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Fibroblast Activation Protein (FAP) has emerged as a critical player in cancer
biology, particularly in shaping the tumour microenvironment (TME) and
influencing immunotherapy outcomes. FAP-positive cancer-associated
fibroblasts (CAFs) play multiple roles in tumour progression and immune
modulation. FAP, predominantly expressed on CAFs, contributes significantly
to extracellular matrix remodelling, angiogenesis, and the creation of an
immunosuppressive milieu. There are complex interactions between FAP-
positive CAFs and various components of the immune system, highlighting
their impact on T cell function and macrophage polarisation. This makes FAP
a promising target for cancer therapy and potentially as a biomarker for
immunotherapy treatment response. This review highlights the clinical
challenges to target FAP and also addresses the heterogeneity of CAFs with
the need for more refined characterisation to enhance therapeutic strategies and
future research directions.
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1 Introduction

Immunotherapy has significantly transformed the landscape of cancer treatment by
introducing a range of innovative strategies, including checkpoint inhibitors, CAR T-cell
therapies, and personalised cancer vaccines. These advances in immunotherapy have shown
considerable promise in improving patient outcomes but also face notable limitations due to
their varying efficacy across different cancer types and among diverse patient populations.
The variation in treatment response, coupled with the high costs associated with these
therapies and the potential for severe, sometimes life-threatening side effects, underscore
the critical need for accurate and reliable prediction of immunotherapeutic outcomes. This
requirement for precision in forecasting responses is essential not only to enhance
therapeutic efficacy but also to minimise adverse effects and optimise patient care in
oncology (1, 2).

Recent advances in the field of oncology have significantly deepened our understanding
of the tumour microenvironment (TME) and its crucial role in modulating responses to
various therapies, including immunotherapy. The inherent complexity of the TME, shaped
by its diverse cellular and molecular constituents, plays a pivotal role in influencing the
efficacy of immunotherapies, either by promoting or inhibiting immune evasion and
tumour growth. Among the most critical elements within the TME are the cancer-
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associated fibroblasts (CAFs). Predominantly prevalent in solid
tumours, CAFs can make up to 90% of the cellular mass in
certain cancers. They are known for their ability to secrete a
range of cytokines and growth factors that can significantly
reshape the landscape of immune surveillance and alter the
overall responses to therapy, making them attractive targets in
the development of new therapeutic strategies (3, 4). Fibroblast
Activation Protein (FAP), a pivotal marker and mediator expressed
by CAFs, has emerged as a significant diagnostic, therapeutic, and
prognostic target due to its multifaceted roles in the tumour
microenvironment. This review focusses on opportunities in
targeting FAP and the unique challenges in the TME especially
with immunotherapy treatment.

2 Cancer-associated fibroblasts (CAFs)

2.1 Origin and heterogeneity

Cancer-associated fibroblasts (CAFs) are pivotal elements
within the tumour microenvironment, originating from diverse
sources that contribute to their significant heterogeneity. These
sources include local activation of resident fibroblasts,
recruitment of bone marrow-derived mesenchymal stem cells,
and transitions from epithelial and endothelial cells through
processes known as epithelial-mesenchymal transition (EMT) and
endothelial-mesenchymal transition (EndMT) (5–7). These varied
origins contribute to the spectrum of functional capabilities of CAFs
observed across different tumour types and individual cancers.

The heterogeneity of CAFs is further delineated by their
expression of specific markers, which vary based on their origin
and the local tumour environment. Common markers include
alpha-smooth muscle actin (α-SMA), fibroblast activation protein
(FAP), and vimentin, which are indicative of their activated state and
mesenchymal origin, aiding in distinguishing CAFs from normal
fibroblasts. Additionally, more specific markers like S100A4 and
PDGFRβ have been identified, helping to classify CAFs into
subpopulations such as myofibroblastic CAFs and inflammatory
CAFs, each associated with distinct functions within the tumour
stroma, contributing variably to cancer progression and response to
therapy (8, 9).

