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Breast cancer (BC) remains a leading cause of cancer-related morbidity and
mortality worldwide. Its marked heterogeneity - encompassing molecular
subtypes, histological characteristics, and variable therapeutic responses -
continues to pose persistent clinical challenges Although advances in surgery,
hormone therapy, chemotherapy, and targeted therapies have significantly
improved patient outcomes, issues such as therapeutic resistance and disease
relapse are still common, underscoring the need for novel molecular targets.
Within this context, non-coding RNAs (ncRNAs) have emerged as pivotal
regulators of breast cancer biology and hold promise as diagnostics and
therapeutic agents. These non-protein-coding RNA molecules include diverse
subclasses, such as long non-coding RNAs (IncRNAs), circular RNAs (circRNAs),
and small non-coding RNAs (sncRNAs), each characterized by distinct structural
features and biological functions. Mounting evidence implicates ncRNAs in key
oncogenic processes - such as tumor initiation, progression, metastasis, immune
evasion, and treatment resistance - often in a subtype-specific manner.
Importantly, ncRNA expression profiles differ significantly across BC subtypes,
and their stability in body fluids underscores their potential utility in liquid biopsy-
based diagnostics. This review provides an integrated overview of the
multifaceted roles of ncRNAs in BC, emphasizing their mechanisms of action,
contributions to tumor heterogeneity, and translational potential as both
biomarkers and therapeutic targets. Understanding ncRNAs complexity and
context-specific functions may pave the way toward more precise,
personalized interventions for BC patients.

KEYWORDS

breast cancer, epigenetics, non-coding RNAs, long non-coding RNAs (IncRNAs), circular
RNAs (circRNAs), small non-coding RNAs (sncRNAs), hormone therapy

1 Introduction

Breast cancer (BC) is one of the most common malignancies worldwide, responsible for
670,000 deaths reported globally and 2.3 million diagnoses. This tumor may interest both
women and men, but the incidence is massively tilted for the female gender, representing
99% of the whole cases, against 0.5%-1% of the male group. Breast cancer is a type of tumor
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with different outcomes and presentations; it is a very heterogeneous
disease in which both environmental and genetic factors are
involved (World Health Organization - www.who.int/news-room/
fact-sheets/detail/breast-cancer). Human breasts are paired
mammary glands that develop in females during puberty under
the influence of various pubertal hormones; it has an inner structure
made of epithelial components consisting of lobules and ducts
(distributed throughout the fibrous and the adipose tissues),
leading out to the nipple (1).

Most breast cancers are adenocarcinomas, and they can be
invasive or non-invasive, according to their tendency to be
circumscribed in the lobules and/or in the ducts (i.e., lobular
carcinoma in situ and ductal carcinoma in situ) or to metastasize

and “invade” other organs or tissues (i.e., Paget’s disease, Triple

Negative Breast Cancer (TNBC), medullary carcinoma,
inﬂammatory breast cancer, mucinous carcinoma, tubular
carcinoma, phyllodes tumor and infiltrating lobular/ductal

carcinoma) (2-10). The possibility of developing breast cancer
can be increased by various genetic or non-genetic factors, like
the presence of mutations in breast cancer susceptibility one and two
genes (BRCAI and BRCA2), smoke, obesity, or prolonged exposure
to estrogen and progesterone hormones (11-13). Based on
molecular and histological evidence, breast cancer comprises
with
distinct behaviors and responses to therapy: Luminal A, Luminal
B, HER?2 positive, and TNBC (Figure 1). Luminal A breast cancers
are positive for the estrogen receptor (ER) and/or for the

several histological and biological/molecular subtypes

progesterone receptor (PR) but not for the Human Epidermal
Growth Factor Receptor 2 (HER2); luminal B are ER+ and/or
PR+ and HER2"", with a general higher proliferation rate;
HER?2 breast cancers are only HER2+, while TNBCs are ER-, PR-
and HER2-. This last subtype represents the most aggressive form of
the tumor, a feature determined by its ability to metastasize and by
the lack of targeted treatment strategies. In fact, according to the

10.3389/0r.2025.1621144

molecular characteristics of each BC type, different approaches are
adopted to reduce/suppress the tumor (14).

In luminal-like breast cancers, the standard procedure is
represented by an endocrine therapy (15-17), while in HER2+
BCs an anti-HER2 humanized monoclonal antibody currently
represents the most effective treatment (18). These compounds
can be used alone or in combination with other procedures like
surgery, radiotherapy, or chemotherapy, but a consistent portion of
patients develop a resistance to the deputed drug (15). For triple-
negative breast cancers there is no standardized treatment regimen
and chemotherapy still represents the primary systemic treatment,
but the efficacy of conventional post-operative adjuvant chemo-
radiotherapy is poor (19). One exception is represented by a specific
TNBC subtype named “LAR” (Luminal AR+) characterized by an
enrichment in androgen response, fatty acid metabolism, and
oxidative phosphorylation.

Interestingly, the LAR-subtype is closely related to the L2 (ER +
luminal BC) hormone-responsive cells, and its cell lines were
uniquely sensitive to the AR antagonist Bicalutamide; therefore,
the next-generation AR antagonist Enzalutamide is currently being
evaluated in AR-positive (AR+) TNBC in combination with
Paclitaxel (20).

In this very heterogeneous and partially uncovered context, a
pivotal role could be represented by epigenetics: understanding the
intricate interplay of the epigenetic modifiers could be critical for
unraveling the complexities of BC progression and developing
targeted therapeutic interventions (21, 22). Non-coding RNAs are
essential components of the complex epigenetic regulation
machinery (Figure 2), and they play crucial roles in the post-
transcriptional regulation of gene expression. Indeed, the
dysregulation of their functions can result in unfavorable
outcomes across various disease pathways (23).

Non-coding RNAs (ncRNAs) are RNA sequences that do not
translate into proteins and can be generally categorized into three

BREAST CANCER SUBTYPES BEST
Luminal A « most common subtype (~40%); PROGNOSIS
o low Ki-67 levels;
ER+and/or PR+, HER2- , targeted therapy: Tamoxifen/Als.
f - e common subtype (~ 20%); )
Luminal B « high Ki-67 levels;
ER+ and/or PR+, HER2+/- « targeted therapy: Tamoxifen/Als
e ~10-15% of BC cases;
HER2 enriched « faster growth than luminal subtypes;
. ER-/PR+/-, HER2+  + targeted therapy: Herceptin.
o
I | Triple Negative « ~15-20% of BC cases, very aggressive;
ER-/ PR-, HER2- « occurs mainly in youger women;
LAR (ER-/PR/HER2-/AR#) * Mo targeted therapy. WORST
PROGNOSIS

FIGURE 1

Scheme of the main molecular classification of Breast Cancer subtypes with their principal markers, histological grade, therapeutic approaches,

and prognosis.
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Regulatory noncoding RNAs
T T
FIGURE 2

Regulatory non-coding RNAs. The scheme shows the main classes of non-coding RNAs according to their size and structure: long non-coding
RNAs (IncRNAs), mainly involved in protein synthesis and epigenetic modifications and post-transcriptional processing; circular RNAs (circRNAs), acting
as competing endogenous RNA, miRNA sponge, and regulators of alternative splicing and parental gene expression; small non-coding RNAs (sncRNAs),
whose functions includes RNA silencing, RNA splicing, maturation and modifications, regulation of transposon activity and chromatin state and

gametogenesis.

main classes (24): long non-coding RNAs (IncRNAs), small non-
coding RNAs (sncRNAs) and circular RNAs (circRNAs). CircRNAs
are a class of endogenous non-coding RNA, characterized by their
covalently closed-loop structures without a 5'cap or a 3'poly(A) tail
(25), while sncRNAs and IncRNAs are regulatory RNAs that differ
in size (26).

