionizing radiation promote angiogenesis via
the overexpression of VEGF (53), increasing evidence indicates that
high doses of hypofractionated irradiation, commonly used in
stereotactic body radiotherapy (SBRT) and stereotactic
radiosurgery (SRS), induce secondary cell death through vascular
damage occurring days after irradiation, in addition to direct tumor
cell death caused by DNA damage (51).

Hypoxia is another factor associated with the TME. Cells that
resist direct and indirect cell death mechanisms survive by
upregulating antihypoxic signals such as HIF-1α, as
demonstrated by Chang W. Song et al. in 2015 (54). Combining
radiotherapy with HIF-1α-targeting strategies represents a potential
approach to mitigate immunosuppression and enhance therapeutic
outcomes (55).

More recently, significant research has focused on targeting the
immune system, leading to notable advancements in preventing
cancer cells from escaping cell death. Compared with placebo,
durvalumab, an anti-programmed death ligand 1 (PD-L1)
antibody, significantly prolonged progression-free survival in
patients in the phase 3 PACIFIC study published in 2017 (56).
Additionally, the efficacy of treatment with nivolumab, a fully
human IgG4 monoclonal antibody, in combination with
radiotherapy, has been demonstrated through its ability to induce
apoptosis by activating PD-1 (57).
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There are currently several interesting approaches to exploit
the influence of the TME on cancer. Recently, radioligands have
been used to target proteins in the tumor microenvironment.
Examples include nanobodies against proteins of the
extracellular matrix and radioligands to target, for example,
chemokine receptors or membrane antigens. This strategy has

been effective in reducing immunosuppression and remodeling
the TME (58).

Emerging evidence suggests that combining radiotherapy with
hyperthermia can increase immune system activity (59).
Inflammation may serve as a potential initiator of immune
system activation through the release of antigens and cytokines

FIGURE 2
Timeline of key discoveries—radiation and cell death.

FIGURE 3
Timeline of key discoveries–importance of the sigmoid curve.
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and the promotion of immune cells such as dendritic cells, offering
promising advancements in cancer therapy, particularly in the field
of immunotherapy (60, 61). Immunologically mediated indirect cell
death manifests weeks or months after irradiation following the
release of tumor-associated antigens (49).

5 Importance of the sigmoid curve of
the radiation effect and its evolution

The dose‒response survival curve of cancer cells, which
illustrates their response to radiation, is characterized by an
initial shoulder, indicating that cell death begins only after a
certain radiation dose is delivered. It was recognized early that
this shoulder represents the cell’s repair capacity. Over the years,
several theoretical models have been developed to explain this
phenomenon. Figure 3 delineates the timeline of key discoveries
concerning the sigmoid curve. The multitarget-single-hit (MTSH)
model, initially derived from Lea’s target theory in 1941, introduces
the concept of critical targets within cells that limit cell survival when
damaged by radiation. Douglas E. Lea, a British physicist, focused on
dose‒response relationships and the consequences of induced
cellular damage (62). This model, visualized on a semilogarithmic
scale, suggests that reaching a certain damage threshold initiates the
linear phase of cell death. This phenomenon was validated in
microorganisms exposed to low linear energy transfer (LET)
radiation before the discovery of the DNA double helix in
1953 by Watson and Crick (19, 21). The discovery of the double-
helix structure of DNA made it possible to better understand the
main effect of radiation, the double-strand break. This concept
evolved as researchers discovered the effect of radiation on DNA
and its repair mechanisms. Advances in molecular biology
techniques in the 1970s–1980s provided a better understanding
of their mechanisms.

Another significant advancement came from Theodore T. Puck,
a physical chemist trained at the University of Chicago under Nobel
Prize-winning physicist James Frank. In the 1950s, Puck developed
techniques for culturing single mammalian cells and studying their
response to various agents, including radiation, using what are now
known as HeLa cells (15). Single-cell culture techniques have since
been adapted to study the transformation of cells to a neoplastic
state. Borek and Sachs (63) demonstrated this transformation via
X-rays, whereas Borek and Hall (64) quantified the dose‒response
relationship, indicating detectable transformation from 1 rad
(0.01 Gy) onward, plateauing at 1% between 100 and 300 rad
(1–3 Gy), and declining at higher doses, suggesting increased
susceptibility of transformed cells to radiation-induced
cell death (65).