2.2 Functions in the tumour
microenvironment

CAFs shape the tumour microenvironment by remodelling the
extracellular matrix (ECM), supporting angiogenesis, and
modulating immune responses. They secrete ECM components
and matrix metalloproteinases (MMPs), which restructure the
tumour stroma, increasing stiffness and invasiveness. This
remodelling promotes tumour growth and invasion while also
enhancing angiogenesis through VEGF release, sustaining the
tumour’s nutrient and oxygen supply (5, 10)

A major function of CAFs is immune modulation. They release
cytokines like TGF-β and IL-6, suppressing effector T cells and
encouraging regulatory T cell (Treg) expansion. CAFs also produce
chemokines that attract immunosuppressive cells such as myeloid-

derived suppressor cells (MDSCs) and Tregs, creating an
environment that allows tumour cells to thrive and evade
immune detection. This immunosuppressive role significantly
affects the success of immunotherapies (6–8, 11).

Interestingly, some CAFs secrete decorin, a protein that inhibits
tumour growth and metastasis. This dual role reflects the complex,
context-dependent nature of CAFs in tumour biology (10).

Given their multifaceted influence (see Figure 1), CAFs present
promising targets for cancer therapy—particularly in boosting
immunotherapy effectiveness by disrupting their tumour-
supportive functions (5–7).

2.3 History and structural details of fibroblast
activation protein

Fibroblast activation protein (FAP) was first identified by Rettig
et al in themid-1980swhile studying cell surface antigens to characterise
activated fibroblasts (12). They used a monoclonal antibody called F19,
which detected an antigen on various cell types, including epithelial
cancer cells, soft tissue sarcomas, granulation tissue in wound healing
and foetalmesenchymal fibroblasts. This antigenwas named “FAP” due
to its strong expression on activated fibroblasts but not on normal
fibroblasts or epithelial tumours (13).

The protein structure of FAP includes several key domains,
namely, the large extracellular domain, transmembrane domain and
a short cytoplasmic tail. The extracellular domain contains the
catalytic alpha/beta-hydrolase domain, which houses the catalytic
domain and the eight-bladed beta-propeller domain, which is
important for the protein’s structure and function (13, 14).
Within the catalytic domain, FAP possesses a catalytic triad
typical of serine proteases, consisting of Serine (S624), Aspartate
(D702) and Histidine (H734). This triad is crucial for its enzymatic
activities, including both its dipeptidyl peptidase and endopeptidase
functions. These serine proteases work together to catalyse the
hydrolysis of peptide bonds. The serine residue in FAP’s active
site acts as a nucleophile, enabling the cleavage of N-terminal Pro-X
peptide bonds, whereX represents any amino acid except proline or
hydroxyproline (13).

2.3.1 Substrates of fibroblast activation protein
FAP exerts its effects through both dipeptidyl peptidase and

unique endopeptidase activities, particularly targeting collagen types
I and III after initial breakdown by matrix metalloproteases. This
highlights its role in tissue remodelling and fibrosis (8, 9).

FAP also cleaves α2-antiplasmin (α2-AP), enhancing its
inhibition of plasmin and slowing fibrinolysis, which promotes
scar formation. The cleaved α2-AP binds fibrin 13 times faster,
earning FAP the name antiplasmin-cleaving enzyme (APCE) (9, 12).

Additionally, FAP inactivates Fibroblast Growth Factor 21
(FGF21), a hormone vital for regulating glucose, lipid, and
energy metabolism, and for protecting cells from inflammation
and immunometabolic stress (9, 13).