2 Selection criteria and methodology

This review article aims to highlight the roles of non-coding
RNAs in a very heterogeneous disease such as breast cancer. Over
the years, many therapeutic approaches have been established and
employed for BC, although they are inadequate or outdone in
severe conditions. Given the avenue of new technologies and the
growing body of research showing non-coding RNA involvement
in BC tumorigenesis, progression, and invasion, this review aims to
attention to the ncRNA’s
potential use as biomarkers and therapeutic targets, examining

draw researchers’ and clinicians’

their mechanisms and regulatory functions. We curated relevant
studies primarily through a PubMed search using keywords
tailored to each section of this manuscript, for example,
“Epigenetics and Breast Cancer”, “non-coding RNAs in cancer”,
“small non-coding RNAs and Breast Cancer”, “long non-coding
RNAs and Breast Cancer” and “circRNAs and Breast Cancer”,

deepening the research by focusing on peer-reviewed articles

Oncology Reviews

published in English, with a preference for those published
during the last decade (2015-2025). Additional references were
included based on cross-referencing and input from expert
contributors  to  ensure thematic = completeness  and
scientific accuracy.

We carefully evaluated the information extracted from these
studies to ensure an accurate representation of the original research
findings. The articles mentioned in this review were chosen
prioritizing our purpose to give the reader an overview of every
non-coding element in relationship with BC by following the same
path: biogenesis, general biological role, eventual implication in
tumorigenesis, invasiveness and migration and drug resistance,
with a final focus on the consequent possible application as
biomarkers or target for new advanced treatment. While every
effort was made to include the most pertinent evidence, due to
the volume of research in this area and the limitations inherent to a
narrative format, we could not include every relevant article, and we
apologize to the authors whose work could not be incorporated into
this review.

This manuscript offers an overview of current knowledge in this
field; despite the richness of the literature available, our work
emerges as a comprehensive and didactic paper of particular
interest for those who approach to the field for the first time and
need a brief overlook to the theme. At the same time, the constant
progress of the research highlights the need for adjourned reports of

the state of the art.
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3 Long non-coding RNAs

Long non-coding RNAs (IncRNAs) are transcripts longer than
200 nucleotides that are not translated into proteins and exhibit
limited evolutionary conservation (27). Classification of IncRNAs is
often based on their genomic positioning relative to protein-coding
genes. Sense IncRNAs are transcribed from the strand as adjacent/
overlapping protein-coding genes, while anti-sense IncRNAs are
generated from the opposite strand. Bidirectional IncRNAs originate
from the protein-coding gene’s promoter but are transcribed in the
opposite direction. Intergenic IncRNAs are generated from regions
between protein-coding sequences, and intronic IncRNAs are
transcribed within the introns of coding genes (28). In addition,

10.3389/0r.2025.1621144

IncRNAs situated between two encoding protein genes can be
classified into two main groups: enhancer-associated (elncRNA),
which often regulate the expression of nearby genes on the same
chromosome, and promoter-associated IncRNAs, which regulate
chromosomal status and epigenetic inheritance (29-32).

The functional roles of IncRNAs are closely linked to their
subcellular localization (Figure 3): in the nucleus, they participate
in the modulation of epigenetic regulators and influence
transcriptional ~programs through chromatin remodelling/
interactions, and through the spatial organization of the nuclear
compartment via scaffolding (33). Within the chromatin, IncRNAs
can act as molecular scaffolds or guides for proteins, facilitating or

inhibiting their recruitment and activity at specific genomic loci
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(34). In the cytoplasm, IncRNAs can regulate mRNA post-
affecting mRNA  stability and
translation and modulating signaling pathways. Importantly, in
the cytoplasm, they also act as miRNA “sponges”™: they can bind
miRNAs, thus reducing their availability to interact with target

transcriptional ~ processes,

mRNAs, thereby indirectly regulating gene expression (35).
IncRNAs
mitochondria, where they are implicated in the regulation of
mitochondrial metabolism, apoptosis, and in their crosstalk with

Furthermore, can be also transported into

the nuclei (36). LncRNAs can also be packaged into exosomes,
which are then released into the extracellular environment; next,
exosome-localized IncRNAs can reach recipient cells, where they
contribute to epigenetic regulation, cell-type reprogramming, and
genomic instability (37).

Due to their extensive gene regulatory capabilities, IncRNAs
influence a wide range of physiological processes, including cell
differentiation, growth, and responses to diverse stresses and stimuli.
Moreover, they play key roles in the nervous, cardiovascular,
hematopoietic and systems and their
pathologies. The involvement of IncRNAs in oncogenesis,

immune associated

specifically in cancer initiation and progression, is increasingly
their

proliferation and survival, often by modulating key oncogenic or

recognized. LncRNA exert effects on cancer cell
tumor-suppressive transcription factors, such as p53 (38-40).

In breast cancer, a growing body of evidence highlights the
aberrant expression of specific IncRNAs across different BC
subtypes, with

progression, and clinical outcomes (Table 1). Furthermore,

strong correlations with tumor initiation,
IncRNAs are particularly attractive as therapeutic targets due to
several advantageous properties: high tissue-specificity, regulation of
specific elements of key cellular networks, limited toxic effects
associated with their targeting, the often fast-turnover and their
low expression levels, which could facilitate quicker effects with
lower doses (41-43).

LncRNAs can intervene in the regulation of breast cancer
stem cells (BCSCs) related pathways; examples are the IncRNA
LINC01133 (which induces Kruppel-like factor 4 (KLF4) gene)
(44, 45) and the long intergenic non-coding RNA 00511
(LINC00511) which functions as a miR-185-3p “sponge”,

10.3389/0r.2025.1621144

indirectly activating (via the E2F1 protein targeting) the
transcription of Nanog, a promoter of regeneration and
prolonged proliferative potential of stem-like cancer cells, able
to mediate oncogenic reprogramming. Thus, the LINC00511/
miR-185-3p/E2F1/Nanog axis
potential, by regulating breast
tumorigenesis (46). Another important example is represented
by LINC00617, which can also impact on the BCSCs self-renewal
capacity through the activation of SOX2 transcription mediated

may also have therapeutic

cancer stemness and

by hnRNP-K recruiting (47). Several long non-coding RNAs can
also regulate breast cancer stem cells through epigenetic
modifications, like the repression of the tumor suppressor
long non-coding RNA (TSLNRs) EPB41L4A-AS2 through the
enrichment of H3K27me3 (48).

A long non-coding RNA that actively intervenes in the
development and maintenance of BC is HOX transcript antisense
RNA (HOTAIR) that inhibits miR-7 expression, leading to increased
SETDBI expression in BCSCs, inducing the epithelial-mesenchymal
transition (EMT).

HOTAIR can additionally foster H3K27 acetylation and
E-cadherin promoter methylation, this mechanism inhibits
E-cadherin production furtherly promoting EMT (49).

Non-coding RNAs are also implied in breast cancer
metastatic progression; as depicted in Figure 3, they can act
by different mechanisms, such as the degradation or silencing of
specific mRNAs, the target of enzymes and microprocessor
subunits involved in miRNA biogenesis, and the sponging of
miRNAs, thus altering the expression of several genes and
modulating different cell signaling pathways. Metastasis-
associated lung adenocarcinoma transcript 1 (MALATI) has
been correlated with an increased tumor size and stage, and a
consequent poor prognosis in human patients: it undergoes tight
transcriptional control in tumor cells by several transcription
factors, both positively and negatively (50). For example,
hypoxia-inducible factor la (HIF-la) upregulates MALATI
with the mediation of AMP-activated protein kinase (AMPK)
(51); the induced IncRNA then acts as a miRNA sponge of miR-
3064-5p, a mechanism that promotes tumor growth and
migration in breast cancer cells (52).

