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The high incidence and mortality rates associated with gastrointestinal cancers
represent a significant global health challenge. In recent years, CAR T cell therapy
has emerged as a promising immunotherapeutic approach, demonstrating
favorable clinical outcomes. However, the application of traditional CAR T cell
therapy in gastrointestinal cancers faces numerous challenges, including the
suppressive tumor microenvironment and limitations in anti-tumor efficacy. The
application of engineered bacteria offers a novel strategy to enhance CAR T cell
therapy by modulating the tumor microenvironment and boosting immune
responses, potentially leading to improved therapeutic outcomes. This review
synthesizes the current research advancements related to engineered bacteria-
assisted CAR T cell therapy in gastrointestinal cancers, exploring its underlying
mechanisms, clinical applications, and future developmental directions.
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1 Introduction

Gastrointestinal (GI) cancers, which encompass malignancies of the digestive system,
including colorectal, gastric, and esophageal cancers, represent a significant global health
concern. With increasing incidence rates, these cancers are among the leading causes of
cancer-related mortality worldwide (1). The complex interplay of genetic, environmental,
and lifestyle factors contributes to the development of GI cancers, necessitating innovative
therapeutic strategies to improve patient outcomes (2). Among these strategies, chimeric
antigen receptor T-cell (CAR T-cell) therapy has emerged as a promising approach,
particularly in hematological malignancies. However, its application in solid tumors,
including GI cancers, poses unique challenges due to the heterogeneous nature of these
tumors and the immunosuppressive tumor microenvironment (3).

CAR T-cell therapy involves genetically modifying T-cells to express a receptor that targets
specific tumor antigens, allowing for more precise tumor cell destruction. The development of
CAR T-cell therapy has progressed significantly since the first FDA-approved product in 2017,
which targeted CD19 in B-cell malignancies (4). However, the success of CAR T-cell therapy in
solid tumors has been limited by factors such as inadequate tumor infiltration, off-target effects,
and T-cell exhaustion. These limitations highlight the need for adjunctive strategies to enhance
the efficacy of CAR T-cell therapy in treating GI cancers (5).
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One such adjunctive strategy involves the use of engineered
bacteria. These microbes can selectively target tumor sites, modulate
the immune response, and deliver therapeutic agents directly to the
tumor microenvironment. Engineered bacteria can be designed to
express immunomodulatory factors or chemotherapeutic agents,
thereby enhancing the anti-tumor effects of CAR T-cells (6–8). This
approach addresses the challenges associated with CAR T-cell
therapy and opens new avenues for treatment by harnessing the
unique properties of bacteria to improve therapeutic efficacy
and safety.

In this review, we will explore the epidemiological landscape of
GI cancers, the principles and evolution of CAR T-cell therapy, and
the potential of engineered bacteria as a complementary strategy to
enhance CAR T-cell therapy in the treatment of gastrointestinal
malignancies. By integrating these innovative approaches, we aim to
provide insights into the future of cancer therapy and the potential
for improved outcomes in patients with GI cancers.

2 Main

2.1 The composition and role of the tumor
microenvironment in
gastrointestinal cancers

The tumor microenvironment (TME) plays a critical role in the
development, progression, and therapeutic GI cancers. It is
composed of various cellular and non-cellular components,
including cancer cells, stromal cells, immune cells, extracellular
matrix (ECM), and signaling molecules. The interaction between
these components creates a complex network that can either
promote or inhibit tumor growth. One of the key players in the
TME is cancer-associated fibroblasts (CAFs), which are known to
secrete growth factors and cytokines that support tumor
proliferation and metastasis (9). Additionally, immune cells such
as tumor-associated macrophages (TAMs) and myeloid-derived
suppressor cells (MDSCs) contribute to an immunosuppressive
environment, allowing tumors to evade immune surveillance (10).