2.3.2 Enzymatic activity of fibroblast
activation protein

Fibroblast activation protein (FAP) exhibits dual enzymatic
activity: dipeptidyl peptidase and endopeptidase. The

Oncology Reviews frontiersin.org02

Lee and Al-Ogaili 10.3389/or.2025.1617487

https://www.frontiersin.org/journals/oncology-reviews
https://www.frontiersin.org
https://doi.org/10.3389/or.2025.1617487


dipeptidyl peptidase activity cleaves Pro-X bonds at the
N-terminus of substrates, such as neuropeptide Y and brain
natriuretic peptide, thereby influencing neuropeptide signalling
and cardiovascular regulation. Endopeptidase activity, unique
to FAP, cleaves Gly-Pro-X sequences in denatured proteins
such as collagen types I and III, aiding extracellular matrix
(ECM) remodelling, tumour invasion, and fibrosis. FAP also
enhances α2-antiplasmin fibrinolysis inhibition and inactivates
fibroblast growth factor 21 (FGF21), thereby impacting
metabolism and immune regulation. These enzymatic
functions highlight FAP’s critical role in ECM remodelling
and disease progression, establishing its potential as a
therapeutic target (15, 16).

2.4 Fibroblast activation protein expression
in normal tissue, benign and
malignant pathology

2.4.1 Fibroblast activation protein expression in
normal tissues and benign disease

In healthy adult tissues, FAP expression is minimal or absent in
organs like the uterus, cervix, placenta, breast, and skin. However,
FAP can be selectively expressed during tissue remodelling in
conditions like wound healing, embryogenesis, inflammation,
and fibrosis (17).

FAP is upregulated on activated fibroblasts during wound
healing. Keloid scars contain more FAP-positive fibroblasts than
normal skin (18). In liver fibrosis, FAP is prominently expressed
on hepatic stellate cells (HSCs), particularly in fibrotic septa near
inflammation. These FAP-positive HSCs—typically α-SMA-
negative—are thought to represent a fibrosis-driving

subpopulation and serve as a stronger marker than
GFAP (19, 20).

In Crohn’s disease, FAP is significantly upregulated in
myofibroblasts within intestinal strictures—an effect not seen in
ulcerative colitis. Immunohistochemistry and imaging confirm FAP
activity in fibrostenotic regions (21, 22).

Arthritis also shows FAP upregulation. In osteoarthritis,
chondrocyte surface FAP is elevated, with FAPI PET-CT scans
demonstrating uptake in affected joints (21, 23).

Cardiovascular conditions like atherosclerosis and myocardial
infarction show FAP expression in aortic smooth muscle cells and
peri-infarct zones. FAP imaging can also detect early chemotherapy-
induced myocardial injury (21).

IgG4-related disease, a fibrotic condition, demonstrates broad
FAP expression, with imaging detecting more sites than symptoms
suggest. Some benign tumours, like angiomyolipoma and solitary
fibrous tumours, also show low-level FAP uptake compared to
malignant lesions (21).

2.4.2 Fibroblast activation protein expression in
malignant disease

FAP is expressed in many cancers and contributes to tumour
progression and metastasis. It is found on CAFs within the tumour
stroma and, in some cases, on tumour cells themselves. FAP is
commonly seen on fibroblasts surrounding epithelial cancers such
as those of the skin, breast, prostate, colon, pancreas, and in sarcomas
(24). Tumour cells expressing FAP include pancreatic
adenocarcinoma, sarcoma, oesophageal and gastric cancers,
colorectal cancer, mesothelioma, breast ductal adenocarcinoma,
oral squamous cell carcinoma, glioma, ovarian, and cervical
cancers (25). This specific localisation in both stroma and tumour
cells makes FAP a promising prognostic and therapeutic target.

FIGURE 1
Role of CAF in modulating immune responses in the tumour microenvironment.
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2.5 Functions of fibroblast activation protein
in tumour biology

2.5.1 Role in tumour invasion, metastasis, and
immune evasion

FAP has been shown to promote tumour invasion through
several mechanisms. FAP is associated with α3β1 integrin which
allows FAP to localise to invadopodia and enhance extracellular
matrix degradation and invasion. Studies with ovarian cancer cells
showed that the inhibition of α3β1 integrin reduced FAP-induced
proliferation and migration (15, 26). Besides that, FAP can directly
affect cell motility and migration via its enzymatic activity with the
PTEN/PI3K/Akt and Ras-ERK pathway (27).