TABLE 1 Scheme of long non-coding RNAs implications in Breast Cancer types.

Long non-coding RNAs (IncRNAs)

Regulation

Breast cancer proliferation capacity/regulation of cancer
stem cells (CSCs)

Breast cancer metastasis

Drug resistance

Chemotherapy resistance

Immune response

IncRNAs
LINCO011333 (KLF4 induction) (44); LINC00511 (miR-185-3p sponge) (46); LINC00617 HR +, HER2 +,
(hnRNP-K recruitment) (47); HOTAIR (miR-7 expression inhibition) (49); EPB41L4A-AS2 TNBC
(TSLNRSs - cell apoptosis induction; H3K27 acetylation and EMT promotion) (48)
MALATI (miR-3064-5p sponge; p53 inhibition; MYC regulation; Wnt signaling regulation) | TNBC, HER2 +
(51-56); NBATI (H3K27me3 level reduction and Wnt signaling modulation; EXH2
suppression) (57); HOTAIR (PRC2 recruitment) (58)
H19 (Tamoxifen-resistance; Beclinl methylation downregulation and autophagy induction) HR +, HER2 +
(59); AFAP1-ASI (Trastuzumab-resistance; ERBB2 translation promotion) (60)
BORG (Doxorubicin/Adriamycin resistance; NF-kB signaling pathway activation) (61); TNBC
LINC00668 (Doxorubicin resistance, SND1 targeting) (61)
Downregulation of XIST (C/EBPa and KLF6 expression inhibition) (62) HR +, HER2 +,
TNBC
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Conversely, the depletion of MALATI triggers the arrest of the
cell cycle followed by a reduced cellular proliferation rate. It activates
p53 - a tumor suppressor that participates in apoptosis and
senescence processes—and its target genes (53).

According to several studies, this long non-coding could be
essential in developing and metastasizing TNBC and HER2-positive
BC because the presence of metastatic lymph nodes is correlated
with MALATI expression in breast cancer patients. In addition,
MYC and its downstream immune regulatory genes (CD47 and PD-
L1) are related to metastasis and relapse in these subtypes of BCs and
are positively regulated by MALATI (54). Huang and colleagues
demonstrated that the knockdown of MALATI in MCEF-7 cells
reduced EGF expression, suggesting that it might initiate
angiogenesis in BC, through modification of miR-145 (55).
According to multiple lines of evidence, MALATI is also
implicated in regulating signaling pathways associated with
cancer progression, such as the Wnt signalling (56), but it is still
uncertain how it affects these pathways.

Another important example of the contribution of the IncRNAs
in breast cancer metastasis formation is represented by
neuroblastoma-associated transcript 1 (NBATI) (57), and by the
aforementioned HOTAIR. The former induces BC cells invasiveness
by reducing H3K27me3 levels, while the latter induces migration
and invasion by recruiting the polycomb repressive complex 2
(PRC2) which leads to the variation of H3K27 methylation levels
and global gene expression alterations (58).

LncRNAS can often interfere in protein translation; it was in fact
shown that abnormally expressed IncRNAs can be also related to
multidrug resistance in breast cancer. In endocrine therapies, the
resistance to Tamoxifen can be mediated by the induction of an
autophagy mechanism; this mechanism can be triggered by long
non-coding RNAs-such as H19 - acting on key mediators of the
process (59). In HER2+ BCs, an augmented expression of the
IncRNA AFAPI-ASI can induce resistance to Trastuzumab by
binding to AUFI, thus promoting ERBB2 translation (60).
Furthermore, several IncRNAs can also be involved positively or
negatively in the resistance to Doxorubicin/Adriamycin: IncRNA
BORG, for example, can activate the NF-kB signaling decreasing the
genomic damage, whilst LINC00668 targets staphylococcal nuclease
domain-containing 1 (SND1) and resistance
to DOX (61).

An altered immune response in the tumor microenvironment

improves the

can also markedly affect cancer occurrence and development. In this
context, IncRNAs can regulate the function of immune cells
impacting the antigen presentation ability of dendritic cells
(DCs): for instance, the IncRNA XIST (62) down-modulation in
M1-type macrophages (M1) leads to the transformation in anti-
inflammatory M2 macrophage (M2) to promote tumor cell
proliferation and migration. Recent studies have shown that
IncRNAs can intervene in immunosuppression and may be a
potential target for cancer immunotherapy, but the mechanism
of tumor immune escape is highly complex and needs to be
extensively investigated (62). Undoubtedly, they are promising
predictive biomarkers and therapeutic targets for breast cancer
immunotherapy, although further research is still required.

All these correlations make long non-coding RNAs good
candidates as biomarkers for tumor diagnosis and prognosis and
for predicting disease progression, but also as therapeutic targets in

Oncology Reviews
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the shape of small molecule inhibitors, siRNAs, antisense
(ASOs), and CRISPR-Cas9.
Collogues, for instance, studied the Differentiation Antagonizing
Non-Coding RNA (DANCR), which is a non-coding RNA involved
in the regulation of different oncogenic mechanisms and

oligonucleotides Vaidya and

undruggable by conventional molecules; it was demonstrated that
the delivery of siRNA against DANCR and its subsequent inhibition
epigenetically represses the expression of cancer-driven pathways,
such as Wnt signaling, EMT, and phosphorylation of several kinases:
siDANCR-NP effectively inhibits migration and invasion of cancer
cells in vitro and tumor growth in vivo (63). A small molecular
inhibitor, ACIQ3QWB, has been implemented in breast cancer-
rived
PRC2  recruitment by
target effects (64).

On the other hand, these compounds are not easy to design, and

xenografts, resulting in efficient

HOTAIR  without

disruption  of
notable  off-

although IncRNAs are opening a new door for clinical diagnosis and
treatment of breast cancer, there are still many difficulties that must
be faced and overcome.

4 Circular RNAs

Circular RNAs (circRNAs) represent a subclass of single-
stranded RNAs derived from precursor mRNAs or IncRNAs and
characterized by a covalently closed loop structure. CircRNAs are
generated by a process known as “RNA back-splicing” in which the
3’-end of an exon is joined to the 5'-end of the same or an upstream
exon, via a 3/, 5'—ph0sph0diester bond. This event creates a closed
circular structure containing a characteristic back-splicing
junction (Figure 4).

CircRNAs are broadly categorized based on their composition.
Most of them are composed only by exonic sequences and are
referred to as exonic circRNAs (ecircRNAs). Less frequently,
circRNAs
(IcirRNAs) or may contain both exonic and intronic sequences
(EIciRNAs). EcircRNAs are mostly localized in the cytoplasm,
although the precise mechanism governing their nuclear export
(65);

ecircRNAs are found within the nucleus where they increase the

may be formed entirely from intronic regions

remains insufficiently understood interestingly, some
nuclear retention of specific proteins or recruit proteins to
chromatin (66). Conversely, most intron-containing circRNAs are
retained in the nucleus, where they may regulate their parental gene
expression (67).

Recent investigations have extended our understanding of
circRNA biology by identifying a subset of circRNAs localized in
mitochondria, extending the complexity of the mitochondrial
transcriptome (68-70). However, the presence and functional
relevance of circRNAs in other organelles and subcellular
compartments remain largely unexplored and warrant further study.

