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Breast cancer is one of the most significant causes of mortality among women
and the second most prevalent cancer worldwide. Estrogen receptor (ER)-
positive breast cancers are the most common molecular subtype of breast
cancer, comprising about 70% of breast carcinoma diagnoses worldwide.
Endocrine therapy is the foremost strategy for the treatment of ER-positive
breast cancer. In the United States, the Food and Drug Administration (FDA)
has approved endocrine therapies for ER-positive breast cancers that include
selective estrogen receptor modulators (SERMs), selective estrogen receptor
downregulators/degraders (SERDs) and aromatase inhibitors (AIs). The
approved SERMS, tamoxifen, toremifene and raloxifene, are the gold-standard
treatments. The only FDA-approved SERD available for treating ER and hormone-
positive breast cancers is fulvestrant, and various generations of AIs, including
exemestane, letrozole, and anastrozole, have also received FDA approval. Herein,
we review the major FDA-approved SERMs and SERDs for treating ER-positive
breast cancer, focusing on their mechanisms of action. We also explore
molecular events that contribute to the resistance of these drugs to
endocrine therapies and combinational strategies with drugs such as cyclin-
dependant kinases 4/6 (CDK4/6) inhibitors in clinical trials to combat endocrine
drug resistance.
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1 Introduction

Breast cancer is currently the second most prevalent cancer worldwide, second only to
lung cancer, as reported in Globocan 2022. There were approximately 2.3 million new cases
of breast cancer diagnosed in 2022 alone, and over 660,000 deaths were attributed to these
diagnoses (1). In the same year, Europe saw over half a million new cases of breast cancer,
while 198,553 cases were reported in Africa. Furthermore, North America reported
306,307 newly diagnosed cases, making breast cancer the most prevalent cancer in both
the United States of America and Canada (1) (Table 1).

Breast cancer encompasses a group of diseases originating from the breast and displays
both biological and molecular heterogeneity (2, 3). Most breast tumours usually develop
from the hyperproliferation of ductal epithelial cells before developing into in situ and
invasive carcinomas, eventually resulting in metastatic disease (3–5). Histologically, breast
cancer is divided into three broad categories: in situ carcinomas, invasive carcinomas, and
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metastatic breast carcinomas (2, 6, 7). In situ breast carcinoma is
further subclassified into ductal in situ carcinoma and lobular in situ
carcinoma (2, 7, 8). Additionally, the World Health Organization
(WHO) Classification of Tumors of the Breast, fourth edition,
acknowledges the most common histological subtypes of invasive
breast carcinoma include invasive tubular, lobular, cribriform,
metaplastic, mucinous, apocrine, papillary, and micropapillary
carcinomas (9). Tumour grading for breast carcinomas is
conducted using methods such as the Nottingham modification
of the Scarff-Bloom-Richardson grading system, which grades the
tumour on a scale from I-III based on the degree of variation from
healthy breast epithelium for gland formation (tubularity) and
nuclear size and shape (pleomorphism) (9, 10).

Breast carcinomas can be assessed for tumour stages based on
the Tumour-Node-Metastasis (TNM) system, which is comprised of
nine stages (0, IA, IB, IIA, IIB, IIIA, IIIB, IIIC, and IV) based on the
different combinations for tumour status (T), regional lymph nodes
status (N), and metastasis status (M) (9, 11). The American Joint
Committee on Cancer (AJCC) Cancer Staging Manual, eighth
edition, assigns the T0 category for tumour status when there is
no evidence of primary tumour(s) and the Tis category for ductal
carcinoma in situ. The T1 category is defined by tumours 2 cm in
diameter or less; the T2 category of tumours are >2 cm but ≤5 cm in
diameter; and the T3 category is defined as tumours greater than
5 cm in diameter. The T4 category is assigned when breast
carcinoma cells invade neighbouring and distant tissues and
organs (9, 11). The AJCC Cancer Staging Manual, eighth edition,
separates regional lymph node status into pathologic N (pN) and
clinical N (cN) categories (9, 11). The pN0 category is defined by the
absence of regional lymph node metastasis, while the pN1, pN2, and
pN3 categories display malignancy in 1-3 lymph nodes, 4-9 lymph
nodes, and greater than 10 lymph nodes, respectively. Clinically, the
cN classification comprises the cN, cN(f), and cN (sn) categories,

which are assigned for confirmed regional lymph node metastasis by
clinical findings, core biopsy or fine-needle aspiration, and sentinel
node biopsy, respectively (9, 11). Furthermore, metastasis status is
classified into two main categories: M0 and M1. M0 indicates the
absence of distant metastasis based on radiographic or clinical
evaluations. In contrast, M1 signifies the presence of distant
metastasis, which includes metastases detected in distant organs
or non-regional lymph nodes with a size greater than 0.2 mm (9, 11).

In addition to histological subtypes, breast cancer is classified
into five molecular subtypes: luminal A, luminal B, HER2-positive,
basal-like or triple-negative (TNBC), and normal-like breast cancers
(12, 13). Both luminal A and luminal B subtypes exhibit the
expression of estrogen receptors (ER) and are, therefore,
considered to be ER-positive breast cancers. Luminal A breast
cancers comprise approximately 30%–40% of all invasive breast
cancers and are low in grade. Luminal A subtypes are also
progesterone receptor (PR) positive and negative for
HER2 receptor expression (12, 13). Luminal B breast cancers
account for roughly 20%–30% of invasive breast carcinomas and
are typically higher in grade. Luminal B subtypes can present as
either PR positive or negative, and HER2-positive or HER2-negative
with a higher proliferation (Ki-67) score than Luminal A (12–15).
HER2-positive breast cancers constitute 10%–15% of invasive breast
cancers and are characterized by the overexpression of the
HER2 receptor and can be further subtyped based on the positive
or negative expression of ER and/or PR (2, 12, 16). TNBC or basal-
like subtypes, hallmarked as ER-negative, PR-negative and HER2-
negative, represent approximately 15%–20% of invasive breast
carcinomas and tend to be aggressive and high-grade. TNBC is
further subtyped based on molecular characteristics, with basal-like
being the most common subtype (8, 12, 17, 18). The normal-like
subcategory of breast cancer makes up less than 10% of invasive
breast cancers. The normal-like subtype is similar to luminal A and
is characterized as ER and PR-positive, HER2-negative, and displays
a low expression of the Ki-67 proliferation marker (2, 19, 20).

Currently, there are various therapeutic strategies for breast
cancer, and treatment options predominantly depend on the
subtype. Endocrine therapy is the first line of treatment for ER-
positive and hormone-positive breast cancers, which account for
approximately 70% of total breast cancer diagnoses. Endocrine
therapy options comprise selective estrogen receptor modulators
(SERMs), selective estrogen receptor degraders (SERDs), aromatase
inhibitors (AIs) or combination therapy of two or more drugs (14,
21, 22). Given the similarity of normal-like breast cancer to luminal
A subtypes, it is reasonable to infer that SERMs and SERDs provide
therapeutic benefits in this setting. However, further research is
needed to determine whether there are distinct responses to these
agents within the normal-like subtype compared to other ER-
positive breast cancers. Treatment for HER2-positive breast
carcinoma is typically by targeting the HER2 receptor using anti-
HER2 therapies (23–25). However, de novo or acquired resistance to
anti-HER2 and hormone therapies is common, and therefore,
combination therapy of anti-HER2 or hormone treatments with
other agents like CDK4/6 inhibitors, PI3K/AKT/mTOR inhibitors,
and immune checkpoint inhibitors are being extensively studied in
clinical trials (24, 25). TNBC presents a great challenge for breast
cancer treatment due to its heterogeneity, poor prognosis, and
limited therapeutic options (26). Currently, the standard of care

TABLE 1 Globocan 2022– estimated breast cancer incidence andmortality.
The table below lists the estimated number of new breast cancer cases and
mortality for select continents and countries in 2022 (1). Adapted from (1).