FAP plays a vital role in angiogenesis by contributing to the
reorganisation of ECM which helps to promote endothelial cell
invasion and capillary growth (15). Studies involving gastric cancer
biopsies showed increased micro-vessel density with cancers of
higher FAP expression (28). FAP is localised around the
invadopodia of endothelial cells and the endothelial cells of
developing microvascular systems in multiple malignancies (15).

Moreover, FAP plays a significant role in mediating immune
evasion within the TME. FAP is expressed by CAFs which contribute
to immune suppression in the TME directly by promoting regulatory
T cells (Tregs) and tumour-associated macrophages via secreted
cytokines and indirectly by ECM remodelling and creating a
physical barrier (29, 30). Pancreatic cancer mouse models depleted
of CAFs showed improved efficacy of checkpoint inhibitor therapy,
confirming the role of CAFs in TME immune suppression. The
chemokine (C-X-C motif) ligand 12 (CXCL12) was suggested to
be responsible for this process and is produced by FAP-positive CAFs
(31). Another study suggested FAP expressing macrophages induces
immunosuppression by releasing heme oxygenase-1, which creates
carbon monoxide, which suppresses the pro-apoptotic effects of
TNFα on endothelial cells (15, 32).

2.6 Cancer associated fibroblasts, fibroblast
activation protein and the immune
microenvironment

2.6.1 Immune modulation by cancer associated
fibroblasts

FAP positive (FAP+) CAFs have a substantial impact on the
tumour immune microenvironment, influencing the behaviour and
efficacy of immune cells in several mechanism.

1. Cytokine secretion: FAP + CAFs contribute to the creation of
an immunosuppressive tumour microenvironment. They can
inhibit the activity and proliferation of T cells, which are crucial
for the immune response against tumours. This effect is often
mediated through the secretion of immunosuppressive
cytokines such as interleukin-6 (IL-6) and transforming
growth factor-beta (TGF-β) (33–35).

2. Chemokine Secretion: FAP + CAFs secrete various chemokines
that critically alter the recruitment and distribution of immune
cells within the tumour microenvironment. For example, FAP
+ CAFs produce CXCL12, which has a dual role in attracting
stromal cells and excluding effector T cells from tumour sites,

thereby facilitating an immunosuppressive environment
conducive to tumour growth. Additionally, CAFs can
produce CCL2 (MCP-1), which attracts myeloid-derived
suppressor cells (MDSCs) and macrophages that further
support tumour growth and suppress anti-tumour immune
responses (31, 36).

3. Modulation of Macrophages: FAP + CAFs influence
macrophage polarization, promoting the differentiation of
macrophages towards an M2-like phenotype.
M2 macrophages are associated with tissue repair and
tumour progression, as they produce anti-inflammatory
cytokines and support angiogenesis and remodelling of the
extracellular matrix (19, 37, 38).

4. Physical Barrier Formation: By remodelling the extracellular
matrix, FAP + CAFs can physically impede the penetration of
effector immune cells, such as cytotoxic T lymphocytes, into
the tumour mass. This dense extracellular matrix can act as a
physical barrier that limits the accessibility of immune cells to
cancer cells (39–41).

5. Interaction with Other Immune Checkpoints: FAP + CAFs can
affect the expression of other immune checkpoints on the
surface of tumour cells or immune cells. For instance, they can
promote the expression of PD-L1 on tumour cells, which
interacts with PD-1 on T cells to inhibit their activation and
function (42–44).

6. Modulation of Antigen Presentation by CAFs: CAFs play a
significant role in regulating antigen presentation within the
tumour microenvironment. These stromal cells can directly
interact with dendritic cells (DCs) and other antigen-
presenting cells (APCs), or they can modulate these cells’
functions indirectly through the secretion of cytokines and
growth factors. This interaction can either enhance or suppress
the immune responses, depending on the signals and the
context within the tumour stroma, thereby influencing both
the initiation and the propagation of anti-cancer immune
activity (45–47).