The unique structure of these RNAs makes them more resistant
to exonucleases than their linear counterparts, providing them with
a longer half-life; in fact, circRNAs are often stable and accumulate
in most cell types, with an especially high abundance in neural
tissues. These features make circRNAs attractive candidates as
diagnostic biomarkers and therapeutic targets.

A growing body of research has documented the distinct
expression profiles and functional significance of circRNAs in a

frontiersin.org
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FIGURE 4
Scheme of circular RNAs biogenesis through mRNA back-splicing of exons.

TABLE 2 Scheme of circular RNA implications in Breast Cancer types.

Circular RNAs (circRNAs)

Regulation circRNAs

Breast cancer proliferation/tumorigenesis Has_circRPPH_015 (oncogenic sponge) (77); circ-Amotll (66); HR+, HER2+, TNBC
circPVT1 (97)

Breast cancer progression/metastasis Has_circRPPH_015 (oncogenic sponge) (77); circPSMAL (81); HR+, HER2+, TNBC
circACTN4 (97); circSEPT9 (98); circEZH2 (84); circROBOL1 (85)

Drug resistance Has_circRPPH_015 (oncogenic sponge) (77); circCDYL2 (Trastuzumab HR+, HER2+, TNBC
resistance) (87); circRNA-CREIT (88), circUBE2D2 (92) (Doxorubicin
resistance); circRNA-SFMBT2 (Tamoxifen resistance) (89)

Tumor suppression circBMPR2 (99); circSMARCAS (78) HR+, HER2+, TNBC

range of pathological conditions, including cancer (70-72),  understood. Table 2 summarizes key circular RNAs involved in the
cardiovascular disease (73), neurological disorder (74), and  BC pathological processes.

autoimmune disease (75). Despite these advancements, the Of note, one of the main features of circular RNAs is that they can
mechanisms underlying the abnormal landscape of circRNAs and ~ act as miRNA “sponges,” or competitive inhibitors. By circRNAs
how circRNAs exert their physiopathological roles remain poorly  interaction/sequestration, miRNAs are prevented from binding to
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their mRNA targets, inhibiting miRNA-mediated gene silencing and
protecting target mRNAs from degradation (76). Some circRNAs can
be classified as oncogenic sponges, as they facilitate multiple malignant
behaviors, including tumor proliferation, distance metastatization, and
drug resistance. An example is Has_circRPPH_015, which is
upregulated in BC tissues. At the same time, its knockdown
restrains aggressive behaviors of BC cell line MCF-7: in fact, this
circRNA can bind to miR-326 and negatively regulates ELK; on the
contrary, an elevated expression of miR-326 inhibits cell proliferation,
colony formation, and cell invasion in this BC line (77).

CircRNAs bind often to transcription factors promoters,
regulating their expression. At the same time, they can also
function as scaffold in the modulation of protein-protein
interactions, or even have translational potential.

CircRNAs participate both positively and negatively in breast
cancer development and progress, acting as either oncogenes or
tumor suppressors and their aberrant expression can be associated
with tumoral cell proliferation, apoptosis, autophagy, invasion,
migration, and treatment resistance.

A differential expression of circRNAs has been recently
associated with diverse breast tumor status, drawing attention to
the possibility to outline a circRNA “signature” in different tumor
biopsies or cell lines. Cancer cells can in fact release these ncRNAs in
urine, plasma, and saliva, opening the possibility of using circular
RNAs as potential biomarkers in diagnosis and prognosis, as for the
case of circSSMARCAS5, Hsa_circ_0104824 that were shown to be
decreased in BC patients’ blood compared to controls (78, 79). In
other studies, circPSMA1 appeared upregulated in serum/plasma of
BC patients compared with those of healthy controls (80-82). More
specifically, the overexpression of circPSMA1 promoted TNBC cell
proliferation, migration, and metastasis both in vitro and in vivo
(81), together with another circRNA - circ-Amotll - which is
involved in tumorigenesis, enhancing the stability of c-MYC and
the expression of its targets (66). CircPVTI can work through both
ceRNA and protein scaffolding mechanisms: it sponges miR-181a-2-
3p to modulate ESRI mRNA stability and downstream estrogen/
ERa-target genes, while it represses type I IFNs and ISGs by binding
MAVS to disturb RIGI-MAVS complex formation. This dual
function contributes to ERa-positive BC development (83).
CircRNAs are thus becoming more clinically relevant in breast
cancer diagnosis, particularly for their early detection and
stratification into different subtypes; which ameliorates the
disease prognosis; however, they have been poorly explored in
HER2-related BC subtypes, and more investigations are needed.

Beyond tumorigenesis, these non-coding RNAs also play a role
in progression and metastasis: in a recent work, Peng and colleagues
showed that an overexpression of circEZH2 impacted on the vitality
and the invasion of breast cancer cells, while its knockdown led to
the opposite effects (84). The same molecular mechanism is
furtherly used by circROBOI, another important actor in the
migration and invasiveness of BC cancer cell, especially in liver
metastasis (85).

Resistance to treatments represents still a challenging issue in
breast cancer therapy and survival; in this scenario, a more
personalized approach could represent a significant improvement
and circRNAs might be promising predictive biomarkers, according
to their ability to regulate BC cell sensibility to drugs/treatments
(86). For RNA circCDYL2 confers

example, the circular
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Trastuzumab resistance in BC patients by stabilizing GRB7 and
preventing its ubiquitination degradation; this enhances its
interaction with FAK, which thus sustains the activities of
downstream AKT and ERK1/2 (87). A recent work demonstrated
that circRNA-CREIT is aberrantly downregulated in Doxorubicin-
resistant TNBC cells: the RNA binding protein DHXO9 is responsible
for its reduction by interacting with the flanking inverted repeat Alu
(IRAlu) sequences and inhibiting back-splicing. Mechanistically,
circRNA-CREIT acts as a scaffold for proteins interaction,
affecting the PKR/elF2a signaling axis - related to stress granules
(SGs) assembly - and the RACK1/MTKI1 apoptosis signaling
pathway. Further investigations revealed that a combination of
the SG inhibitor ISRIB and Doxorubicin synergistically inhibits
TNBC tumor growth. Besides, circRNA-CREIT could be packaged
into exosomes and disseminate Doxorubicin sensitivity among
TNBC cells (88).

In hormone therapies, Zheng and colleagues observed that
circRNA-SFMBT2 appeared to be
proliferation and Tamoxifen resistance in vitro (89), whereas
circ_0025202 has reported as
biomarker of BC resistance to Tamoxifen (90), but more research

directly related to cell

been a potential predictive
is needed to confirm the data.

In the end, circular RNAs can be potential biomarkers also in
chemotherapy resistance, as well as radiotherapy and
immunotherapy resistance. The inhibition of cirCDRIlas, for
example, increases the sensitivity to 5-fluorouracil and Cisplatin
of initially resistant BC cells, while an augmented expression of
circSMARCAS5 improves the chemosensitivity to Cisplatin of BC
cells and tumors (78). CircKDM4C is strongly associated with
Doxorubicin resistance cells both in vivo and in vitro being a
potential biomarker for a Doxorubicin response prediction (91).
Similarly, circUBE2D2 is involved in Doxorubicin resistance in
TNBC cells, acting at the cellular level as a sponge of miR-512-
3p, resulting in the upregulation of CDCA3 expression (92). Several
studies have also investigated the role of circRNAs in ADM-
resistance (93) and the resistance to taxanes (94, 95). Lastly, a
recent work by Li and colleagues reported that the circular
HER2 RNA (circHER2) encodes for a novel protein-HER2-
103 - that is expressed in a marked percentage of TNBC cases,
with a worse overall prognosis than circ-HER2/HER2-103 negative
patients; in their work, HER2-103 enhanced both homo and hetero
dimerization of EGFR/HER3, AKT phosphorylation and malignant
phenotypes.