The abovementioned two-dose and repair (TDAR) model,
proposed by Kellerer and Rossi, explains the shape of the
survival curve, particularly the initial shoulder and subsequent
linear‒quadratic phases (21, 22). A reinterpretation of TDAR by
researchers at the University of Pavia in 2015 introduced the
concepts of DNA cluster lesions and lethal chromosomal
aberrations, clarifying how these molecular events contribute to
the observed linear‒quadratic relationship in the survival curve and
further elucidating the impact of radiation on cell survival
(20, 65, 66).

Another recent, pivotal theory for understanding radiation
effects is the linear‒quadratic (LQ) model, which predicts the
response to radiation as a function of the number of fractions
and the dose per fraction; this model was pioneered by Frank
Ellis. In 1967, Ellis proposed a formula to distinguish the impact
of the number of sessions (n) and the total treatment duration (t) on
isoeffective dose variations. He later developed the “normal surface
dose” (NSD) formula (67). The linear component indicates cellular
damage proportional to low doses, suggesting that cells can repair
some damage between radiation fractions. Above a certain radiation
threshold, a quadratic component appears, indicating that damage
increases exponentially with increasing dose, leading to loss of the
shoulder and reduced survival. The quadratic portion is also
associated with chromosomal aberrations and mutations (23).

The repair-misrepair model (RMR), proposed by Tobias et al.
(68), states that cells can repair damage with either linear or
quadratic kinetics depending on the extent of damage, with both
types of responses contributing to survival curves (69). Goodhead’s
saturable repair model (1985) suggests that cells have a limited
repair capacity as lesions accumulate, explaining the increased
lethality with additional doses and good alignment with the LQ
model (70). Finally, Curtis’s lethal-potentially lethal (LPL) model
(1986) emphasizes “potentially lethal” and “lethal” lesions to explain
differences between the linear and quadratic portions,
respectively (21, 71).

In 1999, it was demonstrated that the linear‒quadratic (LQ)
model is applicable to low radiation doses (<0.5 Gy) and that the
dose‒response curve is similar to that observed for doses ranging
from 1 Gy to 6 Gy, which are used for predictive purposes. It is
possible that cells do not undergo checkpoint arrest and continue
their cell cycle with small DNA damage until tumor suppressor
genes, such as P53, act to eliminate damaged cells. However,
increased radioresistance was observed at higher doses. This
phenomenon may be attributed to the fact that cells are
unsynchronized and are in different phases of the cell cycle at
the time of irradiation, which could explain the observed
hypersensitivity at low doses followed by increased
radioresistance, (72, 73).

In 2019, Lu et al. demonstrated that the LQ model is applicable
even at high fractional doses of up to 30 Gy often used for non-small
cell lung cancer (74). This showed that the LQ model is valid for
larger doses per fraction utilized today for SBRT.

Some studies have also invoked the “bystander effect” to explain
how unexposed cells respond to radiation through biological signals
transmitted by exposed cells, leading to hypersensitivity. This
phenomenon was first demonstrated by Nagasawa and Little in
1992, in a model in which only 1% of the studied cells had been
irradiated by alpha particles, yet 30% exhibited chromosomal
damage, characterized by sister chromatid exchanges (75).
Introduced by Eric Hall in 2003, the bystander response
describes biological effects induced in cells not directly irradiated.
Research distinguishes between experiments in which medium is
transferred from irradiated to unirradiated cells, showing effects
such as cell death and chromosomal abnormalities, and microbeam
studies, which demonstrate effects through gap junctions between
neighboring cells. The effect varies with cell type and radiation type
and is more pronounced with densely ionizing radiation, such as
alpha particles (67). However, studies on clonogenic cell lines have
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shown an inverse relationship between the “bystander” effect and
radiosensitivity/radioresistance, in which cell lines with broader
model shoulder regions exhibit greater initial response followed
by increased saturation of the mechanism. At higher doses, the
signaling mechanisms may already be saturated, and the cells
initiating the bystander effect may be unable to produce
cytokines, such as tumor necrosis factor (TNF) or interleukin 8,
or reactive oxygen species, which would initiate the destruction of
surrounding cells (76).