Continent/Country Incidence Mortality

Worldwide 2,296,840 666,103

Asia 985,817 315,309

Europe 557,532 144,439

North America 306,307 49,744

Latin America and Caribbean 220,124 59,876

Africa 198,553 91,252

Oceania 28,507 5,483

China 357,161 74,986

United States of America 274,375 42,900

United Kingdom 58,756 12,122

Nigeria 32,278 16,332

Canada 31,823 6,827

Mexico 31,043 8,195

Australia 21,931 3,393
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for treating TNBC is chemotherapy, although current research into
PARP (Poly [ADP-ribose] polymerase) inhibitors and
immunotherapy provides new and targeted treatments for TNBC
(26–28). Metastatic breast cancer presents significant challenges due
to its aggressive nature and poor prognosis. Unlike early-stage breast
cancer, metastatic disease often lacks specific targeted treatment
options and is, therefore, conventionally managed with systemic
chemotherapy (29, 30). However, not all chemotherapy agents
exhibit the same efficacy, and polychemotherapy—the use of
multiple agents—generally yields better treatment responses and
longer progression-free survival compared to single-agent
chemotherapy. Unfortunately, this approach is frequently
associated with increased toxicity and a higher risk of adverse
effects, underscoring the need for a balanced treatment strategy
that maximizes efficacy while minimizing patient burden (29–31).

The regulation of the development, production, marketing, and
sales of pharmaceuticals and medical devices in the United States of
America is the responsibility of the Food and Drug Administration
(FDA). Established in 1906 with the passage of the Pure Food and
Drug Act, the FDA is a federal agency responsible for ensuring the
quality, safety, and efficacy of drugs, medical devices, food,
cosmetics, and other consumer products in the United States.
Through rigorous scientific evaluation and regulatory oversight,
the FDA plays a critical role in protecting public health and
advancing medical innovation (32, 33). The first drug approved
by the FDA for treating breast cancer was the cytotoxic agent
methotrexate in 1953. Since then, over 30 drugs have been
approved for the treatment of both in situ and malignant breast
carcinomas (34). Although ER-positive breast cancers are more
common, less aggressive, and present a better prognosis than
HER2-positive and triple-negative breast cancers, treatment for
ER-positive breast carcinoma warrants further research as there
are no definitive treatment strategies for therapeutic resistance (22,
35). Drug resistance develops in 30%–50% of ER-positive breast
cancer patients treated with FDA-approved endocrine therapies
(22). As previously mentioned, these endocrine therapies include
SERMs and SERDs which function to target and modify estrogen
receptor activity and to degrade and/or reduce the expression of the
estrogen receptor (21, 22, 36). This review, therefore, examines the
current FDA-approved treatments for ER-positive breast cancers
and their limitations, with an emphasis on the mechanisms of action
of SERMs and SERDs.

2 Estrogen receptor signaling

The ER-positive luminal cancers represent the most prevalent
subtype of breast cancer, with nearly 70% of breast tumours
overexpressing ER, with or without the progesterone receptor
(37). Estrogen is the driving force behind mammary gland
development and promotes the growth and survival of normal
epithelial cells of the breast as well as mammary tumorigenesis.
17β-Estradiol (E2) is the predominant endogenous estrogen and ER
ligand in humans (38). Aromatase (encoded by the Cyp19/CYP19
gene) is the rate-limiting enzyme responsible for the unidirectional
conversion of androgens to E2 by aromatization in gonadal and
extra-gonadal tissues, and it is essential throughout the lifespan in
males and females (39, 40).

ERs are members of the nuclear hormone receptor family that
include ERα and ERβ, which are encoded by the ESR1 and
ESR2 genes and are composed of 595 amino acids and
530 amino acids, respectively (41) (Figure 1). ERα and ERβ share
five functional domains: A/B, C, D, E and F (42). The A/B domain,
also called the activation factor 1 (AF1) domain, is located in the
amino-terminal and is involved in ligand-independent transcription
and interactions with domain E. Domain C is the DNA-binding
domain (DBD), while the D domain is a flexible hinge region that
harbours a nuclear localization signal and heat shock proteins-
binding domain. Domain E is the ligand-binding domain (LBD),
and the activation factor 2 (AF2) domain is also involved in ligand-
dependent transcriptional activation. The LBD also harbours an
interface for homo-hetero-dimerization and a binding site for
ligand-dependent co-regulator interaction (43). The C-terminal
domain (domain F) regulates the transcriptional activation
mediated by domains A/B and E (43).

ERs signal through various pathways, including i) the nuclear
estrogen response element (ERE)-dependent pathway, ii) the
nuclear ERE-independent pathway, and iii) the extranuclear/
estrogen-independent pathway (44) (Figure 2). Without E2, ER
monomers remain predominantly in the cytoplasm in an inactive
(non-DNA-binding) state, sequestered in multiprotein chaperone
complexes organized around heat shock proteins (HSPs),
particularly HSP90 (45). It is important to note that while ERα
plays a predominant role in driving cell proliferation and survival in
ER-positive breast cancer, ERβ has been shown to exert opposing
effects by inhibiting cell proliferation and promoting apoptosis
(Murphy and Leygue, 2012). Furthermore, studies have
demonstrated that ERβ antagonizes ERα-mediated transcriptional
activity by competing for ERE binding, recruiting co-repressors, and
modulating non-genomic signaling pathways (46).

The nuclear ERE-dependent pathway is the classic ER genomic
pathway in which E2-activated ER undergoes a conformational
change and dissociates from the multiprotein chaperone
complexes, thus releasing HSP90. This conformational change
enables the dimerization and activation of the ER. Activated ER
translocates to the nucleus, where it binds to EREs in the promoter
regions of target genes, facilitating the sequential recruitment of co-
activators such as histone acetyltransferases (including CBP/
p300 and PCAF) and steroid receptor coactivator-1 (SRC-1),
which can robustly enhance the transcription of target genes and
promote cellular activities such as cell survival, division, and
proliferation (44).

Interactions between E2 and ER can also result in non-classical
genomic signaling, whereby the liganded ER regulates the expression
of genes in an ERE-independent manner via direct interaction with
transcription factors such as the activator protein 1 (AP-1) or
specificity protein 1 (SP1) transcription complex, NF-kappaB
(NFkB), and the signal transducers and activators of
transcription (STAT) family of transcription factors (47, 48).

In the extranuclear/estrogen-independent pathway, ERs may
reside in or can be translocated to the cell membrane or cytoplasm,
where they can rapidly initiate cellular signaling events by direct
interaction with receptor tyrosine kinases such as HER2, EGFR, and
insulin-like growth factor-1 receptor (IGF1R) [reviewed in (48)].
Crosstalk between the ER and these receptors can activate the
mitogen-activated protein kinase (MAPK) and phosphoinositide
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3-kinase (PI3K) pathways, leading to gene expression changes that
enhance cell growth [reviewed in (49)]. It is important to note the
extent to which extranuclear/estrogen-independent pathway
depends on classical ERs is complex. GPER (G protein-coupled
estrogen receptor), an alternative membrane estrogen receptor, also
binds 17β-estradiol and triggers overlapping signaling cascades,
including activation of adenylate cyclase, ERK1/2, and calcium
mobilization (50). Furthermore, Prossnitz and Barton describe
how GPER functions independently of ERα and ERβ, yet there is
evidence of some functional interplay between these receptors (49).
Some studies suggest that classical ERs may even modulate GPER
activity through direct or indirect interactions (51). The interplay
between these pathways warrants further investigation, particularly
in the context of endocrine resistance in ER-positive breast cancer.