The composition of the TME is influenced by various factors,
including the metabolic state of the tumor, the presence of hypoxia,
and the dysregulation of immune responses. For instance, hypoxia
within the TME can lead to the selection of more aggressive cancer
cell phenotypes and promote angiogenesis, further complicating
treatment strategies (11). Moreover, the gut microbiome has
emerged as a significant factor influencing the TME, with
dysbiosis potentially facilitating tumor initiation and progression
through immune modulation and inflammation (12). The TME also
poses challenges for therapeutic interventions, particularly in the
context of immunotherapy. The presence of immunosuppressive
cells and cytokines can hinder the efficacy of treatments like CAR-T
cell therapy, which has shown promise in hematologic malignancies
but faces significant obstacles in solid tumors, including GI cancers
(13). In summary, the TME in gastrointestinal cancers is a dynamic
and complex entity that significantly influences tumor behavior and
treatment outcomes. Ongoing research is crucial to unravel the
mechanisms governing TME interactions and to identify potential
therapeutic targets that can improve patient responses to treatment.
The integration of insights from molecular biology, immunology,

and microbiome studies will be vital in advancing the field of GI
cancer therapy (8).

2.2 Research progress on CAR T Cell therapy
in gastrointestinal cancers

CAR T cell therapy has emerged as a groundbreaking approach
in the field of cancer immunotherapy, particularly in treating
hematological malignancies. While, its application in solid
tumors, especially GI cancers, presents unique challenges. These
challenges include the identification of suitable target antigens, the
complex TME, and safety concerns related to off-target effects and
cytokine release syndrome (13). Recent studies have focused on
optimizing CAR T cell designs and exploring innovative strategies to
enhance their efficacy against GI cancers, such as colorectal, gastric,
and pancreatic cancers.

One significant advancement in CAR T cell therapy for GI
cancers is the identification of tumor-specific antigens, such as
guanylyl cyclase C (GUCY2C) and claudin 18.2 (CLDN18.2).
GUCY2C has shown promise due to its restricted expression in
normal tissues and consistent overexpression in colorectal cancer,
making it an ideal target for CAR T cell therapy (14). Similarly,
CLDN18.2 has been recognized as a critical target in gastric and
pancreatic cancers, with ongoing clinical trials demonstrating the
safety and efficacy of CLDN18.2-targeted CAR T cells (15). These
studies highlight the potential for CAR T cells to selectively target
malignant cells while sparing normal tissues, thereby reducing the
risk of toxicity.

Moreover, the engineering of CAR T cells to enhance their
persistence and functionality within the TME is a crucial area of
research. Innovations such as “armored” CAR T cells, which are
designed to resist immunosuppressive signals from the TME, have
been developed to improve therapeutic outcomes (16). Additionally,
the incorporation of dual-targeting strategies, where CAR T cells are
engineered to recognize multiple antigens, may help overcome the
issue of antigen heterogeneity commonly observed in solid tumors
(17). These approaches aim to enhance the ability of CAR T cells to
infiltrate tumors and exert their cytotoxic effects effectively.

Despite these advancements, the clinical application of CAR
T cell therapy in GI cancers is still in its infancy. Most clinical trials
have been in early phases, and while some have reported promising
results, challenges such as T cell exhaustion and limited durability of
responses remain (5). The exploration of combination therapies,
such as integrating CAR T cell therapy with immune checkpoint
inhibitors or other immunotherapeutic agents, is being actively
investigated to enhance overall efficacy and patient outcomes
(18). As research progresses, the hope is to refine CAR T cell
therapy for GI cancers, ultimately leading to improved treatment
options for patients facing these challenging malignancies.

2.3 Characteristics of engineered bacteria
and their applications in tumor therapy

Engineered bacteria have emerged as a promising tool in cancer
therapy due to their unique properties, including the ability to target
tumor cells selectively, modulate the immune response, and deliver
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therapeutic agents effectively. These bacteria can be categorized
based on their genetic modifications and functional capabilities. For
instance, some engineered strains are designed to express
therapeutic proteins, such as cytokines or tumor antigens, which
can enhance immune responses against tumors (19). Others are
modified to produce oncolytic agents or to increase their retention in
the tumor microenvironment, thereby maximizing therapeutic
efficacy (20). The versatility of engineered bacteria allows for the
development of personalized cancer therapies that can adapt to the
specific characteristics of individual tumors, making them a valuable
asset in the fight against cancer.