6 History of fractionation and the
importance of the 4Rs in radiotherapy

6.1 History of fractionation

By 1926, dose tolerance estimates were first documented and
frequently standardized on the basis of the erythema dose (3). In
1928, a dose‒response curve for skin erythema was subsequently
developed (77). Furthermore, Holthusen conceptualized the trade-
off between the tumor control probability (TCP) and the normal
tissue complication probability (NTCP) in 1936 (78). In 1951,
Leksell authored a seminal paper on radiosurgery, chronicling the
initial cases treated via X-rays, marking the advent of widespread
adoption of the method (79). Since the 1990ies, DJ Brenner and EJ
Hall have published alone or together several important studies.
Their contributions to the understanding of the biological effects of
ionizing radiation and mathematical modeling of radiation effects
are seminal. They developed mathematical models to describe the
effects of radiation on cells and tissues, helping to predict and
understand the outcomes of radiation exposure and investigate
cancer risk from radiation (80, 81).

To refine normal tissue dose‒volume tolerance, Rubin (1960s)
and Emami et al. (82) developed the Quantitative Analyses of
Normal Tissue Effects in the Clinic (QUANTEC) guidelines in
the 2000s. These guidelines specify the dose to healthy tissue as a
percentage of volume for conventionally fractionated radiation
therapy, relying on expert consensus and published data (49, 79).

Conventionally fractionated radiotherapy doses of 1.5–2.0 Gy
per fraction are utilized to minimize damage to healthy tissues while
effectively treating cancer. In 2013, Cosset et al. traced the historical
evolution of early treatment paradigms and discussed optimal
fractionation schedules while considering temporal factors (83).
Historically, debates within the Curie Foundation have
highlighted a compromise between the efficacy of cancer cell
killing and minimizing damage to healthy tissue. Régaud, a
radiobiologist, emphasized the importance of not delivering too
low a dose per fraction over a prolonged period to maximize efficacy.
Coutard, a clinician, expressed concern regarding the observed
damage to connective and vascular tissue associated with
excessively high fractional doses (84).

Hyperfractionation (multiple treatments per day) aims to spare
late-responding tissues by reducing the dose per fraction while
maintaining effective tumor control (85). In 2004, Harney et al.
reported that treating metastatic skin tumors with 0.5 Gy per
fraction could enhance cancer control through low-dose
fractionation strategies (86). Conversely, hypofractionation, which
involves doses higher than 1.8–2 Gy per fraction, delivers larger

doses per session but may not offer clear advantages over standard
fractionation. Its goal is to balance tumor control by minimizing
damage to normal tissues through shorter treatment times using
advanced targeting techniques (87). The evidence supports the
effectiveness of moderate hypofractionation of 2.25–3.5 Gy (88).
More recently, even higher-dose-per-fraction regimens, known as
stereotactic radiosurgery (SRS), stereotactic body radiation therapy
(SBRT), and stereotactic ablative body radiotherapy (SABR), have
been safely implemented. Detailed information about patient
responses is provided by sources such as the American
Association of Physicists in Medicine (AAPM) Task Group
Report TG101 and subsequent updates (52, 84).

The HyTEC (Hypofractionated Treatment Effects in the Clinic)
initiative aims to increase estimates of normal tissue complication
probability (NTCP) and tumor control probability (TCP) for SRS/
SBRT by systematically reviewing and pooling peer-reviewed clinical
data, thereby improving clinical practice standards. By mutual
agreement between the American Association of Physicists in
Medicine (AAPM) and the American Society for Radiation
Oncology, HyTEC reports have been featured in the
International Journal of Radiation Oncology, Biology,
and Physics (89).