The intricacy of ER-signaling in mammary gland development
adds to the complexity of identifying a single effective therapeutic
target for ER-positive breast cancer. However, the ER is targeted
therapeutically directly by antiestrogen agents such as the SERM,
tamoxifen, the SERD, fulvestrant, and indirectly by the use of
aromatase inhibitors that block the production of estrogen (52,
53). Interestingly, fulvestrant and the SERMs tamoxifen and
raloxifene have been found to activate the GPER, acting as a
GPER agonist (50, 54–60). This information warrants additional
research to fully understand the complex role of these drugs in the
context and consideration of both the ER and GPER pathways for
breast cancer therapy.

3 FDA-Approved drugs for ER-positive
breast cancer

Current FDA-approved endocrine therapies for ER-positive
breast cancers target to modify or decrease ER expression and
activity or inhibit estrogen biosynthesis. As previously
mentioned, these therapies fall under three main categories: i)

selective ER modulators (SERMs), ii) selective ER
downregulators/degraders (SERDs) and iii) aromatase inhibitors
(AIs). SERMs function to target and modify ER activity, while
SERDs degrade and/or decrease the expression of the ER. AIs
function by blocking estrogen biosynthesis, thereby reducing the
amount of estrogen circulating in the body (21, 22, 36). SERMs, such
as tamoxifen, are approved endocrine therapies for premenopausal
and postmenopausal women (61, 62). The SERD fulvestrant,
warrants further treatment studies in premenopausal women,
who are still producing estrogen via ovaries, and is more often
used to treat breast cancers in postmenopausal women (34, 63, 64).
Aromatase inhibitors on the other hand, are often utilized in
postmenopausal women, as this treatment stops estrogen
production in the breast of postmenopausal women via
inhibition of the aromatase enzyme (62, 65, 66).

3.1 Selective estrogen receptor
modulator (SERM)

SERMs have been used to treat various diseases and conditions,
including breast cancer, osteoporosis and postmenopausal
symptoms. Depending on the target tissue, SERMs have the
potential to display characteristics of either estrogen agonists or
antagonists (67). SERMs are able to interact with both ERα and ERβ
to elicit either agonistic effects, such as growth and proliferation
when targeting bone tissue, or opposing antagonistic effects in target
tissues, such as the breast and mammary epithelia (68, 69).
Additionally, selective estrogen receptor modulators have been
found to increase the expression and activity of low-density
lipoprotein (LDL) receptors, thus reducing LDL cholesterol levels
(70, 71). Furthermore, SERMs have been found to inhibit the
biosynthesis of cholesterol, resulting in a further contribution to
the reduction of LDL cholesterol levels (60, 69, 72–75). Currently,
three SERMs have been approved by the FDA for the treatment of

FIGURE 1
The functional domains of ERα and ERβ. A schematic representation of the domain structure of the estrogen receptors, ERα and ERβ. The five
functional domains: A/B, C, D, E, and F, are shown. Domain A/B, also known as the activation factor 1 (AF1) domain, is involved in ligand-independent
transcription and interactions with domain E. The C domain is the DNA-binding domain (DBD), whereas domain D is the flexible hinge region that
harbours a nuclear localization signal and the domain for binding heat shock proteins. Domain E, also called the ligand-binding domain (LBD) or
activation factor 2 (AF2) domain, is involved in ligand-dependent transcriptional activation. Furthermore, the LBD possesses a binding site for ligand-
dependent co-regulator interaction as well as an interface for homo-hetero-dimerization. Domain F is the C-terminal domain, which regulates the
transcriptional activation mediated by domains A/B and E (43). Figure adapted from (43).
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ER-positive breast cancers. They include tamoxifen and toremifene,
which are triphenylethylene derivatives differing only by the
presence of a chlorine atom in the ethyl chain of toremifene, and
raloxifene, a benzothiophene derivative (76).

3.1.1 Tamoxifen
3.1.1.1 Approval and use

Tamoxifen is a first-generation breast cancer drug that was
approved by the FDA for the treatment of breast cancer in 1977.
Originally synthesized as a method of contraception in 1962,
tamoxifen is a non-steroidal derivative of triphenylethylene and
is one of the most utilized endocrine therapies for ER-positive and
hormone-positive breast cancers (77, 78). Various clinical trials have
evaluated the efficacy of tamoxifen in the prevention and treatment
of breast cancers, including the National Surgical Adjuvant Breast
and Bowel Project (NSABP) Protocol B-14 trial in 1981. The
Protocol B-14 trial was a randomized clinical study that
evaluated the efficacy of tamoxifen in women with ER-positive

breast cancer with negative axillary nodes. Participants received
either 10 mg of tamoxifen twice daily or a placebo for 4 years
following surgery. The results demonstrated that women treated
with tamoxifen had a 75% higher likelihood of remaining disease-
free compared to those who received the placebo (79). Furthermore,
tamoxifen therapy was found to significantly reduce the rates of local
and distant treatment failures. Although the trial was effective in
prolonging the disease-free survival in those receiving tamoxifen
treatment, adverse effects reported more frequently in the tamoxifen
group compared to placebo include vaginal discharge, irregular
menses, hot flashes, and thromboembolic events (79). Additional
side effects include but are not limited to, headaches, dizziness, and
depression (80). Further, treatment with tamoxifen has been found
to increase the risk of endometrial cancer due to its estrogen agonist
effects in the uterus (81–84). Tamoxifen treatment has also been
shown to have effects on the ovaries in premenopausal women, such
as an increased incidence of benign ovarian cysts, ovarian
enlargement, stimulation of ovarian steroidogenesis, and

FIGURE 2
Estrogen Receptor Signaling. The nuclear estrogen response element (ERE) pathway is depicted. 17β-Estradiol (E2), the predominant endogenous
estrogen and estrogen receptor (ER) ligand, binds to the ligand binding domain (LBD/AF2) domain of the ER to undergo a conformational change. This
conformational change enables the dimerization, activation, and nuclear translocation of the ER to the nucleus, where the ER complex binds to EREs in
the promoter region of the target gene via the DNA-binding domain (DBD). Subsequently, this facilitates the recruitment of co-activators such as
PCAF and CBP histone acetyltransferases and steroid coactivator-1 (SRC-1), thus promoting various cellular activities, including cell division, survival and
proliferation. Further, E2-bound ER can also result in non-classical genomic signaling where liganded ER regulates the expression of genes in an ERE-
independent manner through the direct interaction with transcription factors, including specificity protein 1 (SP1), activator protein 1 (AP-1) transcription
complex, and the signal transducers and activators of transcription (STAT) family of transcription factors. Without E2, ER monomers remain
predominantly in the cytoplasm in an inactive (non-DNA-binding) state, sequestered in multiprotein chaperone complexes organized around heat shock
proteins bound to the ER hinge domain. The activation factor 1 (AF1) domain primarily contributes to ligand-independent activation of the ER (43–45, 47,
48). Figure generated using (50).
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induction of ovulation (85–89). Although tamoxifen displayed
biological activity as a full antagonist in the mammary
epithelium and is, therefore, an extremely effective treatment for
breast cancer, the drug acts as an agonist in other organs, including
the endometrium, where it can promote endometrial proliferative
disorders, including hyperplasia (90). Tamoxifen is sold under the
brand name Soltomax Oral Solution in the United States through
pharmaceutical companies such as Fortovia Therapeutics Inc.
Likewise, in Canada, AstraZeneca and several other companies
sell brand names including Nolvadex-D among others.
Tamoxifen is also marketed under various generic names,
including tamoxifen citrate in the United States and supplied by
companies such as Actavis Pharma, Inc. Additionally, Apo-Tamox
tab 10/20 mg is one of the various generic brands of tamoxifen sold
in Canada through companies such as Apotex Corporation.

Standard tamoxifen dosing is typically 20 mg administered daily,
either in tablet or solution form. Furthermore, drug interactions for
tamoxifen include but are not limited to, warfarin, aromatase
inhibitors such as anastrozole, inducers of CYP3A4, and strong
inhibitors of CYP2D6 (80). According to the American Society of
Clinical Oncology recommendations, newly diagnosed
premenopausal and perimenopausal ER-positive patients take
tamoxifen doses daily for 5 years as their first hormonal therapy.