2.7 Impact of FAP positive cancer associated
fibroblasts on immunotherapy

CAFs are a heterogeneous group with multiple subsets, each
playing distinct roles in the TME. The CAF-S1 subset has been
identified as particularly important in immunosuppression. CAF-S1
fibroblasts attract T lymphocytes to the tumour site, enhance the
survival of CD4+CD25+ T cells, and facilitate their transformation
into CD25+FOXP3+ regulatory T cells (Tregs). Furthermore, CAF-
S1 fibroblasts augment the immunosuppressive capabilities of Tregs,
enabling them to inhibit the proliferation of effector T cells more
effectively. In contrast, CAF-S4 fibroblasts do not exhibit these
immunosuppressive properties (48).

Current therapeutic strategies targeting CAF-associated
pathways focus on modulating the immunosuppressive effects of
these cells. However, given the heterogeneity of CAFs and their
complex interactions within the TME, further research is needed to
develop more targeted approaches that can selectively inhibit pro-
tumorigenic CAF subsets while preserving the anti-tumour
functions of other fibroblast populations.
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Strategies targeting CAF-associated immunosuppression
include the depletion of CAFs, restoration of their quiescent
phenotype, inhibition of effector molecules, and ECM
remodelling. Simlukafusp alfa is an immunocytokine that binds
FAP on tumour-associated fibroblasts and enhances immune cell
activity by increasing antibody-mediated cytotoxicity through PD-
L1 checkpoint inhibition. It is currently being tested in combination
with anti-PD-1 therapy in Phase II trials for advanced melanoma,
renal cell carcinoma, and pancreatic ductal adenocarcinoma,
showing promising in vitro and in vivo results. Talabostat, a FAP
inhibitor, is under investigation in advanced solid tumours
alongside anti-PD-1 therapy, aiming to modulate TME-associated
immunosuppression.

3 Challenges and future directions

3.1 Understanding the heterogeneity of
cancer associated fibroblasts

It is a major challenge to define CAFs and their sub-populations
and delineate their specific functions in cancer tumorigenesis as they
can originate from a variety of cells. The classification of CAF
subtypes also varies depending on the specific type of cancer being
studied. For example, CAF-N (normal) and CAF-D (divergent) were
described in human oral squamous cell carcinoma (OSCC), CAF-A
and CAF-B in colorectal tumours and four subtypes CAF-S1 to
CAF-S4 in human breast adenocarcinomas. The more common and
unified classification of CAF based on molecular features has been
suggested with the following major subtypes: myofibroblastic CAF
(myCAF), inflammatory CAF (iCAF), interferon-response CAF
(ifnCAF), antigen-presenting CAF (apCAF), matrix CAF
(mCAF), RGS5+ CAF and CAF-S1 to CAF-S5 (49–53). See
summary Table 1.

FAP has been thought to be a potential broad biomarker for CAF
and been proven to play an important role in cancer growth. FAP
positive CAFs are thought to be instrumental in the development of
immunosuppressive TME and high expression of FAP has been
associated with poorer prognosis in various cancers. Consequently,
FAP has attracted significant attention as a potential focus for
developing therapeutic interventions and identifying biomarkers.

Despite numerous studies and technological advances,
identifying a single biomarker that can definitively identify all
CAFs in each tumour has proven challenging. The heterogeneity

of CAFs makes it difficult to identify a single biomarker for all
subtypes, while overlappingmarkers with other cell types complicate
precise identification. CAFs demonstrate remarkable plasticity,
transitioning between different states during tumour progression,
and their functions and phenotypes vary based on tumour type,
stage, and microenvironmental cues. The proportion and
characteristics of CAF subpopulations evolve over time as
tumours progress, and different subtypes show varying spatial
distributions within tumours, adding another layer of
complexity (54, 55).