Furthermore, Pertuzumab, an antibody employed in HER2+
tumor treatment, could represent a potential antagonist due to the
congruence of the amino acid sequence of HER2-103 and
HER2 CRI1 domain. This antibody in fact decreased the in vivo
tumorigenicity only of the triple-negative tumoral cells expressing
the circ-HER2/HER2-103 (96). Altogether, these studies show that
circRNAs may predict responsiveness to chemo-, radio-, immuno-,
and hormone-therapies, and further clinical investigations are
encouraged for validation.

5 Small non-coding RNAs

Small non-coding RNAs (sncRNAs) are a class of highly
abundant ncRNAs that are typically <100 nucleotides (nt)

frontiersin.org


https://www.frontiersin.org/journals/oncology-reviews
https://www.frontiersin.org
https://doi.org/10.3389/or.2025.1621144

Barbi et al.

TABLE 3 Scheme of miRNAs implications in Breast Cancer types.

10.3389/0r.2025.1621144

Micro RNAs (miRNAs)

Regulation

miRNAs

Breast cancer proliferation/tumorigenesis (oncomiRs)

miR-17~92 cluster; miR-17; miR-18a; miR19a (123)

HR +, HER2 +, TNBC

Breast cancer metastasis

Drug resistance

Chemotherapy resistance

Tumor suppression

miR-30 (cell division inhibition targeting cyclin D2); miR-99a (HOXA,
mTOR, IGFBP1, FGFR3 inhibition) (113-116)

miR-105 (target ZO-1) (110); miR125b; miR-27a/b; miR-210; miR-30; miR- HER2 +, TNBC
135-5p; miR-155 (118-121)
miR-221 (Tamoxifen-resistance) (117); miR-4728-3p (Lapatinib HR +, HER2 +
resistance) (119)
miR-155 (124-126) TNBC

HR+, HER2+, TNBC

Anti-metastatic/anti-proliferative

long, transcribed from noncoding genomic regions with the
ability to regulate various aspects of gene expression during
normal animal physiology and development. sncRNAs control
gene architecture,
transcription, RNA splicing, editing, translation, and turnover.

expression by regulating chromatin
They are further divided into different subtypes: micro RNAs
(miRNAs), PIWI-interacting RNAs (piRNAs), small-interfering
RNAs (siRNAs), small nuclear RNAs (snRNAs) and small

nucleolar RNAs (snoRNAs) (100).

5.1 MicroRNAs

MicroRNAs constitute a subgroup of abundant endogenous
small noncoding RNAs made by single-stranded RNAs of
approximately 19-24 nt length (26). Almost 2,500 putative
miRNAs are currently identified in the human genome, but the
number is increasing rapidly due to the development of high-
throughput sequencing technologies. Approximately 50% of
miRNAs are located in chromosomal regions prone to structural
changes, making them crucial regulators of gene expression and
promising candidates for biomarker development (101).

In general, micro RNAs target messenger RNAs that contain
stretches of a complementary sequence to decrease their expression,
although many miRNAs can also act on other non-coding RNAs
(102); it is also known that one single miRNA can have more than
one target and that one single gene can be modulated by more than
one miRNA (103). A large body of works revealed the important role
of miRNAs in many biological functions such as development, cell
differentiation, embryogenesis, metabolism, organogenesis, and
apoptosis (104). Furthermore, it has recently been proposed that
circulating miRNAs could potentially contribute to intercellular
communication and be introduced as targets of therapeutics for
the treatment of different diseases (105).

MicroRNAs can also be localized extracellularly (such as in
plasma/serum, urine, saliva, and seminal fluid), conserving more
stability than cellular miRNAs (106-108). Some extracellular
miRNAs are just products of cellular activities. However, many
researches highlighted the importance of these miRNAs in different
regulation processes and multiple studies have demonstrated that
extracellular miRNAs can exert biological functions in recipient cells
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miR-21; miR-10-b; miR-34a (116)

TNBC

to regulate their activity, thereby acting as intercellular signaling
molecules. miR-105 is in fact expressed and secreted by metastatic
breast cancer cells, in a potent regulator of migration through the
target of ZO-1 (109, 110). MicroRNA expression patterns are
frequently dysregulated in cancer, and great differences may be
observed between normal and cancerous tissues and between
localized and aggressive forms of cancer, depending on the type
and stage of the disease (Table 3). It has been shown that certain
microRNAs can induce oncogenesis, while others are involved in
regulating gene targets associated with metastasis; they can either
enhance or suppress the cancer phenotype by targeting tumor
suppressor genes or oncogenes. Oncogenic miRNAs are often
referred to as oncomiRs and are overexpressed in cancer cells,
while tumor-suppressor miRNAs are usually downregulated,
suggesting a
representing potential targets for therapeutic intervention (23, 111).

significant role in cancer progression and

In breast cancer, miRNA expression patterns also vary among
the different subtypes. Luminal A and luminal B are very similar, but
they differ in a more prominent dysregulation of subtype B
compared to the A, which shows an abnormal regulation of
657 miRNAs against only 67 of the counterparts (112-116).
Luminal A manifests a strong reduction in miR-1290, together
with a downregulation of miR-29a, miR-181a, and miR-652 and
enrichment of miR-30c-5p, miR-30b-5p, and miR-99a/let7c/miR-
125b cluster (113). Notably, in luminal A there is an evident
of miRNAs

coherently with the low proliferation grade of this BCs subtype:

presence associated with tumor suppression
miR-30 for instance, inhibits cell division through cyclin
D2 targeting, or miR-99a which reduces tumor growth by
inhibiting proteins such as mTOR signaling (112). Conversant
enrichment of miR-182-5p, miR-200b-3p, miR-15b-3p, miR-149-
5p, miR-193b-3p and miR-342-3p defines, on the contrary,
luminal B signature (112-116). In luminal-like breast cancers,
microRNAs can also have a role in treatment responses:
Tamoxifen resistance is an important issue in treating this
neoplasia, reducing the success of therapy and resulting in either
recurrence or metastatic or advanced-stage disease. It has been
noticed that miR-221 can provoke resistance to Tamoxifen by
altering the cell cycle and evading apoptosis. It also regulates
some signaling pathways like the Cip/Kip family (p21, p27, and
p57), ERa, and phosphatase and PTEN. These regulations can lead
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to an increased proliferation and survival of BC cells and a decrease
in apoptosis (117).

Numerous microRNAs are also associated with HER2+ breast
cancer, in particular miR-125b (connected to metastasis and worst
patient outcomes) is reported to be upregulated, while miR-181d and
miR-195-5p are downregulated (118). miR-4728-3p is encoded
within a HER2 mRNA
downstream targets of HER2 signal transduction and the

intron, and its targets include
estrogen receptor alpha (ESRI). This microRNA is strongly
related to HER2+ BC subtype and when its expression is
particularly increased, the efficacy of HER2 inhibitor Lapatinib is
minimized (119).

Of note, microRNAs are expressed in a context-dependent
manner, lying upon an evolving transcriptome, thus identifying
changes in their landscape before and after eventual treatments
could be helpful in the development of improved therapies,
especially in cancers, when there is a shift in the abundance of
relative target mRNAs during tumor progression (116).