3.1.1.2 Tamoxifen metabolism
Tamoxifen ((Z)-2-[p-(1,2-diphenyl-1-butenyl)phenoxy]

N,N-dimethylethylamine) is a non-steroidal SERM exhibiting
strong antiestrogen effects in mammary epithelia (91) (Figure 3).
Tamoxifen is a prodrug possessing a low affinity for its target, the
ER. Tamoxifen is extensively metabolized in the liver by the

FIGURE 3
Chemical structures of the current FDA-approved SERMs and SERDs. The chemical structures for tamoxifen, toremifene, raloxifene, and fulvestrant
are visualized above. (A) Tamoxifen: (Z)-2-[p-(1,2-diphenyl-1-butenyl)phenoxy]N,N-dimethylethylamine. (B) Toremifene: 2-[p-[(Z)-4-chloro-
1,2¬diphenyl-1-butenyl]phenoxy]-N,N-dimethylethylamine. (C) Raloxifene: [6-hydroxy-2-(4-hydroxyphenyl)-1-benzothiophen-3-yl]-[4-(2-piperidin-
1-ylethoxy)phenyl]methanone. (D) Fulvestrant: 7-alpha-[9-(4,4,5,5,5-penta fluoropentylsulphinyl)nonyl]estra-1,3,5-(10)-triene-3,17¬beta-
diol (190).

Oncology Reviews frontiersin.org06

Kim and Lukong 10.3389/or.2025.1564642

https://www.frontiersin.org/journals/oncology-reviews
https://www.frontiersin.org
https://doi.org/10.3389/or.2025.1564642


cytochrome P450 isoforms CYP2D6, CYP3A4, CYP3A5, CYP2C9,
and CYP2C19 via two pathways to generate two of its most potent
metabolites, afimoxifene (4-hydroxy tamoxifen, 4-OHT) and
endoxifen (4-hydroxy, N-desmethyl tamoxifen) (92, 93)
(Figure 4). The major pathway involves the cytochrome
P450 isoenzyme (CYP) 3A4/5 (CYP3A4/5), which catalyzes the
N-demethylation of tamoxifen to N-desmethyltamoxifen (NDM-
tamoxifen), which is then 4-hydroxylated by the polymorphic
CYP2D6 to produce endoxifen. In a separate metabolic pathway,
tamoxifen is converted to 4-OHT by many enzymes, including
CYP2D6 and CYP2C9 (93). Further, 4-hydroxy tamoxifen tends
to lose a methyl group to yield endoxifen in a process catalyzed
primarily by CYP3A (92). Although both 4-hydroxy tamoxifen and
endoxifen exhibit 30–100-fold greater affinity for the estrogen
receptor than the parent drug tamoxifen (94). Endoxifen, which
is produced at five to ten times higher concentrations than 4-OHT, is
considered the primary metabolite (95). The conversion of
tamoxifen to NDM-tamoxifen constitutes about 92% of
tamoxifen metabolism, while the pathway through 4-OHT
represents only about 7% (96). However, tamoxifen, formulated
as tamoxifen citrate, has a half-life of 5–7 days, whereas endoxifen,
formulated as z-endoxifen hydrochloride, has a much shorter half-
life between 49.0 and 68.1 h (98). Both 4-OHT and endoxifen are
converted into excretable forms by the UDP-
glucuronosyltransferase enzymes and sulfotransferase enzymes
(99, 100). The ATP-binding cassette (ABC) transporters–ABCB1
(P-gp/MDR1), ABCC1 (BRCP), and ABCC2 (MRP2) are known to

be elevated in multiple drug resistance and mediate the efflux of
metabolites such as 4-OHT and endoxifen (101, 102). ABCB1, for
example, is expressed in 28%–63% of breast tumours and has been
shown to bind 4-OHT and endoxifen (102, 103).

3.1.1.3 Mechanism of action
Tamoxifen, a non-steroidal ER antagonist, produces metabolites

which competitively bind to the ER and displace estrogen to inhibit
its proliferative effects in breast tissue (91) (Figure 5). Like E2,
tamoxifen also binds to the ER, albeit with lower affinity, and
induces a distinct conformational change that promotes the
release of HSP90 and ER dimerization. The ER dimer
translocates to the nucleus where it will first promote the
activation of the activation factor 1 (AF1) domain and inhibit the
activation factor 2 (AF2) domain or ligand-binding, and second,
bind to ERE on promotors of target genes (104). Through these
processes, the Tamoxifen-ER dimer attenuates the transcription of
the E2-responsive genes since the ligand-dependent AF2 domain is
inactivated and ER co-activator binding is reduced. Further,
tamoxifen-induced ER dimers recruit corepressors such as the
HDACs (histone deacetylases) and SMRT (silencing mediator of
retinoid acid and thyroid hormone receptor), also known as N-CoR2
(105–107). HDACs, for instance, deacetylate histones that
subsequently lead to the inhibition of transcription. The
recruitment of the co-repressor proteins is, therefore, pivotal to
the antiestrogen effects of tamoxifen in mammary
epithelia (105–107).

FIGURE 4
Tamoxifen metabolic pathway. The major metabolites of tamoxifen: 4-hydroxy tamoxifen (afimoxifene), and 4-hydroxy, N-desmethyl tamoxifen
(endoxifen), are shown, as well as the metabolite N-desmethyltamoxifen (NDM-tamoxifen). The primary active tamoxifen metabolite, endoxifen, is
highlighted in blue and NDM-tamoxifen, the major circulating metabolite, is highlighted in red. The conversion of tamoxifen to NDM-tamoxifen
constitutes approximately 92% of tamoxifen metabolism, whereas the pathway through 4-OHT represents about 7%. The key cytochrome P450
(CYP) enzymes involved in bioconversion are highlighted alongside the other cytochrome P450 isoenzymes. CYP3A4/5 catalyzes theN-demethylation of
tamoxifen to produce NDM-tamoxifen, which is subsequently 4-hydroxylated by CYP2D6 to generate endoxifen. Tamoxifen is converted to afimoxifene
by enzymes such as CYP2D6 and CYP2C9 and is further metabolized into endoxifen primarily via CYP3A enzymes. Afimoxifene and endoxifen are
converted into excretable forms via sulfotransferase and UDP-glucuronosyltransferase enzymes (92, 93, 99, 100). Figure adapted from (97).
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3.1.2 Toremifene
3.1.2.1 Approval and use

Toremifene is a selective estrogen receptor modulator and a
chlorinated derivative of tamoxifen. Toremifene was therefore
approved by the FDA in 1997 for the treatment of metastatic
breast cancers of ER-positive origin or tumours of unknown ER
expression (108, 109). The drug is widely used for the treatment of
both early and late stages of metastatic breast cancer (109).
Toremifene was approved with the hope that it would display a
better safety profile than tamoxifen (108). A study conducted by the
International Breast Cancer Study Group found that 76% of patients
with ER-positive tumours demonstrated a 5-year disease-free
survival after receiving 60 mg of toremifene daily following
chemotherapy on day 15 over a 5-year period. Additionally, the
5-year survival of patients with ER-positive breast cancer who
received toremifene treatment over a 5-year duration was 90%
(110). In the United States, toremifene is sold as tablets under
the brand name Fareston and as the generic product, toremifene
citrate, through suppliers such as Kyowa Kirin, Inc. and Rising
Pharmaceuticals, Inc., respectively. The FDA-recommended dose of
toremifene for the treatment of metastatic breast cancer in

postmenopausal women is 60 mg once daily. However, doses as
high as 120 mg have been approved in countries such as Japan and
shown to be effective in treating metastatic breast cancer in patients
who have relapsed on aromatase inhibitors (111, 112). Toremifene
toxicity of grade 3 or higher was experienced in 7% of patients taking
60 mg of toremifene daily in the study for the International Breast
Cancer Study Group (n = 499). Grade 3 toxicity symptoms include
vascular events such as deep vein thrombosis and phlebitis
pulmonary embolism, myocardial infarction, and congestive heart
failure, among others (110). Drug interactions listed by the FDA for
toremifene include warfarin, agents that prolong the QT interval,
drugs that decrease the excretion of renal calcium, and strong
inducers or inhibitors of CYP3A4 (113).