With the further development of hypofractionation in the 2010s,
research regarding ultrahigh dose rates (FLASH) expanded from
in vitro studies to investigating their effects on normal tissues in vivo.

FLASH radiotherapy (FLASH-RT) leverages ultra-high dose
rates to minimize normal tissue damage while maintaining or
enhancing tumor control. This phenomenon, known as the
FLASH effect, is thought to arise because normal cells have a
limited time to initiate harmful biological responses to radiation,
whereas cancer cells, due to their altered repair mechanisms, remain
susceptible to radiation-induced damage (90).

The potential of FLASH radiotherapy is important. It can reduce
normal tissue damage due to the limited time for normal cells to repair
radiation-induced damage while increasing cancer cell killing. FLASH
radiotherapy has also been associated with lower inflammation, and
reduction in the exposure of healthy tissues to radiationmay lower the
risk of developing secondary cancers (91). See Figure 4 for the clinical
evidence of FLASH effect Concerns include radiation-induced
pulmonary fibrosis and treatment-related mortality (84). However,
Favaudon et al. (92) demonstrated that mice exposed to ultrafast,
single-pulse electron irradiation at 60Gy/s did not develop pulmonary
fibrosis, unlike mice exposed to conventional dose rates (0.03 Gy/s),
which did develop fibrosis. This finding suggests a potential sparing
effect at high dose rates (92).

6.2 History of the 4Rs/5Rs

Radiation therapy is based on the difference between a maximal
TCP while minimizing the NTCP, which is defined as the
therapeutic index. Various factors influence this index, which was
originally described by Withers in 1975 as the “4 Rs” (93) and
expanded by Steel in 1989 to the “5 Rs” (94).

6.2.1 Repair of sublethal damage
One of the key researchers in this area was Ropolo, who, in 2009

(95). He showed that an extended cell cycle with prolonged
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checkpoint phases in stem cells may contribute to radioresistance.
This phenomenon is very important to balance effective tumor
control with minimal normal tissue toxicity (82).

6.2.2 Cell cycle redistribution
A historic milestone in the late 1960s was the discovery of the

G2-M phase as a radiosensitive phase, which was demonstrated in a
clinical trial involving patients with head and neck cancer (96). The
G2-M phase of the cell cycle is more radiosensitive because cells in
this phase are actively preparing for mitosis. During this time, cells
are more sensitive to radiation because of the consequences of errors
in DNA repair, activation of the G2-M checkpoint, and the
formation of mitotic spindles, all of which can lead to cell death (97).

Theoretical strategies, including the advent of fractionated
radiotherapy in the 1970s (98), aimed to increase radiosensitivity
by synchronizing cells in the G2‒M phase.

6.2.3 Cellular repopulation
The activation of several pathways may increase the

transcription of antiapoptotic and proliferative genes,
contributing to radioresistance. Epidermal growth factor receptor
(EGFR), a transmembrane protein discovered in 1962 (99), is crucial
for driving cell proliferation and survival. Ionizing radiation induces
the upregulation of EGFR expression as a protective mechanism,
leading to increased cellular repopulation (100). The therapeutic
targeting of EGFR was initiated in 1988. Mendelsohn et al. (101)
showed that blocking EGFR activity with monoclonal antibodies
could inhibit tumor growth. A study by Bonner et al. in
2006 demonstrated that the use of cetuximab, an EGFR inhibitor,
in combination with radiation therapy significantly enhances local

control and survival in patients with locally advanced head and neck
cancer (102). FDA approval for cetuximab was given in 2004 (103).