Cancer-associated fibroblasts (CAFs) are dynamic components
of the tumour microenvironment (TME), playing a crucial role in
coordinating interactions between cancer cells and host matrix
responses. The TME contributes significantly to CAF
heterogeneity, with diverse subpopulations emerging in response
to various environmental factors (55). This plasticity allows CAFs to
adapt their phenotypes to environmental cues. Notably, different
CAF subsets exhibit distinct spatial distributions within the tumour,
highlighting the microenvironment’s influence on their localisation
(54). Furthermore, the microenvironment influences metabolic
interactions between CAFs and cancer cells, impacting tumour
progression. CAFs also play a role in extracellular matrix (ECM)
remodelling, both responding to and shaping the TME (54).

Future research directions to address these challenges include
utilising advanced single-cell analysis techniques, validating findings
using complementary methodologies such as CyTOF, multiplex flow
cytometry, and multiplex immunostaining, and functional
validation using various in vitro and in vivo model systems to
understand the biological significance of proposed CAF
subpopulations. Establishing a standardised classification system,
investigating the role of the tumour microenvironment in shaping
CAF heterogeneity and function, exploring metabolic interactions
between CAFs and cancer cells, and studying ECM remodelling will
contribute to a more comprehensive understanding of CAF biology
and its impact on tumour progression (54).

3.2 Optimizing fibroblast activation protein
targeted therapies

3.2.1 FAP as a biomarker for immunotherapy
FAP could be a potential biomarker to predict response to

immunotherapy treatment. Higher FAP levels were found to
correlate with poorer response and clinical outcomes in bladder

TABLE 1 Summary of four major subtypes of CAF based on molecular features and classification.

Subtype Key biomarkers Functional role References

myCAF SMA, FAP, collagen ECM remodeling, contractility (49, 50)

iCAF FAP, IL-6, CXCL12 Immunosuppression, inflammation (49–52)

apCAF MHC class II, CD74 Antigen presentation (49–51)

ifnCAF IFN-response genes (IFIT1, CXCL1) Anti-tumor immunity (49–51)

mCAF ECM genes, ensheathing tumour nests Restricts T cell invasion (49–52)

RGS5 + CAF RGS5, pericyte markers Myofibroblast-like, vascular niche (49–52)

CAF-S1 to S5 FAP, PDPN, SMA (varies by subset) Adhesion, immunosuppression, invasion (51, 53)
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urothelial carcinoma and cutaneous melanoma patients undergoing
treatment with immune checkpoint inhibitors (56). On the other
hand, pre-clinical mouse models with head and neck cancer show
that absence of FAP positive CAF surprisingly did not affect tumour
progression or sensitise tumours to combination cisplatin and anti-
PD1 treatment. FAP positive CAF were also not found to increase
tumour progression or recurrence in mouse models. It is possible
that there may be a mismatch between gene and protein expression
as FAP gene expression was negatively associated with outcomes
(57). More studies are required to study and confirm FAP as a
potential biomarker for immunotherapy response in various types
of cancer.

3.2.2 Challenges in FAP-targeted therapies
Despite initial interest in targeting FAP for cancer treatment, a

phase II exploratory trial of monoclonal antibody sibrotuzumab
targeting FAP in metastatic colorectal cancer was discontinued
early as it did not show efficacy (58). Unsurprisingly, another trial
with FAP inhibitor talabostat in metastatic colorectal cancer
patients also proved ineffective. There were no objective
responses seen in all 28 participants in the trial. Laboratory
analysis showed significant but incomplete inhibition of FAP
enzymatic activity in the blood (59). The failure of these trials
may be attributed to the heterogeneous nature of cancer-associated
fibroblasts (CAFs) and the function of fibroblast activation protein
(FAP), which can promote tumorigenesis in certain tumours while
inhibiting it in others. Therefore, targeted treatment alone against
FAP may not be effective until we are able to delineate FAP
subtypes accurately and perform personalised targeted
treatment. However, with an improved understanding of the
tumour microenvironment, current research focuses on
combination therapies to optimize FAP-targeted approaches,
particularly involving the immune system. These include
combining FAP inhibitors with immunotherapy and developing
FAP-targeted CAR-T cells to target cancer-associated fibroblasts.
A phase II basket study combining talabostat and immune
checkpoint inhibitor pembrolizumab also showed limited
efficacy without any objective response (60). While FAP-CAR-
T cells show promise in activating the immune system and
eliminating target cells, concerns about on-target off-tumour
toxicity due to low-level FAP expression in healthy tissues
persist. Ongoing clinical trials are investigating FAP-CAR-
T cells, both alone and in combination with immunotherapy or
other targets like Nectin-4, to address these challenges and
improve efficacy (59, 61).