In the end, TNBCs have also been seen in correlation with
miRNA expression profile; in particular, miR-27a/b, miR-210, and
miR-30 are associated with worse survival and miR-155 and miR-493
are conversely associated with better outcomes (120, 121). Some
micro RNAs associated with TNBCs are also reported to be
associated with metabolic processes. For example, miR-210 is
involved in glucose uptake, lactate production, and extracellular
acidification rate (120, 121). Generally, there is an increase in the
expression of miR-135b, a non-coding RNA that regulates the
expression of ER, AR, and hypoxia-inducible factor 1 alpha
subunit inhibitor (HIFIAN), probably participating in the typical
loss of hormone receptor of TNBC:s. Several studies also highlighted
the upregulation of miR-135-5p, which regulates migration
processes in BC, with the functional differences among different
subtypes arising from context-specific signaling networks (122).

Most of the triple-negative breast cancer molecular subtype data
of miRNA associations is on BL1 and BL2, but it is very likely that
there are specific correlations with other molecular subtypes even if
they remain not completely clear yet. Basal-like triple-negative
breast cancers manifest a signature of overexpression of the miR-
17~92 (iR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-
92a-1) and miR-106b-25 clusters; the proto-oncogene cMYC
regulates the former to modulate the critical transcription factor
E2F1, resulting in cancer proliferation. This miRNA cluster is often
referred to as oncomiR-1, and it can also inhibit the inositol
polyphosphate-4-phosphatase type II B (INPP4B) and associates
with the BLITNBC subtype. BL1 and BL2 show a difference in the
expression of the miR17~92 cluster, miR-17, miR-18a, and miR-19a,
which is lower in the latter (123).

MicroRNAs could also be perfect candidates for a new class of
non-invasive biomarkers for diagnosis, prognosis, and therapeutic
evaluation of cancer. Circulating miRNAs present in serum and
plasma are highly stable and tissue-specific, as their collection in
whole blood is undoubtedly a non-invasive and reproducible
technique. Circulating levels of miRNAs are known to return to
baseline levels after tumor removal, which justifies the potential
usefulness of circulating miRNAs as biomarkers of cancer treatment
efficacy. One of the most representative examples is miR-155, whose
(likely
contributing to cancer metastasis and chemotherapy resistance),

levels are significantly increased in breast cancers
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and restored after therapy; while the mechanisms is not completely
determined yet, these observations suggest that miR-155 could
represent a valid biomarker also for the tumoral stage
identification (124-126). The high relevance of these small non-
codings in breast cancer suggests that they have therapeutic
potential that could be achieved via oncogenic miRNAs
suppression/silencing or through the enrichment of tumor
suppressive ones. In the first case, it is possible to eliminate the
oncogenic miRNAs by delivering an oligomer complementary
(referred to as antagomir), which binds to the mature miRNA,
resulting in inhibition and degradation of the target. The
counterpart is represented by an enrichment in tumor-
suppressive miRNAs, reached through the delivery of miRNA
mimics (double-stranded RNA sequences with the same sequence
as the miRNA) in cells. In this context, there are three molecules
primarily studied: miR-21, miR-10-b, and miR-34a that have shown
a profound preclinical therapeutic potential, with both anti-
metastatic and anti-proliferative properties (116).

Indeed, further analysis of the role of specific miRNAs and novel

agents for manipulating tumor-specific miRNAs is required.

5.2 PIWI-interacting RNAs

PIWI-interacting RNAs (piRNAs) are a class of small non-
coding RNAs with a length of generally 26-31 nt that interact with
members of the PIWI family of proteins specifically expressed in
germ cells to form a silencing complex named piRISC. PiRNAs
originate from intergenic repetitive elements in the genome called
piRNA clusters (approximately 186 in the whole human genome); in
mammals, these clusters are dispersed within the chromosomes
comparatively randomly, but synthetically preserved (127).

PIWI is widely expressed in various tumors, including
seminomas, prostate, breast, gastrointestinal, ovarian, and
endometrial cancer, and could act as an oncogene (12, 128).
Since this evidence, researchers have started to assume a possible
role of piRNAs in cancer and/or oncogenesis. In recent years,
growing data supports the link between piRNAs and tumors:
their abnormal expression is associated with various cancers and
may play a pro-cancer or anti-cancer role in initiation, progression,
and metastasis (Table 4). For example, an aberrant upregulation of
PiR-651 has a crucial function in carcinogenesis in different types of
cancers, like colon, lung, gastric and breast (129). In fact, this piRNA
pathway plays a role in the balance between self-renewal and cell
division and the perturbance of this symmetry may strongly impact
tumor progression. PiR-651 overexpression significantly promotes
cell proliferation and migration of breast cancer cells by markedly
reducing cell apoptosis and arrested cells in the G2/M phase by
regulating the cell cycle.

Additionally, piR-651 contributes to the methylation level
PTEN  promoter,
downregulation is also directly related to Tamoxifen resistance
(130, 131); this highlights the potential role of this PIWI-

interacting RNA as

modulation  of and its consequent

a potential diagnostic indicator and
therapeutic target in the management of breast cancer (131).

BC promotion and progression has been found in association
with several piRNAs, such as piR-4987 — which is associated with

lymph node positivity and poorer outcomes (132) - and piRNA-
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TABLE 4 Scheme of PIWI-interacting RNAs implications in Breast Cancer types.

PIWI-interacting RNAs (piRNAs)

Regulation piRNAs
Tumorigenesis PiR-651 (129-131); piR932 and PIWIL2 protein (134); piR-823 (136, 137) HR+, HER2+, TNBC
Breast cancer proliferation/metastasis PiR-651 (129-131); piR-4987 (132); piR-021285 (133); piR932 and PIWIL2 protein (134) HR +, HER2 +, TNBC
Drug resistance piR-651 (Tamoxifen-resistance) (129-131) HR +
Tumor suppression PiR-36712 (138); piR-2158 (143); piR-YBXI (144, 146, 148, 149) TNBC