3.1.2.2 Toremifene metabolism
Toremifene (2-[p-[(Z)-4-chloro-1,2diphenyl-1-butenyl]

phenoxy]-N,N-dimethylethylamine) is structurally similar to
tamoxifen, differing in just one chlorine atom substituting a
hydrogen atom in the ethyl side chain, but it is equally as
effective as tamoxifen for treating breast cancer (114–116)
(Figure 3). Toremifene is lipophilic and over 99% bound to

FIGURE 5
Mechanism of action of SERMs. The selective estrogen receptor modulators (SERMs), tamoxifen, toremifene, and raloxifene bind to the ER like 17β-
Estradiol (E2) to induce conformational change. Heat shock proteins (HSP) chaperones, such as HSP90 are released as part of ER activation and nuclear
translocation from the ER hinge domain. This results in the dimerization of ER and translocation to the nucleus, preferentially activating the activation
factor 1 (AF1) domain while suppressing the activation factor 2 (AF2)/ligand-binding domain (LDB). Secondly, SERM-bound ER will bind to the
Estrogen Response Element (ERE) on promotors of target genes, thus resulting in transcription attenuation of E2-responsive genes due to the inactivation
of the ligand-dependent AF2 domain and reduced ER co-activator binding. Additionally, SERMs can influence transcription factor pathways involving
proteins such as STAT and AP-1 pathways via meditation through altered ER-cofactor interactions (22, 35, 104). Figure generated using (106).
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plasma proteins such as albumin (117, 118). Like tamoxifen,
toremifene is metabolized in the liver to form metabolites,
including N-desmethyl (NDM) toremifene, 4-hydroxy (4OH)
toremifene and 4-hydroxy-N-desmethyl (4OH-NDM) toremifene
(119) (Figure 6). The major circulating metabolite of toremifene is
NDM-toremifene, while levels of 4OH-toremifene, the primary
active metabolite, and 4OH-NDM-toremifene are much lower in
human plasma (119, 120). In breast cancer cell lines, the 4OH- and
4OH-NDM-toremifene metabolites are approximately 100-fold
higher in activity than both toremifene and NDM-toremifene
(119). The metabolism of toremifene into its metabolites occurs
via two pathways. The first pathway is the conversion of toremifene
into NDM-toremifene mainly through the cytochrome
P450 isoenzyme CYP3A4, although CYP3A5 and CYP2D6 are
also contributors (119, 121). The conversion of NDM-toremifene
into its secondary metabolite, 4OH-NDM-toremifene, occurs via the
CYP2D6 and CYP2C9 isozymes. The second pathway of toremifene
metabolism involves the conversion of toremifene into 4OH-
toremifene primarily through the CYP2C9 isoenzyme, with
CYP2D6 playing a minor role. The bioconversion of 4OH-
toremifene into 4OH-NDM-toremifene occurs mainly through
CYP3A4, although CYP2D6 and CYP2C9 are also involved to a
lesser degree (119, 121). Due to its similarities to tamoxifen,
toremifene metabolites such as 4-OH-toremifene, are also
converted into excretable forms through sulfotransferase and

UDP-glucuronosyltransferase enzymes (100, 122, 123). The half-
life of toremifene and NDM-toremifene is typically 5 days, whereas
the half-life for 4OH-toremifene is approximately 6 days (124).
Additionally, the concentration of the major metabolite, NDM-
toremifene, is greater than toremifene 8 hours after
administration (119, 125).

3.1.2.3 Mechanism of action
Toremifene is a non-steroidal SERM exhibiting antiestrogen

effects on target tissues such as the mammary epithelia and partial
agonist effects in uterine and bone tissues (109, 118). Although
equivalent in its estrogen binding and anti-tumour properties as
tamoxifen, toremifene may be less genotoxic, as research conducted
in rat hepatocytes found lower toremifene DNA adducts compared
to tamoxifen (110, 118, 126, 127). Toremifene and its metabolites
competitively bind to the ER to displace estrogen, thereby inhibiting
the growth and proliferative effects of estrogen on breast tissue (118,
128). The mechanism of action of toremifene is similar to that of
tamoxifen (Figure 5). Upon binding to the ER, toremifene and its
metabolites initiate ER dimerization in the same fashion as E2. The
ER dimer is translocated to the nucleus, leading to the activation of
the AF1 domain, the inactivation of the AF2 domain, and the
binding of the dimer to the ERE of target gene promoters. The
toremifene-ER complex results in a decrease in the binding of ER co-
activators in addition to the already inactivated AF2 domain,

FIGURE 6
Toremifene metabolic pathway. The major circulating metabolite of toremifene, N-desmethyl (NDM) toremifene, is highlighted in red while the
primary active metabolite of tamoxifen, 4OH-NDM-toremifene, is highlighted in blue. 4-hydroxy (4-OH) toremifene, another metabolite, is also shown.
The key cytochrome P450 (CYP) enzymes involved in toremifene metabolism are noted alongside other cytochrome P450 isoenzymes. The conversion
of toremifene into NDM-toremifene occurs primarily via CYP3A4, with CYP3A5 and CYP2D6 also contributing to a lesser extent. NDM-toremifene is
converted into its secondary metabolite, 4OH-NDM-toremifene, through the CYP2D6 and CYP2C9 isozymes. Further, toremifene is converted to 4OH-
toremifenemainly via CYP2C9, with CYP2D6 contributing aminor role. The CYP3A4 is themain isozyme in converting 4OH-toremifene into 4OH-NDM-
toremifene, with CYP2D6 andCYP2C9 also involved to a lesser degree. 4OH-toremifene and 4OH-NDM-toremifene are converted into excretable forms
through sulfotransferase and UDP-glucuronosyltransferase enzymes (100, 117, 118, 122, 123).
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resulting in the reduced transcription of estrogen-responsive
genes (118, 128).

3.1.3 Raloxifene
3.1.3.1 Approval and use

Raloxifene is a second-generation, selective estrogen receptor
modulator approved by the FDA for the prevention of
postmenopausal osteoporosis in 1997 and for the treatment of
osteoporosis in postmenopausal women in 1999. In 2007, the
FDA approved raloxifene for the risk reduction of invasive breast
carcinoma in postmenopausal women (34, 63). Clinical trials such as
the Multiple Outcomes of Raloxifene Evaluation (MORE) were
conducted to observe the effectiveness of raloxifene in the risk
reduction of breast cancer in postmenopausal women with
osteoporosis. The MORE trial, a randomized, multicenter,
double-blind trial, was conducted between 1994 and 1998, where
7705 postmenopausal women with osteoporosis across 25 countries
were administered raloxifene or placebo and followed up after a
median of 40 months. The trial found that the risk of invasive breast
carcinoma decreased by 76% during the 3 years that patients
received raloxifene treatment. Furthermore, the risk of ER-
positive breast cancer was decreased by 90% during the
raloxifene treatment (129). In general, raloxifene is well tolerated,
although an increase in the rate of hot flashes and leg cramps was
reported. Other adverse effects reported in the trial include
peripheral edema, endometrial cavity fluid and influenza-like
syndromes (129).