2.3.1 Functions of engineered bacteria
Engineered bacteria can be classified into several categories

based on their design and intended therapeutic functions. One
major classification is based on their pathogenicity; for example,
non-pathogenic strains such as Escherichia coli are often utilized
for their safety profile in clinical applications (21). Another
classification considers the type of modifications made to
enhance their therapeutic potential. Genetic engineering
techniques, such as CRISPR-Cas systems, allow for precise
alterations in bacterial genomes to enhance their functionality,
including improved targeting of tumor cells and modulation of
immune responses (22). Engineered bacteria can also be designed
to produce various therapeutic agents, including cytokines,
enzymes, or even nanoparticles, which can be delivered
directly to the tumor site, thereby increasing the local
concentration of the drug while minimizing systemic side
effects (8, 19). And bacteria can be designed to mediat
metabolic reprogramming like lactate depletion to potentiate
antitumor immunity (23). The multifunctional capabilities of
engineered bacteria position them as a versatile platform for
innovative cancer therapies, capable of addressing the challenges
posed by traditional treatment methods.

2.3.2 Role of engineered bacteria in enhancing
immune responses

Engineered bacteria play a crucial role in enhancing immune
responses against tumors through various mechanisms. They can
stimulate both innate and adaptive immunity, leading to a robust
anti-tumor effect. For instance, certain engineered strains can
activate dendritic cells and promote the proliferation of T cells,
which are essential for effective immune surveillance and tumor
eradication (24). Additionally, engineered bacteria can be designed
to deliver immune-modulating agents, such as checkpoint
inhibitors, directly into the tumor microenvironment, thereby
overcoming the immunosuppressive barriers often present in
tumors (25). The ability of these bacteria to selectively proliferate
in hypoxic tumor regions further enhances their therapeutic
potential, as they can compete for nutrients and space with
tumor cells while simultaneously releasing therapeutic agents
(20). Unlike the nanoparticle systems rely on passive EPR-driven
diffusion, often failing to reach hypoxic tumor cores, bacteria enable
dynamic, self-replicating therapy, nanoparticles face dose
limitations and poor penetration (24, 25). The integration of
engineered bacteria into cancer immunotherapy represents a
significant advancement in the development of more effective
and personalized treatment strategies.

2.3.3 Comprehensive summary of bacterial strains
in tumor therapy

Engineered bacterial strains demonstrate distinct mechanisms
and therapeutic potential in tumor therapy. Salmonella
typhimurium VNP20009 requires slyA, STM3120, and htrA genes
(26) for tumor colonization and immune activation via TNF-α/IL-
1β induction (27), though its clinical translation has been limited by
attenuated tumor colonization in humans (28). In contrast, S.t
ΔppGpp, engineered with cytolysin A (ClyA) and radiotherapy
synergy, enables dual tumor lysis and bioluminescence imaging
(29). The Salmonella enterica A1-R strain directly lyses tumors
through matrix metalloproteinase secretion, showing broad
efficacy in multiple tumor models (30), while the LT2-derived
CRC2631 strain balances safety and tumor-selective replication
(31). The obligate anaerobic Salmonella eliminates systemic
toxicity by hypoxia-targeted gene regulation, achieving robust
efficacy in breast cancer models (32). Despite these advances,
challenges persist, including host immune clearance, strain
optimization for motility, and reconciling attenuation with
therapeutic potency (27). Future directions emphasize metabolic
engineering E. coli and synthetic biology to design tumor-localized
strains like YB1 (32), aiming to synergize bacterial therapies with
checkpoint inhibitors and chemotherapy.

2.4 Mechanisms of Engineered Bacteria-
assisted CAR T Cell therapy

The integration of engineered bacteria into CAR T cell therapy
represents a novel approach aimed at enhancing the efficacy of
cancer treatments (Figure 1). This strategy leverages the unique
properties of bacteria to modulate the TME and improve the
therapeutic outcomes of CAR T cells. Engineered bacteria can be
designed to deliver therapeutic agents, such as cytokines, directly to
tumor sites, thereby creating a more favorable environment for CAR
T cell activity. For instance, non-pathogenic strains like E. coli have
been utilized to express immune-activating cytokines, which can
stimulate immune responses and facilitate the infiltration of T cells
into tumors. This dual action not only enhances the local immune
response but also helps overcome some of the immunosuppressive
barriers typically present in solid tumors, thereby improving the
overall effectiveness of CAR T cell therapies (21).