021285, which mediates the methylation of some related oncogenes  diseases, but recent innovations in RNA sequencing methods, such
in the tissues, representing a potential regulator of invasive BC (133).  as piRNA single-cell RNA-seq and spatial RNA-seq are promising
Recent studies also highlighted that the PIWIL2 protein works in  tools for a rapid development of the field of piRNAs in tumors. In
combination with piR-932 influencing the biological behavior of  fact, these ncRNAs could be potential biomarkers in cancer
BCSCs through the methylation of Latexin (LXN) gene (134), diagnosis and treatment, but simultaneously, multiple
coding for a tumor suppressor protein which reduces the risk of  independent, large-scale and prospective cohorts are needed to
old stem cells transforming into cancer stem cells (135). validate their effectiveness (151).
Although piRNA regulation of human CSCs remains unclear,
the upregulation of piR-823 was identified in tested luminal breast
cancer cells, resulting as a potential oncogenic regulator of cell 5.3 Small nuclear RNAs
proliferation and colony formation. Its upregulation increases the
expression of DNMTs, promoting DNA methylation of APC gene, Small nuclear RNAs (snRNAs) are small non-coding RNAs
activating Wnt signaling and inducing cancer cell stemness; this  located in the Cajal bodies (CBs) and splicing speckles in the
contributes to tumorigenesis, thus representing a promising target  nucleus (152); they are present in all eukaryotic cells and account
for treatment (136, 137). approximately for about 1% of total mammalian cellular RNA
On the other hand, piRNAs can also have a tumor suppressive ~ (153). These highly abundant nuclear RNAs form the core of
effect: piR-36712 inhibits SEPWI expression, consequently  ribonucleoprotein particles, called snRNPs, which function by
increasing wild-type P53, P21, and E-cadherin levels; at the same  splicing introns from primary genomic transcripts and play
time, it decreases SLUG levels, with a significant reduction in  important roles in gene expression (154). Each snRNP
proliferation, migration, and invasion. Interestingly, piRNA-36712  comprises post-transcriptionally modified uridylic acid-rich
has also a synergistic anticancer effect combined with  small nuclear RNA and a cortege of associated proteins (155,
chemotherapeutic agents (Paclitaxel and Doxorubicin) for BC ~ 156). Based on their function and intra-nuclear localization,
cells (138). mammalian snRNPs can be classified into three major classes:
Noteworthy, piR-2158 contributes to the inhibition of mammary  major and minor spliceosomal snRNPs (respectively, UI, U2, U4,
gland tumorigenesis via regulating cancer stem cells and tumor U5, U6 and Ull, Ul2, U4atac and U6atac) that function in the
angiogenesis (139, 140), it competes with FOSL1 resulting in the = removal of pre-mRNA introns and are predominantly
inhibition of IL-11 (141, 142), a key regulator of cancer cell stemness ~ nucleoplasmic; and a third group composed by the small Cajal
and tumoral growth (143). A recent study by Wu and colleagues ~ body RNPs (scaRNPs), that accumulate in CBs and direct the
detected a novel PIWI-interacting RNA that could have a protective  site-specific 2’-O-ribose methylation and pseudo-uridylation of
role in BC (144): piR-YBXI, whose overexpression significantly = the RNA polymerase (Pol)-II-transcribed spliceosomal snRNAs.
inhibited the proliferation, migration, and invasion ability of = Recent data suggest that they could fill additional roles in gene
TNBC cells both in vivo and in vitro. When upregulated, piR-  expression regulation: UI and U2 have been implicated in
YBXI binds YBXI mRNA leading to its degradation and  transcriptional regulation, with Ul enhancing the first
markedly lowering its expression at both transcript and protein  phosphodiester bond formation during the beginning of
levels (145-147). YBX1 has a well-known oncogenic activity, and  transcription and with U2 interacting with a component of the
some ncRNAs can interact with it influencing directly cancer  pre-initiation complex Transcription Factor II H (TFIIH) (157,
progression (148-150). There are other possible oncogenes  158). Furthermore, a potential RNA degradation can be caused
degraded by piR-YBX1, but more evidence is required to confirm by the polyadenylation inhibition derived from the UI bond to
this thesis. the 5 splice site-like sequence in the 3'UTR of some mRNAs.
Interestingly, YBX1 can influence TNBC cancer development by Some studies have shown that the abundance of snRNA can be
regulating the MAPK signaling pathway via binding RAF1; this  regulated under some cell stress conditions (159); Uéatac relies on
mechanism has a pivotal role in reverting the effects of piR-YBX1 ~ both RNA polymerases II and IIT and its levels rise as a stress-
overexpression. It becomes important then to state that the effect of ~ respond increased by activating the p38MAPK pathway. The kinase
agopiR-YBX1 on the inhibition of distant metastasis is still not  stabilizes U6atac, promoting the expression of numerous minor
proven (144). There are many interrogatives regarding piRNA  intron-containing genes that are otherwise repressed consequently
biology and mechanisms, especially in the modulation of various  to a low U6atac availability. This mechanism can also influence the
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expression of key genes (as PTEN) and modulates cytokine
production (160).

In cancer, aberrant mRNA splicing is frequent. Nevertheless,
there has been minimal analysis of snRNAs as “basal factors”
required for catalyzing the process. Ul is one of the most
abundant ncRNAs in human cells and plays an important role in
splicing pre-mRNAs, aberrancies in this process are considered a
primary cause of human disease (161). Dvinge and colleagues
depicted that, although UI, U2, U4, U5, and U6 snRNA are
present in equal stoichiometry within the spliceosome, their
relative levels vary during development across tissues and across
cancer samples, especially in the context of BCs. This suggests that
snRNA levels play important roles in establishing tissue-specific and
developmental stage-specific splicing programs (162). In the same
manuscript, scientists pointed out how snRNAs dysregulation can
shape the global transcriptome of breast cancer and contribute to
tumorigenesis itself: UI and U5A were abundantly found in HER2+
BC subtype, whereas the two clusters of triple-negative analyzed
samples showed a higher relative presence of U6 and comparatively
low levels of U2 and U5A. Undoubtedly, further work is required to
determine their effective contribution to the definition and/or
regulation of each subtype (162). A recent work by Caggiano and
colleagues evidenced that the inhibition of U2 snRNP induces
persistent DNA damage in triple-negative breast cancer cells and
organoids; this inhibition downregulates genes involved in DNA
damage response (DDR), whose structure is characterized by
numerous small exons and that are expressed at high levels in
TNBC (163). DDR genes comprising many exon-intron junctions
are probably more likely to be affected by splicing inhibition because
of the numerous splicing reactions required to process them. For
instance, BRCA1/2 and ATRIP are among the most affected genes.
This window of vulnerability in TNBC cells could be exploited
therapeutically (163).

Ul snRNA exerts a significant impact also on migration and
invasion in breast cancer cell lines, activating proto-oncogenes and
tumor

downregulating ORF-disruptive splicing

suppressors (like ATM). Ul inhibition results in premature

changes in

transcription termination and mRNA shortening; conversely, Ul
over-expression negates these effects and significantly decreases cell
line ability to migrate and spread (164), presenting a suitable target
for inhibiting BC invasion. UI can also silence the polyadenylation
signals (PAS) activity, leading to shortened mRNA 3-UTR regions
and therefore shortened mRNA isoforms, typical of certain cell types
but also present in various cancers, including BC (165).

Thanks to their location in the nucleus, snRNAs can be detected
through liquid biopsy and potentially be used for early non-invasive
cancer detection (Table 5). An example is represented by the
persistence of elevated levels of U6 in the plasma of ER+ and
ER-breast cancer patients, both active and inactive, but not in
healthy cases; this evidence hence indicates an increased
polymerase IIT activity in breast tumors, regardless of the disease
progression (166, 167).

5.4 Small nucleolar RNAs

Small nucleolar RNAs (snoRNAs) are non-coding RNAs
ranging from 60 to 300 bp, primarily located in the nucleoli of
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TABLE 5 Small nuclear RNAs scheme in Breast Cancer types.

Small nuclear RNAs (snRNAs)

Regulation piRNAs
Biomarkers (plasma) U6 (166-168) HR +
Ul; U5A (158, 162, 164, 165, 169, 170) ‘ HER2 +
U6 (166-168) ‘ TNBC

eukaryotic cells, and generally derived from intronic sequences.
They are categorized into C/D box snoRNAs, H/ACA box
snoRNAs and scaRNAs (small Cajal RNAs). The first two modify
RNA (rRNA)
pseudouridylation, respectively, while scaRNAs localize in the
Cajal bodies (171). These snoRNAs associate with specific
proteins to form RNPs. C/D snoRNAs possess conserved C and

ribosomal through  2'-O-methylation and

D motifs (located at the 5" and 3/, respectively), forming “kink-turn”
structures recognized by binding proteins (172). H/ACA snoRNAs
include H and ACA motifs and feature “pseudouridylation pockets”
targeting uridines in rRNA (173). Some snoRNAs, lacking an
apparent complementarity with rRNAs at known modified
positions, are called “orphan snoRNAs,” and may play broader
roles beyond canonical rRNA modifications (174).

In recent years, there has been increasing interest, and several
studies have confirmed that snoRNAs are involved in processes like
alternative splicing, ac4C modifications, and even miRNA-like
activity, positioning snoRNAs as regulators of cellular function
(174-178). A 2016 work by Krishnan and colleagues reported
over 40 snoRNAs differentially expressed in breast cancer tissue,
of which 13 can have prognostic significance (179). Besides,
functional studies suggest that snoRNAs can be up- or
downregulated in BC, acting as oncogenes or tumor suppressors
(180). For example, the snoRNA host gene ZFASI is downregulated
in breast cancer, and it might control cellular homeostasis,
proliferation and differentiation (181). Elevated snoRNAs and
fibrillarin (FBL, an enzymatic snoRNP) expression has been
linked to impaired p53 activation and increased tumorigenicity
(182), while snoRNA U50, usually downregulated in prostate and
breast cancer, has a significant correlation with tumor grade (183). It
mediates the methylation of C2848 in 28 S rRNA, acting as a
potential tumor-suppressor gene (184, 185).