3.2.3 Advances in FAP theranostics
FAP is an attractive target for molecular imaging for cancer as

it is minimally expressed in normal tissues hence is a perfect target
for theranostics. Radionuclide therapy targeting FAP such as
177Lu-EB-FAPI is being investigated and the first-in-human
trial for metastatic radioiodine-refractory thyroid cancer was
conducted in 12 patients with objective response rate of 25%
(62). This early phase study showed that this radioligand
therapy is safe and paves the way for future radioligand studies.
Newer strategies could investigate combining immunotherapy
treatment with radiotherapy which could potentially increase
infiltration by cytotoxic T-cells within the TME hence

enhancing the potency of immunotherapy. Pre-clinical studies
using LNC1004 is supportive of this strategy and is shown to
upregulate tumour PD-L1 expression (63).

3.3 Personalized treatment approaches

FAP positive CAFs present both challenges and opportunities
for targeted cancer therapies. Promising strategies have emerged,
including FAP-activated prodrugs that selectively target tumour
stroma, inhibition of specific signalling pathways involved in
CAF-cancer cell crosstalk, and repurposing existing drugs like
losartan for modulating the tumour microenvironment. Pre-
clinical studies indicate that losartan, an angiotensin II receptor
type 1 antagonist, demonstrates potential in reducing cancer-
associated fibroblast (CAF) activity due to its anti-fibrotic
properties (64, 65).

Further research is needed in several areas to advance
CAF-targeted therapies. These include validating alternative
biomarkers for CAF subtypes, understanding CAF-TME
interactions across various cancer types, conducting
longitudinal studies on CAF dynamics and subtype
interconversion, exploring combination therapies with CAF-
targeted approaches, and developing advanced 3D models to
replicate complex tumour microenvironment interactions
(66–68). Addressing these research gaps will be crucial for
developing personalised therapy approaches that characterise
CAF subtypes, comprehensively analysing the tumour
microenvironment and focusing on tumour-supportive CAFs
rather than broad depletion.

4 Conclusion

In conclusion, FAP-positive cancer-associated fibroblasts
(CAFs) are pivotal in orchestrating the complex interplay
within the tumour microenvironment that crucially influences
cancer progression. Due to their heterogeneity, CAFs play
diverse roles, from extracellular matrix remodelling and
angiogenesis to intricately modulating the immune landscape.
FAP, a salient marker of CAFs, is emerging as a critical
diagnostic and therapeutic target. Its role in immune
modulation is particularly compelling as it facilitates the
creation of an immunosuppressive environment that can shield
the tumour from immune surveillance. This makes FAP not only a
target for traditional therapies but also a potential linchpin in
combination with emerging immunotherapies.

However, harnessing the full potential of targeting FAP-positive
CAFs faces several challenges. Key among these is the need for a
more refined characterization of CAF subtypes to tailor therapies
more precisely and to avoid the broad-brush effects that could
inadvertently promote tumour progression. Moreover, the off-target
effects of FAP-directed therapies necessitate cautious development
to ensure safety and efficacy.

Future research should focus on advancing imaging techniques
that can accurately identify and monitor FAP expression
dynamically within the tumour milieu. Improving CAF
classification systems will enhance our understanding of their
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roles and interactions within the tumour, guiding more effective
combination therapies. By addressing these challenges, targeting
FAP-positive CAFs holds the promise of crafting more nuanced and
potent strategies in cancer therapy. Continued investigation into this
field is essential and promises to substantially advance our
capabilities in cancer treatment, particularly in the era of
immunotherapy, ultimately improving patient outcomes and
expanding the horizons of precision medicine.
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