2.4.1 Enhancing CAR T Cell activity by modulating
the tumor microenvironment

The tumor microenvironment plays a critical role in
determining the success of CAR T cell therapies. Engineered
bacteria can significantly alter the TME to enhance CAR T cell
activity. For example, bacteria can be engineered to produce specific
cytokines that counteract the immunosuppressive signals present in
the TME. One study demonstrated that non-pathogenic E. coli
expressing a decoy-resistant IL-18 mutein could activate natural
killer (NK) cells and enhance their trafficking into tumors,
ultimately leading to improved survival in treatment-resistant
cancer models (21). Furthermore, the use of nanoengineered
CAR T cells has shown promise in remodeling the TME through
photothermal strategies, like INPs engineered CAR-T biohybrids
(CT-INPs) not only retain the original activities and functions of
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CAR-T cells, but it is further armed with fluorescent tracing and
microenvironment remodeling abilities (33). And TGF-β blocking
together with photothermal therapy promote tumor-targeted
migration and long-term antitumor activity of CAR-T, which
disrupt the cellsextracellular matrix and promote better
infiltration of CAR T cells into solid tumors (34). Additionally,
other approaches have involved the use of inverted cytokine
receptors to convert inhibitory signals into stimulatory ones,
thereby enhancing CAR T cell function in hostile environments
like pancreatic tumors (35). These strategies underscore the
potential of engineered bacteria to create a more conducive
environment for CAR T cell action, thereby improving
therapeutic outcomes. One preclinical study showed the ability of
Salmonella + Alb-IL2 to serve as a novel therapeutic approach to
induce T cell-mediated antitumor immunity in a murine model of
cancer (36). Vincent et al. engineered bacteria that colonize solid
tumours to deliver synthetic antigens and generated CAR-T cells
specific for these antigens. This approch effectively eliminated
tumours in mouse models of breast and colon cancer (7).

2.4.2 Promoting immune cell infiltration and
activation

In addition to modifying the TME, engineered bacteria can
facilitate the infiltration and activation of various immune cells,
thereby enhancing the overall immune response against tumors. The
presence of bacteria in the TME can attract immune cells, such as
T cells and NK cells, to the tumor site. This recruitment is crucial for

mounting an effective anti-tumor response. For instance, the
engineering of CAR T cells to express chemokines like
CXCL9 has been shown to improve T cell trafficking to tumors,
resulting in enhanced antitumor efficacy (37). Moreover, the use of
oncolytic viruses combined with CAR T cells has demonstrated the
ability to increase immune cell infiltration (38), though new
concerns like the oncolytic virus-derived type I interferon restrict
CAR T cell therapy effect persist (39). Oncolytic mineralized
bacteria can lead to the activation of myeloid cells within the
tumor, which further supports the development of a robust
antitumor immune response (40). Engineered immune cells and
bacteria classically activated macrophages within tumor tissue,
which directly kill tumor cells (41). Overall, the strategic use of
engineered bacteria not only enhances CAR T cell activity but also
promotes a more comprehensive immune response, thereby
improving the potential for successful cancer immunotherapy.

2.5 Future development directions and
challenges

2.5.1 Future directions in combination therapies
The integration of engineered bacteria with CAR T cell therapy

represents a promising frontier in cancer treatment. CAR T cell
therapy has revolutionized the management of certain hematologic
malignancies, but its application in solid tumors has been limited
due to the immunosuppressive tumor microenvironment and the

FIGURE 1
Mechanisms of Engineered Bacteria-Assisted CAR T Cell Therapy: Engineered bacteria can assist CAR-T cells through three main ways: Cytokine
secretion, Reshaping ECM and Metabolic remodeling.
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challenges of T cell infiltration. Engineered bacteria, with their
unique ability to selectively target tumors and modulate the
immune response, offer a novel strategy to enhance the efficacy
of CAR T cell therapies. Research has shown that bacteria can be
engineered to produce therapeutic agents or stimulate immune
pathways that can synergize with CAR T cells, potentially
overcoming the barriers faced in solid tumor environments (42).