6.2.4 Tissue reoxygenation
Hypoxic cells exhibit 2- to 3-fold greater resistance to radiation.

Since the pioneering work of Schwarz in 1909 (104), Holthusen in
1921, and Thomlinson and Gray in 1955 (105), oxygen has been
recognized as a potent radiosensitizer. Oxygen enhances the effects
of ionizing radiation by increasing free radical production through
water radiolysis. This variability in tumor oxygenation levels
contributes to the heterogeneous radiosensitivity of different cells
(84). Monte Westerfield demonstrated in Zebrafish in 1995 that cell
regeneration is enhanced through angiogenesis (53). Many efforts
have been made to improve tissue oxygenation to improve the
response to radiotherapy, such as the suppression of hypoxia-
inducible factor 1α (HIF-1α) expression. Other strategies to
mitigate tumor hypoxia and enhance radiotherapy efficacy
include the inhibition of the recruitment of bone marrow-derived
cells involved in vasculogenesis (55) and the suppression of
angiogenesis through the blockade of vascular endothelial growth
factor (VEGF). Bevacizumab, an inhibitor of VEGF receptor
tyrosine kinase, was approved by the FDA in February 2004 (106).

6.2.5 Intrinsic radiosensitivity
Divergent cellular responses related to radiosensitivity were first

addressed by Hall et al. in 1972, who reported that the tissue
response to radiation depends on cellular radiosensitivity and the
dose/cell cycle, thereby incorporating the other 4 Rs (107). The
concept of SF2 was introduced, namely, the fraction of cells
surviving exposure to a single 2 Gy dose. The concept of SF2 is

FIGURE 4
Clinical evidence of FLASH therapy effect.
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very important: in helps predict the response of tumor cells to
radiation therapy. By measuring SF2, clinicians can tailor the
treatment to individual patients. Cancers with low SF2 values are
more radiosensitive, therefore respond better to radiation. Further
exploration of these mechanisms could enhance personalized
approaches in radiotherapy practice (108).

Recently there has been a sixth “R,” reactivation. Radiotherapy
has long been considered to be immunosuppressive. However, it can
trigger a systemic antitumor immune response following
irradiation-induced immunogenic cell death. This is especially
important with the advent of immunotherapy combined with
radiation (109).

7 Treatments with high LET

Owing to its high LET and dense ionization along its path, it
causes complex and clustered DNA damage. This supposedly causes
a stronger reaction of the immune system against cancer than beta or
gamma sources, or X-rays and electrons. The discovery of the Bragg
Peak for protons by Robert Wilson in 1952 opened further
possibilities for radiotherapy (110). Protons have been in use
since the 1960s. In the 1970s, significant advances were made in
other high-LET modalities (111). Heavy ion radiotherapy, including
carbon ion therapy, has been used in Asia and Europe (112). The
2000s brought about further significant improvements to these
technologies. Many centers worldwide have opened up proton
treatments. Commercially available alpha irradiation is another
new player that has opened new doors for radiation research.
Owing to its high LET and dense ionization along its path, it
causes complex and clustered DNA damage. This supposedly
causes a stronger reaction of the immune system against cancer
than beta or gamma sources, or X-rays and electrons (38). In 2020,
the first clinical results of novel diffuse alpha-emitting radiation
therapy (Alpha DaRT) using radioactive seeds implanted into tissues
were published (113). One expects better insight into the interaction
between irradiation and the immune system using this new high-
LET technique (114).

7.1 The importance of women in
radiobiology

One must underline the importance of women’s contribution to
radiation biology. Marie Curie, who won two Nobel prizes opened
the door for women in science in general. As mentioned above, the
other important women were Rosalind Franklin and the south-
African biologist Tikvah Alper, who later worked in London. In the
early 1950s, she suggested that membranes were important targets of
radiation. Another important female radiobiologist was Juliana
Denekamp in England, who made major contributions to the
design of radiotherapy schedules such as continuous
hyperfractionated accelerated radiotherapy (CHART) and
accelerated radiotherapy with carbogen and nicotinamide
(ARCON) (115).

8 In conclusion

A comprehensive review of radiobiology over the past 120 years
has revealed substantial progress in understanding the effects of
radiation on both cancerous and healthy tissues. Despite these
advances, several clinical observations remain poorly understood.
Current theories do not fully explain all the clinical findings.
Continued research is essential to elucidate these complex
mechanisms and improve therapeutic outcomes. Significant
progress can be expected from a combination of advances in
molecular pathology and clinical radiobiology, as well as progress
in radiation therapy planning and delivery technology (116).
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