Raloxifene is sold in the United States under the brand name
Evista by companies such as Physicians Total Care, Inc. and as the
generic raloxifene hydrochloride through companies like Actavis
Pharma Company. Furthermore, raloxifene is sold in other
countries, such as Canada, for the prevention of breast cancer.
For breast cancer risk reduction, the standard dosing of
raloxifene is 60 mg taken orally, once daily. Interactions listed by
the FDA for raloxifene include cholestyramine, warfarin, systemic
estrogens, and other highly protein-bound drugs, among
others (130).

3.1.3.2 Raloxifene metabolism
Raloxifene ([6-hydroxy-2-(4-hydroxyphenyl)benzo [b]thien-3-

yl]-[4-[2-(1-piperidinyl) ethoxy]phenyl]methanone) is a selective
estrogen receptor modulator belonging to a class of compounds
known as the benzothiophenes (Figure 3). Like tamoxifen and
toremifene, raloxifene also exhibits estrogen agonist or antagonist
effects on differing target tissues (63). Raloxifene is rapidly absorbed
after oral administration, with up to 60% absorbed following
administration of a treatment dose. Additionally, the drug does
not undergo significant P450-dependent oxidation. Instead,
raloxifene undergoes extensive first-pass glucuronidation upon
absorption into the gastrointestinal tract, resulting in less than
2% bioavailability (131–133). Upon first pass glucuronidation,
raloxifene is converted into the metabolites raloxifene-6-β-
glucuronide (raloxifene-6-gluc) and raloxifene-4′-β-glucuronide
(raloxifene-4′-gluc) (131, 134) (Figure 7). Raloxifene-4′-gluc is
the major metabolite found in human plasma, with an
approximate ratio of 8:1 for raloxifene-4′-gluc:raloxifene-6-gluc.
Further, only less than 1% of unconjugated raloxifene is found in
human plasma (131, 132). Previous research has found the 1AUDP-

glucuronosyltransferase (UGT) enzyme family to be involved in the
metabolism of raloxifene (135). UGTs are membrane-bound
enzymes found in the endoplasmic reticulum and are involved in
catalyzing the transfer of glucuronic acid to substrates. The resulting
conjugates possess an increase in water solubility (136, 137). The
conversion of raloxifene to the raloxifene-4′-gluc metabolite occurs
primarily by intestinal UGT1A10 and UGT1A8 enzymes, while the
bioconversion of raloxifene to raloxifene-6-gluc occurs mainly
through hepatic UGT1A1. Additionally, UGT1A9 was shown to
play a minor role in catalyzing the formation of raloxifene-4′-gluc
and raloxifene-6-gluc (135). Raloxifene possesses an elimination
half-life of approximately 28 h and an apparent oral clearance of
44 L/kg per hour (131, 133).

3.1.3.3 Mechanism of action
Raloxifene is a non-steroidal SERM exhibiting estrogen agonist

or antagonist effects depending on the target tissue (63). Estrogenic
effects of raloxifene occur in bone and lipid metabolism, whereas
antiestrogen effects are exhibited in breast tissue, and neutral effects
are observed in the endometrium (63, 67, 138, 139). Raloxifene
exhibits a higher affinity for the ER than its glucuronide conjugate
metabolites (140). Raloxifene has a similar affinity to the ER as
E2 and can initiate ER dimerization and translocation to the nucleus
once bound to the ER via its benzothiophene ring (Figure 5). The
binding of raloxifene to the ER results in a spatial change in the
configuration of the ER, resulting in the activation of the
AF1 domain and inactivation of the AF2 domain of the ER.
Subsequently, the raloxifene-ER complex binds to the ERE of
target gene promoters (141–143). Furthermore, the raloxifene-ER
complex results in a decrease in the binding of ER co-activators, thus
resulting in the reduced transcription of estrogen responsive genes).
Additionally, once raloxifene binds to the ER, the raloxifene-ER
complex then recruits coregulators to further enhance the
antiestrogen effects of raloxifene (63, 144). However, raloxifene
exerts a different effect on other tissues, such as bone. The
raloxifene-ER complex, with the aid of various helping,
activating, and/or adapting (HP) proteins, is able to bind and
activate a specific DNA sequence known as the Raloxifene
Responding Element (RRE). The binding of the raloxifene-ER
complex to the RRE results in the transcription of genes involved
in the synthesis of specific cell proteins responsible for the estrogen
growth and proliferative effects of raloxifene on these
tissues (141–143).

3.2 Selective estrogen receptor
downregulators/degraders (SERDs)

As discussed earlier, anti-endocrine therapies such as tamoxifen,
a selective ER modulator, and aromatase inhibitors such as
anastrozole were FDA-approved in 1977 and 1995, respectively
(65, 145). Tamoxifen quickly became the gold standard therapy
for advanced and early-stage estrogen-sensitive cancers. However,
the potentially serious side effects and other presentations following
tamoxifen treatment, such as relapses, exposed the need for other
anti-endocrine therapies with fewer or less severe side effects. The
advent of selective estrogen receptor downregulators/degraders
(SERDs) was, therefore, a welcome addition to antiestrogen
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therapeutic armamentarium. SERDs are estrogen receptor
antagonists employed for treating ER and hormone-positive
breast cancers. SERDs exert their anti-tumour effects through the
inhibition, downregulation, and degradation of the ER, therefore
abrogating the proliferative effects of estrogen in breast cancer cells
(21, 146, 147). Fulvestrant is the only SERD approved by the FDA
for the treatment of hormone-positive breast carcinomas. The drug
is an effective and well-tolerated drug for the treatment of metastatic
ER-positive breast cancer.

3.2.1 Fulvestrant
3.2.1.1 Approval and use

Fulvestrant was approved by the FDA in 2002 for the treatment
of ER and hormone-positive, metastatic breast cancers in
postmenopausal women (34, 148). Fulvestrant is sold in the
United States as the brand name Faslodex by companies such as
AstraZeneca Pharmaceuticals LP and as the generic fulvestrant
through companies like Amneal Pharmaceuticals LLC.
Furthermore, fulvestrant is sold in various countries including
Canada, France, and Spain. The FDA lists the standard dosing of
fulvestrant for the treatment of breast cancer as 500 mg as two
intramuscular injections, one for each buttock, administered on days
1, 15, and 29 and subsequent once-monthly doses (149).
Additionally, there are no known drug interactions for
fulvestrant (150). Clinical trials have been conducted to evaluate
the efficacy of fulvestrant for use in hormone-positive breast cancers.
Such trials include the FALCON study, a randomized, double-blind,
international, phase III clinical trial where 524 patients with
hormone-positive, locally advanced or metastatic breast cancer
were enrolled between 2012 and 2014 (151). The FALCON trial
aimed to evaluate the efficacy of fulvestrant compared to the
aromatase inhibitor, anastrozole, in patients who had not
received prior endocrine therapy. The trial demonstrated that
patients receiving a 500 mg dose of fulvestrant had a longer
median progression-free survival than those treated with 1 mg of
anastrozole daily, with medians of 16.6 months and 13.8 months,

respectively. Therefore, fulvestrant demonstrates comparable, if not
superior, efficacy in extending progression-free survival in patients
with hormone receptor-positive, locally advanced, or metastatic
breast cancer when compared to aromatase inhibitors like
anastrozole (151). Although fulvestrant is an effective and
generally well-tolerated treatment option, common adverse effects
reported in trials such as the FALCON include arthralgia, hot flashes
and gastrointestinal disturbances (151, 152).