To optimize the synergy between engineered bacteria and CAR
T-cell therapy, it is crucial to precisely modulate the TME. This can be
achieved by designing engineered bacteria that secrete specific cytokines
(such as IL-12 or IL-18 mutants) or metabolites to directly alter the
immunosuppressive TME, enhancing CAR T-cell infiltration and
activity (10, 43). Furthermore, developing bacteria that respond to
TME signals like hypoxia or pH changes can enable controlled, on-
demand release of therapeutic factors, minimizing systemic toxicity (44,
45). A dual-target strategy, combining tumor-specific antigens and
chemokine receptors, would improve the targeting of gastrointestinal
tumors while reducing off-target effects (45). Additionally, utilizing
CRISPR-Cas or phage integration technologies to engineer non-
pathogenic bacteria with suicide switches ensures the safe
elimination of bacteria after treatment (22).

In terms of treatment innovation, combining engineered
bacteria with immune checkpoint inhibitors, such as PD-1/PD-
L1 antagonists, can help overcome T-cell exhaustion and improve
CAR T-cell efficacy (46). Integrating oncolytic viruses or

nanotechnology into bacterial delivery systems, including hybrid
bacterial-virus carriers, could further enhance tumor disruption and
facilitate CAR T-cell infiltration (47). Personalized therapies tailored
to a patient’s unique microbiota could improve treatment tolerance,
while multi-antigen CAR T-cell therapies, augmented by engineered
bacteria, would address tumor heterogeneity (48).

2.5.2 Challenges and potential strategies
We also addresses safety risks in bacterial-mediated tumor

therapy, focusing on bacterial toxicity and immune
hyperactivation. Live bacterial therapy carries certain risks,
including infection risk and immunogenicity. We propose
engineered inducible kill switches (e.g., toxin-antitoxin systems
controlled by tumor-specific promoters) to restrict bacterial
proliferation post-treatment (49) (Figure 2). Moreover, bacterial
components (e.g., LPS) may trigger cytokine storms via cGAS-
STING/NF-κB pathways (50). In vitro in vivo trials are necessary
to test these potential side effects. And dual-control circuits (oxygen/
pH-responsive elements) may ensure bacterial clearance upon
immune overactivation, balancing efficacy and safety in the
future. To ensure clinical applicability, standardized production
methods for both engineered bacteria and CAR T-cells must be
developed for large-scale use. Early clinical trials, particularly in
cancers like colorectal or gastric cancer, can validate the safety and
efficacy of these combined therapies. Finally, long-term safety and

FIGURE 2
Future development directions: This figure shows the potential research and clinical directions for the combination of CAR-T therapies with
engineered bacteria in solid tumor treatment.
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resistance monitoring are critical, requiring strategies to manage
potential inflammation and tumor escape mechanisms.

3 Conclusion

The integration of engineered bacteria to assist CAR T-cell therapy
presents a promising frontier in the treatment of gastrointestinal
cancers. This innovative approach harnesses the unique properties of
bacteria to enhance the efficacy of CAR T-cell therapies, potentially
overcoming many of the limitations currently faced in the field. The
ability of engineered bacteria to localize to tumor sites, modulate the
tumormicroenvironment, and activate immune responses could lead to
improved therapeutic outcomes for patients suffering from these
challenging malignancies. However, this promising strategy is not
without its challenges. Key issues that require further exploration
include the optimization of bacterial delivery systems, the assessment
of safety profiles, and the understanding of the complex interactions
between engineered bacteria, CAR T-cells, and the host immune
system. Moreover, the heterogeneity of gastrointestinal tumors adds
another layer of complexity, necessitating tailored approaches to
maximize therapeutic effectiveness.

In balancing the various research perspectives and findings, it is
crucial to adopt a multidisciplinary approach that incorporates
insights from immunology, microbiology, and oncology.
Collaboration among researchers, clinicians, and industry
stakeholders will accelerate the development of this innovative
therapy. Future research directions should prioritize the design of
clinical trials that evaluate not only the efficacy but also the safety
and tolerability of this combined therapy. Additionally, investigating
the mechanisms by which engineered bacteria enhance CAR T-cell
function will be vital for optimizing treatment strategies. As we look
ahead, the potential for engineered bacteria to revolutionize CAR
T-cell therapy in gastrointestinal cancers is significant. By
addressing the critical questions and challenges identified in this
review, the field can move toward a deeper understanding of how to
effectively leverage this synergy.
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