Other small nucleolar RNAs, such as SNORD50A and
SNORD50B  (SNORD50A/B),  negatively — regulate ~ KRAS
oncoproteins and modulate p53 signaling through GMPS
interaction (186, 187). Conversely, small nucleolar RNAs can also
be involved in BC development and metastasis, U3 and U8
(upregulated in BC tissues) are essential for pre-rRNA processing
reactions, leading to the synthesis of the small and large ribosomal
subunits. Their depletion triggers p53-mediated anti-tumor stress
responses. Tumors derived from U3-knockdown cells displayed
markedly lower metabolic volume and activity than tumors
derived from aggressive control cancer cells; this indicates
distinctive tumor growth properties that may reflect non-
conventional regulatory functions of U3 in mRNA metabolism
(188). The overexpression of small nucleolar RNA host genes
(SNHGs) like SNHGI and SNGH3 influences proliferation,
migration, and EMT through regulation of miRNAs (like miR-
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TABLE 6 Small nucleolar RNAs scheme in breast cancer types.

10.3389/0r.2025.1621144

Small nucleolar RNAs (snoRNAs)

Regulation snoRNAs
Breast cancer proliferation/tumorigenesis FBL (snoRNP) (182); SNORD22; SNORD25; SNORD26; SNORD27; Not defined
SNORD28; SNORD29; SNORD30; SNORD31 (189-193).; SNORA73A;
SNORA73B; SNORA74A (194, 195); sno-miR-28 (196)
Breast cancer metastasis U3; U8 (188) Not defined
Tumor suppression U50 (183, 184); SNORD50A/B (186, 187) wild type p53
Biomarkers SNORD16; SNORA73B; SCARNA4; SNORD49B (199) not defined

186-5p, miR-154-3p, miR-330-5p and miR-384) and key oncogenic
pathways (such as Notch signaling) (189-193).

SNORA73A, SNORA73B, and SNORA74A are also bound to
PARP-1 to activate its catalytic activity and mediate ADPRylation of
DDX21, promoting cell proliferation in BC (194). In addition,
SNORA7IA also promotes the binding of G3BP1-ROCK2 and
increases the expression of ROCK2, promoting the EMT
process (195).

SnoRNA-derived fragments (sno-miRNAs or sdRNAs) such as
sdRNA-93 and sno-miR-28, exhibit microRNA-like behavior,
promoting cancer cell invasion and affecting genes like Pipox and
TAF9B, which stabilizes p53 in physiological conditions. A brief
explanation of this process is that the interaction between p53,
NHGI, sno-miR-28, and TAF9B results in a signaling cascade, which
significantly affects p53 and modifies its downstream gene
network (196-198).

All these various implications highlight the potential diagnostic
value of these non-coding RNAs (Table 6). Multiple studies have
highlighted that snoRNAs are also detectable in body fluids like
blood, plasma and urine, suggesting their utility as non-invasive
cancer biomarkers. For instance, a very recent study identified four
snoRNAs-SNORD16, SNORA73B, SCARNA4, and SNORD49B-that
are significantly increased in the plasma of breast cancer patients,
especially in early-stage patients, representing an interesting
diagnostic potential. Nevertheless, how snoRNAs facilitate BC
cells acquiring cancer hallmarks and contribute to therapeutic
sensitivity or resistance is unknown. Besides, the cell signaling
pathways, molecular mechanisms, and their regulation are
unclear and require detailed investigation (199).

6 Conclusion

As thoroughly discussed, non-coding RNAs represent a vast
resource in the comprehension and treatment of breast cancer;
they act at different levels and with different mechanisms both in
the development and in the inhibition of these tumors. All the
direct and indirect correlations described in this manuscript
suggest non-coding RNAs as perfect candidates as biomarkers
for diagnosing tumors, judging patient prognosis, and predicting
disease progression. Moreover, multiple studies have proved that
many of these ncRNAs are stably expressed in BC patients’ blood,
plasma, urine, and other body fluids even at early stages,
for novel class of non-invasive

providing evidence a

biomarkers for BC.
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Among them, an emerging and promising diagnostic tool is
represented by circRNAs. Their unique structure, as mentioned
above, provides them with stability and specificity, making them
interesting candidates for therapeutic strategies. Furthermore, many
studies show circRNAs ability to regulate BC cell sensibility to
treatment, predicting responsiveness to chemo-, radio-, immuno-,
and hormone-therapies, highlighting their potential to overcome the
resistance issue. All these various implications highlight the
potential diagnostic value of these non-coding RNAs.

Furthermore, with the continuous discovery of ncRNAs structural
information and regulatory functions, small molecule inhibitors against
ncRNAs have been developed with broad prospects for clinical
diagnosis and treatment of tumors. RNA interference (RNAi) can be
harnessed to inhibit the expression of cognate mRNA by exogenous
RNA-based molecules that can be synthetically designed against any
target RNA. The new anti-tumor drugs against ncRNAs have become a
new promising trend in cancer treatment. At present, the research of
new molecules targeting ncRNAs has made some progress.

. small (or short) interfering RNAs, siRNAs, which target
transcripts via RNA-induced silencing complex (RISC),
downregulating mRNA levels;

. miRNAs sponges, molecules designed as decoys that
specifically target microRNA seed families;

c. antisense oligonucleotides (e.g., ASOs or LNA Gapmers) that
hybridize with their target RNA, blocking the formation of its
secondary structure and mediating degradation by the
RNAse-H;

. aptamers, nucleic acid-based structures that act similarly to
antibodies and interfere with the RNA tertiary structure,
through which they associate with their interactors;

e. CRISPR-Cas9 technology, which may be exploited for targeted
repression via guide RNAs but can also restore expression of
dormant ncRNAs with tumor suppressor properties;

f. indirect modulators of IncRNAs are also a new direction in

drug development.

There are many examples of RNAI, such as siRNAs, that can
target all kinds of proteins, including traditionally undruggable
proteins, and there is also evidence that these molecules could be
superior to antibodies or small molecule inhibitors when inhibiting
the same pathway, demonstrating a high therapeutic potential (200).

Although ncRNAs are opening a new door for clinical diagnosis
and treatment of breast cancer and these nucleic acid-based
approaches have great potential for clinical application, their
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limitations should be considered, and further investigations are
needed to.

« increase their stability,

« avoid rapid degradation,

o evaluate off-target effects due to possible sequence pairing,

« implement an efficient delivery system for tissue recognition
and intercellular localization

o overcame immune barriers.

In this perspective, several strategies are under investigation to
efficiently deliver these molecules against BC-related ncRNA targets,
such as synthetic ionizable lipids (LNP), including ASOs targeting
MALATI and HOTAIR IncRNAs (201) ZIF-90 (202)
nanoparticles enveloping dual antisense oligonucleotide targeting
miR-21/miR-155 to treat TNBC and inhibit metastasis.

Undoubtedly, research improvements in this field will provide

or

more action strategies in the understanding of BC cancer biology, in
its correct diagnosis, and in the development of personalized,
targeted therapies that may also be helpful in the more aggressive
forms of the disease, opening new avenues for precision medicine in
a heterogeneous disease such as breast cancer.
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