3.2.1.2 Fulvestrant metabolism
Fulvestrant (7-alpha-[9-(4,4,5,5,5-penta fluoropentylsulphinyl)

nonyl]estra-1,3,5-(10)-triene-3,17beta-diol) is a 7α-alkylsulphinyl
analogue of estradiol that competes with E2 for binding to the
ER (148) (Figure 3). Fulvestrant is metabolized in the body via rapid
glucuronidation at its −3 and −17 positions and through sulfate
conjugation to produce sulfated-fulvestrant (153, 154) (Figure 8).
The glucuronidation of fulvestrant is catalyzed by the A1 UDP-
glucuronosyltransferase (UGT) family enzymes, namely UGT1A1,
UGT1A3, UGT1A4, and UGT1A8 (154). The majority of fulvestrant
is metabolized by UGT1A3 and UGT1A4, the main enzymes which
catalyze the glucuronidation of fulvestrant at the 3-hydroxyl
position, although UGT1A1 and UGT1A8 were also found to
also play a minor role. Furthermore, UGT1A8 can convert
fulvestrant into fulvestrant-17-glucuronide, although this
metabolite only accounts for 5%–10% of total fulvestrant
glucuronidation (154). Previous research suggests that fulvestrant
may be inactivated in both the liver and intestine due to the high
expression levels of the UGT1A3 and UGT1A4 enzymes (154).

Additionally, the cytochrome p450 isoenzymes, CYP1A2,
CYP2C9 and CYPA4, may also be involved in the metabolism of
fulvestrant, although the sulfate conjugation of fulvestrant is
suggested to be the more predominant pathway in comparison
(154, 155). Fulvestrant is sulfated via sulfotransferase enzymes,
namely SULT1A1, to produce sulfated-fulvestrant, particularly
the fulvestrant-3-sulfate conjugate (153, 154). Due to its low
bioavailability and pre-systemic metabolism, fulvestrant was

FIGURE 7
Raloxifene metabolic pathway. The major metabolite of raloxifene, raloxifene-4′-β-glucuronide (raloxifene-4′-gluc), is highlighted in red. Another
metabolite, raloxifene-6-β-glucuronide (raloxifene-6-gluc), is also shown. Raloxifene undergoes extensive first-pass glucuronidation into its metabolites
upon gastrointestinal tract absorption. The 1A UDP-glucuronosyltransferase (UGT) enzyme family are involved in raloxifene metabolism. Raloxifene is
converted to raloxifene-4′-glucmetabolite mainly through intestinal UGT1A10 and UGT1A8 enzymes. The conversion of raloxifene to raloxifene-6-
gluc occurs primarily via hepatic UGT1A1. The UGT1A9 enzyme has been found to play aminor role in catalyzing the formation of both raloxifene-4′-gluc
and raloxifene-6-gluc (131–135).
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designed for administration via intramuscular injection over oral
ingestion (156). Fulvestrant has an elimination half-life of
approximately 40 days after a 250 mg dose, with an estimated
apparent volume of distribution at steady state ranging from 3 to
5 L/kg (155).

3.2.1.3 Mechanism of action
Unlike SERMs, which exert both estrogen agonist and

antagonist effects depending on the target tissue, fulvestrant
exhibits purely antiestrogen effects. Fulvestrant has a high
affinity for the ER, with an approximate 89% binding affinity
to that of estradiol (157). The attenuation of ER dimerization via
fulvestrant, results in the subsequent impairment and inhibition
of the fulvestrant-ER complex for translocation to the nucleus
(158) (Figure 9). Furthermore, the impaired dimerization
inhibits the activation of the ER, as receptor dimerization is
crucial for ER function and nuclear localization (158, 159). While
tamoxifen blocks the E2-mediated activity of the AF2 domain,
resulting in ER-antagonistic activity, the fulvestrant-induced
conformational change of the ER disrupts both AF2- and
AF1-related transcriptional activity (158, 159). Since
fulvestrant hinders the ER’s ability for nuclear translocation,
the fulvestrant-ER complex thus cannot localize and bind to
the ERE of target gene promoters. However, if any fulvestrant-ER
complexes are successful in nuclear localization, the complex is
still rendered transcriptionally inactive due to the hindered
AF1 and AF2 domains (158). Additionally, the fulvestrant-ER
complex is unstable and fragile, thus resulting in the accelerated
proteasomal degradation of the ER compared to the ER bound
with estradiol or tamoxifen (160). The accumulation of the
fulvestrant-ER complex in the cytoplasm may also promote its
degradation, as the ER is not shuttled to the nucleus as per usual
in its functioning state (161). The reduction in cellular ER protein
caused by fulvestrant is not due to the downregulation of ER

mRNA levels, but rather to the accelerated degradation of the
receptor, driven by the instability of the fulvestrant-ER complex.
Therefore, fulvestrant exerts its antiestrogen effects through
various mechanisms, including the impairment of ER
dimerization, the inhibition of ER activity, and the accelerated
proteasomal degradation of the ER (21, 158, 160).

4 Current progress and future
directions

4.1 Current progress in tamoxifen treatment

Although there have been numerous clinical trials conducted for
tamoxifen use in breast cancer endocrine therapy, a more recent trial
known as MONALEESA 7 was conducted with a focus on
combination therapy in breast cancer treatment. The
MONALEESA 7 trial is a randomized, double-blind, placebo-
controlled, international, phase III clinical trial comparing the
CDK 4/6 inhibitor, ribociclib, with a placebo or in addition to
endocrine therapy such as tamoxifen. Premenopausal and
perimenopausal women (n = 672) with HER2-negative, hormone
receptor-positive, advanced breast cancer were enrolled in the study
between 2014 and 2016 (162). The trial found an estimated overall
survival among those who received tamoxifen treatment in the
ribociclib group was 71.2% versus 54.5% in the placebo group at
42 months. Furthermore, there was approximately 29% lower risk of
death in those receiving ribociclib compared to those receiving
endocrine therapy alone (162). Additionally, an update to the
study showed that ribociclib plus endocrine therapies, such as
tamoxifen, displayed a persistent and significantly longer overall
survival compared to endocrine therapy alone when observing the
58.7 vs. 48.0 months timeframes. These results demonstrate a
reduction in the relative risk of death by 24% and were

FIGURE 8
Fulvestrant predominant metabolic pathway. The major metabolite of fulvestrant, fulvestrant-3-sulfate conjugate, is highlighted in red. Fulvestrant
glucuronidation at the 3-hydroxyl position and sulfate conjugation produces sulfated-fulvestrant, specifically the metabolite fulvestrant-3-sulfate
conjugate. Another metabolite of fulvestrant, fulvestrant-17-sulfate conjugate, is also shown and is produced via fulvestrant glucuronidation at
the −17 position and through sulfate conjugation. The 1A UDP-glucuronosyltransferase (UGT) enzyme family are involved in the metabolism of
fulvestrant. The majority of fulvestrant is metabolized via UGT1A3 and UGT1A4 enzymes, which catalyze the glucuronidation of fulvestrant at the 3-
hydroxyl position. UGT1A1 and UGT1A8 were also found to also play a minor role in the glucuronidation of fulvestrant. Further, fulvestrant can be
converted to fulvestrant-17-glucuronide through the UGT1A8 enzyme. Fulvestrant is sulfated by sulfotransferase enzymes, namely SULT1A1, to produce
sulfated-fulvestrant (153–155).
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consistent with the final analysis for overall survival (163).
Therefore, utilizing endocrine therapies such as tamoxifen in
combination with other drugs like CDK 4/6 inhibitors are a
promising future for the prevention, disease-free maintenance,
and treatment of hormone-positive breast carcinomas.

4.2 Current progress in toremifene therapy

Several clinical trials for high dose-toremifene treatment have
been conducted in Japan and found to be effective as part of
“hormone rotation therapy” for the treatment of metastatic
breast cancer. Although clinical trials are yet to be conducted
regarding the effectiveness of high-dose toremifene therapy
against recurrent breast cancer or postmenopausal hormone-
sensitive progressive breast cancer, Fushima et al. show
promising research in their study of high dose-toremifene for
hormone receptor-positive metastatic breast carcinoma with
secondary resistance to aromatase inhibitors (112).

4.3 Current progress in raloxifene therapy

Various clinical trials, including the MONA trial and the
National Surgical Adjuvant Breast and Bowel Project Study
(NSABP) of Tamoxifen and Raloxifene (STAR) P-2 trial, have
been undertaken regarding the effectiveness and safety of
raloxifene in the risk reduction of breast carcinoma in
postmenopausal women. However, due to its low
bioavailability, the generation of a raloxifene-like drug with an
increase in pharmacokinetics was developed (164, 165). This
benzothiophene analog of raloxifene is a prodrug known as
arzoxifene. However, a phase III trial comparing arzoxifene to
tamoxifen as a first-line treatment was terminated when data
suggested that arzoxifene was inferior to tamoxifen for the
treatment of locally advanced or metastatic breast cancer with
respect to a time to progression endpoint (166). Currently,
raloxifene is the sole benzothiophene SERM approved by the
FDA for use in breast cancer risk reduction. Upon comparing and
reviewing data collected from clinical trials, raloxifene is a

FIGURE 9
Mechanism of action of SERDs. The selective estrogen receptor downregulator/degrader (SERD), fulvestrant, exerts anti-tumour effects via the
inhibition, downregulation, and degradation of the ER, therefore hindering the proliferative effects of estrogen in breast cancer cells. The attenuation of
ER dimerization via fulvestrant competitively binding to the ligand binding domain (LBD)/AF2 domain of the ER results in the impairment and inhibition of
the fulvestrant-ER complex for nuclear translocation, thus preventing the fulvestrant-ER complex from binding to the estrogen response element
(ERE) of target gene promoters. The impaired dimerization of the ER inhibits its activation, as receptor dimerization is critical for ER function and nuclear
localization. Additionally, the conformational change of the ER via fulvestrant disrupts both the Activation Factor 1 and 2 (AF2)- and (AF1)-related
transcriptional activity. The fulvestrant-ER complex is fragile and unstable, therefore resulting in the accelerated proteasomal degradation of the ER in
comparison to the ER boundwith estradiol or SERMs such as tamoxifen. Further, SERDs can influence the pathways involving transcription factors such as
STAT and AP-1 through the mediation of altered ER-cofactor interactions (21, 158–161, 191). Figure generated using (50).
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generally well-tolerated and an effective drug in the risk
reduction of breast carcinoma in postmenopausal women with
osteoporosis (129, 167).

4.4 Current progress in fulvestrant therapy

Recently, the FDA has approved the use of inavolisib, a potent
and selective inhibitor of the p110α catalytic subunit of
phosphatidylinositol 3-kinase (PIK3CA), plus the CDK4/
6 inhibitor palbociclib and the sole FDA-approved SERD,
fulvestrant. Inavolisib promotes the degradation of mutated
p110α and has been shown to display synergistic activity in
combination treatment with palbociclib and fulvestrant for
PIK3CA-mutated, hormone receptor (HR) positive, HER2-
negative, locally advanced or metastatic breast cancer
following relapse on or after the completion of adjuvant
endocrine therapy (168, 169). Treatment with inavolisib plus
palbociclib-fulvestrant resulted in a longer progression-
free survival for patients than those placed on placebo plus
palbociclib-fulvestrant, although with greater incidence of
toxic effects. Overall, this combination therapy demonstrated
good tolerability with a manageable safety profile (168, 169).

4.5 Future directions

Alongside the extensive research for the treatment of ER-
positive breast cancer with SERMs, SERDs, and AIs, new drug
therapies are currently under research and progress in clinical
trials. These include the Selective Estrogen Receptor Antagonist/
Degrader, Giredestrant, and the Selective Androgen Receptor
Modulator (SARM), Enobosarm (170–172). Giredestrant, a non-
steroidal, oral, selective ER antagonist and SERD, has shown
promise in phase II trials as a single-agent drug therapy to treat
locally advanced or metastatic breast cancer with an ER-positive,
HER-negative profile (171, 173). In the phase II acelERA BC
study, daily 30 mg giredestrant was administered orally to
patients until disease progression or unacceptable toxicity for
28-day cycles (171). Following the treatment course, giredestrant
displayed a numerical improvement compared to the physician’s
choice of endocrine monotherapy. Additionally, in the overall
study population, there was an approximate 20% relative
reduction in the risk of disease progression or death, which
was a favourable benefit for patients with ESR1 m tumours
(171). This indicates that giredestrant can target mutant ER-
reversing progesterone hypersensitivity more effectively than
fulvestrant or AIs, as it is a potent antagonist for targeting
this mechanism of endocrine resistance (171, 174). Other
novel SERDs that are in varying phases of clinical studies
include elacestrant, camizestrant, amcenestrant, imlunestrant,
and rintodestrant (173, 175).

Additionally, SARMs like enobosarm show great promise as a
novel class of endocrine therapy. Like SERMs, SARMs also
exhibit both tissue-dependent agonist and antagonist effects
(172). Enobosarm is a first-in-class oral SARM that targets the
Androgen Receptor (AR), thus inhibiting the growth of AR-
positive, ER-positive breast carcinoma cells (172). As the AR is

expressed in approximately 80%–90% of ER-positive breast
carcinomas, SARMs serve as alternative means of endocrine
therapy for those patients with AR-positive, ER-positive,
metastatic breast cancer (176–182). A phase II clinical trial
conducted showed that 9 mg or 18 mg, once daily treatment
with enobosarm showed a clinical benefit rate of 32% in the 9-mg
cohort and 29% in the 18-mg cohort for those enrolled in the
study (170, 176). The phase III ARTEST trial is currently
underway which will observe enobosarm monotherapy versus
an active control of a SERM or exemestane, in patients with
metastatic breast cancer of ER-positive, HER2-negative, and AR-
positive (≥40% nuclei staining) origin who had progressed on
previous therapy with a non-steroidal AI, fulvestrant, and a
CDK4/6 inhibitor (172).

Although resistance to hormone therapy develops in 30%–

50% of ER-positive breast cancer patients, the utilization of
combination therapies provides insight into the treatment of
resistant and relapse cases (22). The development of tamoxifen
resistance is the result of various underlying mechanisms that are
still being explored. These include the activation of the
signaling pathways via receptor tyrosine kinases, as well as
more recent studies which have found the involvement of
cell cycle regulators and transcription factors in tamoxifen
treatment resistance (183–188). The activation of the PI3K-
PTEN/AKT/mTOR pathway via receptor tyrosine kinases
overexpression is believed to be closely related to tamoxifen
resistance (185, 186). Additionally, Breast Tumour Kinase
(BRK), a non-receptor type tyrosine kinase, has been found to
confer resistance to tamoxifen treatment in breast cancer
through the regulation of CDK1 tyrosine phosphorylation
(187). Further, cell cycle regulators, such as LEM4, have been
found to render ER + breast cancer cells resistant to tamoxifen
when overexpressed through ERα signaling and activation
of the cyclin D-CDK4/6 axis (184). Furthermore, the
transcription factor KLF4, has been shown to overcome
tamoxifen resistance via suppression of the MAPK signaling
pathway (183).

5 Conclusion

ER-positive breast cancers are the most common molecular
subtype of breast cancer, but this does not imply a dismal
prognosis. The use of SERMs and SERDs offers hope and
improved survival for those diagnosed with ER-positive breast
cancers. However, given the opposing cellular effects of ERα and
Erβ, the Erα/ERβ ratio is, therefore, an important determinant of
breast cancer behavior and response to endocrine therapy. A
higher ERα/ERβ ratio has been linked to increased resistance to
SERMs and endocrine therapy, whereas a higher ERβ expression
correlates with improved responsiveness to treatment (189).
These findings highlight the therapeutic potential of ERβ
agonists or strategies that restore ERβ expression to
counteract ERα-driven malignancy. Additionally, the recent
advancements in expanding the scope of endocrine therapies
through the use of SARMs and combination therapies provide
further inspiration and optimism for those currently battling ER-
positive breast cancers.
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